DSPIC33FJMC204IPT [MICROCHIP]

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog; 16位数字信号控制器(高达32 KB的闪存和2KB的SRAM)与电机控制和先进的模拟
DSPIC33FJMC204IPT
型号: DSPIC33FJMC204IPT
厂家: MICROCHIP    MICROCHIP
描述:

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
16位数字信号控制器(高达32 KB的闪存和2KB的SRAM)与电机控制和先进的模拟

闪存 静态存储器 电机 控制器
文件: 总330页 (文件大小:5255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304  
16-bit Digital Signal Controllers (up to 32 KB Flash and  
2 KB SRAM) with Motor Control and Advanced Analog  
• Six analog inputs on 28-pin devices and up to  
nine analog inputs on 44-pin devices  
Operating Conditions  
• 3.0V to 3.6V, -40ºC to +150ºC, DC to 20 MIPS  
• Flexible and independent ADC trigger sources  
• 3.0V to 3.6V, -40ºC to +125ºC, DC to 40 MIPS  
Timers/Output Compare/Input Capture  
Core: 16-bit dsPIC33F CPU  
• Three 16-bit timers/counters. Can pair up two to  
make one 32-bit.  
• Code-efficient (C and Assembly) architecture  
• Two 40-bit wide accumulators  
• Two Output Capture modules configurable as  
• Single-cycle (MAC/MPY) with dual data fetch  
timers/counters  
• Single-cycle mixed-sign MUL plus hardware divide  
• Four Input Capture modules  
• Peripheral Pin Select (PPS) to allow function  
remap  
Clock Management  
• 2% internal oscillator  
Communication Interfaces  
• Programmable PLLs and oscillator clock sources  
• Fail-Safe Clock Monitor (FSCM)  
• Independent Watchdog Timer (WDT)  
• Fast wake-up and start-up  
• One UART module (10 Mbps)  
• With support for LIN 2.0 protocols and IrDA®  
• One 4-wire SPI module (15 Mbps)  
• One I2C™ module (up to 1 Mbaud) with SMBus  
support  
Power Management  
• PPS to allow function remap  
• Low-power management modes (Sleep, Idle, Doze)  
• Integrated Power-on Reset and Brown-out Reset  
• 1.35 mA/MHz dynamic current (typical)  
• 55 μA IPD current (typical)  
Input/Output  
• Sink/Source up to 10 mA (pin specific) for stan-  
dard VOH/VOL, up to 16 mA (pin specific) for  
non-standard VOH1  
High-Speed PWM  
• 5V-tolerant pins  
• Up to four PWM pairs with independent timing  
• Dead time for rising and falling edges  
• 12.5 ns PWM resolution  
• Selectable open drain, pull-ups, and pull-downs  
• Up to 5 mA overvoltage clamp current  
• External interrupts on all I/O pins  
• PWM support for:  
- DC/DC, AC/DC, Inverters, PFC, Lighting  
- BLDC, PMSM, ACIM, SRM  
Qualification and Class B Support  
• AEC-Q100 REVG (Grade 0 -40ºC to +150ºC)  
• Class B Safety Library, IEC 60730  
• Programmable Fault inputs  
• Flexible trigger configurations for ADC conversions  
Debugger Development Support  
Advanced Analog Features  
• In-circuit and in-application programming  
• Two program and two complex data breakpoints  
• IEEE 1149.2-compatible (JTAG) boundary scan  
• Trace and run-time watch  
• ADC module:  
- Configurable as 10-bit, 1.1 Msps with four  
S&H or 12-bit, 500 ksps with one S&H  
Packages  
Type  
SPDIP  
SOIC  
SSOP  
QFN-S  
QFN  
TQFP  
Pin Count  
Contact Lead/Pitch  
I/O Pins  
28  
.100''  
28  
28  
0.65  
28  
0.65  
44  
0.65  
44  
0.80  
1.27  
21  
21  
21  
21  
35  
35  
Dimensions  
1.365x.285x.135''  
17.9xx7.50x2.05  
10.2x5.3x1.75  
6x6x0.9  
8x8x0.9  
10x10x1  
Note: All dimensions are in millimeters (mm) unless specified.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 1  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 Product Families  
The device names, pin counts, memory sizes and  
peripheral availability of each device are listed below.  
The following pages show their pinout diagrams.  
TABLE 1:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 CONTROLLER FAMILIES  
Remappable Peripherals  
Device  
Pins  
3(1)  
4
2
6ch(2)  
2ch(2)  
1
1
3
1
1ADC,  
6 ch  
1
21  
16  
SPDIP  
SOIC  
SSOP  
QFN-S  
dsPIC33FJ32MC202 28  
32  
2
3(1)  
3(1)  
4
4
2
2
6ch(2)  
2ch(2)  
6ch(2)  
2ch(2)  
1
1
1
1
3
3
1
1
1ADC,  
9 ch  
1
1
35 QFN  
TQFP  
26  
26  
dsPIC33FJ32MC204 44  
dsPIC33FJ16MC304 44  
32  
16  
2
2
1ADC,  
9 ch  
35 QFN  
TQFP  
Note 1: Only two out of three timers are remappable.  
2: Only PWM fault inputs are remappable.  
3: Only two out of three interrupts are remappable.  
DS70283K-page 2  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Pin Diagrams  
28-PIN SPDIP, SOIC, SSOP  
= Pins are up to 5V tolerant  
MCLR  
1
2
3
4
5
28  
27  
26  
25  
24  
AVDD  
AVSS  
AN0/VREF+/CN2/RA0  
AN1/VREF-/CN3/RA1  
(1)  
PWM1L1/RP15 /CN11/RB15  
(1)  
(1)  
PGED1/AN2/C2IN-/RP0 /CN4/RB0  
PWM1H1/RP14 /CN12/RB14  
(1)  
(1)  
PGEC1/AN3/C2IN+/RP1 /CN5/RB1  
PWM1L2/RP13 /CN13/RB13  
(1)  
(1)  
AN4/RP2 /CN6/RB2  
PWM1H2/RP12 /CN14/RB12  
6
7
8
23  
22  
21  
(1)  
(1)  
AN5/RP3 /CN7/RB3  
PGEC2/TMS/PWM1L3/RP11 /CN15/RB11  
(1)  
VSS  
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
PGED2/TDI/PWM1H3/RP10 /CN16/RB10  
VCAP  
VSS  
9
20  
19  
18  
17  
16  
15  
10  
11  
12  
13  
14  
(1)  
(1)  
SOSCI/RP4 /CN1/RB4  
TDO/PWM2L1/SDA1/RP9 /CN21/RB9  
(1)  
SOSCO/T1CK/CN0/RA4  
VDD  
TCK/PWM2H1/SCL1/RP8 /CN22/RB8  
INT0/RP7/CN23/RB7  
(1)  
(1)  
PGED3/ASDA1/RP5 /CN27/RB5  
PGEC3/ASCL1/RP6 /CN24/RB6  
(2)  
28-Pin QFN-S  
= Pins are up to 5V tolerant  
28 27 26 25 24 2322  
(1)  
(1)  
PGED1/EMUD1/AN2/C2IN-/RP0 /CN4/RB0  
PWM1L2/RP13 /CN13/RB13  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
(1)  
(1)  
PGEC1/EMUC1/AN3/C2IN+/RP1 /CN5/RB1  
PWM1H2/RP12 /CN14/RB12  
(1)  
(1)  
AN4/RP2 /CN6/RB2  
PGEC2/EMUC2/TMS/PWM1L3/RP11 /CN15/RB11  
(1)  
(1)  
dsPIC33FJ32MC202  
AN5/RP3 /CN7/RB3  
PGED2/EMUD2/TDI/PWM1H3/RP10 /CN16/RB10  
VSS  
VCAP  
VSS  
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
(1)  
TDO/PWM2L1/SDA1/RP9 /CN21/RB9  
8
9 10 11 12 13 14  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available  
peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to  
be connected to VSS externally.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 3  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Pin Diagrams (Continued)  
(2)  
44-Pin QFN  
= Pins are up to 5V tolerant  
22 21 20 19 18 17 16 15 14 13 12  
(1)  
(1)  
AN4/RP2 /CN6/RB2  
PWM1L2/RP13 /CN13/RB13  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
11  
10  
9
(1)  
(1)  
AN5/RP3 /CN7/RB3  
PWM1H2/RP12 /CN14/RB12  
(1)  
(1)  
AN6/RP16 /CN8/RC0  
PGEC2/EMUC2/PWM1L3/RP11 /CN15/RB11  
(1)  
(1)  
AN7/RP17 /CN9/RC1  
PGED2/EMUD2/PWM1H3/RP10 /CN16/RB10  
8
(1)  
AN8/RP18 /CN10/RC2  
VCAP  
7
dsPIC33FJ32MC204  
dsPIC33FJ16MC304  
VDD  
VSS  
VSS  
6
RP25/CN19/RC9  
RP24/CN20/RC8  
5
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
TDO/RA8  
4
(1)  
PWM2L1/RP23 /CN17/RC7  
3
(1)  
PWM2H1/RP22 /CN18/RC6  
2
(1)  
(1)  
SOSCI/RP4 /CN1/RB4  
SDA1/RP9 /CN21/RB9  
1
34 35 36 37 38 39 40 41 42 43 44  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available  
peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to  
be connected to VSS externally.  
DS70283K-page 4  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Pin Diagrams (Continued)  
44-Pin TQFP  
= Pins are up to 5V tolerant  
(1)  
(1)  
11  
10  
AN4/RP2 /CN6/RB2  
PWM1L2/RP13 /CN13/RB13  
23  
24  
25  
(1)  
(1)  
PWM1H2/RP12 /CN14/RB12  
AN5/RP3 /CN7/RB3  
(1)  
(1)  
9
8
7
6
5
4
3
2
1
PGEC2/EMUC2/PWM1L3/RP11 /CN15/RB11  
AN6/RP16 /CN8/RC0  
(1)  
(1)  
26  
27  
PGED2/EMUD2/PWM1H3/RP10 /CN16/RB10  
AN7/RP17 /CN9/RC1  
(1)  
VCAP  
VSS  
AN8/RP18 /CN10/RC2  
dsPIC33FJ32MC204  
dsPIC33FJ16MC304  
VDD  
VSS  
28  
29  
30  
31  
32  
33  
(1)  
RP25 /CN19/RC9  
(1)  
RP24 /CN20/RC8  
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
TDO/RA8  
(1)  
PWM2L1/RP23 /CN17/RC7  
(1)  
PWM2H1/RP22 /CN18/RC6  
(1)  
(1)  
SDA1/RP9 /CN21/RB9  
SOSCI/RP4 /CN1/RB4  
Note 1: The RPn pins can be used by any remappable peripheral. See Table 1 for the list of available  
peripherals.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 5  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Table of Contents  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 Product Families.................................................................................................. 2  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers .......................................................................................... 13  
3.0 CPU............................................................................................................................................................................................ 17  
4.0 Memory Organization................................................................................................................................................................. 29  
5.0 Flash Program Memory.............................................................................................................................................................. 55  
6.0 Resets ....................................................................................................................................................................................... 61  
7.0 Interrupt Controller ..................................................................................................................................................................... 71  
8.0 Oscillator Configuration............................................................................................................................................................ 101  
9.0 Power-Saving Features............................................................................................................................................................ 111  
10.0 I/O Ports ................................................................................................................................................................................... 117  
11.0 Timer1 ...................................................................................................................................................................................... 143  
12.0 Timer2/3 feature ...................................................................................................................................................................... 147  
13.0 Input Capture............................................................................................................................................................................ 151  
14.0 Output Compare....................................................................................................................................................................... 155  
15.0 Motor Control PWM Module..................................................................................................................................................... 159  
16.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 173  
17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 179  
18.0 Inter-Integrated Circuit™ (I2C™).............................................................................................................................................. 185  
19.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 193  
20.0 10-bit/12-bit Analog-to-Digital Converter (ADC)....................................................................................................................... 199  
21.0 Special Features ...................................................................................................................................................................... 211  
22.0 Instruction Set Summary.......................................................................................................................................................... 219  
23.0 Development Support............................................................................................................................................................... 227  
24.0 Electrical Characteristics.......................................................................................................................................................... 231  
25.0 High Temperature Electrical Characteristics............................................................................................................................ 281  
26.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 291  
27.0 Packaging Information.............................................................................................................................................................. 295  
Appendix A: Revision History............................................................................................................................................................. 309  
Index ................................................................................................................................................................................................. 321  
The Microchip Web Site..................................................................................................................................................................... 325  
Customer Change Notification Service .............................................................................................................................................. 325  
Customer Support.............................................................................................................................................................................. 325  
Reader Response .............................................................................................................................................................................. 326  
Product Identification System............................................................................................................................................................. 327  
DS70283K-page 6  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We wel-  
come your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 7  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Referenced Sources  
This device data sheet is based on the following  
individual chapters of the “dsPIC33F/PIC24H Family  
Reference Manual”. These documents should be  
considered as the general reference for the operation  
of a particular module or device feature.  
Note 1: To access the documents listed below,  
browse to the documentation section of  
the dsPIC33FJ32MC204 product page of  
the  
Microchip  
web  
site  
(www.microchip.com) or select a family  
reference manual section from the  
following list.  
In addition to parameters, features, and  
other documentation, the resulting page  
provides links to the related family  
reference manual sections.  
Section 1. “Introduction” (DS70197)  
Section 2. “CPU” (DS70204)  
Section 3. “Data Memory” (DS70202)  
Section 4. “Program Memory” (DS70202)  
Section 5. “Flash Programming” (DS70191)  
Section 7. “Oscillator” (DS70186)  
Section 8. “Reset” (DS70192)  
Section 9. “Watchdog Timer and Power-Saving Modes” (DS70196)  
Section 10. “I/O Ports” (DS70193)  
Section 11. “Timers” (DS70205)  
Section 12. “Input Capture” (DS70198)  
Section 13. “Output Compare” (DS70209)  
Section 14. “Motor Control PWM” (DS70187)  
Section 15. “Quadrature Encoder Interface (QEI)” (DS70208)  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183)  
Section 17. “UART” (DS70188)  
Section 18. “Serial Peripheral Interface (SPI)” (DS70206)  
Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70195)  
Section 23. “CodeGuard™ Security” (DS70199)  
Section 25. “Device Configuration” (DS70194)  
Section 32. “Interrupts (Part III)” (DS70214)  
DS70283K-page 8  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
1.0  
DEVICE OVERVIEW  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
This document contains device-specific information for  
the following Digital Signal Controller (DSC) devices:  
• dsPIC33FJ32MC202  
• dsPIC33FJ32MC204  
• dsPIC33FJ16MC304  
The dsPIC33F devices contain extensive Digital Signal  
Processor (DSP) functionality with a high performance  
16-bit microcontroller (MCU) architecture.  
Figure 1-1 shows a general block diagram of the core  
and  
peripheral  
modules  
in  
the  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
family of devices. Table 1-1 lists the functions of the  
various pins shown in the pinout diagrams.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 9  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 1-1:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
PCH PCL  
Y RAM  
PCU  
23  
Program Counter  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
16  
PORTC  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
Remappable  
Pins  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Power-up  
Timer  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
Divide Support  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP  
VDD, VSS  
MCLR  
Timers  
1-3  
OC/  
PWM1-2  
PWM  
2 Ch  
UART1  
SPI1  
ADC1  
PWM  
6 Ch  
IC1,2,7,8  
QEI  
CNx  
I2C1  
Note:  
Not all pins or features are implemented on all device pinout configurations. See Pin Diagramsfor the specific pins  
and features present on each device.  
DS70283K-page 10  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 1-1:  
Pin Name  
AN0-AN8  
PINOUT I/O DESCRIPTIONS  
Pin  
Type  
Buffer  
Type  
PPS  
Description  
I
Analog  
No Analog input channels.  
CLKI  
I
ST/CMOS No External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
No Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
Always associated with OSC2 pin function.  
OSC1  
OSC2  
I
ST/CMOS No Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
I/O  
No Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
SOSCI  
I
ST/CMOS No 32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
SOSCO  
O
No 32.768 kHz low-power oscillator crystal output.  
CN0-CN30  
I
ST  
No Change notification inputs.  
Can be software programmed for internal weak pull-ups on all inputs.  
IC1-IC2  
IC7-IC8  
I
I
ST  
ST  
Yes Capture inputs 1/2.  
Yes Capture inputs 7/8.  
OCFA  
OC1-OC2  
I
O
ST  
Yes Compare Fault A input (for Compare Channels 1 and 2).  
Yes Compare outputs 1 through 2.  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
No External interrupt 0.  
Yes External interrupt 1.  
Yes External interrupt 2.  
RA0-RA4  
RA7-RA10  
I/O  
ST  
No PORTA is a bidirectional I/O port.  
No  
RB0-RB15  
RC0-RC9  
I/O  
I/O  
ST  
ST  
No PORTB is a bidirectional I/O port.  
No PORTC is a bidirectional I/O port.  
T1CK  
T2CK  
T3CK  
I
I
I
ST  
ST  
ST  
No Timer1 external clock input.  
Yes Timer2 external clock input.  
Yes Timer3 external clock input.  
U1CTS  
U1RTS  
U1RX  
I
O
I
ST  
ST  
Yes UART1 clear to send.  
Yes UART1 ready to send.  
Yes UART1 receive.  
U1TX  
O
Yes UART1 transmit.  
SCK1  
SDI1  
SDO1  
SS1  
I/O  
I
O
ST  
ST  
Yes Synchronous serial clock input/output for SPI1.  
Yes SPI1 data in.  
Yes SPI1 data out.  
I/O  
ST  
Yes SPI1 slave synchronization or frame pulse I/O.  
SCL1  
SDA1  
ASCL1  
ASDA1  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
No Synchronous serial clock input/output for I2C1.  
No Synchronous serial data input/output for I2C1.  
No Alternate synchronous serial clock input/output for I2C1.  
No Alternate synchronous serial data input/output for I2C1.  
TMS  
TCK  
TDI  
I
I
I
ST  
ST  
ST  
No JTAG Test mode select pin.  
No JTAG test clock input pin.  
No JTAG test data input pin.  
No JTAG test data output pin.  
TDO  
O
Legend: CMOS = CMOS compatible input or output;  
ST = Schmitt Trigger input with CMOS levels;  
PPS = Peripheral Pin Select  
Analog = Analog input;  
O = Output;  
P = Power  
I = Input  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 11  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
INDX  
QEA  
I
I
ST  
ST  
Yes Quadrature Encoder Index Pulse input.  
Yes Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
Yes Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
Yes Position Up/Down Counter Direction State.  
QEB  
I
ST  
UPDN  
O
CMOS  
FLTA1  
I
ST  
ST  
Yes PWM1 Fault A input.  
No PWM1 Low output 1.  
No PWM1 High output 1.  
No PWM1 Low output 2.  
No PWM1 High output 2.  
No PWM1 Low output 3.  
No PWM1 High output 3.  
Yes PWM2 Fault A input.  
No PWM2 Low output 1.  
No PWM2 High output 1.  
PWM1L1  
PWM1H1  
PWM1L2  
PWM1H2  
PWM1L3  
PWM1H3  
FLTA2  
O
O
O
O
O
O
I
PWM2L1  
PWM2H1  
O
O
PGED1  
PGEC1  
PGED2  
PGEC2  
PGED3  
PGEC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
No Data I/O pin for programming/debugging communication channel 1.  
No Clock input pin for programming/debugging communication channel 1.  
No Data I/O pin for programming/debugging communication channel 2.  
No Clock input pin for programming/debugging communication channel 2.  
No Data I/O pin for programming/debugging communication channel 3.  
No Clock input pin for programming/debugging communication channel 3.  
I
I/O  
I
I/O  
I
MCLR  
AVDD  
AVSS  
VDD  
I/P  
P
P
P
P
P
I
ST  
P
No Master Clear (Reset) input. This pin is an active-low Reset to the device.  
No Positive supply for analog modules. This pin must be connected at all times.  
No Ground reference for analog modules.  
P
No Positive supply for peripheral logic and I/O pins.  
No CPU logic filter capacitor connection.  
VCAP  
VSS  
No Ground reference for logic and I/O pins.  
VREF+  
VREF-  
Analog  
Analog  
No Analog voltage reference (high) input.  
I
No Analog voltage reference (low) input.  
Legend: CMOS = CMOS compatible input or output;  
ST = Schmitt Trigger input with CMOS levels;  
PPS = Peripheral Pin Select  
Analog = Analog input;  
O = Output;  
P = Power  
I = Input  
DS70283K-page 12  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
DIGITAL SIGNAL  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
CONTROLLERS  
Consider the following criteria when using decoupling  
capacitors:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
Value and type of capacitor: Recommendation  
of 0.1 µF (100 nF), 10-20V. This capacitor should  
be a low-ESR and have a resonance frequency in  
the range of 20 MHz and higher. It is  
recommended that ceramic capacitors be used.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of  
tens of MHz, add a second ceramic-type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 µF in parallel with 0.001 µF.  
2.1  
Basic Connection Requirements  
Getting started with the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of 16-bit Digital Signal  
Controllers (DSCs) requires attention to a minimal set  
of device pin connections before proceeding with  
development. The following is a list of pin names, which  
must always be connected:  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
• All AVDD and AVSS pins (even if the ADC module is  
not used)  
(see Section 2.2 “Decoupling Capacitors”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
• VCAP  
(see Section 2.3 “CPU Logic Filter Capacitor  
Connection (VCAP)”)  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for ADC module is implemented  
Note:  
The AVDD and AVSS pins must be  
connected independent of the ADC  
voltage reference source.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 13  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The placement of this capacitor should be close to the  
VCAP. It is recommended that the trace length not  
exceed one-quarter inch (6 mm). Refer to Section 21.2  
“On-Chip Voltage Regulator” for details.  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
0.1 µF  
Ceramic  
10 µF  
VDD  
Tantalum  
2.4  
Master Clear (MCLR) Pin  
R
The MCLR pin provides for two specific device  
functions:  
R1  
MCLR  
• Device Reset  
C
• Device programming and debugging  
dsPIC33F  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
L1(1)  
For example, as shown in Figure 2-2, it is  
recommended that capacitor C is isolated from the  
MCLR pin during programming and debugging  
operations.  
Note 1: As an option, instead of a hard-wired connection, an  
inductor (L1) can be substituted between VDD and  
AVDD to improve ADC noise rejection. The inductor  
impedance should be less than 1Ω and the inductor  
capacity greater than 10 mA.  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
Where:  
FCNV  
2
f = -------------  
(i.e., ADC conversion rate/2)  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
1
f = -----------------------  
(2π LC)  
VDD  
2
1
---------------------  
L =  
R(1)  
(2πf C)  
R1(2)  
MCLR  
2.2.1  
TANK CAPACITORS  
dsPIC33F  
JP  
C
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including DSCs to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device, and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 µF to 47 µF.  
Note 1: R 10 kΩ is recommended. A suggested  
starting value is 10 kΩ. Ensure that the MCLR  
pin VIH and VIL specifications are met.  
2: R1 470W will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to Elec-  
trostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
2.3  
CPU Logic Filter Capacitor  
Connection (VCAP)  
A low-ESR (<5 Ohms) capacitor is required on the  
VCAP pin, which is used to stabilize the voltage  
regulator output voltage. The VCAP pin must not be  
connected to VDD, and must have a capacitor between  
4.7 µF and 10 µF, 16V connected to ground. The type  
can be ceramic or tantalum. Refer to Section 24.0  
“Electrical  
Characteristics”  
for  
additional  
information.  
DS70283K-page 14  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming (ICSP) and debugging purposes.  
It is recommended to keep the trace length between  
the ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is  
recommended, with the value in the range of a few tens  
of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 8.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 3 or MPLAB REAL ICE™ in-circuit emu-  
lator.  
Main Oscillator  
Guard Ring  
For more information on MPLAB ICD 3 or MPLAB  
13  
14  
15  
16  
17  
18  
19  
20  
REAL  
ICE™  
in-circuit  
emulator  
connection  
requirements, refer to the following documents that are  
available on the Microchip web site.  
“Using MPLAB® ICD 3” (poster) DS51765  
“MPLAB® ICD 3 Design Advisory” DS51764  
“MPLAB® REAL ICE™ In-Circuit Emulator User’s  
Guide” DS51616  
“Using MPLAB® REAL ICE™ In-Circuit Emulator”  
Guard Trace  
Secondary  
Oscillator  
(poster) DS51749  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 15  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
2.7  
Oscillator Value Conditions on  
Device Start-up  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 8 MHz for start-up with PLL enabled. This means  
that if the external oscillator frequency is outside this  
range, the application must start-up in FRC mode first.  
The default PLL settings after a POR with an oscillator  
frequency outside this range will violate the device  
operating speed.  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV and PLLDBF to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration word.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If MPLAB ICD 2, MPLAB ICD 3 or MPLAB REAL ICE™  
in-circuit emulator is selected as a debugger, it auto-  
matically initializes all of the A/D input pins (ANx) as  
“digital” pins, by setting all bits in the AD1PCFGL regis-  
ter.  
The bits in the registers that correspond to the A/D pins  
that are initialized by MPLAB ICD 3 or MPLAB REAL  
ICE™ in-circuit emulator, must not be cleared by the  
user application firmware; otherwise, communication  
errors will result between the debugger and the device.  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must clear the corresponding bits in the  
AD1PCFGL register during initialization of the ADC  
module.  
When MPLAB ICD 3 or MPLAB REAL ICE™ in-circuit  
emulator is used as a programmer, the user application  
firmware must correctly configure the AD1PCFGL  
register. Automatic initialization of this register is only  
done during debugger operation. Failure to correctly  
configure the register(s) will result in all A/D pins being  
recognized as analog input pins, resulting in the port  
value being read as a logic ‘0’, which may affect user  
application functionality.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic-low state.  
Alternatively, connect a 1k to 10k resistor between VSS  
and the unused pins.  
DS70283K-page 16  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
3.1  
Data Addressing Overview  
3.0  
CPU  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks, referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through the  
X memory AGU, which accesses the entire memory  
map as one linear data space. Certain DSP instructions  
operate through the X and Y AGUs to support dual  
operand reads, which splits the data address space  
into two parts. The X and Y data space boundary is  
device-specific.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 2. “CPU” (DS70204) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software  
boundary checking overhead for DSP algorithms.  
Furthermore, the X AGU circular addressing can be  
used with any of the MCU class of instructions. The X  
AGU also supports Bit-Reversed Addressing to greatly  
simplify input or output data reordering for radix-2 FFT  
algorithms.  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
CPU module has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set, including  
significant support for DSP. The CPU has a 24-bit  
instruction word with a variable length opcode field. The  
Program Counter (PC) is 23 bits wide and addresses up  
to 4M x 24 bits of user program memory space. The  
actual amount of program memory implemented varies  
by device. A single-cycle instruction prefetch mechanism  
is used to help maintain throughput and provides  
predictable execution. All instructions execute in a single  
cycle, with the exception of instructions that change the  
program flow, the double-word move (MOV.D) instruction  
and the table instructions. Overhead-free program loop  
constructs are supported using the DO and REPEAT  
instructions, both of which are interruptible at any point.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit  
Program Space Visibility Page register (PSVPAG). The  
program-to-data-space mapping feature lets any  
instruction access program space as if it were data  
space.  
3.2  
DSP Engine Overview  
The DSP engine features a high-speed 17-bit by 17-bit  
multiplier, 40-bit ALU, two 40-bit saturating  
a
accumulators and a 40-bit bidirectional barrel shifter.  
The barrel shifter is capable of shifting a 40-bit value up  
to 16 bits right or left, in a single cycle. The DSP  
instructions operate seamlessly with all other  
instructions and have been designed for optimal  
real-time performance. The MAC instruction and other  
associated instructions can concurrently fetch two data  
operands from memory while multiplying two W  
registers and accumulating and optionally saturating  
the result in the same cycle. This instruction  
functionality requires that the RAM data space be split  
for these instructions and linear for all others. Data  
space partitioning is achieved in a transparent and  
flexible manner through dedicating certain working  
registers to each address space.  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices have sixteen, 16-bit working registers in the  
programmer’s model. Each of the working registers can  
serve as a data, address or address offset register. The  
16th working register (W15) operates as a software Stack  
Pointer (SP) for interrupts and calls.  
There are two classes of instruction in the  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices: MCU and DSP. These two instruction classes  
are seamlessly integrated into a single CPU. The  
instruction set includes many addressing modes and is  
designed for optimum C compiler efficiency. For most  
instructions, the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 is capable of executing a data (or  
program data) memory read, a working register (data)  
read, a data memory write and a program (instruction)  
memory read per instruction cycle. As a result, three  
parameter instructions can be supported, allowing  
A + B = C operations to be executed in a single cycle.  
A block diagram of the CPU is shown in Figure 3-1, and  
the  
programmer’s  
model  
for  
the  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 is  
shown in Figure 3-2.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 17  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
3.3  
Special MCU Features  
supports 16/16 and 32/16 divide operations, both  
fractional and integer. All divide instructions are iterative  
operations. They must be executed within a REPEATloop,  
resulting in a total execution time of 19 instruction cycles.  
The divide operation can be interrupted during any of  
those 19 cycles without loss of data.  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
features a 17-bit by 17-bit single-cycle multiplier that is  
shared by both the MCU ALU and DSP engine. The  
multiplier can perform signed, unsigned and mixed-sign  
multiplication. Using a 17-bit by 17-bit multiplier for 16-bit  
by 16-bit multiplication not only allows you to perform  
mixed-sign multiplication, it also achieves accurate results  
for special operations, such as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit  
left or right shift in a single cycle. The barrel shifter can  
be used by both MCU and DSP instructions.  
FIGURE 3-1:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 CPU CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
16  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
Y RAM  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
16  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
16  
EA MUX  
ROM Latch  
24  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
16  
16  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16  
16-bit ALU  
16  
To Peripheral Modules  
DS70283K-page 18  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 3-2:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
ACCA  
AD31  
AD0  
DSP  
Accumulators  
ACCB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC  
SRH  
IPL0 RA  
N
OV  
Z
C
IPL2 IPL1  
STATUS Register  
SRL  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 19  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
3.4  
CPU Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
3.4.1  
KEY RESOURCES  
Section 2. “CPU” (DS70204)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 20  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
3.5  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
OA: Accumulator A Overflow Status bit  
1= Accumulator A overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulators A or B have overflowed  
0= Neither Accumulators A or B have overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit  
1= Accumulators A or B are saturated or have been saturated at some time in the past  
0= Neither Accumulator A or B are saturated  
Note:  
This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.  
bit 9  
bit 8  
DA: DOLoop Active bit  
1= DOloop in progress  
0= DOloop not in progress  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized  
data) of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 21  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
DS70283K-page 22  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminate executing DOloop at end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops active  
001= 1 DOloop active  
000= 0 DOloops active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SATA: ACCA Saturation Enable bit  
1= Accumulator A saturation enabled  
0= Accumulator A saturation disabled  
SATB: ACCB Saturation Enable bit  
1= Accumulator B saturation enabled  
0= Accumulator B saturation disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation enabled  
0= Data space write saturation disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding enabled  
0= Unbiased (convergent) rounding enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode enabled for DSP multiply ops  
0= Fractional mode enabled for DSP multiply ops  
Note 1: This bit will always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 23  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
3.6  
Arithmetic Logic Unit (ALU)  
3.7  
DSP Engine  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
ALU is 16 bits wide and is capable of addition, subtraction,  
bit shifts and logic operations. Unless otherwise  
mentioned, arithmetic operations are 2’s complement in  
nature. Depending on the operation, the ALU can affect  
the values of the Carry (C), Zero (Z), Negative (N),  
Overflow (OV) and Digit Carry (DC) Status bits in the SR  
register. The C and DC Status bits operate as Borrow and  
Digit Borrow bits, respectively, for subtraction operations.  
The DSP engine consists of a high-speed 17-bit x  
17-bit multiplier, barrel shifter and 40-bit  
adder/subtracter (with two target accumulators, round  
and saturation logic).  
a
a
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
is a single-cycle instruction flow architecture; therefore,  
concurrent operation of the DSP engine with MCU  
instruction flow is not possible. However, some MCU ALU  
and DSP engine resources can be used concurrently by  
the same instruction (e.g., ED, EDAC).  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
The DSP engine can also perform inherent accumula-  
tor-to-accumulator operations that require no additional  
data. These instructions are ADD, SUBand NEG.  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
Refer to the “16-bit MCU and DSC Programmer’s Ref-  
erence Manual” (DS70157) for information on the SR  
bits affected by each instruction.  
• Fractional or integer DSP multiply (IF)  
• Signed or unsigned DSP multiply (US)  
• Conventional or convergent rounding (RND)  
• Automatic saturation on/off for ACCA (SATA)  
• Automatic saturation on/off for ACCB (SATB)  
• Automatic saturation on/off for writes to data  
memory (SATDW)  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
CPU incorporates hardware support for both  
multiplication and division. This includes a dedicated  
hardware multiplier and support hardware for  
16-bit-divisor division.  
• Accumulator Saturation mode selection (ACCSAT)  
A block diagram of the DSP engine is shown in  
Figure 3-3.  
3.6.1  
MULTIPLIER  
Using the high-speed 17-bit x 17-bit multiplier of the  
DSP engine, the ALU supports unsigned, signed or  
mixed-sign operation in several MCU multiplication  
modes:  
TABLE 3-1:  
DSP INSTRUCTIONS  
SUMMARY  
Algebraic  
Operation  
ACC Write  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
Instruction  
Back  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
CLR  
A = 0  
A = (x - y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
Yes  
No  
ED  
EDAC  
MAC  
No  
Yes  
No  
MAC  
3.6.2  
DIVIDER  
MOVSAC  
MPY  
No change in A  
A = x • y  
Yes  
No  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
MPY  
A = x2  
No  
MPY.N  
MSC  
A = – x • y  
No  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
A = A – x • y  
Yes  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIVinstructions can specify any W register for both the  
16-bit divisor (Wn) and any W register (aligned) pair  
(W(m + 1):Wm) for the 32-bit dividend. The divide  
algorithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
DS70283K-page 24  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 3-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
40-bit Accumulator A  
40-bit Accumulator B  
t
16  
40  
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Carry/Borrow In  
Saturate  
Adder  
e
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 25  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
3.7.1  
MULTIPLIER  
3.7.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value that is sign-extended  
to 40 bits. Integer data is inherently represented as a  
signed 2’s complement value, where the Most  
Significant bit (MSb) is defined as a sign bit. The range  
of an N-bit 2’s complement integer is -2N-1 to 2N-1 - 1.  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side, and either true or complement  
data into the other input.  
• In the case of addition, the Carry/Borrow input is  
active-high and the other input is true data (not  
complemented).  
• In the case of subtraction, the Carry/Borrow input  
is active-low and the other input is complemented.  
The adder/subtracter generates Overflow Status bits,  
SA/SB and OA/OB, which are latched and reflected in  
the STATUS register:  
• For a 16-bit integer, the data range is -32768  
(0x8000) to 32767 (0x7FFF) including 0.  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• For a 32-bit integer, the data range is  
-2,147,483,648 (0x8000 0000) to 2,147,483,647  
(0x7FFF FFFF).  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
When the multiplier is configured for fractional multipli-  
cation, the data is represented as a 2’s complement  
fraction, where the MSb is defined as a sign bit and the  
radix point is implied to lie just after the sign bit (QX  
format). The range of an N-bit 2’s complement fraction  
with this implied radix point is -1.0 to (1 - 21-N). For a  
16-bit fraction, the Q15 data range is -1.0 (0x8000) to  
0.999969482 (0x7FFF) including 0 and has a precision  
of 3.01518x10-5. In Fractional mode, the 16 x 16 multi-  
ply operation generates a 1.31 product that has a pre-  
The adder has an additional saturation block that  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described  
previously  
and  
the  
SAT<A:B>  
(CORCON<7:6>) and ACCSAT (CORCON<4>) mode  
control bits to determine when and to what value to  
saturate.  
Six STATUS register bits support saturation and  
overflow:  
cision of 4.65661 x 10-10  
.
The same multiplier is used to support the MCU multi-  
ply instructions, which include integer 16-bit signed,  
unsigned and mixed sign multiply operations.  
• OA: ACCA overflowed into guard bits  
• OB: ACCB overflowed into guard bits  
• SA: ACCA saturated (bit 31 overflow and  
saturation)  
or  
ACCA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
• SB: ACCB saturated (bit 31 overflow and  
saturation)  
or  
ACCB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
3.7.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
The data accumulator consists of  
a
40-bit  
adder/subtracter with automatic sign extension logic. It  
can select one of two accumulators (A or B) as its  
pre-accumulation source and post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
using the barrel shifter prior to accumulation.  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the  
corresponding Overflow Trap Flag Enable bits (OVATE,  
OVBTE) in the INTCON1 register are set (refer to  
Section 7.0 “Interrupt Controller”). This allows the  
user application to take immediate action, for example,  
to correct system gain.  
DS70283K-page 26  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user application. When set, they indicate  
that the accumulator has overflowed its maximum  
range (bit 31 for 32-bit saturation or bit 39 for 40-bit  
saturation) and will be saturated (if saturation is  
enabled). When saturation is not enabled, SA and SB  
default to bit 39 overflow and thus indicate that a  
catastrophic overflow has occurred. If the COVTE bit in  
the INTCON1 register is set, SA and SB bits will gener-  
ate an arithmetic warning trap when saturation is  
disabled.  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
• W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a  
1.15 fraction.  
• [W13] + = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target  
accumulator are written into the address pointed  
to by W13 as a 1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
The Overflow and Saturation Status bits can optionally  
be viewed in the STATUS Register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). Programmers can check one bit in  
the STATUS register to determine if either accumulator  
has overflowed, or one bit to determine if either  
accumulator has saturated. This is useful for complex  
number arithmetic, which typically uses both  
accumulators.  
3.7.3.1  
Round Logic  
The round logic is a combinational block that performs  
a conventional (biased) or convergent (unbiased)  
round function during an accumulator write (store). The  
Round mode is determined by the state of the RND bit  
in the CORCON register. It generates a 16-bit, 1.15  
data value that is passed to the data space write  
saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word (lsw) is simply discarded.  
The device supports three Saturation and Overflow  
modes:  
• Bit 39 Overflow and Saturation:  
Conventional rounding zero-extends bit 15 of the  
accumulator and adds it to the ACCxH word (bits 16  
