DSPIC33FJ256MC508I/PT-QTP [MICROCHIP]

High-Performance, 16-Bit Digital Signal Controllers; 高性能16位数字信号控制器
DSPIC33FJ256MC508I/PT-QTP
型号: DSPIC33FJ256MC508I/PT-QTP
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-Bit Digital Signal Controllers
高性能16位数字信号控制器

控制器
文件: 总342页 (文件大小:5332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJXXXMCX06/X08/X10  
Motor Control Family  
Data Sheet  
High-Performance, 16-Bit  
Digital Signal Controllers  
© 2007 Microchip Technology Inc.  
DS70287A  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The  
Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS70287A-page ii  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10  
MOTOR CONTROL FAMILY  
High-Performance, 16-bit Digital Signal Controllers  
Operating Range:  
Digital I/O:  
• DC – 40 MIPS (40 MIPS @ 3.0-3.6V,  
-40°C to +85°C)  
• Up to 85 programmable digital I/O pins  
• Wake-up/Interrupt-on-Change on up to 24 pins  
• Output pins can drive from 3.0V to 3.6V  
• All digital input pins are 5V tolerant  
• 4 mA sink on all I/O pins  
• Industrial temperature range (-40°C to +85°C)  
High-Performance DSC CPU:  
• Modified Harvard architecture  
• C compiler optimized instruction set  
• 16-bit wide data path  
On-Chip Flash and SRAM:  
• Flash program memory, up to 256 Kbytes  
• 24-bit wide instructions  
• Data SRAM, up to 30 Kbytes (includes 2 Kbytes  
of DMA RAM)  
• Linear program memory addressing up to 4M  
instruction words  
• Linear data memory addressing up to 64 Kbytes  
• 83 base instructions: mostly 1 word/1 cycle  
• Two 40-bit accumulators:  
System Management:  
• Flexible clock options:  
- External, crystal, resonator, internal RC  
- Fully integrated PLL  
- With rounding and saturation options  
• Flexible and powerful addressing modes:  
- Indirect, Modulo and Bit-Reversed  
• Software stack  
- Extremely low jitter PLL  
• Power-up Timer  
• Oscillator Start-up Timer/Stabilizer  
• Watchdog Timer with its own RC oscillator  
• Fail-Safe Clock Monitor  
• 16 x 16 fractional/integer multiply operations  
• 32/16 and 16/16 divide operations  
• Single-cycle multiply and accumulate:  
- Accumulator write back for DSP operations  
- Dual data fetch  
• Reset by multiple sources  
Power Management:  
• Up to ±16-bit shifts for up to 40-bit data  
• On-chip 2.5V voltage regulator  
• Switch between clock sources in real time  
• Idle, Sleep and Doze modes with fast wake-up  
Direct Memory Access (DMA):  
• 8-channel hardware DMA  
• 2 Kbytes dual ported DMA buffer area  
(DMA RAM) to store data transferred via DMA:  
Timers/Capture/Compare/PWM:  
• Timer/Counters, up to nine 16-bit timers:  
- Can pair up to make four 32-bit timers  
- Allows data transfer between RAM and a  
peripheral while CPU is executing code  
(no cycle stealing)  
- 1 timer runs as Real-Time Clock with external  
32.768 kHz oscillator  
• Most peripherals support DMA  
- Programmable prescaler  
Interrupt Controller:  
• Input Capture (up to 8 channels):  
- Capture on up, down or both edges  
- 16-bit capture input functions  
- 4-deep FIFO on each capture  
• Output Compare (up to 8 channels):  
- Single or Dual 16-Bit Compare mode  
- 16-bit Glitchless PWM mode  
• 5-cycle latency  
• 118 interrupt vectors  
• Up to 67 available interrupt sources  
• Up to 5 external interrupts  
• 7 programmable priority levels  
• 5 processor exceptions  
© 2007 Microchip Technology Inc.  
DS70287A-page 1  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Communication Modules:  
Motor Control Peripherals:  
• 3-wire SPI (up to 2 modules):  
• Motor Control PWM (up to 8 channels):  
- 4 duty cycle generators  
- Framing supports I/O interface to simple  
codecs  
- Independent or Complementary mode  
- Programmable dead time and output polarity  
- Edge or center-aligned  
- Supports 8-bit and 16-bit data  
- Supports all serial clock formats and  
sampling modes  
• I2C™ (up to 2 modules):  
- Manual output override control  
- Up to 2 Fault inputs  
- Full Multi-Master Slave mode support  
- 7-bit and 10-bit addressing  
- Trigger for ADC conversions  
- PWM frequency for 16-bit resolution  
(@ 40 MIPS) = 1220 Hz for Edge-Aligned  
mode, 610 Hz for Center-Aligned mode  
- Bus collision detection and arbitration  
- Integrated signal conditioning  
- Slave address masking  
- PWM frequency for 11-bit resolution  
(@ 40 MIPS) = 39.1 kHz for Edge-Aligned  
mode, 19.55 kHz for Center-Aligned mode  
• UART (up to 2 modules):  
- Interrupt on address bit detect  
- Interrupt on UART error  
• Quadrature Encoder Interface module:  
- Phase A, Phase B and index pulse input  
- 16-bit up/down position counter  
- Wake-up on Start bit from Sleep mode  
- 4-character TX and RX FIFO buffers  
- LIN bus support  
- Count direction status  
- Position Measurement (x2 and x4) mode  
- Programmable digital noise filters on inputs  
- Alternate 16-bit Timer/Counter mode  
- Interrupt on position counter rollover/underflow  
- IrDA® encoding and decoding in hardware  
- High-Speed Baud mode  
- Hardware Flow Control with CTS and RTS  
• Enhanced CAN (ECAN™ module) 2.0B active  
(up to 2 modules):  
Analog-to-Digital Converters (ADCs):  
- Up to 8 transmit and up to 32 receive buffers  
- 16 receive filters and 3 masks  
• Up to two ADC modules in a device  
- Loopback, Listen Only and Listen All  
Messages modes for diagnostics and bus  
monitoring  
• 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion:  
- 2, 4 or 8 simultaneous samples  
- Up to 32 input channels with auto-scanning  
- Wake-up on CAN message  
- Conversion start can be manual or  
synchronized with 1 of 4 trigger sources  
- Automatic processing of Remote  
Transmission Requests  
- Conversion possible in Sleep mode  
- ±1 LSb max integral nonlinearity  
- ±1 LSb max differential nonlinearity  
- FIFO mode using DMA  
- DeviceNet™ addressing support  
CMOS Flash Technology:  
• Low-power, high-speed Flash technology  
• Fully static design  
• 3.3V (±10%) operating voltage  
• Industrial temperature  
• Low-power consumption  
Packaging:  
• 100-pin TQFP (14x14x1 mm and 12x12x1 mm)  
• 80-pin TQFP (12x12x1 mm)  
• 64-pin TQFP (10x10x1 mm)  
Note:  
See the device variant tables for exact  
peripheral features per device.  
DS70287A-page 2  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
supplies, power factor correction and also for control-  
dsPIC33F PRODUCT FAMILIES  
ling the power management module in servers, tele-  
communication equipment and other industrial  
equipment.  
The dsPIC33F Motor Control Family supports a variety  
of motor control applications, such as brushless DC  
motors, single and 3-phase induction motors and  
switched reluctance motors. The dsPIC33F Motor Con-  
trol products are also well-suited for Uninterrupted  
Power Supply (UPS), inverters, switched mode power  
The device names, pin counts, memory sizes and  
peripheral availability of each device are listed below.  
The following pages show their pinout diagrams.  
dsPIC33F Motor Control Family Variants  
Program  
Flash  
Memory (Kbyte)  
(Kbyte)  
RAM  
Device  
Pins  
Packages  
(1)  
dsPIC33FJ64MC506  
dsPIC33FJ64MC508  
dsPIC33FJ64MC510  
dsPIC33FJ64MC706  
dsPIC33FJ64MC710  
dsPIC33FJ128MC506  
64  
80  
64  
64  
8
8
9
9
9
9
9
9
9
9
9
9
9
9
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
8 ch  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1 ADC,  
16 ch  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
2
1
1
1
2
2
1
2
53  
69  
85  
53  
85  
53  
85  
53  
69  
85  
85  
85  
PT  
PT  
1 ADC,  
18 ch  
100  
64  
64  
8
1 ADC,  
24 ch  
PF, PT  
PT  
64  
16  
16  
8
2 ADC,  
16 ch  
100  
64  
64  
2 ADC,  
24 ch  
PF, PT  
PT  
128  
128  
128  
128  
128  
256  
256  
1 ADC,  
16 ch  
dsPIC33FJ128MC510 100  
8
1 ADC,  
24 ch  
PF, PT  
PT  
dsPIC33FJ128MC706  
dsPIC33FJ128MC708  
64  
80  
16  
16  
16  
16  
30  
2 ADC,  
16 ch  
2 ADC,  
18 ch  
PT  
dsPIC33FJ128MC710 100  
dsPIC33FJ256MC510 100  
dsPIC33FJ256MC710 100  
2 ADC,  
24 ch  
PF, PT  
PF, PT  
PF, PT  
1 ADC,  
24 ch  
2 ADC,  
24 ch  
Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.  
2: Maximum I/O pin count includes pins shared by the peripheral functions.  
© 2007 Microchip Technology Inc.  
DS70287A-page 3  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Pin Diagrams  
64-Pin TQFP  
PWM3H/RE5  
PWM4L/RE6  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13  
OC1/RD0  
1
2
3
PWM4H/RE7  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
4
IC4/INT4/RD11  
5
IC3/INT3/RD10  
6
IC2/U1CTS/FLTB/INT2/RD9  
IC1/FLTA/INT1/RD8  
7
dsPIC33FJ128MC506  
dsPIC33FJ64MC506  
dsPIC33FJ128MC706  
dsPIC33FJ64MC706  
8
VSS  
SS2/CN11/RG9  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/QEB/IC8/CN7/RB5  
AN4/QEA/IC7/CN6/RB4  
VDD  
SCL1/RG2  
SDA1/RG3  
AN3/INDX/CN5/RB3  
AN2/SS1/CN4/RB2  
U1RTS/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
PGC3/EMUC3/AN1/VREF-/CN3/RB1  
PGD3/EMUD3/AN0/VREF+/CN2/RB0  
DS70287A-page 4  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Pin Diagrams (Continued)  
80-Pin TQFP  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
PGD2/EMUD2/SOSCI/CN1/RC13  
OC1/RD0  
1
PWM3H/RE5  
PWM4L/RE6  
2
PWM4H/RE7  
3
IC4/RD11  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
4
IC3/RD10  
5
IC2/RD9  
6
IC1/RD8  
7
SDA2/INT4/RA3  
SCL2/INT3/RA2  
8
9
VSS  
SS2/CN11/RG9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
dsPIC33FJ64MC508  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VSS  
VDD  
VDD  
TMS/FLTA/INT1/RE8  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
TDO/FLTB/INT2/RE9  
AN5/QEB/CN7/RB5  
AN4/QEA/CN6/RB4  
AN3/INDX/CN5/RB3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
© 2007 Microchip Technology Inc.  