through 31 of the accumulator).  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF) or maximally negative 9.31 value  
(0x8000000000) into the target accumulator. The  
SA or SB bit is set and remains set until cleared by  
the user application. This condition is referred to as  
‘super saturation’ and provides protection against  
erroneous data or unexpected algorithm problems  
(such as gain calculations).  
• If the ACCxL word (bits 0 through 15 of the  
accumulator) is between 0x8000 and 0xFFFF  
(0x8000 included), ACCxH is incremented.  
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH  
is left unchanged.  
A consequence of this algorithm is that over a  
succession of random rounding operations, the value  
tends to be biased slightly positive.  
• Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally positive  
1.31 value (0x007FFFFFFF) or maximally nega-  
tive 1.31 value (0x0080000000) into the target  
accumulator. The SA or SB bit is set and remains  
set until cleared by the user application. When  
this Saturation mode is in effect, the guard bits are  
not used, so the OA, OB or OAB bits are never  
set.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. In this case, the Least  
Significant bit (bit 16 of the accumulator) of ACCxH is  
examined:  
• If it is ‘1’, ACCxH is incremented.  
• If it is ‘0’, ACCxH is not modified.  
Assuming that bit 16 is effectively random in nature,  
this scheme removes any rounding bias that may  
accumulate.  
• Bit 39 Catastrophic Overflow:  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remains set  
until cleared by the user application. No saturation  
operation is performed, and the accumulator is  
allowed to overflow, destroying its sign. If the  
COVTE bit in the INTCON1 register is set, a  
catastrophic overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a  
truncated (SAC), or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
the  
X
bus, subject to data saturation (see  
Section 3.7.3.2 “Data Space Write Saturation”). For  
the MAC class of instructions, the accumulator  
write-back operation functions in the same manner,  
addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data  
is always subject to rounding.  
3.7.3  
ACCUMULATOR ‘WRITE BACK’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 27  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
3.7.3.2  
Data Space Write Saturation  
3.7.4  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated, but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15 frac-  
tional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These inputs  
are combined and used to select the appropriate 1.15  
fractional value as output to write to data space  
memory.  
The barrel shifter can perform up to 16-bit arithmetic or  
logic right shifts, or up to 16-bit left shifts in a single  
cycle. The source can be either of the two DSP accu-  
mulators or the X bus (to support multi-bit shifts of  
register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly:  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is pre-  
sented to the barrel shifter between bit positions 16 and  
31 for right shifts, and between bit positions 0 and 16  
for left shifts.  
• For input data greater than 0x007FFF, data writ-  
ten to memory is forced to the maximum positive  
1.15 value, 0x7FFF.  
• For input data less than 0xFF8000, data written to  
memory is forced to the maximum negative 1.15  
value, 0x8000.  
The Most Significant bit of the source (bit 39) is used to  
determine the sign of the operand being tested.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
DS70283K-page 28  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The program address memory space of the  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices is 4M instructions. The space is addressable  
by a 24-bit value derived either from the 23-bit Program  
Counter (PC) during program execution, or from table  
operation or data space remapping as described in  
Section 4.8 “Interfacing Program and Data Memory  
Spaces”.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section  
4.  
“Program  
Memory”  
(DS70202) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip web site  
(www.microchip.com).  
User application access to the program memory space  
is restricted to the lower half of the address range  
(0x000000 to 0x7FFFFF). The exception is the use of  
TBLRD/TBLWT operations, which use TBLPAG<7> to  
permit access to the Configuration bits and Device ID  
sections of the configuration memory space.  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
architecture features separate program and data memory  
spaces and buses. This architecture also allows the direct  
access of program memory from the data space during  
code execution.  
The memory maps for the dsPIC33FJ32MC202/204  
and dsPIC33FJ16MC304 devices are shown in  
Figure 4-1.  
FIGURE 4-1:  
PROGRAM MEMORY MAPS FOR dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
DEVICES  
dsPIC33FJ32MC202/204  
dsPIC33FJ16MC304  
0x000000  
0x000002  
0x000004  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
(11264 instructions)  
User Program  
Flash Memory  
(5632 instructions)  
0x0057FE  
0x005800  
0x002BFE  
0x002C00  
Unimplemented  
Unimplemented  
(Read ‘  
0’s)  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
Device Configuration  
Registers  
Device Configuration  
Registers  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
0xFEFFFE  
0xFF0000  
0xFEFFFE  
0xFF0000  
0xFFFFFE  
0xFFFFFE  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 29  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
INTERRUPT AND TRAP VECTORS  
All dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices reserve the addresses between 0x00000 and  
0x000200 for hard-coded program execution vectors.  
A hardware Reset vector is provided to redirect code  
execution from the default value of the PC on device  
Reset to the actual start of code. A GOTOinstruction is  
programmed by the user application at 0x000000, with  
the actual address for the start of code at 0x000002.  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 4-2).  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices also have two interrupt vector tables, located  
from 0x000004 to 0x0000FF and 0x000100 to  
0x0001FF. These vector tables allow each of the  
device interrupt sources to be handled by separate  
Interrupt Service Routines (ISRs). A more detailed  
discussion of the interrupt vector tables is provided in  
Section 7.1 “Interrupt Vector Table”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS70283K-page 30  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
4.2  
Data Address Space  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
CPU has a separate 16-bit-wide data memory space. The  
data space is accessed using separate Address  
Generation Units (AGUs) for read and write operations.  
The data memory maps is shown in Figure 4-3.  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed. If the error occurred  
on a write, the instruction is executed but the write does  
not occur. In either case, a trap is then executed,  
allowing the system and/or user application to examine  
the machine state prior to execution of the address  
Fault.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.8.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
A sign-extend instruction (SE) is provided to allow user  
applications to translate 8-bit signed data to 16-bit  
signed values. Alternatively, for 16-bit unsigned data,  
user applications can clear the MSB of any W register  
by executing a zero-extend (ZE) instruction on the  
appropriate address.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices implement up to 2 Kbytes of data memory.  
Should an EA point to a location outside of this area, an  
all-zero word or byte will be returned.  
4.2.1  
DATA SPACE WIDTH  
4.2.3  
SFR SPACE  
The data memory space is organized in byte  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
core and peripheral modules for controlling the  
operation of the device.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
efficiency,  
dsPIC33FJ16MC304 instruction set supports both  
word and byte operations. As a consequence of byte  
accessibility, all effective address calculations are  
internally scaled to step through word-aligned memory.  
For example, the core recognizes that Post-Modified  
Register Indirect Addressing mode [Ws++] will result in  
a value of Ws + 1 for byte operations and Ws + 2 for  
word operations.  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to  
the corresponding device tables and  
pinout diagrams for device-specific  
information.  
the  
dsPIC33FJ32MC202/204  
and  
4.2.4  
NEAR DATA SPACE  
The 8 Kbyte area between 0x0000 and 0x1FFF is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an address pointer.  
Data byte reads will read the complete word that  
contains the byte, using the LSB of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the data path. That is, data  
memory and registers are organized as two parallel  
byte-wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register that  
matches the byte address.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 31  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 4-3:  
DATA MEMORY MAP FOR dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
DEVICES WITH 2 KB RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8 Kbyte  
Near Data  
Space  
0x0BFF  
0x0001  
0x0BFE  
0x0C00  
2 Kbyte  
SRAM Space  
0x0FFF  
0x1001  
0x0FFE  
0x1000  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70283K-page 32  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4.2.5  
X AND Y DATA SPACES  
4.3  
Program Memory Resources  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions), or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier Transform (FFT).  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
The X data space is used by all instructions and  
supports all addressing modes. X data space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
data space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
4.3.1  
KEY RESOURCES  
Section 4. “Program Memory” (DS70202)  
• Code Samples  
• Application Notes  
• Software Libraries  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.Nand MSC) to provide  
two concurrent data read paths.  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
All data memory writes, including in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
All effective addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes, or 32K words, though the  
implemented memory locations vary by device.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 33  
4.4  
Special Function Register Maps  
TABLE 4-1:  
CPU CORE REGISTERS MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
0042  
0044  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
00xx  
xxxx  
00xx  
0000  
0020  
Stack Pointer Limit Register  
ACCAL  
Accumulator A Low Word Register  
Accumulator A High Word Register  
Accumulator A Upper Word Register  
Accumulator B Low Word Register  
Accumulator B High Word Register  
Accumulator B Upper Word Register  
Program Counter Low Word Register  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
SR  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DCOUNT<15:0>  
DOSTARTL<15:1>  
0
0
DOENDL<15:1>  
DOSTARTH<5:0>  
DOENDH  
OA  
OB  
SA  
SB  
US  
OAB  
EDT  
SAB  
DA  
DC  
IPL2  
SATA  
IPL1  
SATB  
IPL0  
RA  
N
OV  
Z
C
CORCON  
DL<2:0>  
SATDW ACCSAT  
IPL3  
PSV  
RND  
IF  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-1:  
CPU CORE REGISTERS MAP (CONTINUED)  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
XMODEN YMODEN  
BWM<3:0>  
YWM<3:0>  
XWM<3:0>  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
BREN  
XB<14:0>  
DISICNT  
Disable Interrupts Counter Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-2:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32MC202  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
0068  
006A  
CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN11IE  
CN27IE  
CN24IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0000  
CN23IE  
CN22IE  
CN21IE  
CN16IE  
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE  
CN30PUE CN29PUE CN27PUE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN24PUE CN23PUE CN22PUE CN21PUE  
CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-3:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32MC204 and dsPIC33FJ16MC304  
SFR  
Name  
SFR  
Addr  
All  
Bit 0  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Resets  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN28IE  
CN11IE  
CN27IE  
CN10IE  
CN26IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
0060  
0062  
0068  
006A  
CN25IE  
CN24IE  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
CN30PUE CN29PUE CN28PUE CN27PUE CN26PUE CN25PUE CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-4:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
INTCON2 0082 ALTIVT  
DISI  
U1TXIF  
U1RXIF  
T3IF  
T2IF  
IC8IF  
OC2IF  
IC7IF  
T1IF  
CNIF  
INT2EP  
OC1IF  
INT1EP INT0EP 0000  
IC1IF INT0IF 0000  
MI2C1IF SI2C1IF 0000  
IFS0  
IFS1  
IFS3  
IFS4  
IEC0  
IEC1  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC7  
IPC14  
IPC15  
IPC16  
IPC18  
0084  
0086  
AD1IF  
SPI1IF SPI1EIF  
IC2IF  
INT2IF  
INT1IF  
008A FLTA1IF  
QEIIF PWM1IF  
FLTA2IF PWM2IF  
SPI1IE SPI1EIE  
0000  
0000  
0000  
008C  
0094  
0096  
U1EIF  
IC1IE  
AD1IE  
U1TXIE  
U1RXIE  
T3IE  
T2IE  
IC8IE  
OC2IE  
IC7IE  
IC2IE  
T1IE  
CNIE  
OC1IE  
INT0IE  
INT2IE  
INT1IE  
MI2C1IE SI2C1IE 0000  
009A FLTA1IE  
QEIIE PWM1IE  
FLTA2IE PWM2IE  
OC1IP<2:0>  
0000  
0000  
4444  
4440  
4444  
0044  
4044  
4404  
0040  
0440  
4000  
0040  
0440  
0000  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B2  
00C0  
00C2  
00C4  
00C8  
U1EIE  
T1IP<2:0>  
IC1IP<2:0>  
IC2IP<2:0>  
SPI1EIP<2:0>  
AD1IP<2:0>  
MI2C1IP<2:0>  
INT0IP<2:0>  
T2IP<2:0>  
OC2IP<2:0>  
U1RXIP<2:0>  
SPI1IP<2:0>  
T3IP<2:0>  
U1TXIP<2:0>  
CNIP<2:0>  
IC7IP<2:0>  
SI2C1IP<2:0>  
IC8IP<2:0>  
INT1IP<2:0>  
INT2IP<2:0>  
PWM1IP<2:0>  
QEIIP<2:0>  
FLTA1IP<2:0>  
U1EIP<2:0>  
PWM2IP<2:0>  
FLTA2IP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
TIMER REGISTER MAP  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
0000  
FFFF  
0000  
0000  
xxxx  
0000  
FFFF  
FFFF  
0000  
0000  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
INPUT CAPTURE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
Legend:  
0140  
0142  
0144  
0146  
0158  
015A  
015C  
015E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
OUTPUT COMPARE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
6-OUTPUT PWM1 REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
P1TCON  
P1TMR  
01C0  
01C2  
01C4  
PTEN  
PTDIR  
PTSIDL  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
PWM Timer Count Value Register  
PWM Time Base Period Register  
PWM Special Event Compare Register  
P1TPER  
P1SECMP  
01C6 SEVTDIR  
PWM1CON1 01C8  
PWM1CON2 01CA  
P1DTCON1 01CC  
P1DTCON2 01CE  
P1FLTACON 01D0  
P1OVDCON 01D4  
PMOD3 PMOD2 PMOD1  
SEVOPS<3:0>  
PEN3H PEN2H PEN1H  
PEN3L  
IUE  
PEN2L  
PEN1L  
UDIS  
OSYNC  
DTBPS<1:0>  
DTB<5:0>  
DTAPS<1:0>  
DTA<5:0>  
DTS3A  
DTS3I  
DTS2A  
DTS2I  
DTS1A  
FAEN2  
DTS1I  
FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L FLTAM  
POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L  
FAEN3  
FAEN1  
POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L  
P1DC1  
P1DC2  
P1DC3  
01D6  
01D8  
01DA  
PWM Duty Cycle #1 Register  
PWM Duty Cycle #2 Register  
PWM Duty Cycle #3 Register  
Legend: u= uninitialized bit, — = unimplemented, read as ‘0’  
TABLE 4-9:  
2-OUTPUT PWM2 REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
P2TCON  
P2TMR  
05C0  
05C2  
05C4  
PTEN  
PTDIR  
PTSIDL  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
PWM Timer Count Value Register  
PWM Time Base Period Register  
P2TPER  
P2SECMP  
05C6 SEVTDIR  
PWM Special Event Compare Register  
PWM2CON1 05C8  
PWM2CON2 05CA  
P2DTCON1 05CC  
P2DTCON2 05CE  
P2FLTACON 05D0  
P2OVDCON 05D4  
PMOD1  
PEN1H  
PEN1L 0000 0000 1111 1111  
UDIS 0000 0000 0000 0000  
0000 0000 0000 0000  
SEVOPS<3:0>  
DTB<5:0>  
IUE  
OSYNC  
DTBPS<1:0>  
DTAPS<1:0>  
DTA<5:0>  
DTS1A  
DTS1I 0000 0000 0000 0000  
FAEN1 0000 0000 0000 0000  
FAOV1H FAOV1L FLTAM  
POVD1H POVD1L  
PWM Duty Cycle #1 Register  
POUT1H POUT1L 1111 1111 0000 0000  
P2DC1  
05D6  
0000 0000 0000 0000  
Legend: u = uninitialized bit, — = unimplemented, read as ‘0’  
TABLE 4-10: QEI1 REGISTER MAP  
SFR  
Name  
Bit  
10  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 9 Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
QEI1CON  
01E0 CNTERR  
QEISIDL INDEX  
UPDN  
QEIM<2:0>  
SWPAB PCDOUT TQGATE  
TQCKPS<1:0>  
POSRES TQCS UPDN_SRC 0000 0000 0000 0000  
DFLT1CON 01E2  
IMV<1:0> CEID QEOUT  
QECK<2:0>  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
POS1CNT  
MAX1CNT  
01E4  
01E6  
Position Counter<15:0>  
Maximum Count<15:0>  
Legend: u= uninitialized bit, — = unimplemented, read as ‘0’  
TABLE 4-11: I2C1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
ACKSTAT  
I2CSIDL SCLREL  
IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
TRSTAT  
ADD10  
IWCOL  
I2COV  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: UART1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
ADDEN  
URXINV  
RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-13: SPI1 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI1 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14: ADC1 REGISTER MAP FOR dsPIC33FJ32MC202  
All  
Reset  
s
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFF  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS123  
AD1CHS0  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0320  
0322  
0324  
0326  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL  
AD12B  
CSCNA  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
CH123NB<1:0>  
CH0SB<4:0>  
CH123SB  
CH0NA  
CH123NA<1:0>  
CH123SA 0000  
0328 CH0NB  
CH0SA<4:0>  
PCFG3 PCFG2 PCFG1  
CSS3 CSS2 CSS1  
0000  
AD1PCFGL  
AD1CSSL  
032C  
0330  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG0  
CSS0  
0000  
0000  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: ADC1 REGISTER MAP FOR dsPIC33FJ32MC204 AND dsPIC33FJ16MC304  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0300  
0302  
0304  
0306  
0308  
030A  
030C  
030E  
0310  
0312  
0314  
0316  
0318  
031A  
031C  
031E  
0320  
0322  
0324  
0326  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
ADC1BUF5  
ADC1BUF6  
ADC1BUF7  
ADC1BUF8  
ADC1BUF9  
ADC1BUFA  
ADC1BUFB  
ADC1BUFC  
ADC1BUFD  
ADC1BUFE  
ADC1BUFF  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS123  
AD1CHS0  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL  
AD12B  
CSCNA  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM  
ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
CH123NB<1:0>  
CH0SB<4:0>  
CH123SB  
CH123NA<1:0>  
CH0SA<4:0>  
PCFG2 PCFG1  
CSS2 CSS1  
CH123SA 0000  
0328 CH0NB  
CH0NA  
PCFG7  
CSS7  
0000  
AD1PCFGL  
AD1CSSL  
032C  
0330  
PCFG8  
CSS8  
PCFG6  
CSS6  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG3  
CSS3  
PCFG0  
CSS0  
0000  
0000  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-16: PERIPHERAL PIN SELECT INPUT REGISTER MAP  
File  
Name  
All  
Resets  
Addr Bit 15 Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
1F00  
001F  
1F1F  
1F1F  
1F1F  
001F  
001F  
001F  
1F1F  
001F  
1F1F  
1F1F  
001F  
0680  
0682  
0686  
068E  
0694  
0696  
0698  
069A  
069C  
069E  
06A4  
06A8  
06AA  
INT1R<4:0>  
RPINR1  
T3CKR<4:0>  
IC2R<4:0>  
IC8R<4:0>  
INT2R<4:0>  
T2CKR<4:0>  
IC1R<4:0>  
RPINR3  
RPINR7  
RPINR10  
RPINR11  
RPINR12  
RPINR13  
RPINR14  
RPINR15  
RPINR18  
RPINR20  
RPINR21  
Legend:  
IC7R<4:0>  
OCFAR<4:0>  
FLTA1R<4:0>  
FLTA2R<4:0>  
QEA1R<4:0>  
INDX1R<4:0>  
U1RXR<4:0>  
SDI1R<4:0>  
SS1R<4:0>  
QEB1R<4:0>  
U1CTSR<4:0>  
SCK1R<4:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-17: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ32MC202  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
Legend:  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ32MC204 AND dsPIC33FJ16MC304  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
RPOR8  
RPOR9  
RPOR10  
RPOR11  
RPOR12  
Legend:  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
06D0  
06D2  
06D4  
06D6  
06D8  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP17R<4:0>  
RP19R<4:0>  
RP21R<4:0>  
RP23R<4:0>  
RP25R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
RP16R<4:0>  
RP18R<4:0>  
RP20R<4:0>  
RP22R<4:0>  
RP24R<4:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-19: PORTA REGISTER MAP FOR dsPIC33FJ32MC202  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
TRISA  
02C0  
02C2  
02C4  
02C6  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
001F  
xxxx  
xxxx  
0000  
PORTA  
LATA  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
ODCA1  
LATA0  
ODCA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: PORTA REGISTER MAP FOR dsPIC33FJ32MC204 AND dsPIC33FJ16MC304  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
TRISA10  
TRISA9  
TRISA8  
TRISA7  
TRISA  
02C0  
02C2  
02C4  
02C6  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
079F  
xxxx  
xxxx  
0000  
PORTA  
LATA  
RA10  
LAT10  
RA9  
LAT8  
RA8  
LAT8  
RA7  
LAT7  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
ODCA1  
LATA0  
ODCA0  
ODCA  
Legend:  
ODCA10  
ODCA9  
ODCA8  
ODCA7  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-21: PORTB REGISTER MAP  
File  
Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
TRISB  
02C8  
02CA  
02CC  
02CE  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9  
TRISB8  
RB8  
TRISB7  
RB7  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB1  
RB1  
TRISB0  
RB0  
FFFF  
xxxx  
xxxx  
0000  
PORTB  
LATB  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
LATB15  
ODCB15  
LATB14  
ODCB14  
LATB13  
ODCB13  
LATB12  
ODCB12  
LATB11  
ODCB11  
LATB10  
ODCB10  
LATB9  
ODCB9  
LATB8  
ODCB8  
LATB7  
ODCB7  
LATB6  
ODCB6  
LATB5  
ODCB5  
LATB4  
ODCB4  
LATB6  
ODCB6  
LATB5  
ODCB5  
LATB1  
ODCB1  
LATB0  
ODCB0  
ODCB  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
TABLE 4-22: PORTC REGISTER MAP FOR dsPIC33FJ32MC204 AND dsPIC33FJ16MC304  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
TRISC  
02D0  
TRISC6  
RC6  
TRISC5  
RC5  
TRISC6  
RC6  
TRISC5  
RC5  
03FF  
xxxx  
xxxx  
0000  
TRISC9 TRISC8 TRISC7  
TRISC4  
RC4  
TRISC1 TRISC0  
PORTC  
02D2  
RC9  
RC8  
RC7  
RC1  
RC0  
LATC  
02D4  
LATC6  
ODCC6  
LATC5  
ODCC5  
LATC6  
ODCC6  
LATC5  
ODCC5  
LATC9  
LATC8  
LATC7  
LATC4  
ODCC4  
LATC1  
LATC0  
ODCC  
02D6  
ODCC9 ODCC8 ODCC7  
ODCC1 ODCC0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-23: SYSTEM CONTROL REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
SWR  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
RCON  
0740  
0742  
0744  
0746  
0748  
TRAPR IOPUWR  
COSC<2:0>  
DOZE<2:0>  
CM  
NOSC<2:0>  
FRCDIV<2:0>  
VREGS  
EXTR  
SWDTEN  
LOCK  
WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx  
(2)  
OSCCON  
CLKDIV  
PLLFBD  
OSCTUN  
CLKLOCK IOLOCK  
PLLPOST<1:0>  
LPOSCEN OSWEN  
0300  
ROI  
DOZEN  
PLLPRE<4:0>  
3040  
0030  
0000  
PLLDIV<8:0>  
TUN<5:0>  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values dependent on type of Reset.  
OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 4-24: NVM REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP<3:0>  
0000  
NVMKEY<7:0>  
0000  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-25: PMD REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC8MD  
IC7MD  
IC1MD  
OC2MD  
PMD1  
PMD2  
PMD3  
Legend:  
0770  
0772  
0774  
T3MD  
T2MD  
T1MD  
QEIMD PWM1MD  
I2C1MD  
U1MD  
SPI1MD  
AD1MD  
OC1MD  
0000  
0000  
0000  
IC2MD  
PWM2MD  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4.4.1  
SOFTWARE STACK  
4.4.2  
DATA RAM PROTECTION FEATURE  
The dsPIC33F product family supports Data RAM  
protection features that enable segments of RAM to be  
protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
segment for BS) is accessible only from the Boot  
Segment Flash code when enabled. SSRAM (Secure  
RAM segment for RAM) is accessible only from the  
Secure Segment Flash code when enabled. See  
Table 4-1 for an overview of the BSRAM and SSRAM  
SFRs.  
In addition to its use as a working register, the W15  
register in the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices is also used as a  
software Stack Pointer. The Stack Pointer always  
points to the first available free word and grows from  
lower to higher addresses. It predecrements for stack  
pops and post-increments for stack pushes, as shown  
in Figure 4-4. For a PC push during any CALL  
instruction, the MSb of the PC is zero-extended before  
the push, ensuring that the MSb is always clear.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSb  
of the PC prior to the push.  
4.5  
Instruction Addressing Modes  
The addressing modes shown in Table 4-26 form the  
basis of the addressing modes optimized to support the  
specific features of individual instructions. The  
addressing modes provided in the MAC class of  
instructions differ from those in the other instruction  
types.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. The stack error trap will occur on a  
subsequent push operation. For example, to cause a  
stack error trap when the stack grows beyond address  
0x1000 in RAM, initialize the SPLIM with the value  
0x0FFE.  
4.5.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (near data space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
4.5.2  
MCU INSTRUCTIONS  
The three-operand MCU instructions are of the form:  
Operand 3= Operand 1 <function> Operand 2  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
where Operand 1 is always a working register (that is,  
the addressing mode can only be register direct), which  
is referred to as Wb. Operand 2 can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
FIGURE 4-4:  
CALL STACK FRAME  
0x0000  
15  
0
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
Note:  
Not all instructions support all the  
addressing modes given above. Individ-  
ual instructions can support different  
subsets of these addressing modes.  
POP : [--W15]  
PUSH: [W15++]  
DS70283K-page 46  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 4-26: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the Effective Address (EA).  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented  
or decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
4.5.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
4.5.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MACinstructions, use a simplified set of addressing  
modes to allow the user application to effectively  
manipulate the data pointers through register indirect  
tables.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
The two-source operand prefetch registers must be  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The effective addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (Register Offset)  
field is shared by both source and  
destination (but typically only used by  
one).  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
• Register Direct  
• Register Indirect  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
4.5.5  
OTHER INSTRUCTIONS  
• 16-bit Literal  
Besides the addressing modes outlined previously, some  
instructions use literal constants of various sizes. For  
example, BRA (branch) instructions use 16-bit signed  
literals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 47  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4.6  
Modulo Addressing  
Note:  
Y
space Modulo Addressing EA  
calculations assume word-sized data  
(LSb of every EA is always clear).  
Modulo Addressing mode is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
Modulo Addressing can operate in either data or program  
space (since the data pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
can operate on any W register pointer. However, it is not  
advisable to use W14 or W15 for Modulo Addressing  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
4.6.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as well  
as a W register field to specify the W Address registers.  
The XWM and YWM fields select the registers that will  
operate with Modulo Addressing:  
In general, any particular circular buffer can be  
configured to operate in only one direction as there are  
certain restrictions on the buffer start address (for incre-  
menting buffers), or end address (for decrementing  
buffers), based upon the direction of the buffer.  
• If XWM = 15, X RAGU and X WAGU Modulo  
Addressing is disabled.  
• If YWM = 15, Y AGU Modulo Addressing is  
disabled.  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
15’ and the YMODEN bit is set at MODCON<14>.  
4.6.1  
START AND END ADDRESS  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 4-1).  
FIGURE 4-5:  
MODULO ADDRESSING OPERATION EXAMPLE  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
Byte  
Address  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
0x1163  
AGAIN: INC W0, W0  
;increment the fill value  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
DS70283K-page 48  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
If the length of a bit-reversed buffer is M = 2N bytes,  
MODULO ADDRESSING  
4.6.3  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. Address boundaries check for addresses  
equal to:  
XB<14:0> is the Bit-Reversed Address modifier, or  
‘pivot point’, which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
• The upper boundary addresses for incrementing  
buffers  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
• The lower boundary addresses for decrementing  
buffers  
It is important to realize that the address boundaries  
check for addresses less than or greater than the upper  
(for incrementing buffers) and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes can, therefore, jump beyond  
boundaries and still be adjusted correctly.  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or  
Post-Increment Addressing and word-sized data  
writes. It will not function for any other addressing  
mode or for byte-sized data, and normal addresses are  
generated instead. When Bit-Reversed Addressing is  
active, the W Address Pointer is always added to the  
address modifier (XB), and the offset associated with  
the Register Indirect Addressing mode is ignored. In  
addition, as word-sized data is a requirement, the LSb  
of the EA is ignored (and always clear).  
Note:  
The modulo corrected effective address is  
written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the effective  
address. When an address offset (such as  
[W7 + W2]) is used, Modulo Address  
correction is performed but the contents of  
the register remain unchanged.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. If an application attempts to do  
so, Bit-Reversed Addressing will assume  
priority when active for the X WAGU and X  
WAGU, Modulo Addressing will be  
disabled. However, Modulo Addressing will  
continue to function in the X RAGU.  
4.7  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data re-ordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN bit (XBREV<15>), a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the bit-reversed pointer.  
4.7.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing mode is enabled in any of  
these situations:  
• BWM bits (W register selection) in the MODCON  
register are any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing)  
• The BREN bit is set in the XBREV register  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 49  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 4-6:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4  
0
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 4-27: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
DS70283K-page 50  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4.8.1  
ADDRESSING PROGRAM SPACE  
4.8  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The  
dsPIC33FJ32MC202/204  
and  
dsPIC33FJ16MC304 architecture uses a 24-bit-wide  
program space and a 16-bit-wide data space. The  
architecture is also a modified Harvard scheme,  
meaning that data can also be present in the program  
space. To use this data successfully, it must be  
accessed in a way that preserves the alignment of  
information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside  
from  
normal  
execution,  
the  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
architecture provides two methods by which program  
space can be accessed during operation:  
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for look-ups  
from a large table of static data. The application can  
only access the least significant word of the program  
word.  
Table 4-28 and Figure 4-7 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, and D<15:0> refers to a data space word.  
TABLE 4-28: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
0
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 51  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 4-7:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ‘0’ to  
maintain word alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted  
in the configuration memory space.  
DS70283K-page 52  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
- In Byte mode, either the upper or lower byte  
of the lower program word is mapped to the  
lower byte of a data address. The upper byte  
is selected when Byte Select is ‘1’; the lower  
byte is selected when it is ‘0’.  
4.8.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
TBLRDH (Table Read High):  
- In Word mode, this instruction maps the entire  
upper word of a program address (P<23:16>)  
to a data address. Note that D<15:8>, the  
‘phantom byte’, will always be ‘0’.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two  
16-bit-wide word address spaces, residing side by side,  
each with the same address range. TBLRDL and  
TBLWTL access the space that contains the least  
significant data word. TBLRDHand TBLWTHaccess the  
space that contains the upper data byte.  
- In Byte mode, this instruction maps the upper  
or lower byte of the program word to D<7:0>  
of the data address, in the TBLRDLinstruc-  
tion. The data is always ‘0’ when the upper  
‘phantom’ byte is selected (Byte Select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and  
configuration spaces. When TBLPAG<7> = 0, the table  
page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
TBLRDL(Table Read Low):  
- In Word mode, this instruction maps the  
lower word of the program space  
location (P<15:0>) to a data address  
(D<15:0>).  
FIGURE 4-8:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 53  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.8.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access to stored  
constant data from the data space without the need to  
use special instructions (such as TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG  
functions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. By incrementing the PC by 2 for each  
program memory word, the lower 15 bits of data space  
addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions  
require one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, and are executed inside  
a REPEATloop, these instances require two instruction  
cycles in addition to the specified execution time of the  
instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
Data reads to this area add a cycle to the instruction  
being executed, since two program memory fetches  
are required.  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction using PSV to access data, to execute in a  
single cycle.  
Although each data space address 8000h and higher  
maps directly into a corresponding program memory  
address (see Figure 4-9), only the lower 16 bits of the  
FIGURE 4-9:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...whilethelower15bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
DS70283K-page 54  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
customers to manufacture boards with unprogrammed  
devices and then program the digital signal controller  
5.0  
FLASH PROGRAM MEMORY  
Note 1: This data sheet summarizes the features  
just before shipping the product. This also allows the  
most recent firmware or a custom firmware to be pro-  
grammed.  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
5. “Flash Programming” (DS70191) of  
the “dsPIC33F/PIC24H Family Refer-  
ence Manual” which is available from the  
Microchip web site (www.microchip.com)  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
application can write program memory data either in  
blocks or ‘rows’ of 64 instructions (192 bytes) at a time  
or a single program memory word, and erase program  
memory in blocks or ‘pages’ of 512 instructions (1536  
bytes) at a time.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
5.1  
Table Instructions and Flash  
Programming  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits <7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices contain internal Flash program memory for  
storing and executing application code. The memory is  
readable, writable and erasable during normal operation  
over the entire VDD range.  
Flash memory can be programmed in two ways:  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits <15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
• Run-Time Self-Programming (RTSP)  
ICSP allows  
a
dsPIC33FJ32MC202/204 and  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits <23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
dsPIC33FJ16MC304 device to be serially programmed  
while in the end application circuit. This is done with  
two lines for programming clock and programming data  
(one of the alternate programming pin pairs:  
PGECx/PGEDx), and three other lines for power (VDD),  
ground (VSS) and Master Clear (MCLR). This allows  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 55  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
EQUATION 5-2:  
MINIMUM ROW WRITE  
TIME  
5.2  
RTSP Operation  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Flash program memory array is organized into rows of 64  
instructions or 192 bytes. RTSP allows the user  
application to erase a page of memory, which consists of  
eight rows (512 instructions) at a time, and to program  
one row or one word at a time. Table 24-12 shows typical  
erase and programming times. The 8-row erase pages  
and single row write rows are edge-aligned from the  
beginning of program memory, on boundaries of 1536  
bytes and 192 bytes, respectively.  
11064 Cycles  
7.37 MHz × (1 + 0.05) × (1 0.00375)  
------------------------------------------------------------------------------------------------  
= 1.435ms  
TRW  
=
The maximum row write time is equal to Equation 5-3.  
EQUATION 5-3:  
MAXIMUM ROW WRITE  
TIME  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers sequentially. The  
instruction words loaded must always be from a group  
of 64 boundary.  
11064 Cycles  
7.37 MHz × (1 0.05) × (1 0.00375)  
-----------------------------------------------------------------------------------------------  
= 1.586ms  
TRW  
=
Setting the WR bit (NVMCON<15>) starts the opera-  
tion, and the WR bit is automatically cleared when the  
operation is finished.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register. A total  
of 64 TBLWTL and TBLWTH instructions are required  
to load the instructions.  
5.4  
Flash Memory Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
All of the table write operations are single-word writes  
(two instruction cycles) because only the buffers are  
written.  
A
programming cycle is required for  
programming each row.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
5.3  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the  
programming operation is finished.  
5.4.1  
KEY RESOURCES  
Section 5. “Flash Programming” (DS70191)  
• Code Samples  
The programming time depends on the FRC accuracy  
(see Table 24-18, AC Characteristics: Internal RC  
Accuracy) and the value of the FRC Oscillator Tuning  
register (see Register 8-4). Use the following formula to  
calculate the minimum and maximum values for the  
Row Write Time, Page Erase Time, and Word Write  
Cycle Time parameters (see Table 24-12, DC  
Characteristics: Program Memory).  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
EQUATION 5-1:  
PROGRAMMING TIME  
5.5  
Control Registers  
T
---------------------------------------------------------------------------------------------------------------------------  
Two SFRs are used to read and write the program  
Flash memory: NVMCON and NVMKEY.  
7.37 MHz × (FRC Accuracy)% × (FRC Tuning)%  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
For example, if the device is operating at +125° C, the  
FRC accuracy will be ±5%. If the TUN<5:0> bits (see  
Register 8-4) are set to ‘b111111,the minimum row  
write time is equal to Equation 5-2.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user application must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 5.3  
“Programming Operations” for further details.  
DS70283K-page 56  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0(1)  
bit 0  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
If ERASE = 1:  
1111= Memory bulk erase operation  
1101= Erase General Segment  
1100= Erase Secure Segment  
0011= No operation  
0010= Memory page erase operation  
0001= No operation  
0000= Erase a single Configuration register byte  
If ERASE = 0:  
1111= No operation  
1101= No operation  
1100= No operation  
0011= Memory word program operation  
0010= No operation  
0001= Memory row program operation  
0000= Program a single Configuration register byte  
Note 1: These bits can only be Reset on a POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 57  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 5-2:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: Key Register (write-only) bits  
DS70283K-page 58  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-2).  
5.5.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
Programmers can program one row of program Flash  
memory at a time. To do this, it is necessary to erase  
the 8-row erase page that contains the desired row.  
The general process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash memory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
application must wait for the programming time until  
programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs, as shown in Example 5-3.  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the  
duration of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 59  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
DS70283K-page 60  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
6.0  
RESETS  
Note 1: This data sheet summarizes the features  
Any active source of reset will make the SYSRST  
signal active. On system Reset, some of the registers  
associated with the CPU and peripherals are forced to  
a known Reset state and some are unaffected.  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 8. “Reset” (DS70192) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
Note:  
Refer to the specific peripheral section or  
Section 3.0 “CPU” of this manual for  
register Reset states.  
All types of device Reset sets a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A POR clears all the bits, except for the POR bit  
(RCON<0>), that are set. The user application can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
The Reset module combines all reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
• WDTO: Watchdog Timer Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Condition Device Reset  
- Illegal Opcode Reset  
- Uninitialized W Register Reset  
- Security Reset  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Configuration Mismatch  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 61  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
6.1  
Resets Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
6.1.1  
KEY RESOURCES  
Section 8. “Reset” (DS70192)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 62  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
6.2  
Reset Control Registers  
(1)  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A configuration mismatch Reset has occurred  
0= A configuration mismatch Reset has NOT occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 63  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER (CONTINUED)  