DS70287A-page 5  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Pin Diagrams (Continued)  
80-Pin TQFP  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
PGD2/EMUD2/SOSCI/CN1/RC13  
OC1/RD0  
1
PWM3H/RE5  
PWM4L/RE6  
2
PWM4H/RE7  
3
IC4/RD11  
4
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
SCK2/CN8/RG6  
IC3/RD10  
5
IC2/RD9  
6
IC1/RD8  
7
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
SDA2/INT4/RA3  
SCL2/INT3/RA2  
8
9
VSS  
SS2/CN11/RG9  
10  
11  
12  
dsPIC33FJ128MC708  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
VSS  
VDD  
VDD  
TMS/FLTA/INT1/RE8  
TDO/FLTB/INT2/RE9  
AN5/QEB/CN7/RB5  
13  
14  
15  
16  
17  
18  
19  
20  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN4/QEA/CN6/RB4  
AN3/INDX/CN5/RB3  
AN2/SS1/CN4/RB2  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
DS70287A-page 6  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Pin Diagrams (Continued)  
100-Pin TQFP  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VSS  
1
RG15  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
VDD  
2
PGD2/EMUD2/SOSCI/CN1/RC13  
OC1/RD0  
PWM3H/RE5  
PWM4L/RE6  
3
4
IC4/RD11  
PWM4H/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
dsPIC33FJ64MC510  
SS2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
TDI/RA4  
VDD  
TMS/RA0  
AN20/FLTA/INT1/RE8  
AN21/FLTB/INT2/RE9  
AN5/QEB/CN7/RB5  
RA3  
RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
AN4/QEA/CN6/RB4  
AN3/INDX/CN5/RB3  
AN2/SS1/CN4/RB2  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
© 2007 Microchip Technology Inc.  
DS70287A-page 7  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Pin Diagrams (Continued)  
100-Pin TQFP  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VSS  
1
RG15  
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
VDD  
2
PGD2/EMUD2/SOSCI/CN1/RC13  
OC1/RD0  
PWM3H/RE5  
PWM4L/RE6  
3
4
IC4/RD11  
PWM4H/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
SCK2/CN8/RG6  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
SDI2/CN9/RG7  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
SDO2/CN10/RG8  
MCLR  
dsPIC33FJ128MC510  
dsPIC33FJ256MC510  
VDD  
SS2/CN11/RG9  
VSS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/FLTA/INT1/RE8  
AN21/FLTB/INT2/RE9  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN5/QEB/CN7/RB5  
AN4/QEA/CN6/RB4  
AN3/INDX/CN5/RB3  
AN2/SS1/CN4/RB2  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
DS70287A-page 8  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Pin Diagrams (Continued)  
100-Pin TQFP  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
SS  
RG15  
1
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14  
VDD  
2
PGD2/EMUD2/SOSCI/CN1/RC13  
OC1/RD0  
PWM3H/RE5  
PWM4L/RE6  
3
4
IC4/RD11  
PWM4H/RE7  
5
IC3/RD10  
AN16/T2CK/T7CK/RC1  
AN17/T3CK/T6CK/RC2  
AN18/T4CK/T9CK/RC3  
AN19/T5CK/T8CK/RC4  
6
IC2/RD9  
7
IC1/RD8  
8
INT4/RA15  
9
INT3/RA14  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKIN/RC12  
dsPIC33FJ64MC710  
dsPIC33FJ128MC710  
dsPIC33FJ256MC710  
SS2/CN11/RG9  
VDD  
VSS  
TDO/RA5  
VDD  
TDI/RA4  
TMS/RA0  
AN20/FLTA/INT1/RE8  
AN21/FLTB/INT2/RE9  
AN5/QEB/CN7/RB5  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
AN4/QEA/CN6/RB4  
AN3/INDX/CN5/RB3  
AN2/SS1/CN4/RB2  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
PGC3/EMUC3/AN1/CN3/RB1  
PGD3/EMUD3/AN0/CN2/RB0  
© 2007 Microchip Technology Inc.  
DS70287A-page 9  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Table of Contents  
dsPIC33F Product Families ................................................................................................................................................................... 3  
1.0 Device Overview ........................................................................................................................................................................ 13  
2.0 CPU............................................................................................................................................................................................ 17  
3.0 Memory Organization................................................................................................................................................................. 29  
4.0 Flash Program Memory.............................................................................................................................................................. 67  
5.0 Resets ....................................................................................................................................................................................... 73  
6.0 Interrupt Controller ..................................................................................................................................................................... 79  
7.0 Direct Memory Access (DMA) .................................................................................................................................................. 127  
8.0 Oscillator Configuration ............................................................................................................................................................ 137  
9.0 Power-Saving Features............................................................................................................................................................ 145  
10.0 I/O Ports ................................................................................................................................................................................... 147  
11.0 Timer1 ...................................................................................................................................................................................... 149  
12.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 151  
13.0 Input Capture............................................................................................................................................................................ 157  
14.0 Output Compare....................................................................................................................................................................... 159  
15.0 Motor Control PWM Module..................................................................................................................................................... 163  
16.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 185  
17.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 193  
2
18.0 Inter-Integrated Circuit (I C)..................................................................................................................................................... 201  
19.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 211  
20.0 Enhanced CAN Module............................................................................................................................................................ 219  
21.0 10-bit/12-bit Analog-to-Digital Converter (ADC)....................................................................................................................... 249  
22.0 Special Features ...................................................................................................................................................................... 263  
23.0 Instruction Set Summary.......................................................................................................................................................... 271  
24.0 Development Support............................................................................................................................................................... 279  
25.0 Electrical Characteristics .......................................................................................................................................................... 283  
26.0 Packaging Information.............................................................................................................................................................. 323  
Appendix A: Differences Between “PS” (Prototype Sample) Devices and Final Production Devices................................................ 329  
Appendix B: Revision History............................................................................................................................................................. 330  
Index ................................................................................................................................................................................................. 331  
The Microchip Web Site..................................................................................................................................................................... 337  
Customer Change Notification Service .............................................................................................................................................. 337  
Customer Support.............................................................................................................................................................................. 337  
Reader Response .............................................................................................................................................................................. 338  
Product Identification System............................................................................................................................................................. 339  
DS70287A-page 10  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2007 Microchip Technology Inc.  
DS70287A-page 11  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 12  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
These features make this family suitable for a wide vari-  
1.0  
DEVICE OVERVIEW  
ety of high-performance digital signal control applica-  
tions. The devices are pin compatible with the PIC24H  
family of devices, and also share a very high degree of  
compatibility with the dsPIC30F family devices. This  
allows easy migration between device families as may be  
necessitated by the specific functionality, computational  
resource and system cost requirements of the  
application.  
Note:  
This data sheet summarizes the features  
of this group  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family Ref-  
erence Manual”. Refer to the Microchip  
web site (www.microchip.com) for the lat-  
est dsPIC33F family reference manual  
chapters.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family of devices  
architecture that seamlessly integrates the control  
features of Microcontroller (MCU) with the  
employ a powerful 16-bit  
a
computational capabilities of a Digital Signal Processor  
(DSP). The resulting functionality is ideal for  
applications that rely on high-speed, repetitive  
computations, as well as control.  
This document contains device specific information for  
the following devices:  
• dsPIC33FJ64MC506  
• dsPIC33FJ64MC508  
• dsPIC33FJ64MC510  
• dsPIC33FJ64MC706  
• dsPIC33FJ64MC710  
• dsPIC33FJ128MC506  
• dsPIC33FJ128MC510  
• dsPIC33FJ128MC706  
• dsPIC33FJ128MC708  
• dsPIC33FJ128MC710  
• dsPIC33FJ256MC510  
• dsPIC33FJ256MC710  
The DSP engine, dual 40-bit accumulators, hardware  
support for division operations, barrel shifter, 17 x 17  
multiplier, a large array of 16-bit working registers and  
a wide variety of data addressing modes, together,  
provide the dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family Central Processing Unit (CPU) with  
extensive mathematical processing capability. Flexible  
and deterministic interrupt handling, coupled with a  
powerful array of peripherals, renders the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices suitable for control applications. Further, Direct  
Memory Access (DMA) enables overhead-free transfer  
of data between several peripherals and a dedicated  
DMA RAM. Reliable, field programmable Flash  
program memory ensures scalability of applications  
that use dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family includes devices with a wide range of pin counts  
(64, 80 and 100), different program memory sizes (64  
Kbytes, 128 Kbytes and 256 Kbytes) and different RAM  
sizes (8 Kbytes, 16 Kbytes and 30 Kbytes).  
© 2007 Microchip Technology Inc.  
DS70287A-page 13  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 1-1:  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
GENERAL BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
16  
DMA  
RAM  
Data Latch  
Data Latch  
X RAM  
23  
PCH PCL  
Program Counter  
Y RAM  
PCU  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
DMA  
16  
Controller  
23  
16  
16  
PORTC  
PORTD  
PORTE  
PORTF  
PORTG  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
Address Bus  
ROM Latch  
24  
16  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
Power-up  
Timer  
Timing  
Generation  
W Register Array  
OSC2/CLKO  
OSC1/CLKI  
Divide Support  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VDDCORE/VCAP  
VDD, VSS  
MCLR  
Timers  
1-9  
ADC1,2  
I2C1,2  
PWM  
ECAN1,2  
UART1,2  
QEI  
OC/  
IC1-8  
CN1-23  
SPI1,2  
PWM1-8  
Note:  
Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins  
and features present on each device.  
DS70287A-page 14  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
AN0-AN31  
AVDD  
I
Analog  
Analog input channels.  
P
P
P
P
Positive supply for analog modules.  
AVSS  
Ground reference for analog modules.  
CLKI  
I
ST/CMOS External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.  
Optionally functions as CLKO in RC and EC modes. Always associated with OSC2  
pin function.  
CN0-CN23  
I
ST  
Input change notification inputs.  
Can be software programmed for internal weak pull-ups on all inputs.  
C1RX  
C1TX  
C2RX  
C2TX  
I
O
I
ST  
ST  
ECAN1 bus receive pin.  
ECAN1 bus transmit pin.  
ECAN2 bus receive pin.  
ECAN2 bus transmit pin.  
O
PGD1/EMUD1  
PGC1/EMUC1  
PGD2/EMUD2  
PGC2/EMUC2  
PGD3/EMUD3  
PGC3/EMUC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
Data I/O pin for programming/debugging communication channel 1.  
Clock input pin for programming/debugging communication channel 1.  
Data I/O pin for programming/debugging communication channel 2.  
Clock input pin for programming/debugging communication channel 2.  
Data I/O pin for programming/debugging communication channel 3.  
Clock input pin for programming/debugging communication channel 3.  
I
I/O  
I
I/O  
I
IC1-IC8  
I
ST  
Capture inputs 1 through 8.  
INDX  
QEA  
I
I
ST  
ST  
Quadrature Encoder Index Pulse input.  
Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
Position Up/Down Counter Direction State.  
QEB  
I
ST  
UPDN  
O
CMOS  
INT0  
INT1  
INT2  
INT3  
INT4  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
External interrupt 0.  
External interrupt 1.  
External interrupt 2.  
External interrupt 3.  
External interrupt 4.  
FLTA  
FLTB  
I
I
ST  
ST  
PWM Fault A input.  
PWM Fault B input.  
PWM 1 low output.  
PWM 1 high output.  
PWM 2 low output.  
PWM 2 high output.  
PWM 3 low output.  
PWM 3 high output.  
PWM 4 low output.  
PWM 4 high output.  
PWM1L  
PWM1H  
PWM2L  
PWM2H  
PWM3L  
PWM3H  
PWM4L  
PWM4H  
O
O
O
O
O
O
O
O
MCLR  
I/P  
ST  
Master Clear (Reset) input. This pin is an active-low Reset to the device.  
OCFA  
OCFB  
OC1-OC8  
I
I
O
ST  
ST  
Compare Fault A input (for Compare Channels 1, 2, 3 and 4).  
Compare Fault B input (for Compare Channels 5, 6, 7 and 8).  
Compare outputs 1 through 8.  
OSC1  
OSC2  
I
ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.  
I/O  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.  
Optionally functions as CLKO in RC and EC modes.  
RA0-RA7  
RA9-RA10  
RA12-RA15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTA is a bidirectional I/O port.  
RB0-RB15  
I/O  
ST  
PORTB is a bidirectional I/O port.  