bit 2  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
bit 1  
bit 0  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS70283K-page 64  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
A warm Reset is the result of all other reset sources,  
including the RESET instruction. On warm Reset, the  
device will continue to operate from the current clock  
source as indicated by the Current Oscillator Selection  
bits (COSC<2:0>) in the Oscillator Control register  
(OSCCON<14:12>).  
6.3  
System Reset  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
family of devices have two types of Reset:  
• Cold Reset  
• Warm Reset  
The device is kept in a Reset state until the system  
power supplies have stabilized at appropriate levels  
and the oscillator clock is ready. The sequence in  
which this occurs is shown in Figure 6-2.  
A cold Reset is the result of a Power-on Reset (POR)  
or a Brown-out Reset (BOR). On a cold Reset, the  
FNOSC configuration bits in the FOSC device  
configuration register selects the device clock source.  
TABLE 6-1:  
OSCILLATOR PARAMETERS  
Oscillator  
Start-up Delay  
Oscillator Start-up  
Oscillator Mode  
PLL Lock Time  
Total Delay  
Timer  
FRC, FRCDIV16,  
FRCDIVN  
TOSCD  
TOSCD  
FRCPLL  
XT  
TOSCD  
TOSCD  
TOSCD  
TOST  
TOST  
TLOCK  
TOSCD + TLOCK  
TOSCD + TOST  
TOSCD + TOST  
HS  
EC  
XTPLL  
HSPLL  
ECPLL  
SOSC  
LPRC  
TOSCD  
TOSCD  
TOST  
TOST  
TLOCK  
TLOCK  
TLOCK  
TOSCD + TOST + TLOCK  
TOSCD + TOST + TLOCK  
TLOCK  
TOSCD  
TOSCD  
TOST  
TOSCD + TOST  
TOSCD  
Note 1: TOSCD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up  
times vary with crystal characteristics, load capacitance, etc.  
2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a  
10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.  
3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 65  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 6-2:  
SYSTEM RESET TIMING  
VBOR  
Vbor  
VPOR  
TPOR  
VDD  
1
POR  
BOR  
TBOR  
2
3
TPWRT  
SYSRST  
4
Oscillator Clock  
TLOCK  
TOSCD  
TOST  
6
TFSCM  
FSCM  
5
Reset  
Device Status  
Run  
Time  
Note 1: POR: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active  
until VDD crosses the VPOR threshold and the delay TPOR has elapsed.  
2: BOR: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the  
VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output  
becomes stable.  
3: PWRT Timer: The programmable power-up timer continues to hold the processor in Reset for a specific  
period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized  
at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes  
inactive, which in turn enables the selected oscillator to start generating clock cycles.  
4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections are given in  
Table 6-1. Refer to Section 8.0 “Oscillator Configuration” for more information.  
5: When the oscillator clock is ready, the processor begins execution from location 0x000000. The user  
application programs a GOTO instruction at the reset address, which redirects program execution to the  
appropriate start-up routine.  
6: The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock  
is ready and the delay TFSCM elapsed.  
DS70283K-page 66  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 6-2:  
OSCILLATOR DELAY  
Symbol  
Parameter  
POR threshold  
Value  
VPOR  
TPOR  
VBOR  
TBOR  
TPWRT  
TFSCM  
1.8V nominal  
POR extension time  
30 μs maximum  
2.5V nominal  
BOR threshold  
BOR extension time  
100 μs maximum  
Programmable power-up time delay  
Fail-Safe Clock Monitor Delay  
0-128 ms nominal  
900 μs maximum  
6.4.1  
Brown-out Reset (BOR) and  
Power-up timer (PWRT)  
Note: When the device exits the Reset  
condition (begins normal operation), the  
device operating parameters (voltage,  
frequency, temperature, etc.) must be  
within their operating ranges, other-  
wise the device may not function cor-  
rectly. The user application must  
ensure that the delay between the time  
power is first applied, and the time  
SYSRST becomes inactive, is long  
enough to get all operating parameters  
within specification.  
The on-chip regulator has a Brown-out Reset (BOR)  
circuit that resets the device when the VDD is too low  
(VDD < VBOR) for proper device operation. The BOR  
circuit keeps the device in Reset until VDD crosses  
VBOR threshold and the delay TBOR has elapsed. The  
delay TBOR ensures the voltage regulator output  
becomes stable.  
The BOR status bit (BOR) in the Reset Control register  
(RCON<1>) is set to indicate the Brown-out Reset.  
The device will not run at full speed after a BOR as the  
VDD should rise to acceptable levels for full-speed  
operation. The PWRT provides power-up time delay  
(TPWRT) to ensure that the system power supplies have  
stabilized at the appropriate levels for full-speed  
operation before the SYSRST is released.  
6.4  
Power-on Reset (POR)  
A Power-on Reset (POR) circuit ensures the device is  
reset from power-on. The POR circuit is active until  
VDD crosses the VPOR threshold and the delay TPOR  
has elapsed. The delay TPOR ensures the internal  
device bias circuits become stable.  
The power-up timer delay (TPWRT) is programmed by  
the Power-on Reset Timer Value Select bits  
(FPWRT<2:0>) in the POR Configuration register  
(FPOR<2:0>), which provides eight settings (from 0 ms  
to 128 ms). Refer to Section 21.0 “Special Features”  
for further details.  
The device supply voltage characteristics must meet  
the specified starting voltage and rise rate  
requirements to generate the POR. Refer to  
Section 24.0 “Electrical Characteristics” for details.  
The POR status bit (POR) in the Reset Control register  
(RCON<0>) is set to indicate the Power-on Reset.  
Figure 6-3 shows the typical brown-out scenarios. The  
reset delay (TBOR + TPWRT) is initiated each time VDD  
rises above the VBOR trip point  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 67  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 6-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD dips before PWRTexpires  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
The Software Reset (Instruction) Flag (SWR) bit in the  
Reset Control register (RCON<6>) is set to indicate  
the software Reset.  
6.5  
External Reset (EXTR)  
The external Reset is generated by driving the MCLR  
pin low. The MCLR pin is a Schmitt trigger input with an  
additional glitch filter. Reset pulses that are longer than  
the minimum pulse-width will generate a Reset. Refer  
to Section 24.0 “Electrical Characteristics” for  
minimum pulse-width specifications. The External  
Reset (MCLR) Pin (EXTR) bit in the Reset Control  
register (RCON) is set to indicate the MCLR Reset.  
6.7  
Watchdog Time-out Reset (WDTO)  
Whenever a Watchdog time-out occurs, the device will  
asynchronously assert SYSRST. The clock source will  
remain unchanged. A WDT time-out during Sleep or  
Idle mode will wake-up the processor, but will not reset  
the processor.  
6.5.1  
EXTERNAL SUPERVISORY CIRCUIT  
The Watchdog Timer Time-out Flag bit (WDTO) in the  
Reset Control register (RCON<4>) is set to indicate  
the Watchdog Reset. Refer to Section 21.4  
“Watchdog Timer (WDT)” for more information on  
Watchdog Reset.  
Many systems have external supervisory circuits that  
generate reset signals to Reset multiple devices in the  
system. This external Reset signal can be directly  
connected to the MCLR pin to Reset the device when  
the rest of system is Reset.  
6.8  
Trap Conflict Reset  
6.5.2  
INTERNAL SUPERVISORY CIRCUIT  
If  
a
lower-priority hard trap occurs while  
a
When using the internal power supervisory circuit to  
Reset the device, the external reset pin (MCLR) should  
be tied directly or resistively to VDD. In this case, the  
MCLR pin will not be used to generate a Reset. The  
external reset pin (MCLR) does not have an internal  
pull-up and must not be left unconnected.  
higher-priority trap is being processed, a hard trap  
conflict Reset occurs. The hard traps include  
exceptions of priority level 13 through level 15,  
inclusive. The address error (level 13) and oscillator  
error (level 14) traps fall into this category.  
The Trap Reset Flag bit (TRAPR) in the Reset Control  
register (RCON<15>) is set to indicate the Trap Conflict  
Reset. Refer to Section 7.0 “Interrupt Controller” for  
more information on trap conflict Resets.  
6.6  
Software RESET Instruction (SWR)  
Whenever the RESET instruction is executed, the  
device will assert SYSRST, placing the device in a  
special Reset state. This Reset state will not  
re-initialize the clock. The clock source in effect prior to  
the RESETinstruction will remain. SYSRST is released  
at the next instruction cycle, and the reset vector fetch  
will commence.  
DS70283K-page 68  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
each program memory section to store the data values.  
The upper 8 bits should be programmed with 3Fh,  
6.9  
Configuration Mismatch Reset  
To maintain the integrity of the peripheral pin select  
control registers, they are constantly monitored with  
shadow registers in hardware. If an unexpected  
change in any of the registers occur (such as cell  
disturbances caused by ESD or other external events),  
a configuration mismatch Reset occurs.  
which is an illegal opcode value.  
6.10.2  
UNINITIALIZED W REGISTER  
RESET  
Any attempts to use the uninitialized W register as an  
address pointer will Reset the device. The W register  
array (with the exception of W15) is cleared during all  
resets and is considered uninitialized until written to.  
The Configuration Mismatch Flag bit (CM) in the  
Reset Control register (RCON<9>) is set to indicate  
the configuration mismatch Reset. Refer to  
Section 10.0 “I/O Ports” for more information on the  
configuration mismatch Reset.  
6.10.3  
SECURITY RESET  
If a Program Flow Change (PFC) or Vector Flow  
Change (VFC) targets a restricted location in a  
protected segment (Boot and Secure Segment), that  
operation will cause a security Reset.  
Note:  
The configuration mismatch feature and  
associated reset flag is not available on all  
devices.  
The PFC occurs when the Program Counter is  
reloaded as a result of a Call, Jump, Computed Jump,  
Return, Return from Subroutine, or other form of  
branch instruction.  
6.10 Illegal Condition Device Reset  
An illegal condition device Reset occurs due to the  
following sources:  
The VFC occurs when the Program Counter is  
reloaded with an Interrupt or Trap vector.  
• Illegal Opcode Reset  
• Uninitialized W Register Reset  
• Security Reset  
Refer to Section 21.8 “Code Protection and  
CodeGuard™ Security” for more information on  
Security Reset.  
The Illegal Opcode or Uninitialized W Access Reset  
Flag bit (IOPUWR) in the Reset Control register  
(RCON<14>) is set to indicate the illegal condition  
device Reset.  
6.11 Using the RCON Status Bits  
The user application can read the Reset Control regis-  
ter (RCON) after any device Reset to determine the  
cause of the reset.  
6.10.1  
ILLEGAL OPCODE RESET  
A device Reset is generated if the device attempts to  
execute an illegal opcode value that is fetched from  
program memory.  
Note: The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
The illegal opcode Reset function can prevent the  
device from executing program memory sections that  
are used to store constant data. To take advantage of  
the illegal opcode Reset, use only the lower 16 bits of  
Table 6-3 provides a summary of the reset flag bit  
operation.  
TABLE 6-3:  
RESET FLAG BIT OPERATION  
Flag Bit  
Set by:  
Cleared by:  
TRAPR (RCON<15>)  
IOPWR (RCON<14>)  
Trap conflict event  
POR,BOR  
POR,BOR  
Illegal opcode or uninitialized  
W register access or Security Reset  
CM (RCON<9>)  
Configuration Mismatch  
MCLR Reset  
POR,BOR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETinstruction  
WDT time-out  
POR,BOR  
PWRSAVinstruction,  
CLRWDTinstruction, POR,BOR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR,BOR  
POR,BOR  
POR  
Note: All Reset flag bits can be set or cleared by user software.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 69  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
NOTES:  
DS70283K-page 70  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Interrupt vectors are prioritized in terms of their natural  
priority. This priority is linked to their position in the  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the features  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with vector 0 will take priority over interrupts at any  
other vector address.  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
32. “Interrupts (Part III)” (DS70214) of  
the “dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices implement up to 26 unique interrupts and 4  
nonmaskable traps. These are summarized in  
Table 7-1 and Table 7-2.  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
The  
dsPIC33FJ32MC202/204  
and  
dsPIC33FJ16MC304 interrupt controller reduces the  
numerous peripheral interrupt request signals to a  
The AIVT supports debugging by providing a means to  
single  
interrupt  
request  
signal  
to  
the  
switch between an application and  
a
support  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
CPU. It has the following features:  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time. If the AIVT is not  
needed, the AIVT should be programmed with the  
same addresses used in the IVT.  
• Up to 8 processor exceptions and software traps  
• 7 user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
7.2  
Reset Sequence  
• Fixed priority within a specified user priority level  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The  
dsPIC33FJ16MC304 device clears its registers in  
response to a Reset, which forces the PC to zero. The  
digital signal controller then begins program execution  
at location 0x000000. A GOTOinstruction at the Reset  
address can redirect program execution to the  
appropriate start-up routine.  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
dsPIC33FJ32MC202/204  
and  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors consisting of  
8 nonmaskable trap vectors plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit-wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 71  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 7-1:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
Interrupt Vector Table (IVT)(1)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
Alternate Interrupt Vector Table (AIVT)(1)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS70283K-page 72  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 7-1:  
INTERRUPT VECTORS  
Interrupt  
Vector  
Number  
Request(IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
8
9
0
1
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
10  
2
11  
3
12  
4
Reserved  
13  
5
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
14  
6
15  
7
16  
8
T3 – Timer3  
17  
9
SPI1E – SPI1 Error  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC1 – ADC1  
18  
10  
19  
11  
20  
12  
21  
13  
22-23  
24  
14-15  
16  
0x000030-0x000032 0x000130-0x000132 Reserved  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x00003E  
0x000040  
0x000042  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
SI2C1 – I2C1 Slave Events  
MI2C1 – I2C1 Master Events  
Reserved  
25  
17  
26  
18  
27  
19  
Change Notification Interrupt  
INT1 – External Interrupt 1  
Reserved  
28  
20  
29  
21  
30  
22  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
31  
23  
32-36  
37  
24-28  
29  
0x000044-0x00004C 0x000144-0x00014C Reserved  
0x00004E 0x00014E INT2 – External Interrupt 2  
0x000050-0x000084 0x000150-0x000184 Reserved  
38-64  
65  
30-56  
57  
0x000086  
0x000088  
0x000186  
0x000188  
PWM1 – PWM1 Period Match  
QEI – Position Counter Compare  
66  
58  
67-70  
71  
59-62  
63  
0x00008A-0x000090 0x00018A-0x000190 Reserved  
0x000092  
0x000094  
0x000096  
0x000192  
0x000194  
0x000196  
FLTA1 – PWM1 Fault A  
Reserved  
72  
64  
73  
65  
U1E – UART1 Error  
74-80  
81  
66-72  
73  
0x000098-0x0000A4 0x000198-0x0001A4 Reserved  
0x0000A6  
0x0000A8  
0x0001A6  
0x0001A8  
PWM2 – PWM2 Period Match  
FLTA2 – PWM2 Fault A  
82  
74  
83-125  
75-117  
0x0000AA-0x0000FE 0x0001AA-0x0001FE Reserved  
TABLE 7-2:  
TRAP VECTORS  
Vector Number  
IVT Address  
AIVT Address  
Trap Source  
Reserved  
0
1
2
3
4
5
6
7
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000104  
0x000106  
0x000108  
0x00010A  
0x00010C  
0x00010E  
0x000110  
0x000112  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 73  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
7.4.2  
IFSx  
7.3  
Interrupt Resources  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
7.4.3  
IECx  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
7.4.4  
IPCx  
The IPC registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
7.3.1  
KEY RESOURCES  
Section 6. “Interrupts” (DS70184)  
• Code Samples  
7.4.5  
INTTREG  
• Application Notes  
• Software Libraries  
• Webinars  
The INTTREG register contains the associated  
interrupt vector number and the new CPU interrupt  
priority level, which are latched into vector number  
(VECNUM<6:0>) and Interrupt level bit (ILR<3:0>)  
fields in the INTTREG register. The new interrupt  
priority level is the priority of the pending interrupt.  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP  
bits in the first position of IPC0 (IPC0<2:0>).  
7.4  
Interrupt Control and Status  
Registers  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices implement a total of 22 registers for the  
interrupt controller:  
• INTCON1  
• INTCON2  
• IFSx  
7.4.6  
STATUS/CONTROL REGISTERS  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality.  
• IECx  
• IPCx  
• INTTREG  
• The CPU STATUS register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU interrupt priority level. The user can  
change the current CPU priority level by writing to  
the IPL bits.  
7.4.1  
INTCON1 AND INTCON2  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable bit (NSTDIS) as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
• The CORCON register contains the IPL3 bit  
which, together with IPL<2:0>, also indicates the  
current CPU priority level. IPL3 is a read-only bit  
so that trap events cannot be masked by the user  
software.  
All Interrupt registers are described in Register 7-1  
through Register 7-24 in the following pages.  
DS70283K-page 74  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
REGISTER 7-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1: “SR: CPU STATUS Register”.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
(1)  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note 1: For complete register details, see Register 3-2: “CORCON: CORE Control Register”.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 75  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B enabled  
0= Trap disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide by zero  
0= Math error trap was not caused by a divide by zero  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
bit 3  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
DS70283K-page 76  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 77  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS70283K-page 78  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 79  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 1  
bit 0  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70283K-page 80  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
U-0  
U-0  
R/W-0  
INT2IF  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IC8IF  
R/W-0  
IC7IF  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
U-0  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
IC8IF: Input Capture Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 81  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-7:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
R/W-0  
FLTA1IF  
bit 15  
U-0  
U-0  
U-0  
U-0  
R/W-0  
QEIIF  
R/W-0  
U-0  
PWM1IF  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FLTA1IF: PWM1 Fault A Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 14-11  
bit 10  
Unimplemented: Read as ‘0’  
QEIIF: QEI Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 9  
PWM1IF: PWM1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-0  
Unimplemented: Read as ‘0’  
DS70283K-page 82  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-8:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
FLTA2IF  
PWM2IF  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIF  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
FLTA2IF: PWM2 Fault A Interrupt Flag Status bit  
1 = Interrupt request has occurred  
0 = Interrupt request has not occurred  
bit 9  
PWM2IF: PWM2 Error Interrupt Enable bit  
1 = Interrupt request has occurred  
0 = Interrupt request has not occurred  
bit 8-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIF: UART1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 83  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-9:  
IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1EIE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70283K-page 84  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-9:  
IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 1  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 85  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-10: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
INT2IE  
bit 15  
bit 8  
R/W-0  
IC8IE  
R/W-0  
IC7IE  
U-0  
R/W-0  
R/W-0  
CNIE  
U-0  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
IC8IE: Input Capture Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70283K-page 86  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-11: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
QEIIE  
R/W-0  
U-0  
FLTA1IE  
PWM1IE  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FLTA1IE: PWM1 Fault A Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 14-11  
bit 10  
Unimplemented: Read as ‘0’  
QEIIE: QEI Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 9  
PWM1IE: PWM1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8-0  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 87  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-12: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
FLA2IE  
PWM2IE  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIE  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
FLA2IE: PWM2 Fault A Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 9  
PWM2IE: PWM2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
Unimplemented: Read as ‘0’  
DS70283K-page 88  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-13: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC1IP<2:0>  
INT0IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 89  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-14: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
T2IP<2:0>  
OC2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
IC2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70283K-page 90  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-15: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
SPI1EIP<2:0>  
T3IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 91  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-16: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD1IP<2:0>  
U1TXIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70283K-page 92  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-17: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CNIP<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 93  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-18: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
IC8IP<2:0>  
IC7IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
INT1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70283K-page 94  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-19: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT2IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 95  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-20: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
QEIIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PWM1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 10-8  
Unimplemented: Read as ‘0’  
QEIIP<2:0>: QEI Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PWM1IP<2:0>: PWM1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70283K-page 96  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-21: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
FLTA1IP<2:0>  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
FLTA1IP<2:0>: PWM1 Fault A Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-0  
Unimplemented: Read as ‘0’  
REGISTER 7-22: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1EIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 97  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-23: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
FLTA2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PWM2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 8-10  
Unimplemented: Read as ‘0’  
FLTA2IP<2:0>: PWM2 Fault A Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PWM2IP<2:0>: PWM2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70283K-page 98  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 7-24: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt Vector pending is number 135  
0000001= Interrupt Vector pending is number 9  
0000000= Interrupt Vector pending is number 8  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 99  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
7.5.3  
TRAP SERVICE ROUTINE  
7.5  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.5.1  
INITIALIZATION  
To configure an interrupt source at initialization:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.5.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources can be programmed  
to the same non-zero value.  
All user interrupts can be disabled using this  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POP instruction can be  
used to restore the previous SR value.  
Note: At a device Reset, the IPCx registers are  
initialized such that all user interrupt  
sources are assigned to priority level 4.  
Note:  
Only user interrupts with a priority level of  
7 or lower can be disabled. Trap sources  
(level 8-level 15) cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of priority levels 1-6 for a fixed period  
of time. Level 7 interrupt sources are not disabled by  
the DISI instruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
7.5.2  
INTERRUPT SERVICE ROUTINE  
The method used to declare an Interrupt Service Rou-  
tine (ISR) and initialize the IVT with the correct vector  
address depends on the programming language (C or  
assembler) and the language development tool suite  
used to develop the application.  
In general, the user application must clear the interrupt  
flag in the appropriate IFSx register for the source of  
interrupt that the ISR handles. Otherwise, program will  
re-enter the ISR immediately after exiting the routine. If  
the ISR is coded in assembly language, it must be  
terminated using a RETFIEinstruction to unstack the  
saved PC value, SRL value and old CPU priority level.  
DS70283K-page 100  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The oscillator system for dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices provides:  
8.0  
OSCILLATOR  
CONFIGURATION  
• External and internal oscillator options as clock  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
7. “Oscillator” (DS70186) of the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
sources.  
• An on-chip Phase-Locked Loop (PLL) to scale the  
internal operating frequency to the required  
system clock frequency.  
• An internal FRC oscillator that can also be used  
with the PLL, thereby allowing full-speed  
operation without any external clock generation  
hardware.  
• Clock switching between various clock sources.  
Microchip  
web  
site  
• Programmable clock postscaler for system power  
savings.  
(www.microchip.com).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures.  
• A Clock Control register (OSCCON).  
• Nonvolatile Configuration bits for main oscillator  
selection.  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
FIGURE 8-1:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 OSCILLATOR SYSTEM DIAGRAM  
Primary Oscillator (POSC)  
OSC1  
DOZE<2:0>  
XT, HS, EC  
S2  
(2)  
R
XTPLL, HSPLL,  
S3  
(3)  
ECPLL, FRCPLL  
FCY  
(1)  
S1/S3  
PLL  
S1  
OSC2  
POSCMD<1:0>  
(3)  
FP  
FRC  
Oscillator  
FRCDIVN  
S7  
÷ 2  
FOSC  
FRCDIV<2:0>  
TUN<5:0>  
FRCDIV16  
FRC  
S6  
S0  
÷ 16  
LPRC  
SOSC  
LPRC  
Oscillator  
S5  
Secondary Oscillator (SOSC)  
LPOSCEN  
SOSCO  
SOSCI  
S4  
Clock Switch  
Reset  
Clock Fail  
S7  
NOSC<2:0> FNOSC<2:0>  
WDT, PWRT,  
FSCM  
Timer 1  
Note 1: See Figure 8-2 for PLL details.  
2: If the Oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 MΩ must be connected.  
3: The term FP refers to the clock source for all of the peripherals, while FCY refers to the clock source for the CPU.  
Throughout this document, FCY and FP are used interchangeably, except in the case of DOZE mode. FP and FCY will  
be different when DOZE mode is used with any ratio other than 1:1 which is the default.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 101  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
8.1.2  
SYSTEM CLOCK SELECTION  
8.1  
CPU Clocking System  
The oscillator source used at a device Power-on  
Reset event is selected using Configuration bit  
settings. The oscillator Configuration bit settings are  
located in the Configuration registers in the program  
memory. (Refer to Section 21.1 “Configuration  
Bits” for further details.) The Initial Oscillator  
The  
dsPIC33FJ32MC202/204  
and  
dsPIC33FJ16MC304 devices provide seven system  
clock options:  
• Fast RC (FRC) Oscillator  
• FRC Oscillator with PLL  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
• Secondary (LP) Oscillator  
• Low-Power RC (LPRC) Oscillator  
• FRC Oscillator with postscaler  
Selection  
(FOSCSEL<2:0>), and the Primary Oscillator Mode  
Select Configuration bits, POSCMD<1:0>  
(FOSC<1:0>), select the oscillator source that is used  
at a Power-on Reset. The FRC primary oscillator is  
the default (unprogrammed) selection.  
Configuration  
bits,  
FNOSC<2:0>  
The Configuration bits allow users to choose among 12  
different clock modes, shown in Table 8-1.  
8.1.1  
SYSTEM CLOCK SOURCES  
Fast RC  
8.1.1.1  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected) FOSC is divided by 2 to  
generate the device instruction clock (FCY) and the  
peripheral clock time base (FP). FCY defines the  
operating speed of the device, and speeds up to 40  
MHz are supported by the dsPIC33FJ32MC202/204  
and dsPIC33FJ16MC304 architecture.  
The Fast RC (FRC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. User software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> bits (CLKDIV<10:8>).  
Instruction execution speed or device operating  
frequency, FCY, is given by:  
8.1.1.2  
Primary  
The primary oscillator can use one of the following as  
its clock source:  
EQUATION 8-1:  
DEVICE OPERATING  
FREQUENCY  
• XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
FOSC  
FCY = -------------  
2
• HS (High-Speed Crystal): Crystals in the range of  
10 MHz to 40 MHz. The crystal is connected to  
the OSC1 and OSC2 pins.  
8.1.3  
PLL CONFIGURATION  
• EC (External Clock): The external clock signal is  
directly applied to the OSC1 pin.  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides significant flexibility in  
selecting the device operating speed. A block diagram  
of the PLL is shown in Figure 8-2.  
8.1.1.3  
Secondary  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,  
... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected in the range of 0.8 MHz to 8 MHz. The  
prescale factor ‘N1’ is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
8.1.1.4  
Low-Power RC  
The LPRC (Low-Power RC) internal oscIllator runs at a  
nominal frequency of 32.768 kHz. It is also used as a  
reference clock by the Watchdog Timer (WDT) and  
Fail-Safe Clock Monitor (FSCM).  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
8.1.1.5  
FRC  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip  
Phase Locked Loop (PLL) to provide a wide range of  
output frequencies for device operation. PLL  
configuration is described in Section 8.1.3 “PLL  
Configuration”.  
The VCO output is further divided by a postscale factor  
‘N2.’ This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
The FRC frequency depends on the FRC accuracy  
(see Table 24-18) and the value of the FRC Oscillator  
Tuning register (see Register 8-4).  
DS70283K-page 102  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
the PLL output ‘FOSC’ is given by:  
• If PLLDIV<8:0> = 0x1E, then  
M = 32. This yields a VCO output of 5 x 32 = 160  
MHz, which is within the 100-200 MHz ranged  
needed.  
EQUATION 8-2:  
FOSC CALCULATION  
• If PLLPOST<1:0> = 0, then N2 = 2. This provides  
a Fosc of 160/2 = 80 MHz. The resultant device  
operating speed is 80/2 = 40 MIPS.  
M
---------------------  
FOSC = FIN ⋅  
N1 N2  
For example, suppose a 10 MHz crystal is being used  
with the selected oscillator mode of XT with PLL.  
EQUATION 8-3:  
XT WITH PLL MODE  
EXAMPLE  
• If PLLPRE<4:0> = 0, then N1 = 2. This yields a  
VCO input of 10/2 = 5 MHz, which is within the  
acceptable range of 0.8-8 MHz.  
1
--  
10000000 32  
FOSC  
2
------------------------------------  
FCY = ------------- =  
= 40 MIPS  
2
2 2  
FIGURE 8-2:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 PLL BLOCK DIAGRAM  
FVCO  
0.8-8.0 MHz  
Here(1)  
12.5-80 MHz  
Here(1)  
100-200 MHz  
Here(1)  
Source (Crystal, External Clock  
or Internal RC)  
FOSC  
PLLPRE  
VCO  
PLLPOST  
N2  
X
PLLDIV  
N1  
Divide by  
2-33  
Divide by  
2, 4, 8  
M
Divide by  
2-513  
Note 1: This frequency range must be satisfied at all times.  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
See Note  
1, 2  
Fast RC Oscillator with Divide-by-N  
(FRCDIVN)  
Internal  
xx  
111  
Internal  
xx  
110  
1
Fast RC Oscillator with Divide-by-16  
(FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Internal  
Secondary  
Primary  
xx  
xx  
10  
101  
100  
011  
1
1
Secondary (Timer1) Oscillator (Sosc)  
Primary Oscillator (HS) with PLL  
(HSPLL)  
Primary Oscillator (XT) with PLL  
(XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
1
Primary Oscillator (EC) with PLL  
(ECPLL)  
Primary Oscillator (HS)  
Primary  
Primary  
Primary  
Internal  
Internal  
10  
01  
00  
xx  
xx  
010  
010  
010  
001  
000  
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
1
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 103  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
8.2  
Oscillator Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
8.2.1  
KEY RESOURCES  
Section 7. “Oscillator” (DS70186)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 104  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
8.3  
Oscillator Control Registers  
(1,3)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
NOSC<2:0>(2)  
R/W-y  
bit 8  
COSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
R/W-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
R/W-0  
R/W-0  
IOLOCK  
LOCK  
LPOSCEN  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
111= Fast RC oscillator (FRC) with Divide-by-n  
110= Fast RC oscillator (FRC) with Divide-by-16  
101= Low-Power RC oscillator (LPRC)  
100= Secondary oscillator (Sosc)  
011= Primary oscillator (XT, HS, EC) with PLL  
010= Primary oscillator (XT, HS, EC)  
001= Fast RC oscillator (FRC) with PLL  
000= Fast RC oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
111= Fast RC oscillator (FRC) with Divide-by-n  
110= Fast RC oscillator (FRC) with Divide-by-16  
101= Low-Power RC oscillator (LPRC)  
100= Secondary oscillator (Sosc)  
011= Primary oscillator (XT, HS, EC) with PLL  
010= Primary oscillator (XT, HS, EC)  
001= Fast RC oscillator (FRC) with PLL  
000= Fast RC oscillator (FRC)  
bit 7  
CLKLOCK: Clock Lock Enable bit  
If clock switching is enabled and FSCM is disabled, (FOSC<FCKSM> = 0b01)  
1= Clock switching is disabled, system clock source is locked  
0= Clock switching is enabled, system clock source can be modified by clock switching  
bit 6  
bit 5  
IOLOCK: Peripheral Pin Select Lock bit  
1= Peripherial pin select is locked, write to peripheral pin select registers not allowed  
0= Peripherial pin select is not locked, write to peripheral pin select registers allowed  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock, or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
Unimplemented: Read as ‘0’  
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the  
“dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 105  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1,3)  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
(CONTINUED)  
bit 3  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
LPOSCEN: Secondary (LP) Oscillator Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to Section 7. “Oscillator” (DS70186) in the  
“dsPIC33F/PIC24H Family Reference Manual” for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC  
mode as a transition clock source between the two PLL modes.  
3: This register is reset only on a Power-on Reset (POR).  
DS70283K-page 106  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(2)  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
111= FCY/128  
110= FCY/64  
101= FCY/32  
100= FCY/16  
011= FCY/8 (default)  
010= FCY/4  
001= FCY/2  
000= FCY/1  
bit 11  
DOZEN: DOZE Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
111= FRC divide by 256  
110= FRC divide by 64  
101= FRC divide by 32  
100= FRC divide by 16  
011= FRC divide by 8  
010= FRC divide by 4  
001= FRC divide by 2  
000= FRC divide by 1 (default)  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
11= Output/8  
10= Reserved  
01= Output/4 (default)  
00= Output/2  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
00000= Input/2 (default)  
00001= Input/3  
11111= Input/33  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
2: This register is reset only on a Power-on Reset (POR).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 107  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
REGISTER 8-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV<8>  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
000000000= 2  
000000001= 3  
000000010= 4  
000110000= 50 (default)  
111111111= 513  
Note 1: This register is reset only on a Power-on Reset (POR).  
DS70283K-page 108  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(2)  
REGISTER 8-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Center frequency + 11.625% (8.23 MHz)  
011110= Center frequency + 11.25% (8.20 MHz)  
000001= Center frequency + 0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency -0.375% (7.345 MHz)  
100001= Center frequency -11.625% (6.52 MHz)  
100000= Center frequency -12% (6.49 MHz)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither  
characterized nor tested.  
2: This register is reset only on a Power-on Reset (POR).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 109  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
2. If a valid clock switch has been initiated, the  
8.4  
Clock Switching Operation  
LOCK  
(OSCCON<5>)  
and  
the  
CF  
Applications are free to switch among any of the four  
clock sources (Primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects of this flexibility, dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices have a safeguard lock  
built into the switch process.  
(OSCCON<3>) status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
Note:  
Primary Oscillator mode has three different  
submodes (XT, HS and EC), which are  
determined by the POSCMD<1:0>  
Configuration bits. While an application  
can switch to and from Primary Oscillator  
mode in software, it cannot switch among  
the different primary submodes without  
reprogramming the device.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or LP (if LPOSCEN remains set).  
8.4.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 21.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing-sensitive code should not be  
executed during this time.  
2: Direct clock switches between any pri-  
mary oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL modes.  
3: Refer to Section 7. “Oscillator”  
(DS70186) in the “dsPIC33F/PIC24H  
Family Reference Manual” for details.  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC  
Configuration bits.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
8.4.2  
OSCILLATOR SWITCHING  
SEQUENCE  
8.5  
Fail-Safe Clock Monitor (FSCM)  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
Performing  
sequence:  
a
clock switch requires this basic  
1. If  
desired, read the COSC bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit (OSCCON<0>) to initiate  
the oscillator switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
DS70283K-page 110  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
9.2  
Instruction-Based Power-Saving  
Modes  
9.0  
POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices have two special power-saving modes that are  
entered through the execution of a special PWRSAV  
instruction. Sleep mode stops clock operation and halts  
all code execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The assembler syntax of the PWRSAV  
instruction is shown in Example 9-1.  
intended to be  
a
comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 9. “Watchdog Timer and  
Power-Saving Modes” (DS70196) the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
Note: SLEEP_MODE and IDLE_MODE are con-  
stants defined in the assembler include  
file for the selected device.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to wake-up.  
9.2.1  
SLEEP MODE  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices provide the ability to manage power consumption  
by selectively managing clocking to the CPU and the  
peripherals. In general, a lower clock frequency and a  
reduction in the number of circuits being clocked  
The following occur in Sleep mode:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
constitutes  
lower  
consumed  
power.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices can manage power consumption in four different  
ways:  
• The Fail-Safe Clock Monitor does not operate,  
since the system clock source is disabled.  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• Clock frequency  
• Instruction-based Sleep and Idle modes  
• Software-controlled Doze mode  
• Selective peripheral control in software  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Some device features or peripherals may continue  
to operate. This includes items such as the input  
change notification on the I/O ports, or peripherals  
that use an external clock input.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• Any peripheral that requires the system clock  
source for its operation is disabled.  
9.1  
Clock Frequency and Clock  
Switching  
The device will wake-up from Sleep mode on any of the  
these events:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices allow a wide range of clock frequencies to be  
selected under application control. If the system clock  
configuration is not locked, users can choose  
low-power or high-precision oscillators by simply  
changing the NOSC bits (OSCCON<10:8>). The  
process of changing a system clock during operation,  
as well as limitations to the process, are discussed in  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
• A WDT time-out  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
more  
detail  
in  
Section 8.0  
“Oscillator  
Configuration”.  
EXAMPLE 9-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 111  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
9.2.2  
IDLE MODE  
The following occur in Idle mode:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Peripheral Module Disable”).  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU idles, waiting for something to invoke an  
interrupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled  
• Any device Reset  
For example, suppose the device is operating at  
20 MIPS and the CAN module has been configured for  
500 kbps based on this device operating speed. If the  
device is placed in Doze mode with a clock frequency  
ratio of 1:4, the CAN module continues to communicate  
at the required bit rate of 500 kbps, but the CPU now  
starts executing instructions at a frequency of 5 MIPS.  
• A WDT time-out  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution will begin (2-4  
cycles later), starting with the instruction following the  
PWRSAVinstruction, or the first instruction in the ISR.  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
9.4  
Peripheral Module Disable  
The Peripheral Module Disable registers (PMD)  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
9.3  
Doze Mode  
The preferred strategies for reducing power  
consumption are changing clock speed and invoking  
one of the power-saving modes. In some  
circumstances, this may not be practical. For example,  
it may be necessary for an application to maintain  
uninterrupted synchronous communication, even while  
it is doing nothing else. Reducing system clock speed  
can introduce communication errors, while using a  
power-saving mode can stop communications  
completely.  
A peripheral module is enabled only if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC® DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of one  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of one instruction  
cycle (assuming the module control  
registers are already configured to enable  
module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70283K-page 112  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
9.5  
Power-Saving Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
9.5.1  
KEY RESOURCES  
Section 9. “Watchdog Timer and  
Power-Saving Modes” (DS70196)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 113  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
9.6  
Power-Saving Control Registers  
REGISTER 9-1:  
PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
R/W-0  
R/W-0  
U-0  
QEIMD  
PWM1MD  
bit 15  
bit 8  
R/W-0  
I2C1MD  
bit 7  
U-0  
R/W-0  
U1MD  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
AD1MD(1)  
SPI1MD  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
bit 12  
bit 11  
bit 10  
bit 9  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
QEIMD: QEI Module Disable bit  
1= QEI module is disabled  
0= QEI module is enabled  
PWM1MD: PWM1 Module Disable bit  
1= PWM1 module is disabled  
0= PWM1 module is enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
AD1MD: ADC1 Module Disable bit(1)  
1= ADC1 module is disabled  
0= ADC1 module is enabled  
Note 1: PCFGx bits have no effect if the ADC module is disabled by setting this bit. In this case, all port pins  
multiplexed with ANx will be in Digital mode.  
DS70283K-page 114  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 9-2:  
PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
IC8MD  
IC7MD  
IC2MD  
IC1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
IC8MD: Input Capture 8 Module Disable bit  
1= Input Capture 8 module is disabled  
0= Input Capture 8 module is enabled  
IC7MD: Input Capture 2 Module Disable bit  
1= Input Capture 7 module is disabled  
0= Input Capture 7 module is enabled  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
bit 8  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
bit 0  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 115  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 9-3:  
PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PWM2MD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
PWM2MD: PWM2 Module Disable bit  
1= PWM2 module is disabled  
0= PWM2 module is enabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70283K-page 116  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
the I/O pin. The logic also prevents “loop through”, in  
10.0 I/O PORTS  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the infor-  
mation in this data sheet, refer to Section  
10. “I/O Ports” (DS70193) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available on Microchip  
web site (www.microchip.com).  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx) read the latch.  
Writes to the latch write the latch. Reads from the port  
(PORTx) read the port pins, while writes to the port pins  
write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared among the peripherals and the  
parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
10.1 Parallel I/O (PIO) Ports  
Generally a parallel I/O port that shares a pin with a  
peripheral is subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 117  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
10.2 Open-Drain Configuration  
10.4 I/O Port Write/Read Timing  
In addition to the PORT, LAT and TRIS registers for  
data control, some port pins can also be individually  
configured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be an NOP. Examples are shown in  
Example 10-1 and Example 10-2. This also applies to  
PORT bit operations, such as BSET PORTB, # RB0,  
which are single cycle read-modify-write. All PORT bit  
operations, such as MOV PORTB, W0or BSET PORTB,  
# RBx, read the pin and not the latch.  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired 5V  
tolerant pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
10.5 Input Change Notification  
The input change notification function of the I/O ports  
See the Pin Diagramssection for the available pins  
and their functionality.  
allows  
dsPIC33FJ16MC304 devices to generate interrupt  
requests to the processor in response to  
the  
dsPIC33FJ32MC202/204  
and  
a
change-of-state on selected input pins. This feature  
can detect input change-of-states even in Sleep mode,  
when the clocks are disabled. Depending on the device  
pin count, up to 31 external signals (CNx pin) can be  
selected (enabled) for generating an interrupt request  
on a change-of-state.  
10.3 Configuring Analog Port Pins  
The AD1PCFG and TRIS registers control the opera-  
tion of the analog-to-digital (A/D) port pins. The port  
pins that are to function as analog inputs must have  
their corresponding TRIS bit set (input). If the TRIS bit  
is cleared (output), the digital output level (VOH or VOL)  
will be converted.  
Four control registers are associated with the CN mod-  
ule. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
The AD1PCFGL register has a default value of 0x0000;  
therefore, all pins that share ANx functions are analog  
(not digital) by default.  
When the PORT register is read, all pins configured as  
analog input channels will read as cleared (a low level).  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source connected to the  
pin, and eliminate the need for external resistors when  
push-button or keypad devices are connected. The  
pull-ups are enabled separately using the CNPU1 and  
CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin defined as a dig-  
ital input (including the ANx pins) can cause the input  
buffer to consume current that exceeds the device  
specifications.  
Note:  
Pull-ups on change notification pins  
should always be disabled when the port  
pin is configured as a digital output.  
EXAMPLE 10-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
btss  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
PORTB, #13  
; Next Instruction  
EXAMPLE 10-2:  
Incorrect:  
PORT BIT OPERATIONS  
BSET  
BSET  
PORTB, #RB1  
PORTB, #RB6  
;Set PORTB<RB1> high  
;Set PORTB<RB6> high  
Correct:  
BSET  
NOP  
BSET  
NOP  
PORTB, #RB1  
PORTB, #RB6  
;Set PORTB<RB1> high  
;Set PORTB<RB6> high  
Preferred:  
BSET  
BSET  
LATB, LATB1  
LATB, LATB6  
;Set PORTB<RB1> high  
;Set PORTB<RB6> high  
DS70283K-page 118  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
10.6.2.1  
Input Mapping  
10.6 Peripheral Pin Select  
The inputs of the peripheral pin select options are  
mapped on the basis of the peripheral. A control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 10-1  
through Register 10-13). Each register contains sets of  
5-bit fields, with each set associated with one of the  
Peripheral pin select configuration enables peripheral  
set selection and placement on a wide range of I/O  
pins. By increasing the pinout options available on a  
particular device, programmers can better tailor the  
microcontroller to their entire application, rather than  
trimming the application to fit the device.  
The peripheral pin select configuration feature  
operates over a fixed subset of digital I/O pins.  
Programmers can independently map the input and/or  
output of most digital peripherals to any one of these  
I/O pins. Peripheral pin select is performed in software,  
and generally does not require the device to be  
reprogrammed. Hardware safeguards are included that  
prevent accidental or spurious changes to the  
peripheral mapping, once it has been established.  
remappable peripherals. Programming  
a
given  
peripheral’s bit field with an appropriate 5-bit value  
maps the RPn pin with that value to that peripheral. For  
any given device, the valid range of values for any bit  
field corresponds to the maximum number of peripheral  
pin selections supported by the device.  
Figure 10-2 illustrates remappable pin selection for  
U1RX input.  
Note:  
For input mapping only, the Peripheral Pin  
Select (PPS) functionality does not have  
priority over the TRISx settings. There-  
fore, when configuring the RPn pin for  
input, the corresponding bit in the TRISx  
register must also be configured for input  
(i.e., set to ‘1’).  
10.6.1  
AVAILABLE PINS  
The peripheral pin select feature is used with a range  
of up to 26 pins. The number of available pins depends  
on the particular device and its pin count. Pins that  
support the peripheral pin select feature include the  
designation “RPn” in their full pin designation, where  
“RP” designates a remappable peripheral and “n” is the  
remappable pin number.  
FIGURE 10-2:  
REMAPPABLE MUX  
INPUT FOR U1RX  
10.6.2  
CONTROLLING PERIPHERAL PIN  
SELECT  
U1RXR<4:0>  
Peripheral pin select features are controlled through  
two sets of special function registers: one to map  
peripheral inputs, and one to map outputs. Because  
they are separately controlled, a particular peripheral’s  
input and output (if the peripheral has both) can be  
placed on any selectable function pin without  
constraint.  
0
RP0  
RP1  
RP2  
1
U1RX input  
to peripheral  
The association of a peripheral to a peripheral  
selectable pin is handled in two different ways,  
depending on whether an input or output is being  
mapped.  
2
25  
RP25  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 119  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)  
Configuration  
Bits  
Input Name  
Function Name  
Register  
External Interrupt 1  
INT1  
INT2  
T2CK  
T3CK  
IC1  
RPINR0  
RPINR1  
INT1R<4:0>  
INT2R<4:0>  
T2CKR<4:0>  
T3CKR<4:0>  
IC1R<4:0>  
External Interrupt 2  
Timer2 External Clock  
Timer3 External Clock  
Input Capture 1  
RPINR3  
RPINR3  
RPINR7  
Input Capture 2  
IC2  
RPINR7  
IC2R<4:0>  
Input Capture 7  
IC7  
RPINR10  
RPINR10  
RPINR11  
RPINR12  
RPINR13  
RPINR14  
RPINR14  
RPINR15  
RPINR18  
RPINR18  
RPINR20  
RPINR20  
RPINR21  
IC7R<4:0>  
Input Capture 8  
IC8  
IC8R<4:0>  
Output Compare Fault A  
PWM1 Fault  
OCFA  
FLTA1  
FLTA2  
QEA  
QEB  
INDX  
U1RX  
U1CTS  
SDI1  
SCK1  
SS1  
OCFAR<4:0>  
FLTA1R<4:0>  
FLTA2R<4:0>  
QEA1R<4:0>  
QEB1R<4:0>  
INDX1R<4:0>  
U1RXR<4:0>  
U1CTSR<4:0>  
SDI1R<4:0>  
SCK1R<4:0>  
SS1R<4:0>  
PWM2 Fault  
QEI1 Phase A  
QEI1 Phase B  
QEI1 Index  
UART1 Receive  
UART1 Clear To Send  
SPI1 Data Input  
SPI1 Clock Input  
SPI1 Slave Select Input  
Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.  
DS70283K-page 120  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
10.6.2.2  
Output Mapping  
FIGURE 10-3:  
MULTIPLEXING OF  
REMAPPABLE OUTPUT  
FOR RPn  
In contrast to inputs, the outputs of the peripheral pin  
select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Like the RPINRx registers, each register contains sets  
of 5-bit fields, with each set associated with one RPn  
pin (see Register 10-14 through Register 10-26). The  
value of the bit field corresponds to one of the periph-  
erals, and that peripheral’s output is mapped to the pin  
(see Table 10-2 and Figure 10-3).  
RPnR<4:0>  
Default  
U1TX Output Enable  
0
3
4
U1RTS Output Enable  
Output Enable  
The list of peripherals for output mapping also includes  
a null value of 00000 because of the mapping tech-  
nique. This permits any given pin to remain uncon-  
nected from the output of any of the pin selectable  
peripherals.  
OC2 Output Enable  
UPDN Output Enable  
19  
26  
Default  
0
3
4
U1TX Output  
U1RTS Output  
RPn  
Output Data  
OC2 Output  
19  
26  
UPDN Output  
TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)  
Function  
RPnR<4:0>  
Output Name  
RPn tied to default port pin  
NULL  
U1TX  
00000  
00011  
RPn tied to UART1 Transmit  
U1RTS  
SDO1  
00100  
00111  
01000  
01001  
10010  
10011  
11010  
RPn tied to UART1 Ready To Send  
RPn tied to SPI1 Data Output  
SCK1OUT  
SS1OUT  
OC1  
RPn tied to SPI1 Clock Output  
RPn tied to SPI1 Slave Select Output  
RPn tied to Output Compare 1  
RPn tied to Output Compare 2  
RPn tied to QEI direction (UPDN) status  
OC2  
UPDN  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 121  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
10.6.3  
CONTROLLING CONFIGURATION  
CHANGES  
10.6.3.2  
Continuous State Monitoring  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a configuration mismatch Reset will  
be triggered.  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. dsPIC33F devices include three features to  
prevent alterations to the peripheral map:  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit pin select lock  
10.6.3.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the RPINRx and RPORx registers. The IOL1WAY  
(FOSC<IOL1WAY>) configuration bit blocks the  
IOLOCK bit from being cleared after it has been set  
once. If IOLOCK remains set, the register unlock  
procedure will not execute, and the peripheral pin  
select control registers cannot be written to. The only  
way to clear the bit and re-enable peripheral remapping  
is to perform a device Reset.  
10.6.3.1  
Control Register Lock  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes  
appear to execute normally, but the contents of the  
registers remain unchanged. To change these  
registers, they must be unlocked in hardware. The  
register lock is controlled by the IOLOCK bit  
(OSCCON<6>). Setting IOLOCK prevents writes to the  
control registers; clearing IOLOCK allows writes.  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows user applications unlimited access  
(with the proper use of the unlock sequence) to the  
peripheral pin select registers.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
1. Write 0x46 to OSCCON<7:0>.  
2. Write 0x57 to OSCCON<7:0>.  
3. Clear (or set) IOLOCK as a single operation.  
Note:  
MPLAB® C30 provides built-in  
C
language functions for unlocking the  
OSCCON register:  
__builtin_write_OSCCONL(value)  
__builtin_write_OSCCONH(value)  
See MPLAB Help for more information.  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the peripheral pin selects to be configured  
with a single unlock sequence followed by an update to  
all control registers, then locked with a second lock  
sequence.  
DS70283K-page 122  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
4. Each CN pin has a configurable internal weak  
10.7 I/O Helpful Tips  
pull-up resistor. The pull-ups act as a current  
source connected to the pin, and eliminates the  
need for external resistors in certain applica-  
tions. The internal pull-up is to ~(VDD-0.8) not  
VDD. This is still above the minimum VIH of  
CMOS and TTL devices.  
1. In some cases, certain pins as defined in TABLE  
24-9: “DC Characteristics: I/O Pin Input Speci-  
fications” under “Injection Current”, have internal  
protection diodes to VDD and VSS. The term  
“Injection Current” is also referred to as “Clamp  
Current”. On designated pins, with sufficient exter-  
nal current limiting precautions by the user, I/O pin  
input voltages are allowed to be greater or less  
than the data sheet absolute maximum ratings  
with nominal VDD with respect to the VSS and VDD  
supplies. Note that when the user application for-  
ward biases either of the high or low side internal  
input clamp diodes, that the resulting current being  
injected into the device that is clamped internally  
by the VDD and VSS power rails, may affect the  
ADC accuracy by four to six counts.  
5. When driving LEDs directly, the I/O pin can source  
or sink more current than what is specified in the  
VOH/IOH and VOL/IOL DC characteristic specifica-  
tion. The respective IOH and IOL current rating only  
applies to maintaining the corresponding output at  
or above the VOH and at or below the VOL levels.  
However, for LEDs unlike digital inputs of an exter-  
nally connected device, they are not governed by  
the same minimum VIH/VIL levels. An I/O pin out-  
put can safely sink or source any current less than  
that listed in the absolute maximum rating section  
of the data sheet. For example:  
2. I/O pins that are shared with any analog input pin,  
(i.e., ANx), are always analog pins by default after  
any reset. Consequently, any pin(s) configured as  
an analog input pin, automatically disables the dig-  
ital input pin buffer. As such, any attempt to read a  
digital input pin will always return a ‘0’ regardless  
of the digital logic level on the pin if the analog pin  
is configured. To use a pin as a digital I/O pin on a  
shared ANx pin, the user application needs to con-  
figure the analog pin configuration registers in the  
ADC module, (i.e., ADxPCFGL, AD1PCFGH), by  
setting the appropriate bit that corresponds to that  
I/O port pin to a ‘1’. On devices with more than one  
ADC, both analog pin configurations for both ADC  
modules must be configured as a digital I/O pin for  
that pin to function as a digital I/O pin.  
VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V  
The maximum output current sourced by any 8 mA  
I/O pin = 12 mA.  
LED source current < 12 mA is technically  
permitted. Refer to the VOH/IOH graphs in  
Section 24.0 “Electrical Characteristics” for  
additional information.  
10.8 I/O Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
Although it is not possible to use a digital  
input pin when its analog function is  
enabled, it is possible to use the digital I/O  
output function, TRISx = 0x0, while the  
analog function is also enabled. However,  
this is not recommended, particularly if the  
analog input is connected to an external  
analog voltage source, which would cre-  
ate signal contention between the analog  
signal and the output pin driver.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
10.8.1  
KEY RESOURCES  
Section 10. “I/O Ports” (DS70193)  
• Code Samples  
3. Most I/O pins have multiple functions. Referring to  
the device pin diagrams in the data sheet, the pri-  
orities of the functions allocated to any pins are  
indicated by reading the pin name from  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
left-to-right. The left most function name takes pre-  
cedence over any function to its right in the naming  
convention. Forexample:AN16/T2CK/T7CK/RC1.  
This indicates that AN16 is the highest priority in  
this example and will supersede all other functions  
to its right in the list. Those other functions to its  
right, even if enabled, would not work as long as  
any other function to its left was enabled. This rule  
applies to all of the functions listed for a given pin.  
• Development Tools  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 123  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
10.9 Peripheral Pin Select Registers  
The  
dsPIC33FJ32MC202/204  
and  
dsPIC33FJ16MC304 family of devices implement 21  
registers for remappable peripheral configuration:  
• Input Remappable Peripheral Registers (13)  
• Output Remappable Peripheral Registers (8)  
Note:  
Input and Output Register values can only  
be changed if OSCCON[IOLOCK] = 0.  
See Section 10.6.3.1 “Control Register  
Lock” for a specific command sequence.  
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
INT1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
DS70283K-page 124  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 125  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
T3CKR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
T2CKR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70283K-page 126  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
IC2R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
IC1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 127  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-5: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
IC8R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
IC7R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
IC8R<4:0>: Assign Input Capture 8 (IC8) to the corresponding pin RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC7R<4:0>: Assign Input Capture 7 (IC7) to the corresponding pin RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70283K-page 128  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
OCFAR<4:0>: Assign Output Capture A (OCFA) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
REGISTER 10-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTA1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FLTA1R<4:0>: Assign PWM1 Fault (FLTA1) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 129  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-8: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTA2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FLTA2R<4:0>: Assign PWM2 Fault (FLTA2) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70283K-page 130  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-9: RPINR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
QEB1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
QEA1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
QEB1R<4:0>: Assign B (QEB) to the corresponding pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
QEA1R<4:0>: Assign A(QEA) to the corresponding pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 131  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-10: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INDX1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
INDX1R<4:0>: Assign QEI INDEX (INDX) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70283K-page 132  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-11: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
U1CTSR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
U1RXR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
U1RXR<4:0>: Assign UART1 Receive (U1RX) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 133  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-12: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
bit 0  
SCK1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
SDI1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SCK1R<4:0>: Assign SPI1 Clock Input (SCK1IN) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70283K-page 134  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-13: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SS1R<4:0>: Assign SPI1 Slave Select Input (SS1IN) to the corresponding RPn pin bits  
11111= Input tied VSS  
11001= Input tied to RP25  
.
.
.
00001= Input tied to RP1  
00000= Input tied to RP0  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 135  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-14: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP0R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-15: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP3R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP3R<4:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
DS70283K-page 136  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-16: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP5R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP4R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-17: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP7R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP6R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP7R<4:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP6R<4:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 137  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-18: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP9R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP8R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP8R<4:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-19: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP11R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP10R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP11R<4:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP10R<4:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
DS70283K-page 138  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-20: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP13R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP12R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-21: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP15R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP14R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP15R<4:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP14R<4:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 139  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-22: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP17R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP16R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-23: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP19R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP18R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
DS70283K-page 140  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-24: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP21R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP20R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
REGISTER 10-25: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP23R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP22R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP23R<4:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP22R<4:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 141  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 10-26: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
RP25R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP24R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 10-2 for  
peripheral function numbers)  
DS70283K-page 142  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Timer1 also supports these features:  
11.0 TIMER1  
• Timer gate operation  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 11. “Timers” (DS70205) of the  
dsPIC33F/PIC24H Family Reference  
Manual, which is available from the Micro-  
chip web site (www.microchip.com).  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
Figure 11-1 presents a block diagram of the 16-bit timer  
module.  
To configure Timer1 for operation:  
1. Set the TON bit (= 1) in the T1CON register.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits in the T1CON register.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits in the T1CON register.  
4. Set or clear the TSYNC bit in T1CON to select  
synchronous or asynchronous operation.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the real-time clock, or operate  
as a free-running interval timer/counter. Timer1 can  
operate in three modes:  
5. Load the timer period value into the PR1  
register.  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-bit Timer  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
1
Sync  
TSYNC  
Comparator  
PR1  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 143  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
11.1 Timer Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
11.1.1  
KEY RESOURCES  
Section 11. “Timers” (DS70205)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 144  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
11.2 Timer1 Control Register  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0> Timer1 Input Clock Prescale Select bits  
11 = 1:256  
10 = 1:64  
01 = 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin T1CK (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 145  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
NOTES:  
DS70283K-page 146  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
For 32-bit timer/counter operation, Timer2 is the least  
significant word (lsw), and Timer3 is the most  
significant word (msw) of the 32-bit timers.  
12.0 TIMER2/3 FEATURE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 11. “Timers” (DS70205) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip web site (www.microchip.com).  
Note:  
For 32-bit operation, T3CON control bits  
are ignored. Only T2CON control bits are  
used for setup and control. Timer2 clock  
and gate inputs are used for the 32-bit  
timer modules, but an interrupt is  
generated with the Timer3 interrupt flags.  
12.1 32-bit Operation  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
To configure the Timer2/3 feature timers for 32-bit  
operation:  
1. Set the T32 control bit.  
2. Select the prescaler ratio for Timer2 using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
The Timer2/3 feature has three 2-bit timers that can  
also be configured as two independent 16-bit timers  
with selectable operating modes.  
4. Load the timer period value. PR3 contains the  
most significant word of the value, while PR2  
contains the least significant word.  
As a 32-bit timer, the Timer2/3 feature permits  
operation in three modes:  
5. If interrupts are required, set the interrupt enable  
bit, T3IE. Use the priority bits, T3IP<2:0>, to set  
the interrupt priority. While Timer2 controls the  
timer, the interrupt appears as a Timer3  
interrupt.  
• Two Independent 16-bit timers (e.g., Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
• Single 32-bit timer (Timer2/3)  
6. Set the corresponding TON bit.  
• Single 32-bit synchronous counter (Timer2/3)  
The timer value at any point is stored in the register  
pair, TMR3:TMR2, which always contains the most sig-  
nificant word of the count, while TMR2 contains the  
least significant word.  
The Timer2/3 feature also supports:  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit period register match  
12.2 16-bit Operation  
• Time base for Input Capture and Output Compare  
modules (Timer2 and Timer3 only)  
To configure any of the timers for individual 16-bit  
operation:  
• ADC1 event trigger (Timer2/3 only)  
1. Clear the T32 bit corresponding to that timer.  
Individually, all eight of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the event trigger. The  
operating modes and enabled features are determined  
by setting the appropriate bit(s) in the T2CON, T3CON  
registers. T2CON registers are shown in generic form  
in Register 12-1. T3CON registers are shown in  
Register 12-2.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
6. Set the TON bit.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 147  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
FIGURE 12-1:  
TIMER2/3 (32-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
1x  
T2CK  
Gate  
Sync  
Prescaler  
1, 8, 64, 256  
01  
00  
TCY  
TGATE  
TGATE  
TCS  
1
0
Q
Q
D
Set T3IF  
CK  
PR2  
PR3  
ADC Event Trigger(2)  
Equal  
Reset  
Comparator  
MSb  
LSb  
TMR3  
TMR2  
Sync  
16  
Read TMR2  
Write TMR2  
16  
16  
TMR3HLD  
16  
Data Bus<15:0>  
Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective to the  
T2CON register.  
2: The ADC event trigger is available only on Timer2/3.  
FIGURE 12-2:  
TIMER2 (16-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TGATE  
1
0
Q
Q
D
TCS  
TGATE  
TCY  
Set T2IF  
CK  
Reset  
Equal  
Sync  
TMR2  
Comparator  
PR2  
DS70283K-page 148  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
12.3 Timer2/3 Control Registers  
REGISTER 12-1: T2CON CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer2 On bit  
When T32 = 1:  
1= Starts 32-bit Timer2/3  
0= Stops 32-bit Timer2/3  
When T32 = 0:  
1= Starts 16-bit Timer2  
0= Stops 16-bit Timer2  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer2 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timer2 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-bit Timer Mode Select bit  
1= Timer2 and Timer3 form a single 32-bit timer  
0= Timer2 and Timer3 act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer2 Clock Source Select bit  
1= External clock from pin T2CK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 149  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 12-2: T3CON CONTROL REGISTER  
R/W-0  
TON(2)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(2)  
R/W-0  
TCKPS<1:0>(2)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer3 On bit(2)  
1= Starts 16-bit Timer3  
0= Stops 16-bit Timer3  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue timer operation when device enters Idle mode  
0= Continue timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer3 Gated Time Accumulation Enable bit(2)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(2)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timer3 Clock Source Select bit(2)  
1= External clock from T3CK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), the TSIDL bit  
must be cleared to operate the 32-bit timer in Idle mode.  
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), these bits  
have no effect.  
DS70283K-page 150  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
1. Simple Capture Event modes:  
13.0 INPUT CAPTURE  
- Capture timer value on every falling edge of  
input at ICx pin  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 12. “Input Capture” (DS70198)  
of the “dsPIC33F/PIC24H Family Refer-  
ence Manual”, which is available from the  
Microchip web site (www.microchip.com).  
- Capture timer value on every rising edge of  
input at ICx pin  
2. Capture timer value on every edge (rising and  
falling).  
3. Prescaler Capture Event modes:  
- Capture timer value on every 4th rising edge  
of input at ICx pin  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Each input capture channel can select one of two  
16-bit timers (Timer2 or Timer3) for the time base.  
The selected timer can use either an internal or  
external clock.  
Other operational features include:  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices support up to eight input capture channels.  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
• Use of input capture to provide additional sources  
of external interrupts  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-bit Timers  
TMR2 TMR3  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Edge Detection Logic  
and  
Clock Synchronizer  
FIFO  
R/W  
Logic  
Prescaler  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE (ICxCON<4:3>)  
ICxBUF  
ICxI<1:0>  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSn Register)  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 151  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
13.1 Input Capture Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
13.1.1  
KEY RESOURCES  
Section 12. “Input Capture” (DS70198)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 152  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
13.2 Input Capture Registers  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICTMR  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
HC = Cleared in Hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(Rising edge detect only, all other control bits are not applicable.)  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling)  
(ICI<1:0> bits do not control interrupt generation for this mode.)  
000= Input capture module turned off  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 153  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
NOTES:  
DS70283K-page 154  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The Output Compare module can select either Timer2  
14.0 OUTPUT COMPARE  
or Timer3 for its time base. The module compares the  
value of the timer with the value of one or two compare  
registers depending on the operating mode selected.  
The state of the output pin changes when the timer  
value matches the compare register value. The Output  
Compare module generates either a single output  
pulse or a sequence of output pulses, by changing the  
state of the output pin on the compare match events.  
The Output Compare module can also generate  
interrupts on compare match events.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 13. “Output Compare”  
(DS70209) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
The Output Compare module has multiple operating  
modes:  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without fault protection  
• PWM mode with fault protection  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
3
Output  
Enable  
Logic  
Output  
Enable  
OCM<2:0>  
Mode Select  
Comparator  
OCFA  
0
1
0
OCTSEL  
1
16  
16  
TMR2  
Rollover  
TMR3  
Rollover  
TMR3  
TMR2  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 155  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
application must disable the associated timer when  
writing to the output compare control registers to avoid  
Configure the Output Compare modes by setting the  
malfunctions.  
14.1 Output Compare Modes  
appropriate Output Compare Mode bits (OCM<2:0>) in  
Note:  
See Section 13. “Output Compare”  
(DS70209) in the “dsPIC33F/PIC24H  
Family Reference Manual” (DS70209) for  
OCxR and OCxRS register restrictions.  
the Output Compare Control register (OCxCON<2:0>).  
Table 14-1 lists the different bit settings for the Output  
Compare modes. Figure 14-2 illustrates the output  
compare operation for various modes. The user  
TABLE 14-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OCx Pin Initial State  
OCx Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
OCx Rising edge  
OCx Falling edge  
Active-Low One-Shot  
Active-High One-Shot  
Toggle Mode  
0
1
Current output is maintained OCx Rising and Falling edge  
Delayed One-Shot  
Continuous Pulse mode  
0
0
OCx Falling edge  
OCx Falling edge  
No interrupt  
PWM mode without fault  
protection  
0, if OCxR is zero  
1, if OCxR is non-zero  
111  
PWM mode with fault protection 0, if OCxR is zero  
1, if OCxR is non-zero  
OCFA Falling edge for OC1 to OC4  
FIGURE 14-2:  
OUTPUT COMPARE OPERATION  
Output Compare  
Mode enabled  
Timer is reset on  
period match  
OCxRS  
OCxR  
TMRy  
Active-Low One-Shot  
(OCM = 001)  
Active-High One-Shot  
(OCM = 010)  
Toggle Mode  
(OCM = 011)  
Delayed One-Shot  
(OCM = 100)  
Continuous Pulse Mode  
(OCM = 101)  
PWM Mode  
(OCM = 110or 111)  
DS70283K-page 156  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
14.2 Output Compare Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
14.2.1  
KEY RESOURCES  
Section 13. “Output Compare” (DS70209)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 157  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
14.3  
Output Compare Control Register  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R-0 HC  
OCFLT  
R/W-0  
R/W-0  
R/W-0  
OCTSEL  
OCM<2:0>  
bit 7  
Legend:  
HC = Cleared in Hardware  
W = Writable bit  
HS = Set in Hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x will halt in CPU Idle mode  
0= Output Compare x will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred  
(This bit is only used when OCM<2:0> = 111.)  
bit 3  
OCTSEL: Output Compare Timer Select bit  
1= Timer3 is the clock source for Compare x  
0= Timer2 is the clock source for Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx, Fault pin enabled  
110= PWM mode on OCx, Fault pin disabled  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
DS70283K-page 158  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
15.1 PWM1: 6-Channel PWM Module  
15.0 MOTOR CONTROL PWM  
MODULE  
This module simplifies the task of generating multiple  
synchronized PWM outputs. The following power and  
motion control applications are supported by the PWM  
module:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 14. “Motor Control PWM”  
(DS70187) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip web site  
(www.microchip.com).  
• 3-Phase AC Induction Motor  
• Switched Reluctance (SR) Motor  
• Brushless DC (BLDC) Motor  
• Uninterruptible Power Supply (UPS)  
This module contains three duty cycle generators,  
numbered 1 through 3. The module has six PWM  
output pins, numbered PWM1H1/PWM1L1 through  
PWM1H3/PWM1L3. The six I/O pins are grouped into  
high/low numbered pairs, denoted by the suffix H or L,  
respectively. For complementary loads, the low PWM  
pins are always the complement of the corresponding  
high I/O pin.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
15.2 PWM2: 2-Channel PWM Module  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
device supports up to two dedicated Pulse-Width  
Modulation (PWM) modules. The PWM1 module is a  
6-channel PWM generator, and the PWM2 module is a  
2-channel PWM generator.  
This module provides an additional pair of  
complimentary PWM outputs that can be used for:  
• Independent PFC correction in a motor system  
• Induction cooking  
The PWM module has the following features:  
This module contains a duty cycle generator that  
provides  
PWM2H1/PWM2L1.  
two  
PWM  
outputs,  
numbered  
• Up to 16-bit resolution.  
• On-the-fly PWM frequency changes.  
• Edge and Center-Aligned Output modes.  
• Single Pulse Generation mode.  
• Interrupt support for asymmetrical updates in  
Center-Aligned mode.  
• Output override control for Electrically  
Commutative Motor (ECM) operation or BLDC.  
• Special Event comparator for scheduling other  
peripheral events.  
• Fault pins to optionally drive each of the PWM  
output pins to a defined state.  
Duty cycle updates configurable to be immediate or  
synchronized to the PWM time base.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 159  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 15-1:  
6-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM1)  
PWM1CON1  
PWM Enable and Mode SFRs  
PWM1CON2  
P1DTCON1  
P1DTCON2  
P1FLTACON  
P1OVDCON  
Dead-Time Control SFRs  
Fault Pin Control SFRs  
PWM Manual  
Control SFR  
PWM Generator 3  
P1DC3 Buffer  
P1DC3  
PWM1H3  
PWM1L3  
Comparator  
Channel 3 Dead-Time  
Generator and  
Override Logic  
PWM  
Generator 2  
PWM1H2  
PWM1L2  
P1TMR  
Comparator  
P1TPER  
Channel 2 Dead-Time  
Generator and  
Output  
Driver  
Block  
Override Logic  
PWM  
Generator 1  
PWM1H1  
PWM1L1  
Channel 1 Dead-Time  
Generator and  
Override Logic  
P1TPER Buffer  
P1TCON  
FLTA1  
Special Event  
Postscaler  
Comparator  
Special Event Trigger  
SEVTDIR  
PTDIR  
P1SECMP  
PWM Time Base  
Note:  
Details of PWM Generator 1and PWM Generator 2 are not shown for clarity.  
DS70283K-page 160  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 15-2:  
2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2)  
PWM2CON1  
PWM Enable and Mode SFRs  
PWM2CON2  
P2DTCON1  
P2DTCON2  
P2FLTACON  
P2OVDCON  
Dead-Time Control SFRs  
Fault Pin Control SFRs  
PWM Manual  
Control SFR  
PWM Generator 1  
P2DC1Buffer  
P2DC1  
PWM2H1  
PWM2L1  
Comparator  
Channel 1 Dead-Time  
Generator and  
Override Logic  
P2TMR  
Comparator  
P2TPER  
Output  
Driver  
Block  
P2TPER Buffer  
P2TCON  
FLTA2  
Special Event  
Postscaler  
Comparator  
Special Event Trigger  
SEVTDIR  
PTDIR  
P2SECMP  
PWM Time Base  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 161  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
15.3 Motor Control Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
15.3.1  
KEY RESOURCES  
Section 14. “Motor Control PWM” (DS70187)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 162  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
15.4  
PWM Control Registers  
REGISTER 15-1: PxTCON: PWM TIME BASE CONTROL REGISTER  
R/W-0  
PTEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PTSIDL  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTEN: PWM Time Base Timer Enable bit  
1= PWM time base is on  
0= PWM time base is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTSIDL: PWM Time Base Stop in Idle Mode bit  
1= PWM time base halts in CPU Idle mode  
0= PWM time base runs in CPU Idle mode  
bit 12-8  
bit 7-4  
Unimplemented: Read as ‘0’  
PTOPS<3:0>: PWM Time Base Output Postscale Select bits  
1111= 1:16 postscale  
0001= 1:2 postscale  
0000= 1:1 postscale  
bit 3-2  
bit 1-0  
PTCKPS<1:0>: PWM Time Base Input Clock Prescale Select bits  