Legend: CMOS = CMOS compatible input or output; Analog = Analog input  
ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = Power  
© 2007 Microchip Technology Inc.  
DS70287A-page 15  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 1-1:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
RC1-RC4  
RC12-RC15  
I/O  
I/O  
ST  
ST  
PORTC is a bidirectional I/O port.  
RD0-RD15  
RE0-RE9  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTD is a bidirectional I/O port.  
PORTE is a bidirectional I/O port.  
PORTF is a bidirectional I/O port.  
RF0-RF8  
RF12-RF13  
RG0-RG3  
RG6-RG9  
RG12-RG15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTG is a bidirectional I/O port.  
SCK1  
SDI1  
SDO1  
SS1  
SCK2  
SDI2  
SDO2  
SS2  
I/O  
I
O
I/O  
I/O  
I
ST  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 data in.  
SPI1 data out.  
SPI1 slave synchronization or frame pulse I/O.  
Synchronous serial clock input/output for SPI2.  
SPI2 data in.  
O
I/O  
SPI2 data out.  
SPI2 slave synchronization or frame pulse I/O.  
ST  
SCL1  
SDA1  
SCL2  
SDA2  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for I2C1.  
Synchronous serial data input/output for I2C1.  
Synchronous serial clock input/output for I2C2.  
Synchronous serial data input/output for I2C2.  
SOSCI  
I
ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
SOSCO  
O
32.768 kHz low-power oscillator crystal output.  
TMS  
TCK  
TDI  
I
I
I
ST  
ST  
ST  
JTAG Test mode select pin.  
JTAG test clock input pin.  
JTAG test data input pin.  
JTAG test data output pin.  
TDO  
O
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
T6CK  
T7CK  
T8CK  
T9CK  
I
I
I
I
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
Timer3 external clock input.  
Timer4 external clock input.  
Timer5 external clock input.  
Timer6 external clock input.  
Timer7 external clock input.  
Timer8 external clock input.  
Timer9 external clock input.  
U1CTS  
U1RTS  
U1RX  
U1TX  
U2CTS  
U2RTS  
U2RX  
U2TX  
I
O
I
O
I
O
I
O
ST  
ST  
ST  
ST  
UART1 clear to send.  
UART1 ready to send.  
UART1 receive.  
UART1 transmit.  
UART2 clear to send.  
UART2 ready to send.  
UART2 receive.  
UART2 transmit.  
VDD  
P
P
P
I
Positive supply for peripheral logic and I/O pins.  
CPU logic filter capacitor connection.  
Ground reference for logic and I/O pins.  
Analog voltage reference (high) input.  
Analog voltage reference (low) input.  
VDDCORE  
VSS  
VREF+  
VREF-  
Analog  
Analog  
I
Legend: CMOS = CMOS compatible input or output; Analog = Analog input  
ST = Schmitt Trigger input with CMOS levels; O = Output; I = Input; P = Power  
DS70287A-page 16  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2.1  
Data Addressing Overview  
2.0  
CPU  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through the  
X memory AGU, which accesses the entire memory  
map as one linear data space. Certain DSP instructions  
operate through the X and Y AGUs to support dual  
operand reads, which splits the data address space  
into two parts. The X and Y data space boundary is  
device-specific.  
Note:  
This data sheet summarizes the features  
of this group  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software bound-  
ary checking overhead for DSP algorithms. Further-  
more, the X AGU circular addressing can be used with  
any of the MCU class of instructions. The X AGU also  
supports Bit-Reversed Addressing to greatly simplify  
input or output data reordering for radix-2 FFT algo-  
rithms.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family CPU module has a 16-bit (data) modified Har-  
vard architecture with an enhanced instruction set,  
including significant support for DSP. The CPU has a  
24-bit instruction word with a variable length opcode  
field. The Program Counter (PC) is 23 bits wide and  
addresses up to 4M x 24 bits of user program memory  
space. The actual amount of program memory imple-  
mented varies by device. A single-cycle instruction  
prefetch mechanism is used to help maintain through-  
put and provides predictable execution. All instructions  
execute in a single cycle, with the exception of instruc-  
tions that change the program flow, the double word  
move (MOV.D) instruction and the table instructions.  
Overhead-free program loop constructs are supported  
using the DO and REPEAT instructions, both of which  
are interruptible at any point.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit Pro-  
gram Space Visibility Page (PSVPAG) register. The  
program to data space mapping feature lets any  
instruction access program space as if it were data  
space.  
The data space also includes 2 Kbytes of DMA RAM,  
which is primarily used for DMA data transfers but may  
be used as general purpose RAM.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices have sixteen 16-bit working registers in  
the programmer’s model. Each of the working registers  
can serve as a data, address or address offset register.  
The 16th working register (W15) operates as a soft-  
ware Stack Pointer (SP) for interrupts and calls.  
2.2  
DSP Engine Overview  
The DSP engine features a high-speed, 17-bit by 17-bit  
multiplier, a 40-bit ALU, two 40-bit saturating accumu-  
lators and a 40-bit bidirectional barrel shifter. The barrel  
shifter is capable of shifting a 40-bit value up to 16 bits  
right or left in a single cycle. The DSP instructions oper-  
ate seamlessly with all other instructions and have  
been designed for optimal real-time performance. The  
MAC instruction and other associated instructions can  
concurrently fetch two data operands from memory  
while multiplying two W registers and accumulating and  
optionally saturating the result in the same cycle. This  
instruction functionality requires that the RAM memory  
data space be split for these instructions and linear for  
all others. Data space partitioning is achieved in a  
transparent and flexible manner through dedicating  
certain working registers to each address space.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family instruction set has two classes of instructions:  
MCU and DSP. These two instruction classes are  
seamlessly integrated into a single CPU. The instruc-  
tion set includes many addressing modes and is  
designed for optimum C compiler efficiency. For most  
instructions, the dsPIC33FJXXXMCX06/X08/X10  
Motor Control Family is capable of executing a data (or  
program data) memory read, a working register (data)  
read, a data memory write and a program (instruction)  
memory read per instruction cycle. As a result, three  
parameter instructions can be supported, allowing A +  
B = C operations to be executed in a single cycle.  
A block diagram of the CPU is shown in Figure 2-1, and  
the  
programmer’s  
model  
for  
the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
is shown in Figure 2-2.  
© 2007 Microchip Technology Inc.  
DS70287A-page 17  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family supports 16/16 and 32/16 divide operations,  
both fractional and integer. All divide instructions are  
iterative operations. They must be executed within a  
REPEAT loop, resulting in a total execution time of 19  
instruction cycles. The divide operation can be  
interrupted during any of those 19 cycles without a loss  
of data.  
2.3  
Special MCU Features  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family features a 17-bit by 17-bit, single-cycle multi-  
plier that is shared by both the MCU ALU and DSP  
engine. The multiplier can perform signed, unsigned  
and mixed-sign multiplication. Using a 17-bit by 17-bit  
multiplier for 16-bit by 16-bit multiplication not only  
allows you to perform mixed-sign multiplication, it also  
achieves accurate results for special operations, such  
as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit  
left or right shift in a single cycle. The barrel shifter can  
be used by both MCU and DSP instructions.  
FIGURE 2-1:  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY CPU CORE BLOCK  
DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
DMA  
RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
Y RAM  
23  
Address  
Latch  
Address  
Latch  
Stack  
Control  
Logic  
Loop  
Control  
Logic  
23  
16  
16  
DMA  
Controller  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
Address Bus  
ROM Latch  
24  
16  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16-bit ALU  
16  
To Peripheral Modules  
DS70287A-page 18  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 2-2:  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
AccA  
AD31  
AD0  
DSP  
Accumulators  
AccB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC  
SRH  
RA  
N
Z
C
IPL2 IPL1 IPL0  
OV  
STATUS Register  
SRL  
© 2007 Microchip Technology Inc.  
DS70287A-page 19  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2.4  
CPU Control Registers  
REGISTER 2-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(2)  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
OA: Accumulator A Overflow Status bit  
1= Accumulator A overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulators A or B have overflowed  
0= Neither Accumulators A or B have overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit  
1= Accumulators A or B are saturated or have been saturated at some time in the past  
0= Neither Accumulator A or B are saturated  
Note:  
This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.  
bit 9  
bit 8  
DA: DOLoop Active bit  
1= DOloop in progress  
0= DOloop not in progress  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized  
data) of the result occurred  
Note 1: This bit may be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
DS70287A-page 20  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 2-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation which affects the Z bit has set it at some time in the past  
0= The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit may be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
© 2007 Microchip Technology Inc.  
DS70287A-page 21  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 2-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminate executing DOloop at end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops active  
001= 1 DOloop active  
000= 0 DOloops active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SATA: AccA Saturation Enable bit  
1= Accumulator A saturation enabled  
0= Accumulator A saturation disabled  
SATB: AccB Saturation Enable bit  
1= Accumulator B saturation enabled  
0= Accumulator B saturation disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation enabled  
0= Data space write saturation disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding enabled  
0= Unbiased (convergent) rounding enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode enabled for DSP multiply ops  
0= Fractional mode enabled for DSP multiply ops  
Note 1: This bit will always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
DS70287A-page 22  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2.5  
Arithmetic Logic Unit (ALU)  
2.6  
DSP Engine  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family ALU is 16 bits wide and is capable of addition,  
subtraction, bit shifts and logic operations. Unless oth-  
erwise mentioned, arithmetic operations are 2’s com-  
plement in nature. Depending on the operation, the  
ALU may affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC) Sta-  
tus bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
The DSP engine consists of a high-speed, 17-bit x  
17-bit multiplier, barrel shifter and 40-bit  
adder/subtracter (with two target accumulators, round  
and saturation logic).  
a
a
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family is a single-cycle, instruction flow architecture;  
therefore, concurrent operation of the DSP engine with  
MCU instruction flow is not possible. However, some  
MCU ALU and DSP engine resources may be used  
concurrently by the same instruction (e.g., ED, EDAC).  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W reg-  
ister array or data memory, depending on the address-  
ing mode of the instruction. Likewise, output data from  
the ALU can be written to the W register array or a data  
memory location.  
The DSP engine also has the capability to perform  
inherent accumulator-to-accumulator operations which  
require no additional data. These instructions are ADD,  
SUBand NEG.  
The DSP engine has various options selected through  
various bits in the CPU Core Control register  
(CORCON), as listed below:  
Refer to the “dsPIC30F/33F Programmer’s Reference  
Manual” (DS70157) for information on the SR bits  
affected by each instruction.  
1. Fractional or integer DSP multiply (IF)  
2. Signed or unsigned DSP multiply (US)  
3. Conventional or convergent rounding (RND)  
4. Automatic saturation on/off for AccA (SATA)  
5. Automatic saturation on/off for AccB (SATB)  
6. Automatic saturation on/off for writes to data  
memory (SATDW)  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family CPU incorporates hardware support for both  
multiplication and division. This includes a dedicated  
hardware multiplier and support hardware for  
16-bit-divisor division.  
7. Accumulator Saturation mode selection (ACCSAT)  
2.5.1  
MULTIPLIER  
Table 2-1 provides a summary of DSP instructions. A  
block diagram of the DSP engine is shown in  
Figure 2-3.  
Using the high-speed 17-bit x 17-bit multiplier of the  
DSP engine, the ALU supports unsigned, signed or  
mixed-sign operation in several MCU multiplication  
modes:  
TABLE 2-1:  
DSP INSTRUCTIONS  
SUMMARY  
1. 16-bit x 16-bit signed  
2. 16-bit x 16-bit unsigned  
Algebraic  
Operation  
ACC Write  
Instruction  
3. 16-bit signed x 5-bit (literal) unsigned  
4. 16-bit unsigned x 16-bit unsigned  
5. 16-bit unsigned x 5-bit (literal) unsigned  
6. 16-bit unsigned x 16-bit signed  
7. 8-bit unsigned x 8-bit unsigned  
Back  
CLR  
A = 0  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
EDAC  
MAC  
No  
Yes  
No  
2.5.2  
DIVIDER  
MAC  
MOVSAC  
MPY  
No change in A  
A = x * y  
Yes  
No  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
MPY  
A = x 2  
No  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
MPY.N  
MSC  
A = – x * y  
No  
A = A – x * y  
Yes  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIVinstructions can specify any W register for both the  
16-bit divisor (Wn) and any W register (aligned) pair  
(W(m + 1):Wm) for the 32-bit dividend. The divide algo-  
rithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
© 2007 Microchip Technology Inc.  
DS70287A-page 23  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 2-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
40-bit Accumulator A  
40-bit Accumulator B  
t
16  
40  
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Saturate  
e
Adder  
Carry/Borrow In  
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS70287A-page 24  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2.6.1  
MULTIPLIER  
2.6.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side, and either true, or complement  
data into the other input. In the case of addition, the  
Carry/Borrow input is active-high and the other input is  
true data (not complemented), whereas in the case of  
subtraction, the Carry/Borrow input is active-low and  
the other input is complemented. The adder/subtracter  
generates Overflow Status bits, SA/SB and OA/OB,  
which are latched and reflected in the STATUS  
register:  
multiplier/scaler is  
a
33-bit value which is  
sign-extended to 40 bits. Integer data is inherently rep-  
resented as a signed two’s complement value, where  
the MSb is defined as a sign bit. Generally speaking,  
the range of an N-bit two’s complement integer is -2N-1  
to 2N-1 – 1. For a 16-bit integer, the data range is  
-32768 (0x8000) to 32767 (0x7FFF) including 0. For a  
32-bit integer, the data range is -2,147,483,648  
(0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
When the multiplier is configured for fractional multipli-  
cation, the data is represented as a two’s complement  
fraction, where the MSb is defined as a sign bit and the  
radix point is implied to lie just after the sign bit (QX  
format). The range of an N-bit two’s complement  
fraction with this implied radix point is -1.0 to (1 – 21-N).  
For a 16-bit fraction, the Q15 data range is -1.0  
(0x8000) to 0.999969482 (0x7FFF) including 0 and has  
a precision of 3.01518x10-5. In Fractional mode, the 16  
x 16 multiply operation generates a 1.31 product which  
The adder has an additional saturation block which  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described above and the SAT<A:B> (CORCON<7:6>)  
and ACCSAT (CORCON<4>) mode control bits to  
determine when and to what value to saturate.  
Six STATUS register bits have been provided to  
support saturation and overflow; they are:  
has a precision of 4.65661 x 10-10  
.
1. OA:  
The same multiplier is used to support the MCU multi-  
ply instructions which include integer 16-bit signed,  
unsigned and mixed sign multiplies.  
AccA overflowed into guard bits  
2. OB:  
AccB overflowed into guard bits  
The MUL instruction may be directed to use byte or  
word sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
3. SA:  
AccA saturated (bit 31 overflow and saturation)  
or  
AccA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
2.6.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
4. SB:  
AccB saturated (bit 31 overflow and saturation)  
or  
The data accumulator consists of  
a
40-bit  
AccB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
adder/subtracter with automatic sign extension logic. It  
can select one of two accumulators (A or B) as its  
pre-accumulation source and post-accumulation desti-  
nation. For the ADDand LACinstructions, the data to be  
accumulated or loaded can be optionally scaled via the  
barrel shifter prior to accumulation.  
5. OAB:  
Logical OR of OA and OB  
6. SAB:  
Logical OR of SA and SB  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when they and the correspond-  
ing Overflow Trap Flag Enable bits (OVATE, OVBTE) in  
the INTCON1 register (refer to Section 6.0 “Interrupt  
Controller”) are set. This allows the user to take  
immediate action, for example, to correct system gain.  
© 2007 Microchip Technology Inc.  
DS70287A-page 25  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user. When set, they indicate that the  
accumulator has overflowed its maximum range (bit 31  
for 32-bit saturation or bit 39 for 40-bit saturation) and  
will be saturated (if saturation is enabled). When  
saturation is not enabled, SA and SB default to bit 39  
overflow and, thus, indicate that a catastrophic over-  
flow has occurred. If the COVTE bit in the INTCON1  
register is set, SA and SB bits will generate an  
2.6.2.2  
Accumulator ‘Write Back’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
1. W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as  
1.15 fraction.  
arithmetic warning trap when saturation is disabled.  
a
The Overflow and Saturation Status bits can optionally  
be viewed in the STATUS Register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). This allows programmers to check  
one bit in the STATUS register to determine if either  
accumulator has overflowed or one bit to determine if  
either accumulator has saturated. This would be useful  
for complex number arithmetic, which typically uses  
both the accumulators.  
2. [W13]+ = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target accumu-  
lator are written into the address pointed to by  
W13 as  
incremented by 2 (for a word write).  
a
1.15 fraction. W13 is then  
2.6.2.3  
Round Logic  
The round logic is a combinational block which  
The device supports three Saturation and Overflow  
modes:  
performs  
a conventional (biased) or convergent  
(unbiased) round function during an accumulator write  
(store). The Round mode is determined by the state of  
the RND bit in the CORCON register. It generates a  
16-bit, 1.15 data value which is passed to the data  
space write saturation logic. If rounding is not indicated  
by the instruction, a truncated 1.15 data value is stored  
and the least significant word is simply discarded.  
1. Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF) or maximally negative 9.31  
value (0x8000000000) into the target accumula-  
tor. The SA or SB bit is set and remains set until  
cleared by the user. This is referred to as ‘super  
saturation’ and provides protection against erro-  
neous data or unexpected algorithm problems  
(e.g., gain calculations).  
Conventional rounding zero-extends bit 15 of the accu-  
mulator and adds it to the ACCxH word (bits 16 through  
31 of the accumulator). If the ACCxL word (bits 0  
through 15 of the accumulator) is between 0x8000 and  
0xFFFF (0x8000 included), ACCxH is incremented. If  
ACCxL is between 0x0000 and 0x7FFF, ACCxH is left  
unchanged. A consequence of this algorithm is that  
over a succession of random rounding operations, the  
value tends to be biased slightly positive.  
2. Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally posi-  
tive 1.31 value (0x007FFFFFFF) or maximally  
negative 1.31 value (0x0080000000) into the  
target accumulator. The SA or SB bit is set and  
remains set until cleared by the user. When this  
Saturation mode is in effect, the guard bits are  
not used (so the OA, OB or OAB bits are never  
set).  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. In this case, the Least Signifi-  
cant bit (bit 16 of the accumulator) of ACCxH is  
examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’,  
ACCxH is not modified. Assuming that bit 16 is  
effectively random in nature, this scheme removes any  
rounding bias that may accumulate.  
3. Bit 39 Catastrophic Overflow:  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remains set  
until cleared by the user. No saturation operation  
is performed and the accumulator is allowed to  
overflow (destroying its sign). If the COVTE bit in  
the INTCON1 register is set, a catastrophic  
overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a  
truncated (SAC), or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
the  
X
bus, subject to data saturation (see  
Section 2.6.2.4 “Data Space Write Saturation”). For  
the MAC class of instructions, the accumulator  
write-back operation will function in the same manner,  
addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data  
is always subject to rounding.  
DS70287A-page 26  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2.6.2.4  
Data Space Write Saturation  
2.6.3  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated – but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15 frac-  
tional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These inputs  
are combined and used to select the appropriate 1.15  
fractional value as output to write to data space  
memory.  
The barrel shifter is capable of performing up to 16-bit  
arithmetic or logic right shifts, or up to 16-bit left shifts  
in a single cycle. The source can be either of the two  
DSP accumulators or the X bus (to support multi-bit  
shifts of register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly. For input data greater than  
0x007FFF, data written to memory is forced to the max-  
imum positive 1.15 value, 0x7FFF. For input data less  
than 0xFF8000, data written to memory is forced to the  
maximum negative 1.15 value, 0x8000. The Most  
Significant bit of the source (bit 39) is used to determine  
the sign of the operand being tested.  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is pre-  
sented to the barrel shifter between bit positions 16 to  
31 for right shifts and between bit positions 0 to 16 for  
left shifts.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
© 2007 Microchip Technology Inc.  
DS70287A-page 27  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 28  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
3.1  
Program Address Space  
3.0  
MEMORY ORGANIZATION  
The program address memory space of the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices is 4M instructions. The space is addressable  
by a 24-bit value derived from either the 23-bit Program  
Counter (PC) during program execution, or from table  
operation or data space remapping as described in  
Section 3.6 “Interfacing Program and Data Memory  
Spaces”.  
Note:  
This data sheet summarizes the features  
of  
this  
group  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
User access to the program memory space is restricted  
to the lower half of the address range (0x000000 to  
0x7FFFFF). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space. Memory usage for the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
family of devices is shown in Figure 3-1.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family architecture features separate program and  
data memory spaces and buses. This architecture also  
allows the direct access of program memory from the  
data space during code execution.  
© 2007 Microchip Technology Inc.  
DS70287A-page 29  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 3-1:  
PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 MOTOR  
CONTROL FAMILY DEVICES  
dsPIC33FJ64MCXXX  
dsPIC33FJ128MCXXX  
dsPIC33FJ256MCXXX  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
(22K instructions)  
User Program  
Flash Memory  
(44K instructions)  
User Program  
Flash Memory  
(88K instructions)  
0x00ABFE  
0x00AC00  
0x0157FE  
0x015800  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
0x02ABFE  
0x02AC00  
(Read ‘0’s)  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
Device Configuration  
Registers  
Device Configuration  
Registers  
Device Configuration  
Registers  
0xF80017  
0xF80010  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
0xFEFFFE  
0xFF0000  
0xFFFFFE  
DS70287A-page 30  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
3.1.1  
PROGRAM MEMORY  
ORGANIZATION  
3.1.2  
INTERRUPT AND TRAP VECTORS  
All dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices reserve the addresses between  
0x00000 and 0x000200 for hard-coded program exe-  
cution vectors. A hardware Reset vector is provided to  
redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 0x000000,  
with the actual address for the start of code at  
0x000002.  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 3-2).  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices also have two interrupt vector tables located  
from 0x000004 to 0x0000FF and 0x000100 to  
0x0001FF. These vector tables allow each of the many  
device interrupt sources to be handled by separate  
Interrupt Service Routines (ISRs). A more detailed dis-  
cussion of the interrupt vector tables is provided in  
Section 6.1 “Interrupt Vector Table”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
FIGURE 3-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
© 2007 Microchip Technology Inc.  
DS70287A-page 31  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed; if it occurred on a  
write, the instruction will be executed but the write does  
not occur. In either case, a trap is then executed,  
allowing the system and/or user to examine the  
machine state prior to execution of the address Fault.  
3.2  
Data Address Space  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family CPU has a separate 16-bit wide data memory  
space. The data space is accessed using separate  
Address Generation Units (AGUs) for read and write  
operations. Data memory maps of devices with differ-  
ent RAM sizes are shown in Figure 3-3 through  
Figure 3-5.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 3.6.3 “Reading Data From  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
A sign-extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSb of any W register by executing a  
zero-extend (ZE) instruction on the appropriate  
address.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices implement a total of up to 30 Kbytes of data  
memory. Should an EA point to a location outside of  
this area, an all-zero word or byte will be returned.  
3.2.3  
SFR SPACE  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
core and peripheral modules for controlling the  
operation of the device.  
3.2.1  
DATA SPACE WIDTH  
The data memory space is organized in byte  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes of each word have even addresses, while the  
Most Significant Bytes have odd addresses.  