11= PWM time base input clock period is 64 TCY (1:64 prescale)  
10= PWM time base input clock period is 16 TCY (1:16 prescale)  
01= PWM time base input clock period is 4 TCY (1:4 prescale)  
00= PWM time base input clock period is TCY (1:1 prescale)  
PTMOD<1:0>: PWM Time Base Mode Select bits  
11= PWM time base operates in a Continuous Up/Down Count mode with interrupts for double  
PWM updates  
10= PWM time base operates in a Continuous Up/Down Count mode  
01= PWM time base operates in Single Pulse mode  
00= PWM time base operates in a Free-Running mode  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 163  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 15-2: PxTMR: PWM TIMER COUNT VALUE REGISTER  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PTDIR  
PTMR<14:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTMR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTDIR: PWM Time Base Count Direction Status bit (read-only)  
1= PWM time base is counting down  
0= PWM time base is counting up  
bit 14-0  
PTMR <14:0>: PWM Time Base Register Count Value bits  
REGISTER 15-3: PxTPER: PWM TIME BASE PERIOD REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PTPER<14:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTPER<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
PTPER<14:0>: PWM Time Base Period Value bits  
bit 14-0  
DS70283K-page 164  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 15-4: PxSECMP: SPECIAL EVENT COMPARE REGISTER  
R/W-0  
SEVTDIR(1)  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEVTCMP<14:8>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
SEVTCMP<7:0>(2)  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SEVTDIR: Special Event Trigger Time Base Direction bit(1)  
1= A Special Event Trigger will occur when the PWM time base is counting downward  
0= A Special Event Trigger will occur when the PWM time base is counting upward  
bit 14-0  
SEVTCMP<14:0>: Special Event Compare Value bits(2)  
Note 1: SEVTDIR is compared with PTDIR (PXTMR<15>) to generate the Special Event Trigger.  
2: PxSECMP<14:0> is compared with PXTMR<14:0> to generate the Special Event Trigger.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 165  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(2)  
REGISTER 15-5: PWMxCON1: PWM CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PMOD3  
PMOD2  
PMOD1  
bit 15  
bit 8  
U-0  
R/W-1  
PEN3H(1)  
R/W-1  
PEN2H(1)  
R/W-1  
PEN1H(1)  
U-0  
R/W-1  
PEN3L(1)  
R/W-1  
PEN2L(1)  
R/W-1  
PEN1L(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
PMOD3:PMOD1: PWM I/O Pair Mode bits  
1= PWM I/O pin pair is in the Independent PWM Output mode  
0= PWM I/O pin pair is in the Complementary Output mode  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PEN3H:PEN1H: PWMxH I/O Enable bits(1)  
1= PWMxH pin is enabled for PWM output  
0= PWMxH pin disabled, I/O pin becomes general purpose I/O  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
PEN3L:PEN1L: PWMxL I/O Enable bits(1)  
1= PWMxL pin is enabled for PWM output  
0= PWMxL pin disabled, I/O pin becomes general purpose I/O  
Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in  
the FPOR Configuration register.  
2: PWM2 supports only 1 PWM I/O pin pair.  
DS70283K-page 166  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 15-6: PWMxCON2: PWM CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SEVOPS<3:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IUE  
R/W-0  
R/W-0  
UDIS  
OSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits  
1111= 1:16 postscale  
0001= 1:2 postscale  
0000= 1:1 postscale  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
IUE: Immediate Update Enable bit  
1= Updates to the active PxDC registers are immediate  
0= Updates to the active PxDC registers are synchronized to the PWM time base  
bit 1  
bit 0  
OSYNC: Output Override Synchronization bit  
1= Output overrides via the PxOVDCON register are synchronized to the PWM time base  
0= Output overrides via the PxOVDCON register occur on next TCY boundary  
UDIS: PWM Update Disable bit  
1= Updates from Duty Cycle and Period Buffer registers are disabled  
0= Updates from Duty Cycle and Period Buffer registers are enabled  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 167  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 15-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DTB<5:0>  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DTBPS<1:0>  
bit 15  
R/W-0  
DTAPS<1:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
DTA<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
DTBPS<1:0>: Dead-Time Unit B Prescale Select bits  
11= Clock period for Dead-Time Unit B is 8 TCY  
10= Clock period for Dead-Time Unit B is 4 TCY  
01= Clock period for Dead-Time Unit B is 2 TCY  
00= Clock period for Dead-Time Unit B is TCY  
bit 13-8  
bit 7-6  
DTB<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit B bits  
DTAPS<1:0>: Dead-Time Unit A Prescale Select bits  
11= Clock period for Dead-Time Unit A is 8 TCY  
10= Clock period for Dead-Time Unit A is 4 TCY  
01= Clock period for Dead-Time Unit A is 2 TCY  
00= Clock period for Dead-Time Unit A is TCY  
bit 5-0  
DTA<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit A bits  
DS70283K-page 168  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
REGISTER 15-8: PxDTCON2: DEAD-TIME CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
DTS3I  
R/W-0  
R/W-0  
DTS2I  
R/W-0  
R/W-0  
DTS1I  
DTS3A  
DTS2A  
DTS1A  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5  
Unimplemented: Read as ‘0’  
DTS3A: Dead-Time Select for PWM3 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DTS3I: Dead-Time Select for PWM3 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS2A: Dead-Time Select for PWM2 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS2I: Dead-Time Select for PWM2 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS1A: Dead-Time Select for PWM1 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS1I: Dead-Time Select for PWM1 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
Note 1: PWM2 supports only 1 PWM I/O pin pair.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 169  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
REGISTER 15-9: PxFLTACON: FAULT A CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FAOV3H  
FAOV3L  
FAOV2H  
FAOV2L  
FAOV1H  
FAOV1L  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
FLTAM  
FAEN3  
FAEN2  
FAEN1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FAOVxH<3:1>:FAOVxL<3:1>: Fault Input A PWM Override Value bits  
1= The PWM output pin is driven active on an external Fault input event  
0= The PWM output pin is driven inactive on an external Fault input event  
bit 7  
FLTAM: Fault A Mode bit  
1= The Fault A input pin functions in the Cycle-by-Cycle mode  
0= The Fault A input pin latches all control pins to the programmed states in PxFLTACON<13:8>  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
FAEN3: Fault Input A Enable bit  
1= PWMxH3/PWMxL3 pin pair is controlled by Fault Input A  
0= PWMxH3/PWMxL3 pin pair is not controlled by Fault Input A  
bit 1  
bit 0  
FAEN2: Fault Input A Enable bit  
1= PWMxH2/PWMxL2 pin pair is controlled by Fault Input A  
0= PWMxH2/PWMxL2 pin pair is not controlled by Fault Input A  
FAEN1: Fault Input A Enable bit  
1= PWMxH1/PWMxL1 pin pair is controlled by Fault Input A  
0= PWMxH1/PWMxL1 pin pair is not controlled by Fault Input A  
Note 1: PWM2 supports only 1 PWM I/O pin pair.  
DS70283K-page 170  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(1)  
REGISTER 15-10: PxOVDCON: OVERRIDE CONTROL REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
POVD3H  
POVD3L  
POVD2H  
POVD2L  
POVD1H  
POVD1L  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
POUT3H  
POUT3L  
POUT2H  
POUT2L  
POUT1H  
POUT1L  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
POVDxH<3:1>:POVDxL<3:1>: PWM Output Override bits  
1= Output on PWMx I/O pin is controlled by the PWM generator  
0= Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
POUTxH<3:1>:POUTxL<3:1>: PWM Manual Output bits  
1= PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared  
0= PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared  
Note 1: PWM2 supports only 1 PWM I/O pin pair.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 171  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 15-11: PxDC1: PWM DUTY CYCLE REGISTER 1  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PDC1<15:8>  
R/W-0  
R/W-0  
R/W-0  
PDC1<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC1<15:0>: PWM Duty Cycle 1 Value bits  
REGISTER 15-12: P1DC2: PWM DUTY CYCLE REGISTER 2  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PDC2<15:8>  
R/W-0  
R/W-0  
R/W-0  
PDC2<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC2<15:0>: PWM Duty Cycle 2 Value bits  
REGISTER 15-13: P1DC3: PWM DUTY CYCLE REGISTER 3  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
PDC3<15:8>  
R/W-0  
R/W-0  
R/W-0  
PDC3<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC3<15:0>: PWM Duty Cycle 3 Value bits  
DS70283K-page 172  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
This section describes the Quadrature Encoder Inter-  
16.0 QUADRATURE ENCODER  
face (QEI) module and associated operational modes.  
The QEI module provides the interface to incremental  
encoders for obtaining mechanical position data.  
INTERFACE (QEI) MODULE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 15. “Quadrature Encoder  
Interface (QEI)” (DS70208) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
The operational features of the QEI include:  
• Three input channels for two phase signals and  
index pulse  
• 16-bit up/down position counter  
• Count direction status  
• Position Measurement (x2 and x4) mode  
• Programmable digital noise filters on inputs  
• Alternate 16-bit Timer/Counter mode  
• Quadrature Encoder Interface interrupts  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
These operating modes are determined by setting the  
appropriate bits, QEIM<2:0> in (QEIxCON<10:8>).  
Figure 16-1 depicts the Quadrature Encoder Interface  
block diagram.  
FIGURE 16-1:  
QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM  
TQCKPS<1:0>  
Sleep Input  
TQCS  
2
TCY  
0
1
Synchronize  
Det  
Prescaler  
1, 8, 64, 256  
1
0
QEIM<2:0>  
QEIIF  
Event  
Flag  
D
Q
Q
TQGATE  
CK  
16-bit Up/Down Counter  
(POSCNT)  
2
Programmable  
Digital Filter  
QEAx  
Reset  
Equal  
Quadrature  
Encoder  
Interface Logic  
UPDN_SRC  
Comparator/  
Zero Detect  
QEIxCON<11>  
0
1
3
QEIM<2:0>  
Mode Select  
Max Count Register  
(MAXCNT)  
Programmable  
Digital Filter  
QEBx  
Programmable  
Digital Filter  
INDXx  
3
PCDOUT  
Existing Pin Logic  
Up/Down  
0
UPDNx  
1
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 173  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
16.1 Ouadrature Encoder Interface  
Resources  
16.2 Control and Status Registers  
The QEI module has four user-accessible registers,  
accessible in either Byte or Word mode:  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
• Control/Status Register (QEICON) – Allows  
control of the QEI operation and status flags  
indicating the module state.  
• Digital Filter Control Register (DFLTCON) –  
Allows control of the digital input filter operation.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
• Position Count Register (POSCNT) – Allows  
reading and writing of the 16-bit position counter.  
• Maximum Count Register (MAXCNT) – Holds a  
value that is compared to the POSCNT counter in  
some operations.  
16.1.1  
KEY RESOURCES  
Note:  
The POSCNT register allows byte  
accesses. However, reading the register  
in Byte mode can result in partially  
updated values in subsequent reads.  
Either use Word mode reads/writes, or  
ensure that the counter is not counting  
during Byte operations.  
Section 15. “Quadrature Encoder Interface  
(QEI)” (DS70208)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 174  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 16-1: QEIxCON: QEI CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
R-0  
R/W-0  
UPDN  
R/W-0  
R/W-0  
R/W-0  
bit 8  
CNTERR  
QEISIDL  
INDEX  
QEIM<2:0>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TQCS  
R/W-0  
UPDN_SRC  
bit 0  
SWPAB  
PCDOUT  
TQGATE  
TQCKPS<1:0>  
POSRES  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CNTERR: Count Error Status Flag bit  
1= Position count error has occurred  
0= No position count error has occurred  
Note:  
CNTERR flag only applies when QEIM<2:0> = ‘110’ or ‘100’.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
QEISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
INDEX: Index Pin State Status bit (Read-Only)  
1= Index pin is High  
0= Index pin is Low  
UPDN: Position Counter Direction Status bit  
1= Position Counter Direction is positive (+)  
0= Position Counter Direction is negative (-)  
(Read-only bit when QEIM<2:0> = ‘1XX’)  
(Read/Write bit when QEIM<2:0> = ‘001’)  
bit 10-8  
QEIM<2:0>: Quadrature Encoder Interface Mode Select bits  
111= Quadrature Encoder Interface enabled (x4 mode) with position counter reset by match  
(MAXCNT)  
110= Quadrature Encoder Interface enabled (x4 mode) with Index Pulse reset of position counter  
101= Quadrature Encoder Interface enabled (x2 mode) with position counter reset by match  
(MAXCNT)  
100= Quadrature Encoder Interface enabled (x2 mode) with Index Pulse reset of position counter  
011= Unused (Module disabled)  
010= Unused (Module disabled)  
001= Starts 16-bit Timer  
000= Quadrature Encoder Interface/Timer off  
bit 7  
bit 6  
bit 5  
SWPAB: Phase A and Phase B Input Swap Select bit  
1= Phase A and Phase B inputs swapped  
0= Phase A and Phase B inputs not swapped  
PCDOUT: Position Counter Direction State Output Enable bit  
1= Position Counter Direction Status Output Enable (QEI logic controls state of I/O pin)  
0= Position Counter Direction Status Output Disabled (Normal I/O pin operation)  
TQGATE: Timer Gated Time Accumulation Enable bit  
1= Timer gated time accumulation enabled  
0= Timer gated time accumulation disabled  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 175  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 16-1: QEIxCON: QEI CONTROL REGISTER (CONTINUED)  
bit 4-3  
TQCKPS<1:0>: Timer Input Clock Prescale Select bits  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
(Prescaler utilized for 16-bit Timer mode only)  
POSRES: Position Counter Reset Enable bit  
1= Index Pulse resets Position Counter  
0= Index Pulse does not reset Position Counter  
bit 2  
Note:  
Bit applies only when QEIM<2:0> = 100or 110.  
bit 1  
bit 0  
TQCS: Timer Clock Source Select bit  
1 = External clock from pin QEA (on the rising edge)  
0= Internal clock (TCY)  
UPDN_SRC: Position Counter Direction Selection Control bit  
1= QEB pin state defines position counter direction  
0= Control/Status bit, UPDN (QEICON<11>), defines timer counter (POSCNT) direction  
Note:  
When configured for QEI mode, control bit is a ‘don’t care’.  
DS70283K-page 176  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 16-2: DFLTxCON: DIGITAL FILTER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CEID  
IMV<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
QEOUT  
QECK<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
IMV<1:0>: Index Match Value bits – These bits allow the user application to specify the state of the  
QEA and QEB input pins during an Index pulse when the POSxCNT register is to be reset.  
In 4X Quadrature Count Mode:  
IMV1= Required State of Phase B input signal for match on index pulse  
IMV0 = Required State of Phase A input signal for match on index pulse  
In 2X Quadrature Count Mode:  
IMV1= Selects Phase input signal for Index state match (0= Phase A, 1= Phase B)  
IMV0 = Required state of the selected Phase input signal for match on index pulse  
bit 8  
CEID: Count Error Interrupt Disable bit  
1= Interrupts due to count errors are disabled  
0= Interrupts due to count errors are enabled  
bit 7  
QEOUT: QEA/QEB/INDX Pin Digital Filter Output Enable bit  
1= Digital filter outputs enabled  
0= Digital filter outputs disabled (normal pin operation)  
bit 6-4  
QECK<2:0>: QEA/QEB/INDX Digital Filter Clock Divide Select Bits  
111= 1:256 Clock Divide  
110= 1:128 Clock Divide  
101= 1:64 Clock Divide  
100= 1:32 Clock Divide  
011= 1:16 Clock Divide  
010= 1:4 Clock Divide  
001= 1:2 Clock Divide  
000= 1:1 Clock Divide  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 177  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
NOTES:  
DS70283K-page 178  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The Serial Peripheral Interface (SPI) module is a syn-  
17.0 SERIAL PERIPHERAL  
chronous serial interface useful for communicating with  
other peripheral or microcontroller devices. These  
peripheral devices can be serial EEPROMs, shift regis-  
ters, display drivers, analog-to-digital converters, etc.  
The SPI module is compatible with SPI and SIOP from  
Motorola®.  
INTERFACE (SPI)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates status conditions.  
Section  
18.  
“Serial  
Peripheral  
Interface (SPI)” (DS70206) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the  
Microchip website (www.microchip.com).  
The serial interface consists of these four pins:  
• SDIx (serial data input)  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• SDOx (serial data output)  
• SCKx (shift clock input or output)  
• SSx (active-low slave select)  
In Master mode operation, SCK is a clock output. In  
Slave mode, it is a clock input.  
FIGURE 17-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
SSx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 179  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
17.1 SPI Helpful Tips  
17.2 SPI Resources  
1. In Frame mode, if there is a possibility that the  
master may not be initialized before the slave:  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
a) If FRMPOL (SPIxCON2<13>) = 1, use a  
pull-down resistor on SSx.  
b) If FRMPOL = 0, use a pull-up resistor on  
SSx.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
Note:  
This insures that the first frame  
transmission after initialization is not  
shifted or corrupted.  
2. In non-framed 3-wire mode, (i.e., not using SSx  
from a master):  
17.2.1  
KEY RESOURCES  
a) If CKP (SPIxCON1<6>) = 1, always place a  
Section 18. “Serial Peripheral Interface (SPI)”  
(DS70206)  
pull-up resistor on SSx.  
b) If CKP = 0, always place a pull-down  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
resistor on SSx.  
Note:  
This will insure that during power-up and  
initialization the master/slave will not lose  
sync due to an errant SCK transition that  
would cause the slave to accumulate data  
shift errors for both transmit and receive  
appearing as corrupted data.  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
3. FRMEN (SPIxCON2<15>) = 1 and SSEN  
(SPIxCON1<7>) = 1 are exclusive and invalid.  
In Frame mode, SCKx is continuous and the  
Frame sync pulse is active on the SSx pin,  
which indicates the start of a data frame.  
Note:  
Not all third-party devices support Frame  
mode timing. Refer to the SPI electrical  
characteristics for details.  
4. In Master mode only, set the SMP bit  
(SPIxCON1<9>) to a ‘1’ for the fastest SPI data  
rate possible. The SMP bit can only be set at the  
same time or after the MSTEN bit  
(SPIxCON1<5>) is set.  
5. To avoid invalid slave read data to the master,  
the user’s master software must guarantee  
enough time for slave software to fill its write buf-  
fer before the user application initiates a master  
write/read cycle. It is always advisable to pre-  
load the SPIxBUF transmit register in advance  
of the next master transaction cycle. SPIxBUF is  
transferred to the SPI shift register and is empty  
once the data transmission begins.  
DS70283K-page 180  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
17.3  
SPI Control Registers  
REGISTER 17-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the  
previous data in the SPIxBUF register  
0= No overflow has occurred.  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 181  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(2)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
SPRE<2:0>(3)  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
PPRE<1:0>(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(2)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module. Pin controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: This bit must be cleared when FRMEN = 1.  
3: Do not set both Primary and Secondary prescalers to a value of 1:1.  
DS70283K-page 182  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(3)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(3)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: This bit must be cleared when FRMEN = 1.  
3: Do not set both Primary and Secondary prescalers to a value of 1:1.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 183  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 17-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
Unimplemented: This bit must not be set to ‘1’ by the user application  
DS70283K-page 184  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
18.1 Operating Modes  
18.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7-bit and 10-bit addressing.  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 19. “Inter-Integrated Circuit™  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
(I2C™)”  
(DS70195)  
of  
the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
For details about the communication sequence in each  
of these modes, refer to the “dsPIC33F/PIC24H Family  
Reference Manual”. Please see the Microchip web site  
(www.microchip.com) for the latest dsPIC33F/PIC24H  
Family Reference Manual sections.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Inter-Integrated Circuit (I2C) module provides  
complete hardware support for both Slave and  
Multi-Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
The I2C module has a 2-pin interface:  
• The SCLx pin is clock  
• The SDAx pin is data  
The I2C module offers the following key features:  
• I2C interface supporting both Master and Slave  
modes of operation  
• I2C Slave mode supports 7-bit and 10-bit  
addressing  
• I2C Master mode supports 7-bit and 10-bit  
addressing  
• I2C port allows bidirectional transfers between  
master and slaves  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control)  
• I2C supports multi-master operation, detects bus  
collision and arbitrates accordingly  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 185  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
2
FIGURE 18-1:  
I C™ BLOCK DIAGRAM (X = 1)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70283K-page 186  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
18.2 I2C Resources  
18.3 I2C Registers  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write:  
• I2CxRSR is the shift register used for shifting  
data.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
• I2CxRCV is the receive buffer and the register to  
which data bytes are written, or from which data  
bytes are read.  
• I2CxTRN is the transmit register to which bytes  
are written during a transmit operation.  
18.2.1  
KEY RESOURCES  
Section 13. “Inter-Integrated Circuit™ (I2C™)”  
• The I2CxADD register holds the slave address.  
(DS70195)  
• A status bit, ADD10, indicates 10-bit Address  
mode.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• The I2CxBRG acts as the Baud Rate Generator  
(BRG) reload value.  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV,  
and an interrupt pulse is generated.  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 187  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
18.4  
I2C Control Registers  
REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0 HC  
ACKEN  
R/W-0 HC  
RCEN  
R/W-0 HC  
PEN  
R/W-0 HC  
RSEN  
R/W-0 HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HC = Cleared in hardware  
x = Bit is unknown  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear  
at beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode disabled  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMBus specification  
0= Disable SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
DS70283K-page 188  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Hardware clear at end of master Acknowledge sequence  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of  
master Repeated Start sequence  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence  
0= Start condition not in progress  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 189  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0 HSC  
R-0 HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0 HS  
BCL  
R-0 HSC  
GCSTAT  
R-0 HSC  
ADD10  
ACKSTAT  
bit 15  
bit 8  
R/C-0 HS  
IWCOL  
R/C-0 HS  
I2COV  
R-0 HSC  
D_A  
R/C-0 HSC R/C-0 HSC  
R-0 HSC  
R_W  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’ C = Clear only bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HSC = Hardware set/cleared  
x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
DS70283K-page 190  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 191  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 18-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSKx: Mask for Address bit x Select bit  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
DS70283K-page 192  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The primary features of the UART module are:  
19.0 UNIVERSAL ASYNCHRONOUS  
• Full-Duplex, 8-bit or 9-bit Data Transmission  
through the UxTX and UxRX pins  
RECEIVER TRANSMITTER  
(UART)  
• Even, Odd or No Parity Options (for 8-bit data)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
Section 17. “UART” (DS70188) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the Micro-  
chip web site (www.microchip.com).  
• One or two stop bits  
• Hardware flow control option with UxCTS and  
UxRTS pins  
• Fully integrated Baud Rate Generator with 16-bit  
prescaler  
• Baud rates ranging from 10 Mbps to 38 bps at 40  
MIPS  
• 4-deep First-In First-Out (FIFO) Transmit Data  
buffer  
• 4-deep FIFO Receive Data buffer  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Parity, framing and buffer overrun error detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive interrupts  
• A separate interrupt for all UART error conditions  
• Loopback mode for diagnostic support  
• Support for sync and break characters  
• Support for automatic baud rate detection  
• IrDA® encoder and decoder logic  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules  
available in the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 device family. The UART is a  
full-duplex  
asynchronous  
system  
that  
can  
• 16x baud clock output for IrDA® support  
communicate with peripheral devices, such as  
personal computers, LIN, and RS-232 and RS-485  
interfaces. The module also supports a hardware flow  
control option with the UxCTS and UxRTS pins and  
also includes an IrDA® encoder and decoder.  
A simplified block diagram of the UART module is  
shown in Figure 19-1. The UART module consists of  
these key hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
FIGURE 19-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
Hardware Flow Control  
UART Receiver  
UxRTS/BCLK  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 193  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
19.1 UART Helpful Tips  
19.2 UART Resources  
1. In multi-node direct-connect UART networks,  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
UART  
receive  
inputs  
react  
to  
the  
complementary logic level defined by the  
URXINV bit (UxMODE<4>), which defines the  
idle state, the default of which is logic high, (i.e.,  
URXINV = 0). Because remote devices do not  
initialize at the same time, it is likely that one of  
the devices, because the RX line is floating, will  
trigger a start bit detection and will cause the  
first byte received after the device has been ini-  
tialized to be invalid. To avoid this situation, the  
user should use a pull-up or pull-down resistor  
on the RX pin depending on the value of the  
URXINV bit.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
19.2.1  
KEY RESOURCES  
Section 17. “UART” (DS70188)  
• Code Samples  
a) If URXINV = 0, use a pull-up resistor on the  
RX pin.  
• Application Notes  
• Software Libraries  
• Webinars  
b) If URXINV = 1, use a pull-down resistor on  
the RX pin.  
2. The first character received on a wake-up from  
Sleep mode caused by activity on the UxRX pin  
of the UART module will be invalid. In Sleep  
mode, peripheral clocks are disabled. By the  
time the oscillator system has restarted and  
stabilized from Sleep mode, the baud rate bit  
sampling clock relative to the incoming UxRX bit  
timing is no longer synchronized, resulting in the  
first character being invalid. This is to be  
expected.  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 194  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
19.3  
UART Control Registers  
REGISTER 19-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
R/W-0  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0 HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA encoder and decoder enabled  
0= IrDA encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN<1:0>: UARTx Pin Enable bits  
11= UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 195  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS70283K-page 196  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXISEL1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
C = Clear only bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is  
at least one character open in the transmit buffer)  
bit 14  
UTXINV: Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded UxTX Idle state is ‘1’  
0= IrDA® encoded UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(1)  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled  
by port  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer. Receive buffer has one or more characters  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 197  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect  
0= Address Detect mode disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (read/clear only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for  
information on enabling the UART module for transmit operation.  
DS70283K-page 198  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
The 12-bit ADC configuration supports all the above  
features, except:  
20.0 10-BIT/12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
• In the 12-bit configuration, conversion speeds of  
up to 500 ksps are supported.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family of devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to  
• There is only 1 sample-and-hold amplifier in the  
12-bit configuration, so simultaneous sampling of  
multiple channels is not supported.  
Depending on the particular device pinout, the ADC  
can have up to nine analog input pins, designated AN0  
through AN8. In addition, there are two analog input  
pins for external voltage reference connections. These  
voltage reference inputs can be shared with other  
analog input pins.  
Section  
16.  
“Analog-to-Digital  
Converter (ADC)” (DS70183) of the  
“dsPIC33F/PIC24H Family Reference  
Manual”, which is available on the  
Microchip website (www.microchip.com).  
The actual number of analog input pins and external  
voltage reference input configuration will depend on the  
specific device. Refer to the device data sheet for  
further details.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A block diagram of the ADC is shown in Figure 20-1.  
20.2 ADC Initialization  
To configure the ADC module:  
The dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices have up to nine Analog-to-Digital Converter  
(ADC) module input channels.  
1. Select  
port  
pins  
as  
analog  
inputs  
(AD1PCFGH<15:0> or AD1PCFGL<15:0>).  
The AD12B bit (AD1CON1<10>) allows each of the  
ADC modules to be configured as either a 10-bit,  
4 sample-and-hold ADC (default configuration), or a  
12-bit, 1 sample-and-hold ADC.  
2. Select voltage reference source to match  
expected  
range  
on  
analog  
inputs  
(AD1CON2<15:13>).  
3. Select the analog conversion clock to match the  
desired data rate with the processor clock  
(AD1CON3<7:0>).  
Note:  
The ADC module must be disabled before  
the AD12B bit can be modified.  
4. Determine how many sample-and-hold chan-  
nels will be used (AD1CON2<9:8> and  
AD1PCFGH<15:0> or AD1PCFGL<15:0>).  
20.1 Key Features  
The 10-bit ADC configuration has the following key  
features:  
5. Select the appropriate sample/conversion  
sequence  
(AD1CON1<7:5>  
and  
AD1CON3<12:8>).  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 1.1 Msps  
• Up to 9 analog input pins  
6. Select the way conversion results are presented  
in the buffer (AD1CON1<9:8>).  
7. Turn on the ADC module (AD1CON1<15>).  
8. Configure ADC interrupt (if required):  
a) Clear the AD1IF bit.  
• External voltage reference input pins  
• Simultaneous sampling of up to four analog input  
pins  
b) Select the ADC interrupt priority.  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• Selectable Buffer Fill modes  
• Four result alignment options (signed/unsigned,  
fractional/integer)  
• Operation during CPU Sleep and Idle modes  
• 16-word conversion result buffer  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 199  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 20-1:  
ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ16MC304 AND  
dsPIC33FJ32MC204 DEVICES  
AN0  
AN8  
S/H0  
CHANNEL  
SCAN  
+
CH0SB<4:0>  
-
CH0SA<4:0>  
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
(1)  
VREF-  
(1)  
AVSS  
VREF+  
AVDD  
S/H1  
+
-
CH123SA  
CH123SB  
(2)  
CH1  
AN6  
VCFG<2:0>  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
VREFL  
VREFH  
VREFL  
CH123NB  
CH123NA  
SAR ADC  
AN1  
AN4  
S/H2  
ADC1BUFE  
ADC1BUFF  
+
-
CH123SA  
CH123SB  
(2)  
CH2  
AN7  
VREFL  
CH123NA  
CH123NB  
AN2  
AN5  
S/H3  
+
-
CH123SA CH123SB  
AN8  
(2)  
CH3  
VREFL  
CH123NA  
CH123NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
DS70283K-page 200  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 20-2:  
ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ32MC202 DEVICE  
AN0  
AN5  
S/H0  
CHANNEL  
+
SCAN  
CH0SB<4:0>  
-
CH0SA<4:0>  
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
(1)  
(1)  
VREF-  
VREF+  
AVSS  
AVDD  
S/H1  
+
-
CH123SA  
CH123SB  
(2)  
CH1  
VCFG<2:0>  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
VREFL  
VREFH  
VREFL  
CH123NB  
CH123NA  
SAR ADC  
AN1  
AN4  
S/H2  
ADC1BUFE  
ADC1BUFF  
+
-
CH123SA  
CH123SB  
(2)  
CH2  
VREFL  
CH123NA  
CH123NB  
AN2  
AN5  
S/H3  
+
-
CH123SA CH123SB  
(2)  
CH3  
VREFL  
CH123NA  
CH123NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 201  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 20-3:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
AD1CON3<15>  
ADC Internal  
RC Clock(2)  
0
1
TAD  
AD1CON3<5:0>  
6
ADC Conversion  
Clock Multiplier  
TCY  
(1)  
X2  
TOSC  
1, 2, 3, 4, 5,..., 64  
Note 1: Refer to Figure 8-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal  
to the clock frequency. TOSC = 1/FOSC.  
2: See the ADC Electrical Characteristics for the exact RC clock value.  
behavior because the CPU code execution is  
faster than the ADC. As a result, in manual sam-  
ple mode, particularly where the users code is  
20.3 ADC Helpful Tips  
1. The SMPI<3:0> (AD1CON2<5:2>) control bits:  
a) Determine when the ADC interrupt flag is  
set and an interrupt is generated if enabled.  
setting the SAMP bit (AD1CON1<1>), the  
DONE bit should also be cleared by the user  
application just before setting the SAMP bit.  
b) When the CSCNA bit (AD1CON2<10>) is  
set to ‘1’, determines when the ADC analog  
scan channel list defined in the  
AD1CSSL/AD1CSSH registers starts over  
from the beginning.  
5. On devices with two ADC modules, the  
ADCxPCFG registers for both ADC modules  
must be set to a logic ‘1’ to configure a target  
I/O pin as a digital I/O pin. Failure to do so  
means that any alternate digital input function  
will always see only a logic ‘0’ as the digital  
input buffer is held in Disable mode.  
c) On devices without a DMA peripheral,  
determines when ADC result buffer pointer  
to ADC1BUF0-ADC1BUFF, gets reset back  
to the beginning at ADC1BUF0.  
20.4 ADC Resources  
2. On devices without a DMA module, the ADC has  
16 result buffers. ADC conversion results are  
stored sequentially in ADC1BUF0-ADC1BUFF  
regardless of which analog inputs are being  
used subject to the SMPI<3:0> bits  
(AD1CON2<5:2>) and the condition described  
in 1c above. There is no relationship between  
the ANx input being measured and which ADC  
buffer (ADC1BUF0-ADC1BUFF) that the  
conversion results will be placed in.  
Many useful resources are provided on the main prod-  
uct page of the Microchip web site for the devices listed  
in this data sheet. This product page, which can be  
accessed using this link, contains the latest updates  
and additional information.  
Note:  
In the event you are not able to access  
the product page using the link above,  
enter this URL in your browser:  
http://www.microchip.com/wwwproducts/  
Devices.aspx?dDocName=en530334  
3. On devices with a DMA module, the ADC mod-  
ule has only  
1 ADC result buffer, (i.e.,  
ADC1BUF0), per ADC peripheral and the ADC  
conversion result must be read either by the  
CPU or DMA controller before the next ADC  
conversion is complete to avoid overwriting the  
previous value.  
20.4.1  
KEY RESOURCES  
Section 16. “Analog-to-Digital Converter  
(ADC)” (DS70183)  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
4. The DONE bit (AD1CON1<0>) is only cleared at  
the start of each conversion and is set at the  
completion of the conversion, but remains set  
indefinitely even through the next sample phase  
until the next conversion begins. If application  
code is monitoring the DONE bit in any kind of  
software loop, the user must consider this  
• All related dsPIC33F/PIC24H Family Reference  
Manuals Sections  
• Development Tools  
DS70283K-page 202  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
20.5 ADC Control Registers  
REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1  
R/W-0  
ADON  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADSIDL  
AD12B  
FORM<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
ASAM  
R/W-0  
HC,HS  
R/C-0  
HC, HS  
SSRC<2:0>  
SIMSAM  
SAMP  
DONE  
bit 7  
Legend:  
bit 0  
C = Clear only bit  
HC = Cleared by hardware  
W = Writable bit  
HS = Set by hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
ADON: ADC Operating Mode bit  
1= ADC module is operating  
0= ADC is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
AD12B: 10-bit or 12-bit Operation Mode bit  
1= 12-bit, 1-channel ADC operation  
0= 10-bit, 4-channel ADC operation  
bit 9-8  
FORM<1:0>: Data Output Format bits  
For 10-bit operation:  
11= Signed fractional (DOUT = sddd dddd dd00 0000, where s= .NOT.d<9>)  
10= Fractional (DOUT = dddd dddd dd00 0000)  
01= Signed integer (DOUT = ssss sssd dddd dddd, where s= .NOT.d<9>)  
00= Integer (DOUT = 0000 00dd dddd dddd)  
For 12-bit operation:  
11= Signed fractional (DOUT = sddd dddd dddd 0000, where s= .NOT.d<11>)  
10= Fractional (DOUT = dddd dddd dddd 0000)  
01= Signed Integer (DOUT = ssss sddd dddd dddd, where s= .NOT.d<11>)  
00= Integer (DOUT = 0000 dddd dddd dddd)  
bit 7-5  
SSRC<2:0>: Sample Clock Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
101= Motor Control PWM2 interval ends sampling and starts conversion  
100= Reserved  
011= Motor Control PWM1 interval ends sampling and starts conversion  
010= GP timer 3 compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing sample bit ends sampling and starts conversion  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SIMSAM: Simultaneous Sample Select bit (applicable only when CHPS<1:0> = 01or 1x)  
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’  
1= Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or  
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)  
0= Samples multiple channels individually in sequence  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 203  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
ASAM: ADC Sample Auto-Start bit  
1= Sampling begins immediately after last conversion. SAMP bit is auto-set  
0= Sampling begins when SAMP bit is set  
SAMP: ADC Sample Enable bit  
1= ADC sample-and-hold amplifiers are sampling  
0= ADC sample-and-hold amplifiers are holding  
If ASAM = 0, software can write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.  
If SSRC = 000, software can write ‘0’ to end sampling and start conversion. If SSRC 000,  
automatically cleared by hardware to end sampling and start conversion.  
bit 0  
DONE: ADC Conversion Status bit  
1= ADC conversion cycle is completed  
0= ADC conversion not started or in progress  
Automatically set by hardware when ADC conversion is complete. Software can write ‘0’ to clear  
DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in  
progress. Automatically cleared by hardware at start of a new conversion.  
DS70283K-page 204  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 20-2: AD1CON2: ADC1 CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
SMPI<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Converter Voltage Reference Configuration bits  
ADREF+  
ADREF-  
000  
AVDD  
AVSS  
AVSS  
001 External VREF+  
010  
011  
1xx  
AVDD  
External VREF+  
AVDD  
External VREF-  
External VREF-  
AVSS  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ during Sample A bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
CHPS<1:0>: Select Channels Utilized bits  
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’  
1x= Converts CH0, CH1, CH2 and CH3  
01= Converts CH0 and CH1  
00= Converts CH0  
BUFS: Buffer Fill Status bit (valid only when BUFM = 1)  
1= ADC is currently filling second half of buffer, user should access data in the first half  
0= ADC is currently filling first half of buffer, user application should access data in the second half  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits  
1111= Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110= Interrupts at the completion of conversion for each 15th sample/convert sequence  
0001= Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000= Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: Buffer Fill Mode Select bit  
1= Starts filling first half of buffer on first interrupt and the second half of buffer on next interrupt  
0= Always starts filling buffer from the beginning  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 205  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 20-3: AD1CON3: ADC1 CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
SAMC<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
ADCS<7:0>(2)  
R/W-0  
R/W-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: ADC Conversion Clock Source bit  
1= ADC internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto Sample Time bits(1)  
11111= 31 TAD  
00001= 1 TAD  
00000= 0 TAD  
bit 7-0  
ADCS<7:0>: ADC Conversion Clock Select bits(2)  
11111111= Reserved  
01000000= Reserved  
00111111= TCY ·(ADCS<7:0> + 1) = 64 ·TCY = TAD  
00000010= TCY ·(ADCS<7:0> + 1) = 3 ·TCY = TAD  
00000001= TCY ·(ADCS<7:0> + 1) = 2 ·TCY = TAD  
00000000= TCY ·(ADCS<7:0> + 1) = 1 ·TCY = TAD  
Note 1: This bit only used if AD1CON1<7:5> (SSRC2:0) = 111.  
2: This bit is not used if AD1CON3<15> (ADRC) = 1.  
DS70283K-page 206  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 20-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NB<1:0>  
CH123SB  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NA<1:0>  
CH123SA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits  
dsPIC33FJ32MC202 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= Reserved  
10= Reserved  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
dsPIC33FJ32MC204 and dsPIC33FJ16MC304 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= Reserved  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
bit 8  
CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit  
If AD12B = 1:  
1= Reserved  
0= Reserved  
If AD12B = 0:  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
bit 7-3  
Unimplemented: Read as ‘0’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 207  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 20-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)  
bit 2-1  
CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits  
dsPIC33FJ32MC202 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= Reserved  
10= Reserved  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
dsPIC33FJ32MC204 and dsPIC33FJ16MC304 devices only:  
If AD12B = 1:  
11= Reserved  
10= Reserved  
01= Reserved  
00= Reserved  
If AD12B = 0:  
11= Reserved  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
01= CH1, CH2, CH3 negative input is VREF-  
00= CH1, CH2, CH3 negative input is VREF-  
bit 0  
CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit  
If AD12B = 1:  
1= Reserved  
0= Reserved  
If AD12B = 0:  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
DS70283K-page 208  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
REGISTER 20-5: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
CH0NB  
CH0SB<4:0>  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for Sample B bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits  
dsPIC33FJ32MC204 and dsPIC33FJ16MC304 devices only:  
01000= Channel 0 positive input is AN8  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
dsPIC33FJ32MC202 devices only:  
00101= Channel 0 positive input is AN5  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0.  
bit 7  
CH0NA: Channel 0 Negative Input Select for Sample A bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 6-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits  
dsPIC33FJ32MC204 and dsPIC33FJ16MC304 devices only:  
01000= Channel 0 positive input is AN8  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
dsPIC33FJ32MC202 devices only:  
00101= Channel 0 positive input is AN5  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 209  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
,2  
(1,2)  
REGISTER 20-6: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CSS8  
bit 15  
bit 8  
R/W-0  
CSS7  
R/W-0  
CSS6  
R/W-0  
CSS5  
R/W-0  
CSS4  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
CSS<8:0>: ADC Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 9 analog inputs, all AD1CSSL bits can be selected by the user application. However,  
inputs selected for scan without a corresponding input on device converts VREFL.  
2: CSSx = ANx, where x = 0 through 8.  
(1,2,3)  
REGISTER 20-7: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PCFG8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PCFG<8:0>: ADC Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVSS  
0= Port pin in Analog mode, port read input disabled, ADC samples pin voltage  
Note 1: On devices without 9 analog inputs, all PCFG bits are R/W by user software. However, the PCFG bits are  
ignored on ports without a corresponding input on device.  
2: PCFGx = ANx, where x = 0 through 8.  
3: The PCFGx bits have no effect if the ADC module is disabled by setting ADxMD bit in the PMDx Register.  
In this case, all port pins multiplexed with ANx will be in Digital mode.  
DS70283K-page 210  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
21.1 Configuration Bits  
21.0 SPECIAL FEATURES  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices provide nonvolatile memory implementation  
for device configuration bits. Refer to Section 25.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the informa-  
tion in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
“Device  
Configuration”  
(DS70194)  
of  
the  
“dsPIC33F/PIC24H Family Reference Manual”, for  
more information on this implementation.  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select  
various device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
The individual Configuration bit descriptions for the  
Configuration registers are shown in Table 21-2.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices include several features intended to maximize  
application flexibility and reliability, and minimize cost  
through elimination of external components. These are:  
Note that address 0xF80000 is beyond the user program  
memory space. It belongs to the configuration memory  
space (0x800000-0xFFFFFF), which can only be  
accessed using table reads and table writes.  
• Flexible configuration  
The Device Configuration register map is shown in  
Table 21-1.  
• Watchdog Timer (WDT)  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit emulation  
TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0xF80000 FBS  
BSS<2:0>  
BWRP  
0xF80002 RESERVED  
0xF80004 FGS  
GSS<1:0>  
FNOSC<2:0>  
GWRP  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E FICD  
0xF80010 FUID0  
0xF80012 FUID1  
0xF80014 FUID2  
0xF80016 FUID3  
IESO  
FCKSM<1:0>  
FWDTEN WINDIS  
PWMPIN HPOL  
Reserved(1)  
IOL1WAY  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
WDTPRE  
ALTI2C  
LPOL  
JTAGEN  
FPWRT<2:0>  
ICS<1:0>  
User Unit ID Byte 0  
User Unit ID Byte 1  
User Unit ID Byte 2  
User Unit ID Byte 3  
Legend: — = unimplemented bit, read as ‘0’.  
Note 1: These bits are reserved for use by development tools and must be programmed as ‘1’.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 211  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 21-2: CONFIGURATION BITS DESCRIPTION  
RTSP  
Bit Field  
Register  
Description  
Effect  
BWRP  
FBS  
Immediate Boot Segment Program Flash Write Protection  
1= Boot segment can be written  
0= Boot segment is write-protected  
BSS<2:0>  
BSS<2:0>  
GSS<1:0>  
FBS  
Immediate dsPIC33FJ32MC202 and dsPIC33FJ32MC204 Devices Only  
Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 768 Instruction Words (except interrupt vectors)  
110= Standard security; boot program Flash segment ends at 0x0007FE  
010= High security; boot program Flash segment ends at 0x0007FE  
Boot space is 3840 Instruction Words (except interrupt vectors)  
101= Standard security; boot program Flash segment, ends at 0x001FFE  
001= High security; boot program Flash segment ends at 0x001FFE  
Boot space is 7936 Instruction Words (except interrupt vectors)  
100= Standard security; boot program Flash segment ends at 0x003FFE  
000= High security; boot program Flash segment ends at 0x003FFE  
FBS  
Immediate dsPIC33FJ16MC304 Device Only  
Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 768 Instruction Words (except interrupt vectors)  
110= Standard security; boot program Flash segment ends at 0x0007FE  
010= High security; boot program Flash segment ends at 0x0007FE  
Boot space is 3840 Instruction Words (except interrupt vectors)  
101= Standard security; boot program Flash segment, ends at 0x001FFE  
001= High security; boot program Flash segment ends at 0x001FFE  
Boot space is 5376 Instruction Words (except interrupt vectors)  
100= Standard security; boot program Flash segment ends at 0x002BFE  
000= High security; boot program Flash segment ends at 0x002BFE  
FGS  
FGS  
Immediate General Segment Code-Protect bit  
11= User program memory is not code-protected  
10= Standard security  
0x= High security  
GWRP  
IESO  
Immediate General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
FOSCSEL Immediate Two-speed Oscillator Start-up Enable bit  
1= Start-up device with FRC, then automatically switch to the  
user-selected oscillator source when ready  
0= Start-up device with user-selected oscillator source  
FNOSC<2:0> FOSCSEL If clock Initial Oscillator Source Selection bits  
switch is 111= Internal Fast RC (FRC) oscillator with postscaler  
enabled, 110= Internal Fast RC (FRC) oscillator with divide-by-16  
RTSP 101= LPRC oscillator  
effect is 100= Secondary (LP) oscillator  
on any 011= Primary (XT, HS, EC) oscillator with PLL  
device  
Reset;  
010= Primary (XT, HS, EC) oscillator  
001= Internal Fast RC (FRC) oscillator with PLL  
otherwise, 000= FRC oscillator  
Immediate  
DS70283K-page 212  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
RTSP  
Bit Field  
Register  
Description  
Effect  
FCKSM<1:0>  
FOSC  
Immediate Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
IOL1WAY  
OSCIOFNC  
FOSC  
FOSC  
FOSC  
Immediate Peripheral pin select configuration  
1= Allow only one reconfiguration  
0= Allow multiple reconfigurations  
Immediate OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
POSCMD<1:0>  
Immediate Primary Oscillator Mode Select bits  
11= Primary oscillator disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
FWDTEN  
FWDT  
Immediate Watchdog Timer Enable bit  
1= Watchdog Timer always enabled (LPRC oscillator cannot be disabled.  
Clearing the SWDTEN bit in the RCON register will have no effect.)  
0= Watchdog Timer enabled/disabled by user software (LPRC can be dis-  
abled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
WDTPRE  
FWDT  
FWDT  
FWDT  
Immediate Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
Immediate Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
WDTPOST<3:0>  
Immediate Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
PWMPIN  
FPOR  
Immediate Motor Control PWM Module Pin Mode bit  
1= PWM module pins controlled by PORT register at device Reset  
(tri-stated)  
0= PWM module pins controlled by PWM module at device Reset  
(configured as output pins)  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 213  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 21-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
RTSP  
Bit Field  
Register  
Description  
Effect  
HPOL  
FPOR  
Immediate Motor Control PWM High Side Polarity bit  
1= PWM module high side output pins have active-high output polarity  
0= PWM module high side output pins have active-low output polarity  
LPOL  
FPOR  
FPOR  
Immediate Motor Control PWM Low Side Polarity bit  
1= PWM module low side output pins have active-high output polarity  
0= PWM module low side output pins have active-low output polarity  
FPWRT<2:0>  
Immediate Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
ALTI2C  
FPOR  
FICD  
Immediate Alternate I2C™ pins  
1= I2C mapped to SDA1/SCL1 pins  
0= I2C mapped to ASDA1/ASCL1 pins  
JTAGEN  
Immediate JTAG Enable bit  
1= JTAG enabled  
0= JTAG disabled  
ICS<1:0>  
FICD  
Immediate ICD Communication Channel Select bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved, do not use  
DS70283K-page 214  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
21.2 On-Chip Voltage Regulator  
21.3 BOR: Brown-out Reset (BOR)  
The  
dsPIC33FJ32MC202/204  
and  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit that monitors the reg-  
ulated supply voltage VCAP. The main purpose of the  
BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (for  
example, missing portions of the AC cycle waveform  
due to bad power transmission lines, or voltage sags  
due to excessive current draw when a large inductive  
load is turned on).  
dsPIC33FJ16MC304 devices power their core digital  
logic at a nominal 2.5V. This can create a conflict for  
designs that are required to operate at a higher typical  
voltage, such as 3.3V. To simplify system design, all  
devices in the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 family incorporate an on-chip  
regulator that allows the device to run its core logic from  
VDD.  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VCAP pin  
(Figure 21-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter capac-  
itor is provided in Table 24-13 located in Section 24.1  
“DC Characteristics”.  
A BOR generates a Reset pulse, which resets the  
device. The BOR selects the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
If an oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until OST expires. If the PLL is used, the clock is  
held until the LOCK bit (OSCCON<5>) is ‘1’.  
Note:  
It is important for low-ESR capacitors to  
be placed as close as possible to the VCAP  
pin.  
Concurrently, the PWRT time-out (TPWRT) is applied  
before the internal Reset is released. If TPWRT = 0and  
a crystal oscillator is being used, then a nominal delay  
of TFSCM = 100is applied. The total delay in this case  
is TFSCM.  
On a POR, it takes approximately 20 μs for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
The BOR Status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to oper-  
ate while in Sleep or Idle modes and resets the device  
should VDD fall below the BOR threshold voltage.  
FIGURE 21-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
(1,2,3)  
REGULATOR  
3.3V  
dsPIC33F  
VDD  
VCAP  
VSS  
CEFC  
10 µF  
Note 1: These are typical operating voltages. Refer to  
Table 24-13 located in Section 24.1 “DC  
Characteristics” for the full operating ranges  
of VDD and VCAP.  
2: It is important for low-ESR capacitors to be  
placed as close as possible to the VCAP pin.  
3: Typical VCAP pin voltage = 2.5V when VDD ≥  
VDDMIN.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 215  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
21.4.2  
SLEEP AND IDLE MODES  
21.4 Watchdog Timer (WDT)  
If the WDT is enabled, it will continue to run during Sleep  
or Idle modes. When the WDT time-out occurs, the  
device will wake the device and code execution will con-  
tinue from where the PWRSAVinstruction was executed.  
The corresponding SLEEP or IDLE bits (RCON<3,2>) will  
need to be cleared in software after the device wakes up.  
For  
dsPIC33FJ32MC202/204  
and  
dsPIC33FJ16MC304 devices, the WDT is driven by the  
LPRC oscillator. When the WDT is enabled, the clock  
source is also enabled.  
21.4.1  
PRESCALER/POSTSCALER  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
21.4.3  
ENABLING WDT  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user application to enable the  
WDT for critical code segments and disable the WDT  
during non-critical segments for maximum power  
savings.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>), which allow the selec-  
tion of 16 settings, from 1:1 to 1:32,768. Using the pres-  
caler and postscaler, time-out periods ranging from  
1 ms to 131 seconds can be achieved.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
Note:  
If the WINDIS bit (FWDT<6>) is cleared,  
the CLRWDTinstruction should be executed  
by the application software only during the  
last 1/4 of the WDT period. This CLRWDT  
window can be determined by using a timer.  
If a CLRWDTinstruction is executed before  
this window, a WDT Reset occurs.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
FIGURE 21-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPRE  
Prescaler  
WDTPOST<3:0>  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
0
RS  
RS  
Postscaler  
(divide by N2)  
WDT  
Reset  
(divide by N1)  
LPRC Clock  
WDT Window Select  
WINDIS  
CLRWDTInstruction  
DS70283K-page 216  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
21.5 JTAG Interface  
21.7 In-Circuit Debugger  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
devices implement a JTAG interface, which supports  
boundary scan device testing, as well as in-circuit  
programming. Detailed information on this interface will  
be provided in future revisions of the document.  
When MPLAB® ICD 2 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. Debugging functionality is controlled  
through the PGECx (Emulation/Debug Clock) and  
PGEDx (Emulation/Debug Data) pin functions.  
21.6  
In-Circuit Serial Programming  
Any of the three pairs of debugging clock/data pins can  
be used:  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
family digital signal controllers can be serially  
programmed while in the end application circuit. This is  
done with two lines for clock and data and three other  
lines for power, ground and the programming  
sequence. Serial programming allows customers to  
manufacture boards with unprogrammed devices and  
then program the digital signal controller just before  
shipping the product. Serial programming also allows  
the most recent firmware or a custom firmware to be  
programmed. Refer to the “dsPIC33F/PIC24H Flash  
Programming Specification” (DS70152) document for  
details about In-Circuit Serial Programming (ICSP).  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, and the PGECx/PGEDx pin pair. In  
addition, when the feature is enabled, some of the  
resources are not available for general use. These  
resources include the first 80 bytes of data RAM and  
two I/O pins.  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 217  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
When coupled with software encryption libraries, Code-  
Guard™ Security can be used to securely update Flash  
even when multiple IPs reside on the single chip.  
21.8 Code Protection and  
CodeGuard™ Security  
The  
dsPIC33FJ32MC202/204  
and  
The code protection features are controlled by the  
Configuration registers: FBS and FGS.  
dsPIC33FJ16MC304 devices offer the intermediate  
implementation of CodeGuard™ Security. CodeGuard  
Security enables multiple parties to securely share  
resources (memory, interrupts and peripherals) on a  
single chip. This feature helps protect individual  
Intellectual Property in collaborative system designs.  
Secure segment and RAM protection is not  
implemented  
in  
dsPIC33FJ32MC202/204  
and  
dsPIC33FJ16MC304 devices.  
Note:  
Refer to Section 23. “CodeGuard™  
Security”  
(DS70199)  
in  
the  
“dsPIC33F/PIC24H Family Reference  
Manual” for further information on usage,  
configuration  
and  
operation  
of  
CodeGuard Security.  
TABLE 21-3: CODE FLASH SECURITY  
SEGMENT SIZES FOR  
32 KBYTE DEVICES  
TABLE 21-4: CODE FLASH SECURITY  
SEGMENT SIZES FOR  
16 KBYTE DEVICES  
CONFIG BITS  
CONFIG BITS  
0x000000  
VS = 256 IW  
0x000000  
VS = 256 IW  
0x0001FE  
0x0001FE  
0x000200  
0x000200  
0x0007FE  
0x0007FE  
BSS<2:0>=x11  
BSS<2:0>=x11  
0x000800  
0x001FFE  
0x000800  
0x001FFE  
0x002000  
0x003FFE  
0x004000  
0x002000  
0K  
0K  
GS = 11008 IW  
GS = 5376 IW  
0x0057FE  
0x000000  
0x002BFE  
0x000000  
0x0001FE  
0x000200  
0x0007FE  
0x000800  
0x001FFE  
0x002000  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 768 IW  
0x0001FE  
0x000200  
0x0007FE  
0x000800  
0x001FFE  
0x002000  
0x003FFE  
0x004000  
BSS<2:0>=x10  
256  
BSS<2:0>=x10  
256  
GS = 10240 IW  
GS = 4608 IW  
0x0057FE  
0x002BFE  
0x000000  
0x0001FE  
0x000200  
0x0007FE  
0x000800  
0x001FFE  
0x002000  
0x003FFE  
0x004000  
0x000000  
0x0001FE  
0x000200  
0x0007FE  
0x000800  
0x001FFE  
0x002000  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 3840 IW  
BSS<2:0>=x01  
768  
BSS<2:0>=x01  
768  
GS = 7168 IW  
GS = 1536 IW  
0x0057FE  
0x002BFE  
0x000000  
0x0001FE  
0x000200  
0x0007FE  
0x000800  
0x001FFE  
0x002000  
0x003FFE  
0x004000  
0x000000  
0x0001FE  
0x000200  
0x0007FE  
0x000800  
0x001FFE  
0x002000  
VS = 256 IW  
BS = 7936 IW  
VS = 256 IW  
BS = 5376 IW  
BSS<2:0>=x00  
1792  
BSS<2:0>=x00  
1792  
GS = 3072 IW  
0x0057FE  
0x002BFE  
DS70283K-page 218  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
22.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 devices. It is not  
intended to be a comprehensive refer-  
ence source. To complement the informa-  
tion in this data sheet, refer to the  
“dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC33F instruction set is identical to that of the  
dsPIC30F.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand, which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions can use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• DSP operations  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
• Control operations  
Table 22-1 shows the general symbols used in  
describing the instructions.  
The dsPIC33F instruction set summary in Table 22-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication and can include:  
• The accumulator to be used (required)  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
The control instructions can use some of the following  
operands:  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• A program memory address  
• The mode of the table read and table write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could be either the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 219  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Most instructions are  
a
single word. Certain  
(unconditional/computed branch), indirect CALL/GOTO,  
all table reads and writes and RETURN/RETFIE  
instructions, which are single-word instructions but take  
two or three cycles. Certain instructions that involve skip-  
ping over the subsequent instruction require either two  
or three cycles if the skip is performed, depending on  
whether the instruction being skipped is a single-word or  
two-word instruction. Moreover, double-word moves  
require two cycles.  
double-word instructions are designed to provide all the  
required information in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is exe-  
cuted as an instruction (by itself), it will execute as a  
NOP.  
The double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction cycle(s)  
executed as a NOP. Notable exceptions are the BRA  
Note:  
For more details on the instruction set,  
refer to the “16-bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator write back destination address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, can be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
DS70283K-page 220  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier working register pair for Square instructions ∈  
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier working register pair for DSP instructions ∈  
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0...W15}  
One of 16 source working registers {W0...W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4...W7}  
Y data space prefetch address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4...W7}  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 221  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 22-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
None  
None  
None  
None  
None  
None  
Branch if unsigned less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
1
None  
Ws,Wb  
1
None  
DS70283K-page 222  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
9
BTG  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
Bit Toggle f  
1
1
1
1
1
None  
None  
None  
BTG  
Bit Toggle Ws  
10  
11  
12  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
1
1
1
1
None  
None  
None  
(2 or 3)  
BTSS  
BTST  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
C
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
CLR  
CLR  
CLR  
CLRWDT  
COM  
COM  
COM  
CP  
lit23  
None  
Wn  
Call indirect subroutine  
f = 0x0000  
None  
f
None  
WREG  
WREG = 0x0000  
None  
Ws  
Ws = 0x0000  
None  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
f
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb - Ws - C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
f = f - 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f - 1  
DEC  
Wd = Ws - 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f - 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f - 2  
Wd = Ws - 2  
Disable Interrupts for k instruction cycles  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 223  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Signed 32/16-bit Integer Divide  
Wm,Wn  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and store accumulator  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70283K-page 224  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 225  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = sign-extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f - WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG  
Wn = Wn - lit10  
SUB  
SUB  
Wd = Wb - Ws  
SUB  
Wd = Wb - lit5  
73  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
f = f - WREG - (C)  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG - (C)  
Wn = Wn - lit10 - (C)  
Wd = Wb - Ws - (C)  
Wd = Wb - lit5 - (C)  
f = WREG - f  
74  
75  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG - f  
Wd = Ws - Wb  
Wd = lit5 - Wb  
SUBBR  
f = WREG - f - (C)  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG - f - (C)  
Wd = Ws - Wb - (C)  
Wd = lit5 - Wb - (C)  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
76  
SWAP  
Wn  
None  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
None  
XOR  
f
N,Z  
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
Wd = Wb .XOR. lit5  
Wnd = Zero-extend Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
N,Z  
83  
ZE  
ZE  
C,Z,N  
DS70283K-page 226  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
23.1 MPLAB Integrated Development  
Environment Software  
23.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 227  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
23.2 MPLAB C Compilers for Various  
Device Families  
23.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
23.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
23.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
23.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70283K-page 228  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
23.7 MPLAB SIM Software Simulator  
23.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
23.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
23.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 229  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
23.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
23.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
23.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70283K-page 230  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
24.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 electrical characteristics.  
Additional information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 family are listed below. Exposure  
to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device  
at these or any other conditions above the parameters indicated in the operation listings of this specification is not  
implied.  
Absolute Maximum Ratings(1)  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +160°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(4) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to Vss when VDD 3.0V(4).................................................... -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(4)..................................................... -0.3V to 3.6V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum current sourced/sunk by any 2x I/O pin(3) ................................................................................................8 mA  
Maximum current sourced/sunk by any 4x I/O pin(3) ..............................................................................................15 mA  
Maximum current sourced/sunk by any 8x I/O pin(3) ..............................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).  
3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx  
and PGEDx pins, which are able to sink/source 12 mA.  
4: Refer to the Pin Diagramssection for 5V tolerant pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 231  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
24.1 DC Characteristics  
TABLE 24-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304  
VBOR-3.6V(1)  
VBOR-3.6V(1)  
-40°C to +85°C  
-40°C to +125°C  
40  
40  
Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded  
performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11  
for the minimum and maximum BOR values.  
TABLE 24-2: THERMAL OPERATING CONDITIONS  
Rating  
Industrial Temperature Devices  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Extended Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD - Σ IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA)/θJA  
TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 44-pin QFN  
Package Thermal Resistance, 44-pin TFQP  
Package Thermal Resistance, 28-pin SPDIP  
Package Thermal Resistance, 28-pin SOIC  
Package Thermal Resistance, 28-pin SSOP  
Package Thermal Resistance, 28-pin QFN-S  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
32  
45  
45  
50  
71  
35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.  
DS70283K-page 232  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
3.0  
1.8  
3.6  
V
V
V
Industrial and Extended  
DC12  
DC16  
VDR  
RAM Data Retention Voltage(2)  
VPOR  
VDD Start Voltage  
to ensure internal  
VSS  
Power-on Reset signal  
DC17  
SVDD  
VDD Rise Rate  
0.03  
V/ms 0-3.0V in 0.1s  
to ensure internal  
Power-on Reset signal  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: This is the limit to which VDD may be lowered without losing RAM data.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 233  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(2)  
Max  
Units  
Conditions  
No.(3)  
Operating Current (IDD)(1)  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
20  
19  
19  
19  
28  
27  
27  
27  
33  
33  
33  
33  
44  
43  
42  
41  
55  
54  
52  
51  
30  
22  
25  
30  
40  
30  
32  
36  
50  
40  
40  
50  
60  
50  
55  
65  
75  
65  
70  
80  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS(3)  
16 MIPS(3)  
20 MIPS(3)  
30 MIPS(3)  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from  
rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits  
are set to zero and unimplemented PMDx bits are set to one)  
• CPU executing while(1)statement  
• JTAG is disabled  
2: These parameters are characterized but not tested in manufacturing.  
3: Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
DS70283K-page 234  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(2)  
Max  
Units  
Conditions  
No.(3)  
Idle Current (IIDLE): Core OFF Clock ON Base Current(1)  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43d  
DC43a  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
7
20  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
6
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
3.3V  
3.3V  
6
10  
20  
20  
9
6
10  
8
+25°C  
+85°C  
+125°C  
-40°C  
8
10  
20  
20  
10  
12  
20  
25  
14  
15  
25  
25  
20  
20  
30  
8
11  
10  
10  
10  
14  
13  
13  
13  
14  
17  
17  
18  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Base IIDLE current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits  
are set to zero and unimplemented PMDx bits are set to one)  
• JTAG is disabled  
2: These parameters are characterized but not tested in manufacturing.  
3: Data in “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 235  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(2)  
Max  
Units  
Conditions  
No.(3)  
Power-Down Current (IPD)(1)  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
55  
63  
85  
146  
8
500  
300  
350  
600  
15  
3
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current(3,4)  
2
+25°C  
+85°C  
+125°C  
(3,5)  
Watchdog Timer Current: ΔIWDT  
2
2
3
5
Note 1: IPD (Sleep) current is measured as follows:  
• CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled, all peripheral modules are disabled (PMDx bits are all  
ones)  
• VREGS bit (RCON<8>) = 0(i.e., core regulator is set to stand-by while the device is in Sleep mode)  
• RTCC is disabled.  
• JTAG is disabled  
2: Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
3: The Watchdog Timer Current is the additional current consumed when the WDT module is enabled. This  
current should be added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
5: These parameters are characterized, but are not tested in manufacturing.  
DS70283K-page 236  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Doze  
Ratio  
Parameter No.(3)  
Typical(2)  
Max  
Units  
Conditions  
Doze Current (IDOZE)(1)  
DC73a  
41  
20  
19  
40  
18  
18  
40  
18  
18  
39  
18  
18  
51  
28  
24  
46  
20  
20  
46  
25  
20  
55  
30  
25  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DC73f  
-40°C  
+25°C  
+85°C  
+125°C  
3.3V  
40 MIPS  
40 MIPS  
40 MIPS  
40 MIPS  
DC73g  
DC70a  
DC70f  
1:64  
1:128  
1:2  
3.3V  
3.3V  
3.3V  
DC70g  
DC71a  
DC71f  
1:64  
1:128  
1:2  
DC71g  
DC72a  
DC72f  
1:64  
1:128  
DC72g  
Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDOZE measurements are as follows:  
• Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square  
wave from rail-to-rail with overshoot/undershoot < 250 mV  
• CLKO is configured as an I/O input pin in the Configuration word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits  
are set to zero and unimplemented PMDx bits are set to one)  
• CPU executing while(1)statement  
• JTAG is disabled  
2: Data in the “Typ” column is at 3.3V, +25ºC unless otherwise stated.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 237  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Input Low Voltage  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
DI10  
I/O pins  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8 V  
V
V
V
V
V
DI15  
DI16  
DI18  
DI19  
MCLR  
I/O Pins with OSC1 or SOSCI  
SDAx, SCLx  
SMBus disabled  
SDAx, SCLx  
SMBus enabled  
VIH  
Input High Voltage  
DI20  
I/O Pins Not 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant(4)  
DI28  
DI29  
SDAx, SCLx  
0.7 VDD  
2.1  
5.5  
5.5  
V
V
SMBus disabled  
SMBus enabled  
SDAx, SCLx  
ICNPU  
CNx Pull-up Current  
DI30  
50  
250  
400  
μA  
VDD = 3.3V, VPIN = VSS  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor a list of digital-only and analog pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS70283K-page 238  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IIL  
Input Leakage Current(2,3)  
DI50  
I/O Pins 5V Tolerant(4)  
±2  
±1  
μA  
μA  
VSS VPIN VDD,  
Pin at high-impedance  
DI51  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
VSS VPIN VDD,  
Pin at high-impedance,  
-40°C TA +85°C  
DI51a  
DI51b  
DI51c  
±2  
±3.5  
±8  
μA Shared with external refer-  
ence pins, -40°C TA  
+85°C  
μA  
VSS VPIN VDD, Pin at  
high-impedance,  
-40°C TA +125°C  
μA Analog pins shared with  
external reference pins,  
-40°C TA +125°C  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
μA  
μA  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor a list of digital-only and analog pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 239  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
IICL  
Input Low Injection Current  
DI60a  
0
-5(5,8)  
mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP,  
SOSCI, SOSCO, and RB14  
IICH  
Input High Injection Current  
DI60b  
DI60c  
0
+5(6,7,8) mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP,  
SOSCI, SOSCO, RB14,  
and digital 5V-tolerant  
designated pins  
IICT  
Total Input Injection Current  
(sum of all I/O and control pins) -20(9)  
+20(9)  
mA Absolute instantaneous  
sum of all ± input injection  
currents from all I/O pins  
( | IICL + | IICH | ) IICT  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor a list of digital-only and analog pins.  
5: VIL source < (VSS – 0.3). Characterized but not tested.  
6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not  
tested.  
7: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted pro-  
vided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS70283K-page 240  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min.  
Typ. Max. Units  
Conditions  
Output Low Voltage  
I/O Pins:  
2x Sink Driver Pins - All pins not  
defined by 4x or 8x driver pins  
IOL 3 mA, VDD = 3.3V  
0.4  
0.4  
0.4  
V
V
V
Output Low Voltage  
I/O Pins:  
4x Sink Driver Pins - RA0, RA1,  
RB5, RB6, RB8, RB9, RB14  
DO10 VOL  
IOL 6 mA, VDD = 3.3V  
IOL 10 mA, VDD = 3.3V  
Output Low Voltage  
I/O Pins:  
8x Sink Driver Pins - OSCO,  
CLKO, RA3  
Output High Voltage  
I/O Pins:  
2.4  
2.4  
2.4  
V
V
V
IOL -3 mA, VDD = 3.3V  
IOL -6 mA, VDD = 3.3V  
IOL -10 mA, VDD = 3.3V  
2x Source Driver Pins - All pins  
not defined by 4x or 8x driver  
pins  
Output High Voltage  
I/O Pins:  
4x Source Driver Pins - RA0,  
RA1, RB5, RB6, RB8, RB9,  
RB14  
DO20 VOH  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins - OSCO,  
CLKO, RA3  
Output High Voltage  
I/O Pins:  
2x Source Driver Pins - All pins  
not defined by 4x or 8x driver  
pins  
IOH -6 mA, VDD = 3.3V  
See Note 1  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
IOH -5 mA, VDD = 3.3V  
See Note 1  
V
V
V
IOH -2 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
4x Source Driver Pins - RA0,  
RA1, RB5, RB6, RB8, RB9,  
RB14  
IOH -12 mA, VDD = 3.3V  
See Note 1  
IOH -11 mA, VDD = 3.3V  
See Note 1  
DO20A VOH1  
IOH -3 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
8x Source Driver Pins - OSCO,  
CLKO, RA3  
IOH -16 mA, VDD = 3.3V  
See Note 1  
IOH -12 mA, VDD = 3.3V  
See Note 1  
IOH -4 mA, VDD = 3.3V  
See Note 1  
Note 1: Parameters are characterized, but not tested.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 241  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
See Note 2  
BO10  
VBOR  
BOR Event on VDD transition  
2.40  
2.55  
V
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
2: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded  
performance. Device functionality is tested but not characterized.  
TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(3)  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10,000  
VMIN  
VMIN  
20  
3.6  
3.6  
E/W -40°C to +125°C  
VPR  
VDD for Read  
V
VMIN = Minimum operating voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
V
VMIN = Minimum operating voltage  
D134  
TRETD  
Year Provided no other specifications  
are violated, -40°C to +125°C  
D135  
IDDP  
Supply Current during  
Programming  
10  
mA  
D136a TRW  
D136b TRW  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Row Write Time  
1.32  
1.28  
20.1  
19.5  
42.3  
41.1  
1.74  
1.79  
26.5  
27.3  
55.9  
57.6  
ms TRW = 11064 FRC cycles,  
TA = +85°C, See Note 2  
Row Write Time  
ms TRW = 11064 FRC cycles,  
TA = +150°C, See Note 2  
Page Erase Time  
Page Erase Time  
Word Write Cycle Time  
Word Write Cycle Time  
ms TPE = 168517 FRC cycles,  
TA = +85°C, See Note 2  
ms TPE = 168517 FRC cycles,  
TA = +150°C, See Note 2  
μs TWW = 355 FRC cycles,  
TA = +85°C, See Note 2  
μs TWW = 355 FRC cycles,  
TA = +150°C, See Note 2  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111(for Min), TUN<5:0> = b'100000(for Max).  
This parameter depends on the FRC accuracy (see Table 24-18) and the value of the FRC Oscillator Tun-  
ing register (see Register 8-4). For complete details on calculating the Minimum and Maximum time see  
Section 5.3 “Programming Operations”.  
3: These parameters are assured by design, but are not characterized or tested in manufacturing.  
DS70283K-page 242  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value(1)  
4.7  
10  
μF  
Capacitor must be low series  
resistance (< 5 ohms)  
Note 1: Typical VCAP voltage = 2.5V when VDD VDDMIN.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 243  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
24.2 AC Characteristics and Timing  
Parameters  
This section defines dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 AC characteristics and timing  
parameters.  
TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Table 24-1.  
FIGURE 24-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
VSS  
15 pF for OSC2 output  
TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSC2  
OSC2/SOSC2 pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
DS70283K-page 244  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS31 OS31  
OS25  
OS41  
OS40  
TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symb  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency(4)  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency(5)  
3.5  
10  
10  
40  
33  
MHz XT  
MHz HS  
kHz Sosc  
(4)  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
12.5  
25  
DC  
DC  
ns  
ns  
ns  
Instruction Cycle Time(2,4)  
TosL, External Clock in (OSC1)(5)  
0.375 x TOSC  
0.625 x TOSC  
EC  
TosH High or Low Time  
OS31  
TosR, External Clock in (OSC1)(5)  
TosF Rise or Fall Time  
20  
ns  
EC  
OS40  
OS41  
OS42  
TckR CLKO Rise Time(3,5)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
TckF  
GM  
CLKO Fall Time(3,5)  
External Oscillator  
mA/V VDD = 3.3V  
TA = +25ºC  
Transconductance(6)  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 40 MHz only.  
5: These parameters are characterized by similarity, but are not tested in manufacturing.  
6: Data for this parameter is preliminary. This parameter is characterized, but is not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 245  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range(2)  
0.8  
8
MHz ECPLL, XTPLL modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency(3)  
PLL Start-up Time (Lock Time)(3)  
CLKO Stability (Jitter)(3)  
100  
200  
MHz  
OS52  
OS53  
TLOCK  
DCLK  
0.9  
-3  
1.5  
0.5  
3.1  
3
mS  
%
Measured over 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: These parameters are characterized by similarity, but are tested in manufacturing at 7.7 MHz input only.  
3: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases  
or communication clocks use this formula:  
DCLK  
Peripheral Clock Jitter = -----------------------------------------------------------------------  
FOSC  
-------------------------------------------------------------  
Peripheral Bit Rate Clock  
For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.  
DCLK  
3%  
3%  
-------  
-----------------------------  
---------  
SPI SCK Jitter =  
=
=
= 0.75%  
4
16  
32 MHz  
--------------------  
2 MHz  
TABLE 24-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1)  
F20a  
F20b  
FRC  
FRC  
-2  
-5  
+2  
+5  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
TABLE 24-19: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1,2)  
F21a LPRC  
F21b LPRC  
-15  
-40  
±6  
+15  
+40  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Note 1: Change of LPRC frequency as VDD changes.  
2: LPRC impacts the Watchdog Timer Time-out Period (TWDT1). See Section 21.4 “Watchdog Timer  
(WDT)” for more information.  
DS70283K-page 246  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-20: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(2)  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
25  
2
10  
10  
25  
25  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (input)  
CNx High or Low Time (input)  
ns  
DI40  
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: These parameters are characterized, but are not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 247  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 24-1 for load conditions.  
DS70283K-page 248  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(2) Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse Width (low)(1)  
Power-up Timer Period(1)  
2
μs  
-40°C to +85°C  
TPWRT  
2
4
ms  
-40°C to +85°C  
User programmable  
8
16  
32  
64  
128  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay(3)  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O High-Impedance from  
MCLR Low or Watchdog  
Timer Reset(1)  
0.68  
0.72  
1.2  
SY20  
TWDT1  
Watchdog Timer Time-out  
Period (1)  
ms  
See Section 21.4 “Watchdog  
Timer (WDT)” and LPRC  
parameter F21a (Table 24-21).  
SY30  
SY35  
TOST  
Oscillator Start-up Time  
1024  
TOSC  
TOSC = OSC1 period  
TFSCM  
Fail-Safe Clock Monitor  
Delay(1)  
500  
900  
μs  
-40°C to +85°C  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: These parameters are characterized by similarity, but are not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 249  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-5:  
TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 24-1 for load conditions.  
(1)  
TABLE 24-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(2)  
Min  
Typ  
Max Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 40  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK Oscillator Input  
frequency Range (oscillator enabled  
by setting bit TCS (T1CON<1>))  
DC  
50  
kHz  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer1 is a Type A.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
DS70283K-page 250  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-23: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Synchronous  
Min  
Typ  
Max  
Units  
Conditions  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
TB10 TtxH  
TB11 TtxL  
TB15 TtxP  
TxCKHigh  
Must also meet  
parameter TB15  
N = prescale  
value  
mode  
Time  
(1, 8, 64, 256)  
TxCK Low Synchronous  
Greater of:  
20 or  
(TCY + 20)/N  
ns  
Must also meet  
parameter TB15  
N = prescale  
value  
Time  
mode  
(1, 8, 64, 256)  
TxCK  
Input  
Synchronous  
mode  
Greater of:  
40 or  
(2 TCY + 40)/N  
ns  
ns  
N = prescale  
value  
(1, 8, 64, 256)  
Period  
TB20 TCKEXTMRL Delay from External TxCK 0.75 TCY + 40  
1.75 TCY + 40  
Clock Edge to Timer Incre-  
ment  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
TABLE 24-24: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TC10  
TC11  
TC15  
TtxH  
TtxL  
TtxP  
TxCK High Synchronous  
Time  
TCY + 20  
ns  
Must also meet  
parameter TC15  