SFRs are distributed among the modules that they  
control and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
3.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® micro-  
controllers and improve data space memory usage  
efficiency, the dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family instruction set supports both word and  
byte operations. As a consequence of byte accessibil-  
ity, all effective address calculations are internally  
scaled to step through word-aligned memory. For  
example, the core recognizes that Post-Modified  
Register Indirect Addressing mode [Ws++] will result in  
a value of Ws + 1 for byte operations and Ws + 2 for  
word operations.  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Please  
refer to the corresponding device tables  
and pinout diagrams for device-specific  
information.  
3.2.4  
NEAR DATA SPACE  
The 8-Kbyte area between 0x0000 and 0x1FFF is  
referred to as the Near Data Space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an Address Pointer.  
Data byte reads will read the complete word that  
contains the byte, using the LSb of any EA to determine  
which byte to select. The selected byte is placed onto  
the LSb of the data path. That is, data memory and reg-  
isters are organized as two parallel byte-wide entities  
with shared (word) address decode but separate write  
lines. Data byte writes only write to the corresponding  
side of the array or register which matches the byte  
address.  
DS70287A-page 32  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 3-3:  
DATA MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL  
FAMILY DEVICES WITH 8 KB RAM  
MSb  
Address  
LSb  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
X Data RAM (X)  
Space  
8 Kbyte  
0x17FF  
0x1801  
0x17FE  
0x1800  
SRAM Space  
Y Data RAM (Y)  
DMA RAM  
0x1FFF  
0x2001  
0x1FFE  
0x2000  
0x27FF  
0x2801  
0x27FE  
0x2800  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
© 2007 Microchip Technology Inc.  
DS70287A-page 33  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 3-4:  
DATA MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL  
FAMILY DEVICES WITH 16 KB RAM  
LSb  
Address  
MSb  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
8 Kbyte  
Near  
Data  
0x07FE  
0x0800  
0x07FF  
0x0801  
Space  
X Data RAM (X)  
0x1FFF  
0x1FFE  
0x27FF  
0x2801  
16 Kbyte  
SRAM Space  
0x27FE  
0x2800  
Y Data RAM (Y)  
DMA RAM  
0x3FFF  
0x4001  
0x3FFE  
0x4000  
0x47FF  
0x4801  
0x47FE  
0x4800  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70287A-page 34  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 3-5:  
DATA MEMORY MAP FOR dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL  
FAMILY DEVICES WITH 30 KB RAM  
MSb  
LSb  
Address  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
8 Kbyte  
Near  
Data  
0x07FE  
0x0800  
0x07FF  
0x0801  
Space  
X Data RAM (X)  
30 Kbyte  
SRAM Space  
0x47FF  
0x4801  
0x47FE  
0x4800  
Y Data RAM (Y)  
DMA RAM  
0x77FE  
0x7800  
0x77FF  
0x7800  
0x7FFE  
0x8000  
0x7FFF  
0x8001  
Optionally  
Mapped  
into Program  
Memory  
X Data  
Unimplemented (X)  
0xFFFF  
0xFFFE  
© 2007 Microchip Technology Inc.  
DS70287A-page 35  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
3.2.5  
X AND Y DATA SPACES  
3.2.6  
DMA RAM  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions) or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier Transform (FFT).  
Every dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family device contains 2 Kbytes of dual ported DMA  
RAM located at the end of Y data space. Memory  
locations is part of Y data RAM and is in the DMA RAM  
space are accessible simultaneously by the CPU and  
the DMA controller module. DMA RAM is utilized by the  
DMA controller to store data to be transferred to various  
peripherals using DMA, as well as data transferred from  
various peripherals using DMA. The DMA RAM can be  
accessed by the DMA controller without having to steal  
cycles from the CPU.  
The X data space is used by all instructions and  
supports all addressing modes. There are separate  
read and write data buses for X data space. The X read  
data bus is the read data path for all instructions that  
view data space as combined X and Y address space.  
It is also the X data prefetch path for the dual operand  
DSP instructions (MACclass).  
When the CPU and the DMA controller attempt to  
concurrently write to the same DMA RAM location, the  
hardware ensures that the CPU is given precedence in  
accessing the DMA RAM location. Therefore, the DMA  
RAM provides a reliable means of transferring DMA  
data without ever having to stall the CPU.  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths.  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
All data memory writes, including in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
All effective addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes, or 32K words, though the  
implemented memory locations vary by device.  
DS70287A-page 36  
© 2007 Microchip Technology Inc.  
TABLE 3-1:  
CPU CORE REGISTERS MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
0042  
0044  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
0750  
0752  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
00xx  
xxxx  
00xx  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
Stack Pointer Limit Register  
Program Counter Low Word Register  
PCL  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
SR  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DCOUNT<15:0>  
DOSTARTL<15:1>  
0
0
DOENDL<15:1>  
DOSTARTH<5:0>  
DOENDH  
OA  
OB  
SA  
SB  
US  
OAB  
EDT  
SAB  
DA  
DC  
IPL2  
SATA  
IPL1  
SATB  
IPL0  
RA  
N
OV  
Z
C
CORCON  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
DL<2:0>  
SATDW ACCSAT  
IPL3  
PSV  
RND  
IF  
XMODEN YMODEN  
BWM<3:0>  
YWM<3:0>  
XWM<3:0>  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
BREN  
XB<14:0>  
DISICNT  
BSRAM  
Disable Interrupts Counter Register  
IW_BSR IR_BSR RL_BSR  
IW_SSR IR_SSR RL_SSR  
SSRAM  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-2:  
CHANGE NOTIFICATION REGISTER MAP  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
0060  
0062  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000  
006A CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-3:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL  
0000  
INTCON2 0082 ALTIVT  
DISI  
AD1IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
OC7IF  
DCIEIF  
T2IF  
IC8IF  
IC5IF  
C2RXIF  
C2TXIF  
T2IE  
IC8IE  
IC5IE  
C2RXIE  
C2TXIE  
INT4EP  
DMA0IF  
INT1IF  
DMA3IF  
T9IF  
INT3EP  
T1IF  
CNIF  
C1IF  
T8IF  
INT2EP  
OC1IF  
INT1EP INT0EP 0000  
IC1IF INT0IF 0000  
IFS0  
0084  
DMA1IF  
SPI1IF SPI1EIF  
T3IF  
OC2IF  
IC7IF  
IC2IF  
IFS1  
0086 U2TXIF U2RXIF  
INT2IF  
OC4IF OC3IF DMA2IF  
AD2IF  
MI2C1IF SI2C1IF 0000  
SPI2IF SPI2EIF 0000  
IFS2  
0088  
T6IF  
DMA4IF  
OC8IF  
DCIIF  
OC6IF OC5IF  
QEIIF PWMIF  
IC6IF  
C2IF  
IC4IF  
IC3IF  
C1RXIF  
IFS3  
008A FLTAIF  
DMA5IF  
INT4IF  
C1TXIF  
OC2IE  
IC7IE  
INT3IF  
MI2C2IF SI2C2IF  
T7IF  
0000  
0000  
0000  
IFS4  
008C  
0094  
DMA7IF  
DMA6IF  
DMA0IE  
INT1IE  
DMA3IE  
T9IE  
U2EIF  
OC1IE  
U1EIF  
IC1IE  
FLTBIF  
INT0IE  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
IPC12  
IPC13  
IPC14  
IPC15  
IPC16  
IPC17  
DMA1IE  
AD1IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
OC7IE  
DCIEIE  
SPI1IE SPI1EIE  
T3IE  
IC2IE  
T1IE  
CNIE  
C1IE  
T8IE  
0096 U2TXIE U2RXIE  
INT2IE  
OC4IE OC3IE DMA2IE  
AD2IE  
MI2C1IE SI2C1IE 0000  
SPI2IE SPI2EIE 0000  
0098  
T6IE  
DMA4IE  
OC8IE  
DCIIE  
OC6IE OC5IE  
QEIIE PWMIE  
IC6IE  
C2IE  
IC4IE  
IC3IE  
C1RXIE  
009A FLTAIE  
DMA5IE  
INT4IE  
C1TXIE  
INT3IE  
MI2C2IE SI2C2IE  
T7IE  
0000  
0000  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
0000  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00BE  
00C0  
00C2  
00C4  
00C6  
DMA7IE  
DMA6IE  
U2EIE  
U1EIE  
INT0IP<2:0>  
DMA0IP<2:0>  
T3IP<2:0>  
FLTBIE  
T1IP<2:0>  
T2IP<2:0>  
U1RXIP<2:0>  
OC1IP<2:0>  
OC2IP<2:0>  
SPI1IP<2:0>  
DMA1IP<2:0>  
IC1IP<2:0>  
IC2IP<2:0>  
SPI1EIP<2:0>  
AD1IP<2:0>  
MI2C1IP<2:0>  
AD2IP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
SPI2IP<2:0>  
IC3IP<2:0>  
OC5IP<2:0>  
U1TXIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
DMA2IP<2:0>  
T5IP<2:0>  
CNIP<2:0>  
IC8IP<2:0>  
T4IP<2:0>  
U2TXIP<2:0>  
C1IP<2:0>  
IC5IP<2:0>  
OC7IP<2:0>  
T6IP<2:0>  
T8IP<2:0>  
C2RXIP<2:0>  
IC7IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
C1RXIP<2:0>  
IC4IP<2:0>  
OC6IP<2:0>  
DMA4IP<2:0>  
SPI2EIP<2:0>  
DMA3IP<2:0>  
IC6IP<2:0>  
OC8IP<2:0>  
T7IP<2:0>  
MI2C2IP<2:0>  
INT4IP<2:0>  
QEIIP<2:0>  
SI2C2IP<2:0>  
INT3IP<2:0>  
PWMIP<2:0>  
DMA5IP<2:0>  
U1EIP<2:0>  
DMA7IP<2:0>  
T9IP<2:0>  
C2IP<2:0>  
FLTAIP<2:0>  
U2EIP<2:0>  
C1TXIP<2:0>  
FLTBIP<2:0>  
DMA6IP<2:0>  
C2TXIP<2:0>  
INTTREG 00E0  
Legend:  
ILR<3:0>  
VECNUM<6:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-4:  
TIMER REGISTER MAP  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
xxxx  
FFFF  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
0114  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer4 Register  
TMR5HLD 0116  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
TMR5  
PR4  
0118  
011A  
011C  
011E  
0120  
0122  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TMR6  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer6 Register  
TMR7HLD 0124  
Timer7 Holding Register (for 32-bit operations only)  
Timer7 Register  
TMR7  
PR6  
0126  
0128  
012A  
012C  
012E  
0130  
Period Register 6  
PR7  
Period Register 7  
T6CON  
T7CON  
TMR8  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer8 Register  
TMR9HLD 0132  
Timer9 Holding Register (for 32-bit operations only)  
Timer9 Register  
TMR9  
PR8  
0134  
0136  
0138  
013A  
013C  
Period Register 8  
PR9  
Period Register 9  
T8CON  
T9CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-5:  
INPUT CAPTURE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
IC6BUF  
IC6CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
Legend:  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
0154  
0156  
0158  
015A  
015C  
015E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
Input 6 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
TABLE 3-6:  
OUTPUT COMPARE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
019E  
01A0  
01A2  
01A4  
01A6  
01A8  
01AA  
01AC  
01AE  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON  
OC4RS  
OC4R  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
OC5CON  
OC6RS  
OC6R  
Output Compare 6 Secondary Register  
Output Compare 6 Register  
OC6CON  
OC7RS  
OC7R  
Output Compare 7 Secondary Register  
Output Compare 7 Register  
OC7CON  
OC8RS  
OC8R  
Output Compare 8 Secondary Register  
Output Compare 8 Register  
OC8CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-7:  
8-OUTPUT PWM REGISTER MAP  
SFR Name Addr. Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
PTCON  
PTMR  
01C0  
01C2 PTDIR  
01C4  
PTEN  
PTSIDL  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
PWM Timer Count Value Register  
PWM Time Base Period Register  
PTPER  
SEVTCMP 01C6 SEVTDIR  
PWM Special Event Compare Register  
PMOD4 PMOD3 PMOD2 PMOD1 PEN4H PEN3H PEN2H PEN1H PEN4L PEN3L PEN2L PEN1L  
PWMCON1 01C8  
PWMCON2 01CA  
SEVOPS<3:0>  
DTB<5:0>  
IUE  
OSYNC  
UDIS  
DTCON1  
DTCON2  
FLTACON  
01CC  
01CE  
DTBPS<1:0>  
DTAPS<1:0>  
DTS4A DTS4I  
DTA<5:0>  
DTS3A  
DTS3I  
DTS2A  
DTS2I  
DTS1A  
DTS1I  
01D0 FAOV4H FAOV4L FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L FLTAM  
FAEN4 FAEN3 FAEN2 FAEN1  
FBEN4 FBEN3 FBEN2 FBEN1  
FLTBCON 01D2 FBOV4H FBOV4L FBOV3H FBOV3L FBOV2H FBOV2L FBOV1H FBOV1L FLTBM  
OVDCON  
PDC1  
01D4 POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L 1111 1111 0000 0000  
01D6  
01D8  
01DA  
01DC  
PWM Duty Cycle #1 Register  
PWM Duty Cycle #2 Register  
PWM Duty Cycle #3 Register  
PWM Duty Cycle #4 Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
PDC2  
PDC3  
PDC4  
Legend: u= uninitialized bit, — = unimplemented, read as ‘0’  
TABLE 3-8:  
QEI REGISTER MAP  
SFR  
Name  
Addr  
.