TxCK Low Synchronous  
Time  
TCY + 20  
ns  
ns  
Must also meet  
parameter TC15  
TxCK Input Synchronous,  
2 TCY + 40  
N = prescale  
value  
Period  
with prescaler  
(1, 8, 64, 256)  
TC20  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer Incre-  
ment  
0.75 TCY + 40  
1.75 TCY + 40  
ns  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 251  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-6:  
TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS  
QEB  
TQ11  
TQ10  
TQ15  
TQ20  
POSCNT  
TABLE 24-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TQ10 TtQH  
TQ11 TtQL  
TQ15 TtQP  
TQCK High Time Synchronous,  
with prescaler  
TCY + 20  
ns  
Must also meet  
parameter TQ15  
TQCK Low Time  
Synchronous,  
with prescaler  
TCY + 20  
ns  
ns  
Must also meet  
parameter TQ15  
TQCP Input  
Period  
Synchronous, 2 * TCY + 40  
with prescaler  
TQ20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70283K-page 252  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-7:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-26: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 24-8:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter D032  
See parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 253  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-9:  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA  
OC15  
Active  
OCx  
Tri-state  
TABLE 24-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
TCY + 20  
ns  
OC20  
TFLT  
Fault Input Pulse-Width  
TCY + 20  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70283K-page 254  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-10:  
MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS  
MP30  
FLTA  
MP20  
PWMx  
FIGURE 24-11:  
MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-29: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
MP10  
MP11  
TFPWM  
TRPWM  
TFD  
PWM Output Fall Time  
PWM Output Rise Time  
50  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Fault Input to PWM  
I/O Change  
MP20  
MP30  
TFH  
Minimum Pulse-Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 255  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-12:  
QEA/QEB INPUT CHARACTERISTICS  
TQ36  
QEA  
(input)  
TQ30  
TQ31  
TQ35  
QEB  
(input)  
TQ41  
TQ40  
TQ30  
TQ31  
TQ35  
QEB  
Internal  
TABLE 24-30: QUADRATURE DECODER TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Typ(2)  
Max  
Units  
Conditions  
TQ30  
TQ31  
TQ35  
TQ36  
TQ40  
TQUL  
Quadrature Input Low Time  
Quadrature Input High Time  
Quadrature Input Period  
Quadrature Phase Period  
6 TCY  
6 TCY  
ns  
ns  
ns  
ns  
ns  
TQUH  
TQUIN  
TQUP  
TQUFL  
12 TCY  
3 TCY  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 3)  
TQ41  
TQUFH  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 3)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. “Quadrature Encoder  
Interface (QEI)” (DS70208) in the “dsPIC33F/PIC24H Family Reference Manual”. Please see the  
Microchip web site for the latest dsPIC33F/PIC24H Family Reference Manual sections.  
DS70283K-page 256  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-13:  
QEI MODULE INDEX PULSE TIMING CHARACTERISTICS  
QEA  
(input)  
QEB  
(input)  
Ungated  
Index  
TQ50  
TQ51  
Index Internal  
TQ55  
Position Coun-  
ter Reset  
TABLE 24-31: QEI INDEX PULSE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
TQ50  
TQ51  
TQ55  
TqIL  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
TqiH  
Tqidxr  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
3 TCY  
ns  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
Index Pulse Recognized to Position  
Counter Reset (ungated index)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for  
forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but  
index pulse recognition occurs on falling edge.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 257  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-32: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 MHz  
9 MHz  
Table 24-33  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 24-34  
9 MHz  
Table 24-35  
0
1
15 MHz  
11 MHz  
15 MHz  
11 MHz  
Table 24-36  
Table 24-37  
Table 24-38  
Table 24-39  
1
0
1
1
0
0
1
0
0
0
0
FIGURE 24-14:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note: Refer to Figure 24-1 for load conditions.  
DS70283K-page 258  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-15:  
SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-33: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP20  
Maximum SCK Frequency  
SCKx Output Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SCKx Output Rise Time  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 259  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-16:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = X, SMP = 1) TIMING  
CHARACTERISTICS  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
SP30, SP31  
MSb  
LSb  
SDOx  
SDIx  
SP40  
MSb In  
SP41  
LSb In  
Bit 14 - - - -1  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-34: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP20  
Maximum SCK Frequency  
SCKx Output Fall Time  
9
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameter DO32  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Output Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70283K-page 260  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-17:  
SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = X, SMP = 1) TIMING  
CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30, SP31  
MSb In  
SP30, SP31  
LSb In  
Bit 14 - - - -1  
SP40  
SP41  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-35: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
-40ºC to +125ºC and  
SP10  
Maximum SCK Frequency  
9
MHz  
see Note 3  
SP20  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Fall Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO32  
and Note 4  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO31  
and Note 4  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 261  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-18:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70283K-page 262  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-36: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SCKx Input Rise Time  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP41  
SP50  
SP51  
SP52  
SP60  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 263  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-19:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP72  
SP73  
SP70  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70283K-page 264  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-37: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
11  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
SP60  
TssL2scH, SSx to SCKx or SCKx Input  
120  
50  
50  
ns  
ns  
ns  
ns  
TssL2scL  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 265  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-20:  
SPIx SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
LSb  
SP35  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70283K-page 266  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-38: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
15  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
TssL2scH, SSx to SCKx or SCKx Input  
120  
10  
50  
ns  
ns  
ns  
TssL2scL  
TssH2doZ SSx to SDOx Output  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 267  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-21:  
SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
LSb  
SP35  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70283K-page 268  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-39: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscP  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
See Note 3  
SP70  
SP72  
Maximum SCK Input Frequency  
SCKx Input Fall Time  
11  
MHz  
ns  
TscF  
TscR  
TdoF  
TdoR  
See parameterDO32  
and Note 4  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SCKx Input Rise Time  
30  
30  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO31  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter DO32  
and Note 4  
See parameter DO31  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
SP50  
SP51  
SP52  
TssL2scH, SSx to SCKx or SCKx Input  
120  
10  
50  
ns  
ns  
ns  
TssL2scL  
TssH2doZ SSx to SDOx Output  
High-Impedance(4)  
See Note 4  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 269  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-22:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 24-1 for load conditions.  
FIGURE 24-23:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 24-1 for load conditions.  
DS70283K-page 270  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(3)  
Min(1)  
Max  
Units  
Conditions  
IM10  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
ns  
1 MHz mode(2) TCY/2 (BRG + 1)  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
IM50  
IM51  
CB  
Bus Capacitive Loading  
400  
TPGD  
Pulse Gobbler Delay  
65  
390  
See Note 4  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)”  
(DS70195) in the “dsPIC33F/PIC24H Family Reference Manual”. Please see the Microchip web site for  
the latest dsPIC33F/PIC24H Family Reference Manual sections.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: These parameters are characterized by similarity, but are not tested in manufacturing.  
4: Typical value for this parameter is 130 ns.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 271  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-24:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 24-25:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70283K-page 272  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(2)  
Min  
Max  
Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
μs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
μs  
μs  
IS11  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(1)  
0.6  
μs  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TR:SCL SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:ST Stop Condition  
O
Hold Time  
TAA:SCL Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 273  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-42: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param Symb  
Characteristic  
Module VDD Supply(2)  
Module VSS Supply(2)  
Min.  
Typ  
Max.  
Units  
Conditions  
No.  
ol  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Greater of  
VDD – 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05 VREFH Reference Voltage High  
AD05a  
AVSS + 2.5  
3.0  
AVDD  
3.6  
V
V
See Note 1  
VREFH = AVDD  
VREFL = AVSS = 0, see Note 2  
AD06 VREFL Reference Voltage Low  
AD06a  
AVSS  
0
AVDD – 2.5  
0
V
V
See Note 1  
VREFH = AVDD  
VREFL = AVSS = 0, see Note 2  
AD07 VREF  
AD08 IREF  
AD08a IAD  
Absolute Reference  
Voltage(2)  
2.5  
3.6  
V
VREF = VREFH - VREFL  
Current Drain  
250  
550  
10  
μA ADC operating, See Note 1  
μA ADC off, See Note 1  
Operating Current  
7.0  
2.7  
9.0  
3.2  
mA 10-bit ADC mode, See Note 2  
mA 12-bit ADC mode, See Note 2  
Analog Input  
(2)  
AD12 VINH  
AD13 VINL  
AD17 RIN  
Input Voltage Range VINH  
VINL  
VREFH  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), positive  
input  
(2)  
Input Voltage Range VINL  
VREFL  
AVSS + 1V  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), negative  
input  
Recommended Impedance  
of Analog Voltage Source(3)  
200  
200  
Ω
Ω
10-bit ADC  
12-bit ADC  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: These parameters are characterized, but are not tested in manufacturing.  
3: These parameters are assured by design, but are not characterized or tested in manufacturing.  
DS70283K-page 274  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-43: ADC MODULE SPECIFICATIONS (12-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-(3)  
AD20a Nr  
AD21a INL  
Resolution(4)  
12 data bits  
bits  
Integral Nonlinearity  
-2  
>-1  
+2  
<1  
10  
5
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
AD22a DNL  
Differential Nonlinearity  
Gain Error  
3.4  
0.9  
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
Offset Error  
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
Monotonicity  
Guaranteed(1)  
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-(3)  
AD20a Nr  
AD21a INL  
AD22a DNL  
Resolution(4)  
12 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
>-1  
+2  
<1  
20  
10  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
10.5  
3.8  
Offset Error  
Monotonicity  
Guaranteed(1)  
Dynamic Performance (12-bit Mode)(2)  
AD30a THD  
Total Harmonic Distortion  
-75  
dB  
dB  
AD31a SINAD  
Signal to Noise and  
Distortion  
68.5  
69.5  
AD32a SFDR  
Spurious Free Dynamic  
Range  
80  
dB  
AD33a  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
250  
kHz  
bits  
AD34a ENOB  
11.09  
11.3  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: These parameters are characterized, but are tested at 20 ksps only.  
4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 275  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-44: ADC MODULE SPECIFICATIONS (10-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-(3)  
AD20b Nr  
AD21b INL  
Resolution(4)  
10 data bits  
bits  
Integral Nonlinearity  
-1.5  
>-1  
+1.5  
<1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22b DNL  
Differential Nonlinearity  
Gain Error  
3
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
2
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed(1)  
ADC Accuracy (10-bit Mode) – Measurements with internal VREF+/VREF-(3)  
AD20b Nr  
AD21b INL  
AD22b DNL  
Resolution(4)  
10 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-1  
>-1  
7
+1  
<1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
Offset Error  
3
Monotonicity  
Guaranteed(1)  
Dynamic Performance (10-bit Mode)(2)  
AD30b THD  
Total Harmonic Distortion  
-64  
dB  
dB  
AD31b SINAD  
Signal to Noise and  
Distortion  
57  
58.5  
AD32b SFDR  
Spurious Free Dynamic  
Range  
72  
dB  
AD33b  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
550  
kHz  
bits  
AD34b ENOB  
9.16  
9.4  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: These parameters are characterized, but are tested at 20 ksps only.  
4: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
DS70283K-page 276  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-26:  
ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS  
(ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
AD61  
Clear SAMP  
SAMP  
AD60  
TSAMP  
AD55  
DONE  
AD1IF  
1
2
3
4
5
6
7
8
9
– Software sets AD1CON. SAMP to start sampling.  
– Convert bit 11.  
1
2
5
6
7
8
9
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183)  
in the “dsPIC33F/PIC24H Family Reference Manual”.  
– Convert bit 10.  
– Convert bit 1.  
– Convert bit 0.  
– Software clears AD1CON. SAMP to start conversion.  
3
4
– One TAD for end of conversion.  
– Sampling ends, conversion sequence starts.  
TABLE 24-45: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
ADC Clock Period(2)  
117.6  
ns  
ns  
ADC Internal RC Oscillator  
Period(2)  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
Conversion Time(2)  
Throughput Rate(2)  
Sample Time(2)  
14 TAD  
500  
ns  
Ksps  
TSAMP  
3.0 TAD  
Timing Parameters  
AD60  
tPCS  
2.0 TAD  
3.0 TAD  
Auto convert trigger not  
selected  
Conversion Start from Sample  
Trigger(2)  
AD61  
AD62  
AD63  
tPSS  
tCSS  
tDPU  
Sample Start from Setting  
Sample (SAMP) bit(2)  
2.0 TAD  
0.5 TAD  
3.0 TAD  
μs  
Conversion Completion to  
Sample Start (ASAM = 1)(2)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(2)  
20  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity  
performance, especially at elevated temperatures.  
2: These parameters are characterized but not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 277  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
FIGURE 24-27:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
Set SAMP  
AD61  
ADCLK  
Instruction  
Execution  
Clear SAMP  
AD60  
SAMP  
TSAMP  
AD55  
AD55  
DONE  
AD1IF  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets AD1CON. SAMP to start sampling.  
1
2
– Convert bit 9.  
– Convert bit 8.  
– Convert bit 0.  
5
6
7
8
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183)  
in the “dsPIC33F/PIC24H Family Reference Manual”.  
– Software clears AD1CON. SAMP to start conversion.  
3
4
– One TAD for end of conversion.  
– Sampling ends, conversion sequence starts.  
FIGURE 24-28:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Set ADON  
Execution  
SAMP  
AD1IF  
TSAMP  
TSAMP  
AD55  
AD55  
AD55  
DONE  
1
2
3
4
5
6
7
3
4
5
6
8
– Software sets AD1CON. ADON to start AD operation.  
– Convert bit 0.  
5
1
2
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “Analog-to-Digital Converter (ADC)” (DS70183)  
in the “dsPIC33F/PIC24H Family Reference Manual”.  
– One TAD for end of conversion.  
– Begin conversion of next channel.  
6
7
8
– Convert bit 9.  
3
4
– Sample for time specified by SAMC<4:0>.  
– Convert bit 8.  
DS70283K-page 278  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 24-46: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters  
AD50 TAD  
AD51 tRC  
ADC Clock Period(1)  
76  
ns  
ns  
ADC Internal RC Oscillator  
Period(1)  
250  
Conversion Rate  
AD55 tCONV  
AD56 FCNV  
AD57 TSAMP Sample Time(1)  
Conversion Time(1)  
Throughput Rate(1)  
12 TAD  
1.1  
Msps  
2.0 TAD  
Timing Parameters  
AD60 tPCS  
AD61 tPSS  
AD62 tCSS  
AD63 tDPU  
Conversion Start from Sample  
2.0 TAD  
2.0 TAD  
3.0 TAD  
3.0 TAD  
μs  
Auto-Convert Trigger  
not selected  
Trigger(1)  
Sample Start from Setting  
Sample (SAMP) bit(1)  
0.5 TAD  
Conversion Completion to  
Sample Start (ASAM = 1)(1)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(1)  
20  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity  
performance, especially at elevated temperatures.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 279  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
NOTES:  
DS70283K-page 280  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
25.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 electrical characteristics for  
devices operating in an ambient temperature range of -40°C to +150°C.  
The specifications between -40°C to +150°C are identical to those shown in Section 24.0 “Electrical Characteristics”  
for operation between -40°C to +125°C, with the exception of the parameters listed in this section.  
Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in  
Section 24.0 “Electrical Characteristics” is the Industrial and Extended temperature equivalent of HDC10.  
Absolute maximum ratings for the dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 high temperature devices are  
listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional  
operation of the device at these or any other conditions above the parameters indicated in the operation listings of this  
specification is not implied.  
Absolute Maximum Ratings(1)  
Ambient temperature under bias(4) .........................................................................................................-40°C to +150°C  
Storage temperature .............................................................................................................................. -65°C to +160°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(5) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(5) .................................................... -0.3V to 3.6V  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(5) .................................................... -0.3V to 5.6V  
Maximum current out of VSS pin .............................................................................................................................60 mA  
Maximum current into VDD pin(2).............................................................................................................................60 mA  
Maximum junction temperature............................................................................................................................. +155°C  
Maximum current sourced/sunk by any 2x I/O pin(3) ................................................................................................2 mA  
Maximum current sourced/sunk by any 4x I/O pin(3) ................................................................................................4 mA  
Maximum current sourced/sunk by any 8x I/O pin(3) ................................................................................................8 mA  
Maximum current sunk by all ports combined ........................................................................................................70 mA  
Maximum current sourced by all ports combined(2) ................................................................................................70 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods can affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).  
3: Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+,  
VREF-, SCLx, SDAx, PGCx and PGDx pins.  
4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which  
the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior  
written approval from Microchip Technology Inc.  
5: Refer to the Pin Diagramssection for 5V tolerant pins.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 281  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
25.1 High Temperature DC Characteristics  
TABLE 25-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temperature Range  
(in °C)  
Characteristic  
dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304  
HDC5  
VBOR to 3.6V(1)  
-40°C to +150°C  
20  
Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded  
performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 24-11  
for the minimum and maximum BOR values.  
TABLE 25-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
High Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+155  
+150  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD - Σ IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA)/θJA  
TABLE 25-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
DC CHARACTERISTICS  
Parameter  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Operating Voltage  
HDC10  
Supply Voltage  
VDD  
3.0  
3.3  
3.6  
V
-40°C to +150°C  
DS70283K-page 282  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)  
HDC60e  
HDC61c  
250  
3
2000  
5
μA  
μA  
+150°C  
+150°C  
3.3V  
3.3V  
Base Power-Down Current(1,3)  
(2,4)  
Watchdog Timer Current: ΔIWDT  
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.  
2: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
3: These currents are measured on the device containing the most memory in this family.  
4: These parameters are characterized, but are not tested in manufacturing.  
TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
HDC20  
HDC21  
HDC22  
19  
27  
33  
35  
45  
55  
mA  
mA  
mA  
+150°C  
+150°C  
+150°C  
3.3V  
10 MIPS  
16 MIPS  
20 MIPS  
3.3V  
3.3V  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
TABLE 25-6: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Parameter  
Typical(1)  
No.  
Doze  
Ratio  
Max  
Units  
Conditions  
HDC72a  
HDC72f  
HDC72g  
39  
18  
18  
45  
25  
25  
1:2  
1:64  
1:128  
mA  
mA  
mA  
+150°C  
3.3V  
20 MIPS  
Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 283  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 25-7: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +150°C for High  
Temperature  
Param. Symbol  
Characteristic  
Min.  
Typ. Max. Units  
Conditions  
Output Low Voltage  
I/O Pins:  
2x Sink Driver Pins - All pins not  
defined by 4x or 8x driver pins  
IOL 1.8 mA, VDD = 3.3V  
See Note 1  
0.4  
0.4  
0.4  
V
V
V
Output Low Voltage  
I/O Pins:  
4x Sink Driver Pins - RA0, RA1,  
RB5, RB6, RB8, RB9, RB14  
IOL 3.6 mA, VDD = 3.3V  
See Note 1  
DO10 VOL  
Output Low Voltage  
I/O Pins:  
8x Sink Driver Pins - OSCO,  
CLKO, RA3  
IOL 6 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
I/O Pins:  
2x Source Driver Pins - All pins  
not defined by 4x or 8x driver  
pins  
IOL -1.8 mA, VDD = 3.3V  
See Note 1  
2.4  
2.4  
2.4  
V
V
V
Output High Voltage  
I/O Pins:  
4x Source Driver Pins - RA0,  
RA1, RB5, RB6, RB8, RB9,  
RB14  
IOL -3 mA, VDD = 3.3V  
See Note 1  
DO20 VOH  
Output High Voltage  
I/O Pins:  
8x Source Driver Pins - OSCO,  
CLKO, RA3  
IOL -6 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
I/O Pins:  
2x Source Driver Pins - All pins  
not defined by 4x or 8x driver  
pins  
IOH -1.9 mA, VDD = 3.3V  
See Note 1  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
1.5  
2.0  
3.0  
IOH -1.85 mA, VDD = 3.3V  
See Note 1  
V
V
V
IOH -1.4 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
4x Source Driver Pins - RA0,  
RA1, RB5, RB6, RB8, RB9,  
RB14  
IOH -3.9 mA, VDD = 3.3V  
See Note 1  
IOH -3.7 mA, VDD = 3.3V  
See Note 1  
DO20A VOH1  
IOH -2 mA, VDD = 3.3V  
See Note 1  
Output High Voltage  
8x Source Driver Pins -OSCO,  
CLKO, RA3  
IOH -7.5 mA, VDD = 3.3V  
See Note 1  
IOH -6.8 mA, VDD = 3.3V  
See Note 1  
IOH -3 mA, VDD = 3.3V  
See Note 1  
Note 1: Parameters are characterized, but not tested.  
DS70283K-page 284  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Parameters in this section begin with an H, which  
25.2 AC Characteristics and Timing  
denotes High temperature. For example, parameter  
OS53 in Section 24.2 “AC Characteristics and  
Timing Parameters” is the Industrial and Extended  
temperature equivalent of HOS53.  
Parameters  
The information contained in this section defines  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
AC characteristics and timing parameters for high  
temperature devices. However, all AC timing  
specifications in this section are the same as those in  
Section 24.2 “AC Characteristics and Timing  
Parameters”, with the exception of the parameters  
listed in this section.  
TABLE 25-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
Operating voltage VDD range as described in Table 25-1.  
AC CHARACTERISTICS  
FIGURE 25-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
VSS  
15 pF for OSC2 output  
TABLE 25-9: PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
HOS53  
DCLK  
CLKO Stability (Jitter)(1)  
-5  
0.5  
5
%
Measured over 100 ms  
period  
Note 1: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is  
based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time  
bases or communication clocks use this formula:  
DCLK  
Peripheral Clock Jitter = -----------------------------------------------------------------------  
FOSC  
-------------------------------------------------------------  
Peripheral Bit Rate Clock  
For example: Fosc = 32 MHz, DCLK = 5%, SPI bit rate clock, (i.e., SCK) is 2 MHz.  
DCLK  
5%  
5%  
-------  
-----------------------------  
---------  
SPI SCK Jitter =  
=
=
= 1.25%  
4
16  
32 MHz  
--------------------  
2 MHz  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 285  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 25-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
28  
35  
ns  
ns  
TdiV2scL  
HSP41 TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
to SCKx Edge  
TABLE 25-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
HSP36 TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
35  
28  
35  
ns  
ns  
ns  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
HSP41 TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70283K-page 286  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 25-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
35  
55  
ns  
ns  
ns  
ns  
25  
25  
15  
TdiV2scL  
to SCKx Edge  
HSP41 TscH2diL,  
TscL2diL  
Hold Time of SDIx Data Input to  
SCKx Edge  
See Note 2  
HSP51 TssH2doZ SSx to SDOx Output  
High-Impedance  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
TABLE 25-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35  
HSP40  
HSP41  
HSP51  
HSP60  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
35  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
25  
25  
15  
55  
55  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
See Note 2  
TssH2doZ SSx to SDOX Output  
High-Impedance  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
TABLE 25-14: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1,2)  
HF21 LPRC  
-70  
+70  
%
-40°C TA +150°C  
VDD = 3.0-3.6V  
Note 1: Change of LPRC frequency as VDD changes.  
2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 21.4 “Watchdog  
Timer (WDT)” for more information.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 287  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 25-15: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
Reference Inputs  
HAD08  
IREF  
Current Drain  
250  
600  
50  
μA ADC operating, See Note 1  
μA ADC off, See Note 1  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: These parameters are characterized, but are not tested in manufacturing.  
(3)  
TABLE 25-16: ADC MODULE SPECIFICATIONS (12-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF-(1)  
HAD20a Nr  
HAD21a INL  
Resolution(3)  
12 data bits  
bits  
Integral Nonlinearity  
-2  
> -1  
-2  
+2  
< 1  
10  
4
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
HAD22a DNL  
HAD23a GERR  
HAD24a EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
-3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (12-bit Mode) – Measurements with Internal VREF+/VREF-(1)  
HAD20a Nr  
Resolution(3)  
12 data bits  
bits  
HAD21a INL  
HAD22a DNL  
HAD23a GERR  
HAD24a EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
> -1  
2
+2  
< 1  
20  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
2
10  
Dynamic Performance (12-bit Mode)(2)  
HAD33a FNYQ  
Input Signal Bandwidth 200 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
DS70283K-page 288  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
(3)  
TABLE 25-17: ADC MODULE SPECIFICATIONS (10-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with External VREF+/VREF-(1)  
HAD20b Nr  
HAD21b INL  
Resolution(3)  
10 data bits  
bits  
Integral Nonlinearity  
-3  
> -1  
-5  
3
< 1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
HAD22b DNL  
HAD23b GERR  
HAD24b EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
-1  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (10-bit Mode) – Measurements with Internal VREF+/VREF-(1)  
HAD20b Nr  
Resolution(3)  
10 data bits  
bits  
HAD21b INL  
HAD22b DNL  
HAD23b GERR  
HAD24b EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
> -1  
-5  
2
< 1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
-1.5  
Dynamic Performance (10-bit Mode)(2)  
HAD33b FNYQ  
Input Signal Bandwidth 400 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 289  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE 25-18: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50 TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
147  
Conversion Rate  
ns  
HAD56 FCNV  
400  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 25-19: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +150°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50  
HAD56  
TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
104  
ns  
Conversion Rate  
FCNV  
800  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70283K-page 290  
© 2007-2012 Microchip Technology Inc.  
26.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only.  
The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range  
(e.g., outside specified power supply range) and therefore, outside the warranted range.  
FIGURE 26-1:  
VOH – 2x DRIVER PINS  
FIGURE 26-3:  
VOH – 8x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-2:  
VOH – 4x DRIVER PINS  
FIGURE 26-4:  
VOH – 16x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-5:  
VOL – 2x DRIVER PINS  
FIGURE 26-7:  
VOL – 8x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-6:  
VOL – 4x DRIVER PINS  
FIGURE 26-8:  
VOL – 16x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
FIGURE 26-9:  
TYPICAL IPD CURRENT @ VDD = 3.3V, +85ºC  
FIGURE 26-11:  
TYPICAL IDOZE CURRENT @ VDD = 3.3V, +85ºC  
200  
FIGURE 26-10:  
TYPICAL IDD CURRENT @ VDD = 3.3V, +85ºC  
FIGURE 26-12:  
TYPICAL IIDLE CURRENT @ VDD = 3.3V, +85ºC  
PMD = 0, with PLL  
PMD = 0, no PLL  
FIGURE 26-13:  
TYPICAL FRC FREQUENCY @ VDD = 3.3V  
FIGURE 26-14:  
TYPICAL LPRC FREQUENCY @ VDD = 3.3V  
33  
29  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
28-Lead SPDIP  
Example  
dsPIC33FJ32MC  
202-E/SP  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
e
3
YYWWNNN  
0730235  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
dsPIC33FJ32MC  
e
3
202-E/SO  
0730235  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
33FJ32MC  
202-E/SS  
e
3
YYWWNNN  
0730235  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 295  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
27.1 Package Marking Information (Continued)  
28-Lead QFN-S  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJ32MC  
202E/MM  
0730235  
e
3
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ32  
MC204-E/ML  
e
3
0730235  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ  
32MC204  
e
3
-E/PT  
0730235  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
DS70283K-page 296  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
27.2 Package Details  
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
Dimension Limits  
INCHES  
NOM  
28  
.100 BSC  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing §  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 297  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70283K-page 298  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 299  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70283K-page 300  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢐꢌꢑꢒꢇꢎꢓꢅꢉꢉꢇꢔꢕꢋꢉꢌꢑꢄꢇꢖꢎꢎꢗꢇMꢇꢘꢙꢚꢛꢇꢓꢓꢇꢜ ꢆ!ꢇ"ꢎꢎꢔꢈ#  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
5ꢄꢃ&!  
ꢑꢙ66ꢙꢑ+ꢗ+ꢘꢕ  
ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢑꢙ7  
78ꢑ  
ꢑꢔ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ:  
ꢒꢁꢚ.ꢅ/ꢕ0  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢓꢍ&  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅꢗꢍꢃꢌ3ꢄꢈ!!  
ꢕ&ꢆꢄ#ꢋ%%ꢅ  
8 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ  
ꢑꢋꢇ#ꢈ#ꢅꢂꢆꢌ3ꢆꢓꢈꢅ=ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢓ&ꢍ  
2ꢋꢋ&ꢅ6ꢈꢄꢓ&ꢍ  
2ꢋꢋ&ꢐꢉꢃꢄ&  
6ꢈꢆ#ꢅꢗꢍꢃꢌ3ꢄꢈ!!  
2ꢋꢋ&ꢅꢔꢄꢓꢇꢈ  
M
M
ꢀꢁꢛ.  
M
ꢛꢁ:ꢒ  
.ꢁ,ꢒ  
ꢀꢒꢁꢎꢒ  
ꢒꢁꢛ.  
ꢀꢁꢎ.ꢅꢘ+2  
M
ꢎꢁꢒꢒ  
ꢀꢁ:.  
M
:ꢁꢎꢒ  
.ꢁꢚꢒ  
ꢀꢒꢁ.ꢒ  
ꢒꢁꢜ.  
ꢔꢎ  
ꢔꢀ  
+
+ꢀ  
6
6ꢀ  
ꢀꢁꢚ.  
ꢒꢁꢒ.  
ꢛꢁꢖꢒ  
.ꢁꢒꢒ  
ꢜꢁꢜꢒ  
ꢒꢁ..  
ꢒꢁꢒꢜ  
ꢒꢝ  
ꢒꢁꢎ.  
:ꢝ  
ꢖꢝ  
6ꢈꢆ#ꢅ=ꢃ#&ꢍ  
)
ꢒꢁꢎꢎ  
M
ꢒꢁ,:  
$ ꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢏꢅꢆꢄ#ꢅ+ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢑꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢒꢁꢎꢒꢅ''ꢅꢐꢈꢉꢅ!ꢃ#ꢈꢁ  
,ꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢓꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢓꢅꢐꢈꢉꢅꢔꢕꢑ+ꢅ-ꢀꢖꢁ.ꢑꢁ  
/ꢕ01 /ꢆ!ꢃꢌꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢘ+21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢑꢃꢌꢉꢋꢌꢍꢃꢐ ꢌꢍꢄꢋꢇꢋꢓꢊ ꢏꢉꢆ*ꢃꢄꢓ 0ꢒꢖꢞꢒꢛ,/  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 301  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70283K-page 302  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&ꢕꢅꢆꢇ'ꢉꢅꢋ(ꢇ$ ꢇꢃꢄꢅꢆꢇꢈꢅꢍꢒꢅ)ꢄꢇꢖ**ꢗꢇMꢇ+,+,ꢛꢙ-ꢇꢓꢓꢇꢜ ꢆ!ꢇ"&'$ꢂꢎ#  
.ꢌꢋꢏꢇꢛꢙ/ꢛꢇꢓꢓꢇ0 ꢑꢋꢅꢍꢋꢇꢃꢄꢑ)ꢋꢏ  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
D2  
D
EXPOSED  
PAD  
e
E2  
E
b
2
1
2
1
K
N
N
L
NOTE 1  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
5ꢄꢃ&!  
ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢅ6ꢃ'ꢃ&!  
ꢑꢙ66ꢙꢑ+ꢗ+ꢘꢕ  
78ꢑ  
ꢑꢙ7  
ꢑꢔ9  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
8 ꢈꢉꢆꢇꢇꢅ;ꢈꢃꢓꢍ&  
ꢕ&ꢆꢄ#ꢋ%%ꢅ  
0ꢋꢄ&ꢆꢌ&ꢅꢗꢍꢃꢌ3ꢄꢈ!!  
8 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ  
+$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ=ꢃ#&ꢍ  
8 ꢈꢉꢆꢇꢇꢅ6ꢈꢄꢓ&ꢍ  
+$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ6ꢈꢄꢓ&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢅ=ꢃ#&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢅ6ꢈꢄꢓ&ꢍ  
0ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ+$ꢐꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢔꢀ  
ꢔ,  
+
+ꢎ  
ꢎ:  
ꢒꢁꢚ.ꢅ/ꢕ0  
ꢒꢁꢜꢒ  
ꢒꢁ:ꢒ  
ꢒꢁꢒꢒ  
ꢀꢁꢒꢒ  
ꢒꢁꢒ.  
ꢒꢁꢒꢎ  
ꢒꢁꢎꢒꢅꢘ+2  
ꢚꢁꢒꢒꢅ/ꢕ0  
,ꢁꢛꢒ  
ꢚꢁꢒꢒꢅ/ꢕ0  
,ꢁꢛꢒ  
ꢒꢁ,:  
ꢒꢁꢖꢒ  
M
,ꢁꢚ.  
ꢖꢁꢛꢒ  
ꢏꢎ  
)
6
,ꢁꢚ.  
ꢒꢁꢎ,  
ꢒꢁ,ꢒ  
ꢒꢁꢎꢒ  
ꢖꢁꢛꢒ  
ꢒꢁꢖ,  
ꢒꢁ.ꢒ  
M
?
$ ꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ3ꢆꢓꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢓ"ꢇꢆ&ꢈ#ꢁ  
,ꢁ ꢏꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢓꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢓꢅꢐꢈꢉꢅꢔꢕꢑ+ꢅ-ꢀꢖꢁ.ꢑꢁ  
/ꢕ01 /ꢆ!ꢃꢌꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢘ+21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢏꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢑꢃꢌꢉꢋꢌꢍꢃꢐ ꢌꢍꢄꢋꢇꢋꢓꢊ ꢏꢉꢆ*ꢃꢄꢓ 0ꢒꢖꢞꢀꢎꢖ/  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 303  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&ꢕꢅꢆꢇ'ꢉꢅꢋ(ꢇ$ ꢇꢃꢄꢅꢆꢇꢈꢅꢍꢒꢅ)ꢄꢇꢖ**ꢗꢇMꢇ+,+,ꢛꢙ-ꢇꢓꢓꢇꢜ ꢆ!ꢇ"&'$ꢂꢎ#  
.ꢌꢋꢏꢇꢛꢙ/ꢛꢇꢓꢓꢇ0 ꢑꢋꢅꢍꢋꢇꢃꢄꢑ)ꢋꢏ  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
DS70283K-page 304  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
0.65 BSC  
0.90  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Width  
N
e
A
A1  
A3  
E
E2  
D
0.80  
0.00  
1.00  
0.05  
0.02  
0.20 REF  
8.00 BSC  
6.45  
8.00 BSC  
6.45  
0.30  
0.40  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
6.30  
6.80  
D2  
b
L
6.30  
0.25  
0.30  
0.20  
6.80  
0.38  
0.50  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-103B  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 305  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
//ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&ꢕꢅꢆꢇ'ꢉꢅꢋ(ꢇ$ ꢇꢃꢄꢅꢆꢇꢈꢅꢍꢒꢅ)ꢄꢇꢖ*ꢃꢗꢇMꢇꢁ,ꢁꢇꢓꢓꢇꢜ ꢆ!ꢇ"&'$#  
$ ꢋꢄ% 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ3ꢆꢓꢈꢅ#ꢉꢆ*ꢃꢄꢓ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢑꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ3ꢆꢓꢃꢄꢓꢅꢕꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢐ144***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'4ꢐꢆꢌ3ꢆꢓꢃꢄꢓ  
DS70283K-page 306  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
0.80 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Foot Length  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.30  
11°  
0.20  
0.45  
13°  
b
α
0.37  
12°  
12°  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-076B  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 307  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70283K-page 308  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
• The following tables in Section 24.0 “Electrical  
Characteristics” have been updated with  
APPENDIX A: REVISION HISTORY  
preliminary values:  
Revision A (February 2007)  
- Updated Max MIPS for -40°C to +125°C  
Temp Range (see Table 24-1)  
This is the initial released version of the document.  
- Updated parameter DC18 (see Table 24-4)  
Revision B (May 2007)  
- Added new parameters for +125°C, and  
updated Typical and Max values for most  
parameters (see Table 24-5)  
This revision includes the following corrections and  
updates:  
- Added new parameters for +125°C, and  
updated Typical and Max values for most  
parameters (see Table 24-6)  
• Minor typographical and formatting corrections  
throughout the data sheet text.  
• New content:  
- Added new parameters for +125°C, and  
updated Typical and Max values for most  
parameters (see Table 24-7)  
- Addition of bullet item (16-word conversion  
result buffer) (see Section 20.1 “Key  
Features”)  
- Added new parameters for +125°C, and  
updated Typical and Max values for most  
parameters (see Table 24-8)  
• Updated register map information for RPINR14  
and RPINR15 (see Table 4-16)  
• Figure updates:  
- Updated parameter DI51, added parameters  
DI51a, DI51b, and DI51c (see Table 24-9)  
- Updated Oscillator System Diagram (see  
Figure 8-1)  
- Added Note 1 (see Table 24-11)  
- Updated WDT Block Diagram (see  
Figure 21-2)  
- Updated parameters OS10 and OS30 (see  
Table 24-16)  
• Equation update:  
- Updated parameter OS52 (see Table 24-17)  
- Serial Clock Rate (see Equation 17-1)  
• Register updates:  
- Updated parameter F20, added Note 2 (see  
Table 24-18)  
- Peripheral Pin Select Input Registers (see  
Register 10-1 through Register 10-13)  
- Updated parameter F21 (see Table 24-19)  
- Updated parameter TA15 (see Table 24-22)  
- Updated parameter TB15 (see Table 24-23)  
- Updated parameter TC15 (see Table 24-24)  
- Updated parameter IC15 (see Table 24-26)  
- Updated ADC1 Input Channel 0 Select  
register (see Register 20-5)  
- Updated parameters AD05, AD06, AD07,  
AD08, AD10 through AD13 and AD17; added  
parameters AD05a and AD06a; added Note  
2; modified ADC Accuracy headings to  
include measurement information (see  
Table 24-38)  
- Separated the ADC Module Specifications  
table into three tables (see Table 24-38,  
Table 24-39, and Table 24-40)  
- Updated parameter AD50 (see Table 24-41)  
- Updated parameters AD50 and AD57 (see  
Table 24-42)  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 309  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Revision C (June 2008)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
The major changes are referenced by their respective  
section in the following table.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital  
Signal Controllers”  
Added Extended Interrupts column to Remappable Peripherals in the  
Controller Families table and Note 3 (see Table 1).  
Added Note 1 to all pin diagrams, which references RPn pin usage by  
remappable peripherals (see “Pin Diagrams”).  
Section 1.0 “Device Overview”  
Changed PORTA pin name from RA15 to RA10 (see Table 1-1).  
Section 4.0 “Memory Organization” Added SFR definitions (ACCAL, ACCAH, ACCAU, ACCBL, ACCBH, and  
ACCBU) to the CPU Core Register Map (see Table 4-1).  
Updated Reset value for CORCON (see Table 4-1).  
Updated Reset values for the following SFRs: IPC1, IPC3-IPC5, IPC7,  
IPC16, and INTTREG (see Table 4-4).  
Updated all SFR names in QEI1 Register Map (see Table 4-10).  
Updated the bit range for AD1CON3 from ADCS<5:0> to ADCS<7:0>) (see  
Table 4-14 and Table 4-15).  
Updated the Reset value for CLKDIV in the System Control Register Map  
(see Table 4-23).  
Section 6.0 “Resets”  
Entire section was replaced to maintain consistency with other dsPIC33F  
data sheets.  
Section 8.0 “Oscillator  
Configuration”  
Removed the first sentence of the third clock source item (External Clock) in  
Section 8.1.1.2 “Primary”.  
Updated the default bit values for DOZE and FRCDIV in the Clock Divisor  
Register (see Register 8-2).  
Added the center frequency in the OSCTUN register for the FRC Tuning bits  
(TUN<5:0>) value 011111and updated the center frequency for bits value  
011110(see Register 8-4).  
Section 9.0 “Power-Saving  
Features”  
Added the following two registers:  
• PMD1: Peripheral Module Disable Control Register 1  
• PMD2: Peripheral Module Disable Control Register 2  
• PMD3: Peripheral Module Disable Control Register 3  
Section 10.0 “I/O Ports”  
Added paragraph and Table 10-1 to Section 10.2 “Open-Drain  
Configuration”, which provides details on I/O pins and their functionality.  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 9.4.2 “Available Peripherals”  
• 9.4.3.3 “Mapping”  
• 9.4.5 “Considerations for Peripheral Pin Selection”  
Section 14.0 “Output Compare”  
Replaced sections 13.1, 13.2, and 13.3 and related figures and tables with  
entirely new content.  
DS70283K-page 310  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 15.0 “Motor Control PWM  
Module”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 14.3 “PWM Time Base”  
• 14.4 “PWM Period”  
• 14.5 “Edge-Aligned PWM”  
• 14.6 “Center-Aligned PWM”  
• 14.7 “PWM Duty Cycle Comparison Units”  
• 14.8 “Complementary PWM Operation”  
• 14.9 “Dead-Time Generators”  
• 14.10 “Independent PWM Output”  
• 14.11 “Single Pulse PWM Operation”  
• 14.12 “PWM Output Override”  
• 14.13 “PWM Output and Polarity Control”  
• 14.14 “PWM Fault Pins”  
• 14.15 “PWM Update Lockout”  
• 14.16 “PWM Special Event Trigger”  
• 14.17 “PWM Operation During CPU Sleep Mode”  
• 14.18 “PWM Operation During CPU Idle Mode”  
Section 16.0 “Quadrature Encoder  
Interface (QEI) Module”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 15.1 “Quadrature Encoder Interface Logic”  
• 15.2 “16-bit Up/Down Position Counter Mode”  
• 15.3 “Position Measurement Mode”  
• 15.4 “Programmable Digital Noise Filters”  
• 15.5 “Alternate 16-bit Timer/Counter”  
• 15.6 QEI Module Operation During CPU Sleep Mode”  
• 15.7 “QEI Module Operation During CPU Idle Mode”  
• 15.8 “Quadrature Encoder Interface Interrupts”  
Section 17.0 “Serial Peripheral  