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
QEICON  
01E0 CNTERR  
QEISIDL INDX UPDN  
QEIM<2:0>  
IMV<1:0>  
SWPAB PCDOUT TQGATE  
TQCKPS<1:0>  
POSRES TQCS UPDN_SRC 0000 0000 0000 0000  
DFLTCON 01E2  
POSCNT 01E4  
MAXCNT 01E6  
Legend: u= uninitialized bit, — = unimplemented, read as ‘0’  
CEID QEOUT  
Position Counter<15:0>  
Maximum Count<15:0>  
QECK<2:0>  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
TABLE 3-9:  
I2C1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-10: I2C2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
I2C2STAT  
I2C2ADD  
I2C2MSK  
Legend:  
0210  
0212  
0214  
0216  
0218  
021A  
021C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-11: UART1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-12: UART2 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U2MODE  
U2STA  
0230  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD URXINV  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
0232 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
URXISEL<1:0>  
ADDEN  
RIDLE  
FERR  
OERR  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
0234  
0236  
0238  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-13: SPI1 REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI1 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-14: SPI2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI2STAT  
0260  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
SPI2CON1 0262  
DISSCK DISSDO MODE16  
PPRE<1:0>  
SPI2CON2 0264 FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI2BUF  
0268  
SPI2 Transmit and Receive Buffer Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-15: ADC1 REGISTER MAP  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0 0300  
ADC Data Buffer 0  
FORM<1:0>  
CHPS<1:0>  
xxxx  
0000  
0000  
0000  
AD1CON1  
AD1CON2  
AD1CON3  
0320 ADON  
0322  
ADSIDL ADDMABM  
AD12B  
CSCNA  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<5:0>  
CH123NA<1:0>  
CH0SA<4:0>  
0324 ADRC  
SAMC<4:0>  
AD1CHS123 0326  
CH123NB<1:0>  
CH0SB<4:0>  
CH123SB  
CH123SA 0000  
AD1CHS0 0328 CH0NB  
CH0NA  
0000  
AD1PCFGH 032A PCFG31 PCFG30 PCFG29  
AD1PCFGL 032C PCFG15 PCFG14 PCFG13  
PCFG28  
PCFG12  
CSS28  
CSS12  
PCFG27 PCFG26 PCFG25 PCFG24 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16  
0000  
0000  
0000  
0000  
0000  
PCFG11 PCFG10 PCFG9  
PCFG8  
CSS24  
CSS8  
PCFG7  
CSS23  
CSS7  
PCFG6  
CSS22  
CSS6  
PCFG5  
CSS21  
CSS5  
PCFG4  
CSS20  
CSS4  
PCFG3 PCFG2  
PCFG1  
CSS17  
PCFG0  
CSS16  
CSS0  
AD1CSSH  
AD1CSSL  
AD1CON4  
Legend:  
032E CSS31 CSS30  
0330 CSS15 CSS14  
CSS29  
CSS13  
CSS27  
CSS11  
CSS26  
CSS10  
CSS25  
CSS9  
CSS19  
CSS3  
CSS18  
CSS2  
CSS1  
0332  
DMABL<2:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-16: ADC2 REGISTER MAP  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC2BUF0 0340  
ADC Data Buffer 0  
FORM<1:0>  
CHPS<1:0>  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
AD2CON1  
AD2CON2  
AD2CON3  
0360 ADON  
0362  
ADSIDL ADDMABM  
AD12B  
CSCNA  
SSRC<2:0>  
SIMSAM ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
0364 ADRC  
SAMC<4:0>  
ADCS<5:0>  
AD2CHS123 0366  
CH123NB<1:0>  
CH0SB<3:0>  
CH123SB  
CH123NA<1:0>  
CH0SA<3:0>  
CH123SA  
AD2CHS0  
Reserved  
0368 CH0NB  
036A  
CH0NA  
PCFG8  
PCFG3  
PCFG0  
AD2PCFGL 036C PCFG15 PCFG14 PCFG13  
PCFG12  
PCFG11 PCFG10 PCFG9  
PCFG7 PCFG6 PCFG5  
PCFG4  
PCFG2 PCFG1  
Reserved  
AD2CSSL  
AD2CON4  
Legend:  
036E  
0370 CSS15  
0372  
CSS14  
CSS13  
CSS11  
CSS10  
CSS9  
CSS7  
CSS6  
CSS5  
CSS12  
CSS8  
CSS4  
CSS3  
CSS2  
CSS1  
CSS0  
DMABL<2:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-17: DMA REGISTER MAP  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA0CON 0380 CHEN  
DMA0REQ 0382 FORCE  
DMA0STA 0384  
SIZE  
DIR  
HALF  
NULLW  
AMODE<1:0>  
MODE<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA0STB 0386  
DMA0PAD 0388  
DMA0CNT 038A  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA1CON 038C CHEN  
DMA1REQ 038E FORCE  
DMA1STA 0390  
AMODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA1STB 0392  
DMA1PAD 0394  
DMA1CNT 0396  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA2CON 0398 CHEN  
DMA2REQ 039A FORCE  
DMA2STA 039C  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA2STB 039E  
DMA2PAD 03A0  
DMA2CNT 03A2  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA3CON 03A4 CHEN  
DMA3REQ 03A6 FORCE  
DMA3STA 03A8  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA3STB 03AA  
DMA3PAD 03AC  
DMA3CNT 03AE  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA4CON 03B0 CHEN  
DMA4REQ 03B2 FORCE  
DMA4STA 03B4  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA4STB 03B6  
DMA4PAD 03B8  
DMA4CNT 03BA  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA5CON 03BC CHEN  
DMA5REQ 03BE FORCE  
DMA5STA 03C0  
AMODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
DMA5STB 03C2  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-17: DMA REGISTER MAP (CONTINUED)  
All  
Resets  
File Name Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA5PAD 03C4  
PAD<15:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DMA5CNT 03C6  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA6CON 03C8 CHEN  
DMA6REQ 03CA FORCE  
DMA6STA 03CC  
AMODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA6STB 03CE  
DMA6PAD 03D0  
DMA6CNT 03D2  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
DMA7CON 03D4 CHEN  
DMA7REQ 03D6 FORCE  
DMA7STA 03D8  
AMODE<1:0>  
MODE<1:0>  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA7STB 03DA  
DMA7PAD 03DC  
DMA7CNT 03DE  
CNT<9:0>  
DMACS0  
DMACS1  
DSADR  
03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000  
03E2  
03E4  
LSTCH<3:0>  
PPST7  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
0000  
0000  
DSADR<15:0>  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0OR 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1CTRL1  
0400  
0402  
0404  
0406  
0408  
040A  
040C  
040E  
0410  
0412  
CSIDL  
ABAT  
CANCKS  
REQOP<2:0>  
OPMODE<2:0>  
CANCAP  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
C1CTRL2  
C1VEC  
DNCNT<4:0>  
ICODE<6:0>  
FSA<4:0>  
FNRB<5:0>  
FIFOIF RBOVIF  
FIFOIE RBOVIE  
FILHIT<4:0>  
C1FCTRL  
C1FIFO  
C1INTF  
C1INTE  
C1EC  
DMABS<2:0>  
FBP<5:0>  
TXBO  
TXBP  
RXBP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF  
WAKIE  
ERRIF  
ERRIE  
RBIF  
RBIE  
TBIF  
TBIE  
TERRCNT<7:0>  
RERRCNT<7:0>  
BRP<5:0>  
C1CFG1  
C1CFG2  
C1FEN1  
SJW<1:0>  
WAKFIL  
SEG2PH<2:0>  
SEG2PHTS  
FLTEN7  
SAM  
FLTEN6 FLTEN5 FLTEN4  
SEG1PH<2:0>  
FLTEN3  
F1MSK<1:0>  
F9MSK<1:0>  
PRSEG<2:0>  
0414 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8  
FLTEN2 FLTEN1 FLTEN0 0000  
C1FMSKSEL1 0418  
C1FMSKSEL2 041A  
F7MSK<1:0>  
F15MSK<1:0>  
F6MSK<1:0>  
F14MSK<1:0>  
F5MSK<1:0>  
F13MSK<1:0>  
F4MSK<1:0>  
F12MSK<1:0>  
F3MSK<1:0>  
F11MSK<1:0>  
F2MSK<1:0>  
F10MSK<1:0>  
F0MSK<1:0>  
F8MSK<1:0>  
0000  
0000  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
See definition when WIN = x  
C1RXFUL1 0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000  
C1RXFUL2 0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000  
C1RXOVF1 0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
C1RXOVF2 042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
C1TR01CON 0430  
C1TR23CON 0432  
C1TR45CON 0434  
C1TR67CON 0436  
TXEN1  
TXEN3  
TXEN5  
TXEN7  
TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1  
TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3  
TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5  
TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7  
TX1PRI<1:0>  
TX3PRI<1:0>  
TX5PRI<1:0>  
TX7PRI<1:0>  
TXEN0 TXABAT0 TXLARB0 TXERR0 TXREQ0 RTREN0  
TXEN2 TXABAT2 TXLARB2 TXERR2 TXREQ2 RTREN2  
TXEN4 TXABAT4 TXLARB4 TXERR4 TXREQ4 RTREN4  
TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6  
TX0PRI<1:0>  
TX2PRI<1:0>  
TX4PRI<1:0>  
TX6PRI<1:0>  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
C1RXD  
C1TXD  
Legend:  
0440  
0442  
Received Data Word  
Transmit Data Word  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See definition when WIN = x  
F1BP<3:0>  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
C1BUFPNT1  
C1BUFPNT2  
C1BUFPNT3  
C1BUFPNT4  
C1RXM0SID  
C1RXM0EID  
C1RXM1SID  
C1RXM1EID  
C1RXM2SID  
C1RXM2EID  
C1RXF0SID  
C1RXF0EID  
C1RXF1SID  
C1RXF1EID  
C1RXF2SID  
C1RXF2EID  
C1RXF3SID  
C1RXF3EID  
C1RXF4SID  
C1RXF4EID  
C1RXF5SID  
C1RXF5EID  
C1RXF6SID  
C1RXF6EID  
C1RXF7SID  
C1RXF7EID  
C1RXF8SID  
C1RXF8EID  
C1RXF9SID  
C1RXF9EID  
C1RXF10SID  
C1RXF10EID  
Legend:  
0420  
0422  
0424  
0426  
0430  
0432  
0434  
0436  
0438  
043A  
0440  
0442  
0444  
0446  
0448  
044A  
044C  
044E  
0450  
0452  
0454  
0456  
0458  
045A  
045C  
045E  
0460  
0462  
0464  
0466  
0468  
046A  
F3BP<3:0>  
F2BP<3:0>  
F6BP<3:0>  
F10BP<3:0>  
F14BP<3:0>  
F0BP<3:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
F7BP<3:0>  
F11BP<3:0>  
F15BP<3:0>  
F5BP<3:0>  
F9BP<3:0>  
F13BP<3:0>  
F4BP<3:0>  
F8BP<3:0>  
F12BP<3:0>  
SID<10:3>  
SID<2:0>  
MIDE  
MIDE  
EID<17:16>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EID<17:16>  
EID<7:0>  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1RXF11SID  
C1RXF11EID  
C1RXF12SID  
C1RXF12EID  
C1RXF13SID  
C1RXF13EID  
C1RXF14SID  
C1RXF14EID  
C1RXF15SID  
C1RXF15EID  
Legend:  
046C  
046E  
0470  
0472  
0474  
0476  
0478  
047A  
047C  
047E  
SID<10:3>  
SID<2:0>  
EXIDE  
EID<17:16>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EXIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0OR 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C2CTRL1  
C2CTRL2  
C2VEC  
0500  
0502  
0504  
0506  
0508  
050A  
050C  
050E  
0510  
0512  
CSIDL  
ABAT  
CANCKS  
REQOP<2:0>  
OPMODE<2:0>  
CANCAP  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DNCNT<4:0>  
FILHIT<4:0>  
ICODE<6:0>  
FSA<4:0>  
FNRB<5:0>  
C2FCTRL  
C2FIFO  
C2INTF  
C2INTE  
C2EC  
DMABS<2:0>  
FBP<5:0>  
TXBO  
TXBP  
RXBP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF ERRIF  
WAKIE ERRIE  
FIFOIF RBOVIF  
FIFOIE RBOVIE  
RBIF  
RBIE  
TBIF  
TBIE  
TERRCNT<7:0>  
RERRCNT<7:0>  
BRP<5:0>  
C2CFG1  
C2CFG2  
C2FEN1  
SJW<1:0>  
SEG2PHTS SAM  
FLTEN7  
F3MSK<1:0>  
WAKFIL  
SEG2PH<2:0>  
SEG1PH<2:0>  
PRSEG<2:0>  
0514 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8  
FLTEN6 FLTEN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0 0000  
C2FMSKSEL1 0518  
C2FMSKSEL2 051A  
F7MSK<1:0>  
F15MSK<1:0>  
F6MSK<1:0>  
F14MSK<1:0>  
F5MSK<1:0>  
F13MSK<1:0>  
F4MSK<1:0>  
F12MSK<1:0>  
F2MSK<1:0>  
F10MSK<1:0>  
F1MSK<1:0>  
F9MSK<1:0>  
F0MSK<1:0>  
F8MSK<1:0>  
0000  
0000  
F11MSK<1:0>  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0500-  
051E  
See definition when WIN = x  
C2RXFUL1 0520 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0 0000  
C2RXFUL2 0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000  
C2RXOVF1 0528 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
C2RXOVF2 052A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
C2TR01CON 0530 TXEN1  
C2TR23CON 0532 TXEN3  
C2TR45CON 0534 TXEN5  
C2TR67CON 0536 TXEN7  
TX  
ABAT1  
TX  
LARB1  
TX  
ERR1  
TX  
REQ1  
RTREN1  
RTREN3  
RTREN5  
RTREN7  
TX1PRI<1:0>  
TX3PRI<1:0>  
TX5PRI<1:0>  
TX7PRI<1:0>  
TXEN0  
TXEN2  
TXEN4  
TXEN6  
TX  
ABAT0  
TX  
LARB0  
TX  
ERR0  
TX  
REQ0  
RTREN0  
RTREN2  
RTREN4  
RTREN6  
TX0PRI<1:0>  
TX2PRI<1:0>  
TX4PRI<1:0>  
TX6PRI<1:0>  
0000  
0000  
0000  
xxxx  
TX  
ABAT3  
TX  
LARB3  
TX  
ERR3  
TX  
REQ3  
TX  
ABAT2  
TX  
LARB2  
TX  
ERR2  
TX  
REQ2  
TX  
ABAT5  
TX  
LARB5  
TX  
ERR5  
TX  
REQ5  
TX  
ABAT4  
TX  
LARB4  
TX  
ERR4  
TX  
REQ4  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
TX  
ABAT7  
LARB7  
ERR7  
REQ7  
ABAT6  
LARB6  
ERR6  
REQ6  
C2RXD  
C2TXD  
Legend:  
0540  
0542  
Recieved Data Word  
Transmit Data Word  
xxxx  
xxxx  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0500-  
051E  
See definition when WIN = x  
C2BUFPNT1 0520  
C2BUFPNT2 0522  
C2BUFPNT3 0524  
C2BUFPNT4 0526  
C2RXM0SID 0530  
C2RXM0EID 0532  
C2RXM1SID 0534  
C2RXM1EID 0536  
C2RXM2SID 0538  
C2RXM2EID 053A  
F3BP<3:0>  
F2BP<3:0>  
F1BP<3:0>  
F0BP<3:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
F7BP<3:0>  
F11BP<3:0>  
F15BP<3:0>  
F6BP<3:0>  
F10BP<3:0>  
F14BP<3:0>  
F5BP<3:0>  
F9BP<3:0>  
F13BP<3:0>  
F4BP<3:0>  
F8BP<3:0>  
F12BP<3:0>  
SID<10:3>  
SID<2:0>  
MIDE  
MIDE  
EID<17:16>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
MIDE  
EID<7:0>  
C2RXF0SID  
C2RXF0EID  
C2RXF1SID  
C2RXF1EID  
C2RXF2SID  
C2RXF2EID  
C2RXF3SID  
C2RXF3EID  
C2RXF4SID  
C2RXF4EID  
C2RXF5SID  
C2RXF5EID  
C2RXF6SID  
C2RXF6EID  
C2RXF7SID  
C2RXF7EID  
C2RXF8SID  
C2RXF8EID  
C2RXF9SID  
C2RXF9EID  
0540  
0542  
0544  
0546  
0548  
054A  
054C  
054E  
0550  
0552  
0554  
0556  
0558  
055A  
055C  
055E  
0560  
0562  
0564  
0566  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<15:8>  
SID<10:3  
EID<7:0>  
EXIDE  
EID<15:8>  
SID<10:3  
EID<7:0>  
EXIDE  
EID<15:8>  
SID<10:3  
EID<7:0>  
C2RXF10SID 0568  
C2RXF10EID 056A  
EXIDE  
EID<15:8>  
EID<7:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 (CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C2RXF11SID 056C  
C2RXF11EID 056E  
C2RXF12SID 0570  
C2RXF12EID 0572  
C2RXF13SID 0574  
C2RXF13EID 0576  
C2RXF14SID 0578  
C2RXF14EID 057A  
C2RXF15SID 057C  
C2RXF15EID 057E  
SID<10:3  
SID<2:0>  
EXIDE  
EID<17:16>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
EID<15:8>  
SID<10:3  
EID<15:8>  
SID<10:3  
EID<15:8>  
SID<10:3  
EID<15:8>  
SID<10:3  
EID<15:8>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EXIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EXIDE  
EID<7:0>  
EID<7:0>  
EXIDE  
EID<7:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 3-24: PORTA REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
06C0  
TRISA15  
RA15  
TRISA14  
RA14  
TRISA13  
RA13  
TRISA12  
RA12  
TRISA10  
RA10  
LATA10  
TRISA9  
RA9  
TRISA7  
RA7  
TRISA6  
RA6  
TRISA5  
RA5  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
D6C0  
xxxx  
xxxx  
xxxx  
LATA15  
ODCA15  
LATA14  
ODCA14  
LATA13  
ODCA13  
LATA12  
ODCA12  
LATA9  
LATA7  
LATA6  
LATA5  
ODCA5  
LATA4  
ODCA4  
LATA3  
ODCA3  
LATA2  
ODCA2  
LATA1  
ODCA1  
LATA0  
ODCA0  
ODCA(2)  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-25: PORTB REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C6  
02C8  
02CA  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8  
TRISB7  
RB7  
TRISB6 TRISB5 TRISB4  
TRISB3 TRISB2 TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
RB15  
RB14  
RB13  
RB12  
RB11  
RB10  
RB9  
RB8  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
LATB15  
LATB14  
LATB13  
LATB12  
LATB11  
LATB10  
LATB9  
LATB8  
LATB7  
LATB6  
LATB5  
LATB4  
LATB3  
LATB2  
LATB1  
LATB0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-26: PORTC REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02CC TRISC15 TRISC14 TRISC13 TRISC12  
TRISC4  
RC4  
TRISC3  
RC3  
TRISC2  
RC2  
TRISC1  
RC1  
F01E  
xxxx  
xxxx  
02CE  
02D0  
RC15  
RC14  
RC13  
RC12  
LATC15 LATC14 LATC13 LATC12  
LATC4  
LATC3  
LATC2  
LATC1  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-27: PORTD REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D2  
02D4  
02D6  
06D2  
TRISD15  
RD15  
TRISD14  
RD14  
TRISD13  
RD13  
TRISD12  
RD12  
TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
FFFF  
xxxx  
xxxx  
xxxx  
RD11  
RD10  
RD9  
RD8  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
LATD15  
ODCD15  
LATD14  
ODCD14  
LATD13  
ODCD13  
LATD12  
ODCD12  
LATD11  
ODCD11  
LATD10  
ODCD10  
LATD9  
ODCD9  
LATD8  
ODCD8  
LATD7  
ODCD7  
LATD6  
ODCD6  
LATD5  
ODCD5  
LATD4  
ODCD4  
LATD3  
ODCD3  
LATD2  
ODCD2  
LATD1  
ODCD1  
LATD0  
ODCD0  
ODCD  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-28: PORTE REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
PORTE  
LATE  
02D8  
02DA  
02DC  
TRISE9  
RE9  
TRISE8  
RE8  
TRISE7  
RE7  
TRISE6  
RE6  
TRISE5  
RE5  
TRISE4  
RE4  
TRISE3  
RE3  
TRISE2  
RE2  
TRISE1  
RE1  
TRISE0  
RE0  
03FF  
xxxx  
xxxx  
LATE9  
LATE8  
LATE7  
LATE6  
LATE5  
LATE4  
LATE3  
LATE2  
LATE1  
LATE0  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-29: PORTF REGISTER MAP(1)  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
TRISF  
PORTF  
LATF  
02DE  
02E0  
02E2  
06DE  
TRISF13  
RF13  
TRISF12  
RF12  
TRISF8  
RF8  
TRISF7  
RF7  
TRISF6  
RF6  
TRISF5  
RF5  
TRISF4  
RF4  
TRISF3  
RF3  
TRISF2  
RF2  
TRISF1  
RF1  
TRISF0  
RF0  
31FF  
xxxx  
xxxx  
xxxx  
LATF13  
ODCF13  
LATF12  
ODCF12  
LATF8  
ODCF8  
LATF7  
ODCF7  
LATF6  
ODCF6  
LATF5  
ODCF5  
LATF4  
ODCF4  
LATF3  
ODCF3  
LATF2  
ODCF2  
LATF1  
ODCF1  
LATF0  
ODCF0  
ODCF  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-30: PORTG REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISG  
PORTG  
LATG  
02E4  
02E6  
02E8  
06E4  
TRISG15  
RG15  
TRISG14  
RG14  
TRISG13  
RG13  
TRISG12  
RG12  
TRISG9  
RG9  
TRISG8  
RG8  
TRISG7  
RG7  
TRISG6  
RG6  
TRISG3  
RG3  
TRISG2  
RG2  
TRISG1  
RG1  
TRISG0  
RG0  
F3CF  
xxxx  
xxxx  
xxxx  
LATG15  
ODCG15  
LATG14  
ODCG14  
LATG13  
ODCG13  
LATG12  
ODCG12  
LATG9  
ODCG9  
LATG8  
ODCG8  
LATG7  
ODCG7  
LATG6  
ODCG6  
LATG3  
ODCG3  
LATG2  
ODCG2  
LATG1  
ODCG1  
LATG0  
ODCG0  
ODCG  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for PinHigh devices.  