Interface (SPI)”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 16.1 “Interrupts”  
• 16.2 “Receive Operations”  
• 16.3 “Transmit Operations”  
• 16.4 “SPI Setup” (retained Figure 17-1: SPI Module Block Diagram)  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 311  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 18.0 “Inter-Integrated  
Circuit™ (I2C™)”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F/PIC24H Family Reference Manual:  
• 17.3 “I2C Interrupts”  
• 17.4 “Baud Rate Generator” (retained Figure 15-1: I2C Block Diagram)  
• 17.5 “I2C Module Addresses”  
• 17.6 “Slave Address Masking”  
• 17.7 “IPMI Support”  
• 17.8 “General Call Address Support”  
• 17.9 “Automatic Clock Stretch”  
• 17.10 “Software Controlled Clock Stretching (STREN = 1)”  
• 17.11 “Slope Control”  
• 17.12 “Clock Arbitration”  
• 17.13 “Multi-Master Communication, Bus Collision, and Bus Arbitration”  
• 17.14 “Peripheral Pin Select Limitations”  
Removed the following sections, which are now available in the related  
Section 19.0 “Universal  
Asynchronous Receiver Transmitter section of the dsPIC33F/PIC24H Family Reference Manual:  
(UART)”  
• 18.1 “UART Baud Rate Generator”  
• 18.2 “Transmitting in 8-bit Data Mode”  
• 18.3 “Transmitting in 9-bit Data Mode”  
• 18.4 “Break and Sync Transmit Sequence”  
• 18.5 “Receiving in 8-bit or 9-bit Data Mode”  
• 18.6 “Flow Control Using UxCTS and UxRTS Pins”  
• 18.7 “Infrared Support”  
Removed IrDA references and Note 1, and updated the bit and bit value  
descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control  
Register (see Register 19-2).  
Section 20.0 “10-bit/12-bit  
Removed Equation 19-1: ADC Conversion Clock Period and Figure 19-2:  
Analog-to-Digital Converter (ADC)” ADC Transfer Function (10-Bit Example).  
Added ADC1 Module Block Diagram for dsPIC33FJ16MC304 and  
dsPIC33FJ32MC204 Devices (Figure 20-1) and ADC1 Module Block  
Diagram FOR dsPIC33FJ32MC202 Devices (Figure 20-2).  
Added Note 2 to Figure 20-3: ADC Conversion Clock Period Block Diagram.  
Updated ADC Conversion Clock Select bits in the AD1CON3 register from  
ADCS<5:0> to ADCS<7:0>. Any references to these bits have also been  
updated throughout this data sheet (Register 20-3).  
Added device-specific information to Note 1 in the ADC1 Input Scan Select  
Register Low (see Register 20-6), and updated the default bit value for bits  
12-10 (CSS12-CSS10) from U-0 to R/W-0.  
Added device-specific information to Note 1 in the ADC1 Port Configuration  
Register Low (see Register 20-7), and updated the default bit value for bits  
12-10 (PCFG12-PCFG10) from U-0 to R/W-0.  
DS70283K-page 312  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 21.0 “Special Features”  
Added FICD register information for address 0xF8000E in the Device  
Configuration Register Map (see Table 21-1).  
Added FICD register content (BKBUG, COE, JTAGEN, and ICS<1:0> to the  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 Configuration Bits  
Description (see Table 21-2).  
Added a note regarding the placement of low-ESR capacitors, after the  
second paragraph of Section 21.2 “On-Chip Voltage Regulator” and to  
Figure 19-1.  
Removed the words “if enabled” from the second sentence in the fifth  
paragraph of Section 21.3 “BOR: Brown-out Reset”.  
Section 24.0 “Electrical  
Characteristics”  
Updated Max MIPS value for -40ºC to +125ºC temperature range in  
Operating MIPS vs. Voltage (see Table 24-1).  
Removed Typ value for parameter DC12 (see Table 24-4).  
Updated MIPS conditions for parameters DC24c, DC44c, DC72a, DC72f  
and DC72g (see Table 24-5, Table 24-6, and Table 24-8).  
Added Note 4 (reference to new table containing digital-only and analog pin  
information to I/O Pin Input Specifications (see Table 24-4).  
Updated Typ, Min and Max values for Program Memory parameters D136,  
D137 and D138 (see Table 24-12).  
Updated Max value for Internal RC Accuracy parameter F21 for -40°C TA ≤  
+125°C condition and added Note 2 (see Table 24-19).  
Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer,  
and Power-up Timer parameter SY20 and updated conditions, which now  
refers to Section 21.4 “Watchdog Timer (WDT)” and LPRC parameter  
F21a (see Table 24-21).  
Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63  
and removed Note 3 (see Table 24-41).  
Updated Min and Typ values for parameters AD60, AD61, AD62 and AD63  
and removed Note 3 (see Table 24-42).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 313  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Revision D (December 2008)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
The major changes are referenced by their respective  
section in the following table.  
TABLE A-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital  
Signal Controllers”  
Updated all pin diagrams to denote the pin voltage tolerance (see “Pin  
Diagrams”).  
Section 2.0 “Guidelines for Getting Added new section to the data sheet that provides guidelines on getting  
Started with 16-bit Digital Signal  
Controllers”  
started with 16-bit Digital Signal Controllers.  
Section 10.0 “I/O Ports”  
Updated 5V tolerant status for I/O pin RB4 from Yes to No (see Table 10-1).  
Section 24.0 “Electrical  
Characteristics”  
Removed the maximum value for parameter DC12 (RAM Data Retention  
Voltage) in Table 24-4.  
Updated typical values for Operating Current (IDD) and added Note 3 in  
Table 24-5.  
Updated typical and maximum values for Idle Current (IIDLE): Core OFF  
Clock ON Base Current and added Note 3 in Table 24-6.  
Updated typical and maximum values for Power Down Current (IPD) and  
added Note 5 in Table 24-7.  
Updated typical and maximum values for Doze Current (IDOZE) and added  
Note 2 in Table 24-8.  
Added Note 3 to Table 24-12.  
Updated minimum value for Internal Voltage Regulator Specifications in  
Table 24-13.  
Added parameter OS42 (GM) and Notes 4, 5 and 6 to Table 24-16.  
Added Notes 2 and 3 to Table 24-17.  
Added Note 2 to Table 24-20.  
Added Note 2 to Table 24-21.  
Added Note 2 to Table 24-22.  
Added Note 1 to Table 24-23.  
Added Note 1 to Table 24-24.  
Added Note 3 to Table 24-36.  
Added Note 2 to Table 24-37.  
Updated typical value for parameter AD08 (ADC in operation) and added  
Notes 2 and 3 in Table 24-38.  
Updated minimum, typical, and maximum values for parameters AD23a,  
AD24a, AD30a, AD32a, AD32a and AD34a, and added Notes 2 and 3 in  
Table 24-39.  
Updated minimum, typical, and maximum values for parameters AD23b,  
AD24b, AD30b, AD32b, AD32b and AD34b, and added Notes 2 and 3 in  
Table 24-40.  
DS70283K-page 314  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Revision E (June 2009)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
Global changes include:  
• Changed all instances of OSCI to OSC1 and  
OSCO to OSC2  
• Changed all instances of PGCx/EMUCx and  
PGDx/EMUDx (where x = 1, 2 or 3) to PGECx  
and PGEDx  
Changed all instances of VDDCORE and VDDCORE/VCAP  
to VCAP/VDDCORE  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-3:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital Signal  
Controllers”  
Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin  
diagrams, which references pin connections to VSS.  
Section 7.0 “Interrupt Controller”  
Updated addresses for interrupt vectors 80, 81, 82 and 83-125  
(see Table 7-1).  
Section 8.0 “Oscillator Configuration”  
Updated the Oscillator System Diagram (see Figure 8-1).  
Added Note 1 to the Oscillator Tuning register (OSCTUN) (see  
Register 8-4).  
Section 10.0 “I/O Ports”  
Removed Table 10-1 and added reference to pin diagrams for I/O  
pin availability and functionality.  
Section 17.0 “Serial Peripheral Interface (SPI)” Added Note 2 to the SPIx Control Register 1 (see Register 17-2).  
Section 19.0 “Universal Asynchronous  
Receiver Transmitter (UART)”  
Updated the UTXINV bit settings in the UxSTA register and  
added Note 1 (see Register 19-2).  
Section 24.0 “Electrical Characteristics”  
Updated the Min value for parameter DC12 (RAM Retention  
Voltage) and added Note 4 to the DC Temperature and Voltage  
Specifications (see Table 24-4).  
Updated the Min value for parameter DI35 (see Table 24-20).  
Updated AD08 and added reference to Note 2 for parameters  
AD05a, AD06a and AD08a (see Table 24-38).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 315  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Revision F (November 2009)  
The revision includes the following global update:  
• Added Note 2 to the shaded table that appears at  
the beginning of each chapter. This new note  
provides information regarding the availability of  
registers and their associated bits  
This revision also includes minor typographical and  
formatting changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-4:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-bit Digital Signal  
Controllers”  
Added information on high temperature operation (see  
“Operating Range:”).  
Section 10.0 “I/O Ports”  
Changed the reference to digital-only pins to 5V tolerant pins in  
the second paragraph of Section 10.2 “Open-Drain  
Configuration”.  
Section 19.0 “Universal Asynchronous  
Receiver Transmitter (UART)”  
Updated the two baud rate range features to: 10 Mbps to 38 bps  
at 40 MIPS.  
Section 20.0 “10-bit/12-bit Analog-to-Digital  
Converter (ADC)”  
Updated the ADC1 block diagrams (see Figure 20-1 and  
Figure 20-2).  
Section 21.0 “Special Features”  
Updated the second paragraph and removed the fourth  
paragraph in Section 21.1 “Configuration Bits”.  
Updated the Device Configuration Register Map (see Table 21-1).  
Section 24.0 “Electrical Characteristics”  
Updated the Absolute Maximum Ratings for high temperature  
and added Note 4.  
Updated the SPIx Module Slave Mode (CKE = 1) Timing  
Characteristics (see Figure 24-17).  
Updated the Internal RC Accuracy parameter numbers (see  
Table 24-18 and Table 24-19).  
Section 25.0 “High Temperature Electrical  
Characteristics”  
Added new chapter with high temperature specifications.  
“Product Identification System”  
Added the “H” definition for high temperature.  
Revision G (November 2009)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-5:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
Section 25.0 “High Temperature Electrical  
Characteristics”  
Updated MIPS rating from 16 to 20 for high temperature devices  
in “Operating Range:” and in Table 25-1: Operating MIPS vs.  
Voltage.  
DS70283K-page 316  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Revision H (February 2011)  
This revision includes typographical and formatting  
changes throughout the data sheet text. In addition, all  
instances of VDDCORE have been removed.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-6:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, 16-bit Digital Signal  
Controllers  
Added the SSOP package information (see “Packaging:”, Table 1,  
and “Pin Diagrams”).  
Section 2.0 “Guidelines for Getting Started Updated the title of Section 2.3 “CPU Logic Filter Capacitor  
with 16-bit Digital Signal Controllers”  
Connection (VCAP)”.  
The frequency limitation for device PLL start-up conditions was  
updated in Section 2.7 “Oscillator Value Conditions on Device  
Start-up”.  
The second paragraph in Section 2.9 “Unused I/Os” was updated.  
Section 3.0 “CPU”  
Removed references to DMA in the CPU Core Block Diagram (see  
Figure 3-1).  
Section 4.0 “Memory Organization”  
Updated the data memory reference in the third paragraph in  
Section 4.2 “Data Address Space”.  
All Resets values for the following SFRs in the Timer Register Map  
were changed (see Table 4-5):  
• TMR1  
• TMR2  
• TMR3  
Section 8.0 “Oscillator Configuration”  
Added Note 3 to the OSCCON: Oscillator Control Register (see  
Register 8-1).  
Added Note 2 to the CLKDIV: Clock Divisor Register (see  
Register 8-2).  
Added Note 1 to the PLLFBD: PLL Feedback Divisor Register (see  
Register 8-3).  
Added Note 2 to the OSCTUN: FRC Oscillator Tuning Register (see  
Register 8-4).  
Section 20.0 “10-bit/12-bit Analog-to-Digital Updated the VREFL references in the ADC1 module block diagrams  
Converter (ADC)”  
(see Figure 20-1 and Figure 20-2).  
Section 21.0 “Special Features”  
Added a new paragraph and removed the third paragraph in  
Section 21.1 “Configuration Bits”.  
Added the column “RTSP Effects” to the Configuration Bits  
Descriptions (see Table 21-2).  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 317  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
TABLE A-6:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 24.0 “Electrical Characteristics”  
Added the 28-pin SSOP Thermal Packaging Characteristics (see  
Table 24-3).  
Removed Note 4 from the DC Temperature and Voltage  
Specifications (see Table 24-4).  
Updated the maximum value for parameter DI19 and added  
parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input  
Specifications (see Table 24-9).  
Updated Note 3 of the PLL Clock Timing Specifications (see  
Table 24-17).  
Removed Note 2 from the AC Characteristics: Internal RC Accuracy  
(see Table 24-18).  
Updated the characteristic description for parameter DI35 in the I/O  
Timing Requirements (see Table 24-20).  
Updated all SPI specifications (see Table 24-32 through Table 24-39  
and Figure 24-14 through Figure 24-21).  
Added Note 4 to the 12-bit mode ADC Module Specifications (see  
Table 24-43).  
Added Note 4 to the 10-bit mode ADC Module Specifications (see  
Table 24-44).  
Section 25.0 “High Temperature Electrical  
Characteristics”  
Updated all ambient temperature and range values to +150ºC  
throughout the chapter.  
Updated the storage temperature and range to +160ºC.  
Updated the maximum junction temperature from +145ºC to +155ºC.  
Updated Note 1 in the PLL Clock Timing Specifications (see  
Table 25-10).  
Added Note 3 to the 12-bit Mode ADC Module Specifications (see  
Table 25-17).  
Added Note 3 to the 10-bit Mode ADC Module Specifications (see  
Table 25-18).  
Section 26.0 “Packaging Information”  
“Product Identification System”  
Added the 28-Lead SSOP package information (see Section 26.1  
“Package Marking Information” and Section 26.2 “Package  
Details”).  
Added the “SS” definition for the SSOP package.  
DS70283K-page 318  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
Revision J (July 2011)  
This revision includes typographical and formatting  
changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-7:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
Section 21.0 “Special Features”  
Added Note 3 to the Connections for the On-chip Voltage Regulator  
diagram (see Figure 21-1).  
Section 24.0 “Electrical Characteristics”  
Removed Note 3 and parameter DC10 (VCORE) from the DC  
Temperature and Voltage Specifications (see Table 24-4).  
Updated the Characteristics definition and Conditions for parameter  
BO10 in the Electrical Characteristics: BOR (see Table 24-11).  
Added Note 1 to the Internal Voltage Regulator Specifications (see  
Table 24-13).  
Revision K (June 2012)  
This revision includes typographical and formatting  
changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-8:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
Section 24.0 “Electrical Characteristics”  
Added Note 1 to the Operating MIPS vs. Voltage (see Table 24-1).  
Updated the notes in the following tables:  
• Operating Current (IDD) (see Table 24-5)  
• Idle Current (IIDLE) (see Table 24-6)  
• Power-Down Current (IPD) (see Table 24-7)  
• Doze Current (IDOZE) (see Table 24-8)  
Updated the conditions for Program Memory parameters D136b,  
D137b, and D138b (TA = +150ºC) (see Table 24-12).  
Section 25.0 “High Temperature Electrical  
Characteristics”  
Removed Table 23-8: DC Characteristics: Program Memory.  
Section 26.0 “DC and AC Device  
Characteristics Graphs”  
Added new chapter.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 319  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
NOTES:  
DS70283K-page 320  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
INDEX  
Configuration Register Map.............................................. 211  
Configuring Analog Port Pins............................................ 118  
CPU  
A
AC Characteristics .................................................... 244, 285  
ADC Module.............................................................. 288  
ADC Module (10-bit Mode) ....................................... 289  
ADC Module (12-bit Mode) ....................................... 288  
Internal RC Accuracy................................................ 246  
Load Conditions................................................ 244, 285  
ADC  
Initialization ............................................................... 199  
Key Features............................................................. 199  
ADC Module  
Control Register.......................................................... 21  
CPU Clocking System ...................................................... 102  
PLL Configuration..................................................... 102  
Selection................................................................... 102  
Sources .................................................................... 102  
Customer Change Notification Service............................. 325  
Customer Notification Service .......................................... 325  
Customer Support............................................................. 325  
ADC1 Register Map for dsPIC33FJ32MC202 ............ 40  
ADC1 Register Map for dsPIC33FJ32MC204 and  
dsPIC33FJ16MC304 .......................................... 41  
Alternate Interrupt Vector Table (AIVT) .............................. 71  
Analog-to-Digital Converter (ADC).................................... 199  
Arithmetic Logic Unit (ALU)................................................. 24  
Assembler  
D
Data Accumulators and Adder/Subtracter .......................... 26  
Data Space Write Saturation...................................... 28  
Overflow and Saturation............................................. 26  
Round Logic ............................................................... 27  
Write Back .................................................................. 27  
Data Address Space........................................................... 31  
Alignment.................................................................... 31  
Memory Map for dsPIC33FJ32MC202/204 and  
dsPIC33FJ16MC304 Devices with 2 KBs RAM . 32  
Near Data Space........................................................ 31  
Software Stack ........................................................... 46  
Width .......................................................................... 31  
DC and AC Characteristics  
Graphs and Tables................................................... 291  
DC Characteristics............................................................ 232  
Doze Current (IDOZE)................................................ 283  
High Temperature..................................................... 282  
I/O Pin Input Specifications ...................................... 238  
I/O Pin Output Specifications............................ 241, 284  
Idle Current (IDOZE) .................................................. 237  
Idle Current (IIDLE).................................................... 235  
Operating Current (IDD) ............................................ 234  
Operating MIPS vs. Voltage ..................................... 282  
Power-Down Current (IPD)........................................ 236  
Power-down Current (IPD) ........................................ 283  
Program Memory...................................................... 242  
Temperature and Voltage......................................... 282  
Temperature and Voltage Specifications.................. 233  
Thermal Operating Conditions.................................. 282  
Development Support....................................................... 227  
Doze Mode ....................................................................... 112  
DSP Engine........................................................................ 24  
Multiplier ..................................................................... 26  
MPASM Assembler................................................... 228  
B
Barrel Shifter....................................................................... 28  
Bit-Reversed Addressing .................................................... 49  
Example...................................................................... 50  
Implementation ........................................................... 49  
Sequence Table (16-Entry)......................................... 50  
Block Diagrams  
16-bit Timer1 Module................................................ 143  
A/D Module ....................................................... 200, 201  
Connections for On-Chip Voltage Regulator............. 215  
Device Clock............................................................. 101  
DSP Engine ................................................................ 25  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 .. 10  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
CPU Core ........................................................... 18  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304 PLL  
103  
Input Capture ............................................................ 151  
Output Compare ....................................................... 155  
PLL............................................................................ 103  
PWM Module .................................................... 160, 161  
Quadrature Encoder Interface .................................. 173  
Reset System.............................................................. 61  
Shared Port Structure ............................................... 117  
SPI ............................................................................ 179  
Timer2 (16-bit) .......................................................... 148  
Timer2/3 (32-bit) ....................................................... 148  
UART ........................................................................ 193  
Watchdog Timer (WDT)............................................ 216  
E
Electrical Characteristics .................................................. 231  
AC..................................................................... 244, 285  
Equations  
Device Operating Frequency.................................... 102  
Errata.................................................................................... 7  
C
C Compilers  
MPLAB C18 .............................................................. 228  
Clock Switching................................................................. 110  
Enabling.................................................................... 110  
Sequence.................................................................. 110  
Code Examples  
Erasing a Program Memory Page............................... 59  
Initiating a Programming Sequence............................ 60  
Loading Write Buffers ................................................. 60  
Port Write/Read ........................................................ 118  
PWRSAV Instruction Syntax..................................... 111  
Code Protection ........................................................ 211, 218  
Configuration Bits.............................................................. 211  
F
Fail-Safe Clock Monitor .................................................... 110  
Flash Program Memory ...................................................... 55  
Control Registers........................................................ 56  
Operations.................................................................. 56  
Programming Algorithm.............................................. 59  
RTSP Operation ......................................................... 56  
Table Instructions ....................................................... 55  
Flexible Configuration....................................................... 211  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 321  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
6-Output Register Map for dsPIC33FJ12MC202........ 38  
H
MPLAB ASM30 Assembler, Linker, Librarian................... 228  
MPLAB Integrated Development Environment Software.. 227  
MPLAB PM3 Device Programmer .................................... 230  
MPLAB REAL ICE In-Circuit Emulator System ................ 229  
MPLINK Object Linker/MPLIB Object Librarian................ 228  
High Temperature Electrical Characteristics.....................281  
I
I/O Ports............................................................................117  
Parallel I/O (PIO).......................................................117  
Write/Read Timing ....................................................118  
I2C  
Addresses.................................................................187  
Operating Modes ......................................................185  
Registers...................................................................187  
Software Controlled Clock Stretching (STREN = 1)..187  
I2C Module  
I2C1 Register Map......................................................39  
In-Circuit Debugger...........................................................217  
In-Circuit Emulation...........................................................211  
In-Circuit Serial Programming (ICSP) .......................211, 217  
Input Capture ....................................................................151  
Registers...................................................................153  
Input Change Notification..................................................118  
Instruction Addressing Modes.............................................46  
File Register Instructions ............................................46  
Fundamental Modes Supported..................................47  
MAC Instructions.........................................................47  
MCU Instructions ........................................................46  
Move and Accumulator Instructions............................47  
Other Instructions........................................................47  
Instruction Set  
Overview...................................................................222  
Summary...................................................................219  
Instruction-Based Power-Saving Modes...........................111  
Idle ............................................................................112  
Sleep.........................................................................111  
Interfacing Program and Data Memory Spaces..................51  
Internal RC Oscillator  
Use with WDT...........................................................216  
Internet Address................................................................325  
Interrupt Control and Status Registers................................74  
IECx ............................................................................74  
IFSx.............................................................................74  
INTCON1 ....................................................................74  
INTCON2 ....................................................................74  
IPCx ............................................................................74  
Interrupt Setup Procedures...............................................100  
Initialization ...............................................................100  
Interrupt Disable........................................................100  
Interrupt Service Routine ..........................................100  
Trap Service Routine ................................................100  
Interrupt Vector Table (IVT) ................................................71  
Interrupts Coincident with Power Save Instructions..........112  
N
NVM Module  
Register Map .............................................................. 45  
O
Open-Drain Configuration................................................. 118  
Oscillator Configuration .................................................... 101  
Output Compare ............................................................... 155  
P
Packaging......................................................................... 295  
Details....................................................................... 297  
Marking............................................................. 295, 296  
Peripheral Module Disable (PMD) .................................... 112  
Pinout I/O Descriptions (table)............................................ 11  
PMD Module  
Register Map .............................................................. 45  
PORTA  
Register Map for dsPIC33FJ32MC202....................... 43  
Register  
Map  
for  
dsPIC33FJ32MC204  
and  
dsPIC33FJ16MC304 .......................................... 43  
PORTB  
Register Map .............................................................. 44  
PORTC  
Register  
dsPIC33FJ16MC304 .......................................... 44  
Map  
dsPIC33FJ32MC204  
and  
Power-on Reset (POR)....................................................... 67  
Power-Saving Features .................................................... 111  
Clock Frequency and Switching ............................... 111  
Program Address Space..................................................... 29  
Construction ............................................................... 51  
Data Access from Program Memory Using  
Program Space Visibility..................................... 54  
Data Access from Program Memory  
Using Table Instructions..................................... 53  
Data Access from, Address Generation ..................... 52  
Memory Map............................................................... 29  
Table Read Instructions  
TBLRDH ............................................................. 53  
TBLRDL.............................................................. 53  
Visibility Operation...................................................... 54  
Program Memory  
Interrupt Vector........................................................... 30  
Organization ............................................................... 30  
Reset Vector............................................................... 30  
PWM Time Base............................................................... 163  
J
JTAG Boundary Scan Interface ........................................211  
JTAG Interface..................................................................217  
Q
Quadrature Encoder Interface (QEI)................................. 173  
Quadrature Encoder Interface (QEI) Module  
M
Memory Organization..........................................................29  
Microchip Internet Web Site..............................................325  
Modulo Addressing .............................................................48  
Applicability.................................................................49  
Operation Example .....................................................48  
Start and End Address................................................48  
W Address Register Selection ....................................48  
Motor Control PWM...........................................................159  
Motor Control PWM Module  
Register Map .............................................................. 39  
R
Reader Response............................................................. 326  
Registers  
AD1CHS0 (ADC1 Input Channel 0 Select................ 209  
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)... 207  
AD1CON1 (ADC1 Control 1) .................................... 203  
AD1CON2 (ADC1 Control 2) .................................... 205  
AD1CON3 (ADC1 Control 3) .................................... 206  
2-Output Register Map................................................38  
DS70283K-page 322  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
AD1CSSL (ADC1 Input Scan Select Low)................ 210  
AD1PCFGL (ADC1 Port Configuration Low) ............ 210  
CLKDIV (Clock Divisor)............................................. 107  
CORCON (Core Control) ...................................... 23, 75  
DFLTCON (QEI Control)........................................... 177  
I2CxCON (I2Cx Control) ........................................... 188  
I2CxMSK (I2Cx Slave Mode Address Mask) ............ 192  
I2CxSTAT (I2Cx Status) ........................................... 190  
ICxCON (Input Capture x Control)............................ 153  
IEC0 (Interrupt Enable Control 0) ............................... 84  
IEC1 (Interrupt Enable Control 1) ............................... 86  
IEC3 (Interrupt Enable Control 3) ............................... 87  
IEC4 (Interrupt Enable Control 4) ............................... 88  
IFS0 (Interrupt Flag Status 0) ..................................... 79  
IFS1 (Interrupt Flag Status 1) ..................................... 81  
IFS3 (Interrupt Flag Status 3) ..................................... 82  
IFS4 (Interrupt Flag Status 4) ..................................... 83  
INTCON1 (Interrupt Control 1).................................... 76  
INTCON2 (Interrupt Control 2).................................... 78  
INTTREG Interrupt Control and Status Register......... 99  
IPC0 (Interrupt Priority Control 0) ............................... 89  
IPC1 (Interrupt Priority Control 1) ............................... 90  
IPC14 (Interrupt Priority Control 14) ........................... 96  
IPC15 (Interrupt Priority Control 15) ........................... 97  
IPC16 (Interrupt Priority Control 16) ........................... 97  
IPC18 (Interrupt Priority Control 18) ........................... 98  
IPC2 (Interrupt Priority Control 2) ............................... 91  
IPC3 (Interrupt Priority Control 3) ............................... 92  
IPC4 (Interrupt Priority Control 4) ............................... 93  
IPC5 (Interrupt Priority Control 5) ............................... 94  
IPC7 (Interrupt Priority Control 7) ............................... 95  
NVMCON (Flash Memory Control) ............................. 57  
NVMKEY (Nonvolatile Memory Key) .......................... 58  
OCxCON (Output Compare x Control) ..................... 158  
OSCCON (Oscillator Control) ................................... 105  
OSCTUN (FRC Oscillator Tuning)............................ 109  
P1DC2 (PWM Duty Cycle 2)..................................... 172  
P1DC3 (PWM Duty Cycle 3)..................................... 172  
PDC1 (PWM Duty Cycle 1)....................................... 172  
PLLFBD (PLL Feedback Divisor).............................. 108  
PMD1 (Peripheral Module Disable Control  
Register 1) ........................................................ 114  
PMD1 (Peripheral Module Disable Control Register 1) ..  
114  
PMD2 (Peripheral Module Disable Control  
Register 2) ........................................................ 115  
PMD3 (Peripheral Module Disable Control  
Register 3) ........................................................ 116  
PMD3 (Peripheral Module Disable Control Register 3) ..  
116  
PTCON (PWM Time Base Control) .......................... 163  
PTMR (PWM Timer Count Value)............................. 164  
PTPER (PWM Time Base Period) ............................ 164  
PWMxCON1 (PWM Control 1).................................. 166  
PWMxCON2 (PWM Control 2).................................. 167  
PxDTCON1 (Dead-Time Control 1) .......................... 168  
PxDTCON2 (Dead-Time Control 2) .......................... 169  
PxFLTACON (Fault A Control).................................. 170  
PxOVDCON (Override Control) ................................ 171  
PxSECMP (Special Event Compare)........................ 165  
QEICON (QEI Control).............................................. 175  
RCON (Reset Control)................................................ 63  
SPIxCON1 (SPIx Control 1)...................................... 182  
SPIxCON2 (SPIx Control 2)...................................... 184  
SPIxSTAT (SPIx Status and Control) ....................... 181  
SR (CPU Status)................................................... 21, 75  
T1CON (Timer1 Control) .......................................... 145  
T2CON Control)........................................................ 149  
T3CON Control......................................................... 150  
UxMODE (UARTx Mode) ......................................... 195  
UxSTA (UARTx Status and Control) ........................ 197  
Reset  
Illegal Opcode....................................................... 61, 69  
Trap Conflict ......................................................... 68, 69  
Uninitialized W Register ....................................... 61, 69  
Reset Sequence................................................................. 71  
Resets ................................................................................ 61  
S
Serial Peripheral Interface (SPI)....................................... 179  
Software Reset Instruction (SWR)...................................... 68  
Software Simulator (MPLAB SIM) .................................... 229  
Software Stack Pointer, Frame Pointer  
CALLL Stack Frame ................................................... 46  
Special Features of the CPU ............................................ 211  
SPI Module  
SPI1 Register Map ..................................................... 39  
Symbols Used in Opcode Descriptions ............................ 220  
System Control  
Register Map .............................................................. 44  
T
Temperature and Voltage Specifications  
AC..................................................................... 244, 285  
Timer1 .............................................................................. 143  
Timer2/3 ........................................................................... 147  
Timing Characteristics  
CLKO and I/O........................................................... 247  
Timing Diagrams  
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAM = 0,  
ASAM = 0, SSRC<2:0> = 000)......................... 278  
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAM = 0,  
ASAM = 1, SSRC<2:0> = 111,  
SAMC<4:0> = 00001)....................................... 278  
12-bit ADC Conversion (ASAM = 0,  
SSRC<2:0> = 000)........................................... 277  
Brown-out Situations .................................................. 68  
External Clock .......................................................... 245  
I2Cx Bus Data (Master Mode).................................. 270  
I2Cx Bus Data (Slave Mode).................................... 272  
I2Cx Bus Start/Stop Bits (Master Mode)................... 270  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 272  
Input Capture (CAPx) ............................................... 253  
Motor Control PWM.................................................. 255  
Motor Control PWM Fault......................................... 255  
OC/PWM .................................................................. 254  
Output Compare (OCx) ............................................ 253  
QEA/QEB Input ........................................................ 256  
QEI Module Index Pulse........................................... 257  
Reset, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer......................................... 248  
Timer1, 2, 3 External Clock ...................................... 250  
TimerQ (QEI Module) External Clock....................... 252  
Timing Requirements  
ADC Conversion (10-bit mode) ................................ 290  
ADC Conversion (12-bit Mode) ................................ 290  
CLKO and I/O........................................................... 247  
External Clock .......................................................... 245  
Input Capture............................................................ 253  
SPIx Master Mode (CKE = 0) ................................... 286  
SPIx Module Master Mode (CKE = 1) ...................... 286  
SPIx Module Slave Mode (CKE = 0) ........................ 287  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 323  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
SPIx Module Slave Mode (CKE = 1).........................287  
Timing Specifications  
Timer3 External Clock Requirements....................... 251  
U
10-bit ADC Conversion Requirements......................279  
12-bit ADC Conversion Requirements......................277  
I2Cx Bus Data Requirements (Master Mode) ...........271  
I2Cx Bus Data Requirements (Slave Mode).............273  
Motor Control PWM Requirements...........................255  
Output Compare Requirements................................253  
PLL Clock..........................................................246, 285  
QEI External Clock Requirements ............................252  
QEI Index Pulse Requirements.................................257  
Quadrature Decoder Requirements..........................256  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out  
UART Module  
UART1 Register Map.................................................. 39  
Universal Asynchronous Receiver Transmitter (UART) ... 193  
Using the RCON Status Bits............................................... 69  
V
Voltage Regulator (On-Chip) ............................................ 215  
W
Watchdog Time-out Reset (WDTR).................................... 68  
Watchdog Timer (WDT)............................................ 211, 216  
Programming Considerations ................................... 216  
WWW Address ................................................................. 325  
WWW, On-Line Support ....................................................... 7  
Reset Requirements .........................................249  
Simple OC/PWM Mode Requirements .....................254  
Timer1 External Clock Requirements .......................250  
Timer2 External Clock Requirements .......................251  
DS70283K-page 324  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQs), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 325  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
DS70283K  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70283K-page 326  
© 2007-2012 Microchip Technology Inc.  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 FJ 32 MC2 02 T E / SP - XXX  
a)  
dsPIC33FJ32MC202TE/SP:  
Motor Control dsPIC33, 32 KB program  
memory, 28-pin, Extended temp.,  
SPDIP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
16-bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory Family: FJ  
Product Group:  
Pin Count:  
MC2  
=
=
Motor Control family  
Motor Control family  
MC3  
02  
04  
=
=
28-pin  
44-pin  
Temperature Range:  
I
E
H
=
=
=
-40° C to+85° C (Industrial)  
-40° C to+125° C (Extended)  
-40° C to+150° C (High)  
Package:  
SP  
SO  
SS  
ML  
PT  
=
=
=
=
=
=
Skinny Plastic Dual In-Line - 300 mil body (SPDIP)  
Plastic Small Outline - Wide - 7.50 mil body (SOIC)  
Plastic Shrink Small Outline - 5.3 mm body (SSOP)  
Plastic Quad, No Lead Package - 8x8 mm body (QFN)  
Plastic Thing Quad Flatpack - 10x10x1 mm body (TQFP)  
Plastic Quad, No Lead Package - 6x6 mm body (QFN-S)  
MM  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 327  
dsPIC33FJ32MC202/204 and dsPIC33FJ16MC304  
NOTES:  
DS70283K-page 328  
© 2007-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
PIC32 logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62076-335-3  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
© 2007-2012 Microchip Technology Inc.  
DS70283K-page 329  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS70283K-page 330  
© 2007-2012 Microchip Technology Inc.  

相关型号:

DSPIC33FJMC204ISO

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC204ISP

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC204ISS

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302EML

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302EMM

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302EPT

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302ESO

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302ESP

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302ESS

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302HML

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302HMM

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP

DSPIC33FJMC302HPT

16-bit Digital Signal Controllers (up to 32 KB Flash and 2 KB SRAM) with Motor Control and Advanced Analog
MICROCHIP