Note 1:  
The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.  
TABLE 3-31: SYSTEM CONTROL REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740  
0742  
0744  
0746  
0748  
TRAPR IOPUWR  
COSC<2:0>  
DOZE<2:0>  
NOSC<2:0>  
FRCDIV<2:0>  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx(1)  
0300(2)  
0040  
OSCCON  
CLKDIV  
PLLFBD  
OSCTUN  
CLKLOCK  
LOCK  
LPOSCEN OSWEN  
ROI  
DOZEN  
PLLPOST<1:0>  
PLLPRE<4::0>  
PLLDIV<8:0>  
0030  
TUN<5:0>  
0000  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values dependent on type of Reset.  
OSCCON register Reset values dependent on the FOSC Configuration bits and type of Reset.  
TABLE 3-32: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
ERASE  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
NVMOP<3:0>  
0000(1)  
0000  
NVMKEY<7:0>  
Legend:  
Note 1:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
3.2.7  
SOFTWARE STACK  
3.2.8  
DATA RAM PROTECTION FEATURE  
The dsPIC33F product family supports Data RAM  
protection features which enable segments of RAM to  
be protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
segment for BS) is accessible only from the Boot  
Segment Flash code when enabled. SSRAM (Secure  
RAM segment for RAM) is accessible only from the  
Secure Segment Flash code when enabled. See  
Table 3-1 for an overview of the BSRAM and SSRAM  
SFRs.  
In addition to its use as a working register, the W15  
register in the dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices is also used as a software Stack  
Pointer. The Stack Pointer always points to the first  
available free word and grows from lower to higher  
addresses. It pre-decrements for stack pops and  
post-increments for stack pushes, as shown in  
Figure 3-6. For a PC push during any CALLinstruction,  
the MSb of the PC is zero-extended before the push,  
ensuring that the MSb is always clear.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSb  
of the PC prior to the push.  
3.3  
Instruction Addressing Modes  
The addressing modes in Table 3-33 form the basis of  
the addressing modes optimized to support the specific  
features of individual instructions. The addressing  
modes provided in the MAC class of instructions are  
somewhat different from those in the other instruction  
types.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. The stack error trap will occur on a  
subsequent push operation. Thus, for example, if it is  
desirable to cause a stack error trap when the stack  
grows beyond address 0x2000 in RAM, initialize the  
SPLIM with the value 0x1FFE.  
3.3.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (Near Data Space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
3.3.2  
MCU INSTRUCTIONS  
The 3-operand MCU instructions are of the following  
form:  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1 is always a working register (i.e., the  
addressing mode can only be register direct) which is  
referred to as Wb. Operand 2 can be a W register  
fetched from data memory or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
FIGURE 3-6:  
CALLSTACK FRAME  
0x0000  
15  
0
• Register Direct  
PC<15:0>  
000000000  
W15 (before CALL)  
• Register Indirect  
PC<22:16>  
<Free Word>  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
© 2007 Microchip Technology Inc.  
DS70287A-page 57  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 3-33: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the EA.  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
Register Indirect with Literal Offset The sum of Wn and a literal forms the EA.  
The 2-source operand prefetch registers must be  
3.3.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU  
and W10 and W11 will always be directed to the Y  
AGU. The effective addresses generated (before and  
after modification) must, therefore, be valid addresses  
within X data space for W8 and W9 and Y data space  
for W10 and W11.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
Addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
Note:  
Register Indirect with Register Offset  
Addressing mode is only available for W9  
(in X space) and W11 (in Y space).  
Note:  
For the MOV instructions, the Addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (Register Offset)  
field is shared between both source and  
destination (but typically only used by  
one).  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
• Register Indirect  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
In summary, the following Addressing modes are  
supported by move and accumulator instructions:  
• Register Direct  
3.3.5  
OTHER INSTRUCTIONS  
• Register Indirect  
Besides the various addressing modes outlined above,  
some instructions use literal constants of various sizes.  
For example, BRA(branch) instructions use 16-bit signed  
literals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
• 16-bit Literal  
Note:  
Not all instructions support all the  
Addressing modes given above. Individual  
instructions may support different subsets  
of these Addressing modes.  
3.4  
Modulo Addressing  
Modulo Addressing mode is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
3.3.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MAC instructions, utilize a simplified set of  
addressing modes to allow the user to effectively  
manipulate the data pointers through register indirect  
tables.  
Modulo Addressing can operate in either data or program  
space (since the data pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
DS70287A-page 58  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
can operate on any W register pointer. However, it is not  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
advisable to use W14 or W15 for Modulo Addressing,  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
In general, any particular circular buffer can only be  
configured to operate in one direction, as there are  
certain restrictions on the buffer start address (for incre-  
menting buffers) or end address (for decrementing  
buffers), based upon the direction of the buffer.  
3.4.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as well  
as a W register field to specify the W Address registers.  
The XWM and YWM fields select which registers will  
operate with Modulo Addressing. If XWM = 15, X RAGU  
and X WAGU Modulo Addressing is disabled. Similarly, if  
YWM = 15, Y AGU Modulo Addressing is disabled.  
The only exception to the usage restrictions is for  
buffers which have a power-of-2 length. As these  
buffers satisfy the start and end address criteria, they  
may operate in a bidirectional mode (i.e., address  
boundary checks will be performed on both the lower  
and upper address boundaries).  
The X Address Space Pointer W register (XWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<3:0> (see Table 3-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
3.4.1  
START AND END ADDRESS  
The Modulo Addressing scheme requires that a starting  
and ending address be specified and loaded into the  
16-bit Modulo Buffer Address registers: XMODSRT,  
XMODEND, YMODSRT and YMODEND (see  
Table 3-1).  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
15’ and the YMODEN bit is set at MODCON<14>.  
Note:  
Y space Modulo Addressing EA calcula-  
tions assume word sized data (LSb of  
every EA is always clear).  
FIGURE 3-7:  
MODULO ADDRESSING OPERATION EXAMPLE  
Byte  
Address  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
AGAIN: INC W0, W0  
;increment the fill value  
0x1163  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
© 2007 Microchip Technology Inc.  
DS70287A-page 59  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
3.4.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. It is important to realize that the address  
boundaries check for addresses less than or greater  
than the upper (for incrementing buffers) and lower (for  
decrementing buffers) boundary addresses (not just  
equal to). Address changes may, therefore, jump  
beyond boundaries and still be adjusted correctly.  
XB<14:0> is the Bit-Reversed Address modifier, or  
‘pivot point,’ which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
All bit-reversed EA calculations assume  
word sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
Note:  
The modulo corrected effective address is  
written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the effective  
address. When an address offset (e.g.,  
[W7+W2]) is used, Modulo Address cor-  
rection is performed but the contents of  
the register remain unchanged.  
When enabled, Bit-Reversed Addressing is only exe-  
cuted for Register Indirect with Pre-Increment or  
Post-Increment Addressing and word sized data writes.  
It will not function for any other addressing mode or for  
byte sized data; normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB) and the offset associated with the Regis-  
ter Indirect Addressing mode is ignored. In addition, as  
word sized data is a requirement, the LSb of the EA is  
ignored (and always clear).  
3.5  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data reordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. In the event that the user attempts  
to do so, Bit-Reversed Addressing will  
assume priority for the X WAGU, and X  
WAGU Modulo Addressing will be dis-  
abled. However, Modulo Addressing will  
continue to function in the X RAGU.  
The modifier, which may be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
3.5.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing mode is enabled when the  
following conditions exist:  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, then a write to  
the XBREV register should not be immediately followed  
by an indirect read operation using the W register that  
has been designated as the bit-reversed pointer.  
1. The BWM bits (W register selection) in the  
MODCON register are any value other than ‘15’  
(the stack cannot be accessed using  
Bit-Reversed Addressing).  
2. The BREN bit is set in the XBREV register.  
3. The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment.  
DS70287A-page 60  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 3-8:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b2 b3 b4  
0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1  
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 3-34: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
© 2007 Microchip Technology Inc.  
DS70287A-page 61  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
3.6.1  
ADDRESSING PROGRAM SPACE  
3.6  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family architecture uses a 24-bit wide program space  
and a 16-bit wide data space. The architecture is also  
a modified Harvard scheme, meaning that data can  
also be present in the program space. To use this data  
successfully, it must be accessed in a way that pre-  
serves the alignment of information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside  
from  
normal  
execution,  
the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
architecture provides two methods by which program  
space can be accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated from time to time. It also allows  
access to all bytes of the program word. The  
remapping method allows an application to access a  
large block of data on a read-only basis, which is ideal  
for look ups from a large table of static data. It can only  
access the least significant word of the program word.  
Table 3-35 and Figure 3-9 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
TABLE 3-35: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
DS70287A-page 62  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 3-9:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word  
alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted  
in the configuration memory space.  
© 2007 Microchip Technology Inc.  
DS70287A-page 63  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2. TBLRDH (Table Read High): In Word mode, it  
maps the entire upper word of a program address  
(P<23:16>) to a data address. Note that  
D<15:8>, the ‘phantom’ byte, will always be ‘0’.  
3.6.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper ‘phantom’ byte is  
selected (Byte Select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 4.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
word wide address spaces residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and  
configuration spaces. When TBLPAG<7> = 0, the table  
page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
Two table instructions are provided to move byte or  
word sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when Byte Select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 3-10:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
DS70287A-page 64  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
3.6.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access of stored  
constant data from the data space without the need to  
use special instructions (i.e., TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG  
functions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. Note that by incrementing the PC by 2 for  
each program memory word, the lower 15 bits of data  
space addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions  
require one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV and are executed inside a  
REPEATloop, there will be some instances that require  
two instruction cycles in addition to the specified exe-  
cution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Data reads to this area add an additional cycle to the  
instruction being executed, since two program memory  
fetches are required.  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data using PSV to execute in a  
single cycle.  
Although each data space address, 8000h and higher,  
maps directly into a corresponding program memory  
address (see Figure 3-11), only the lower 16 bits of the  
FIGURE 3-11:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...while the lower 15 bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
© 2007 Microchip Technology Inc.  
DS70287A-page 65  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 66  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
ital signal controller just before shipping the product.  
This also allows the most recent firmware or a custom  
firmware to be programmed.  
4.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
can write program memory data by blocks (or ‘rows’) of  
64 instructions (192 bytes) at a time or by single pro-  
gram memory word; and the user can erase program  
memory in blocks or ‘pages’ of 512 instructions (1536  
bytes) at a time.  
4.1  
Table Instructions and Flash  
Programming  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices contain internal Flash program memory  
for storing and executing application code. The mem-  
ory is readable, writable and erasable during normal  
operation over the entire VDD range.  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits <7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 4-1.  
Flash memory can be programmed in two ways:  
1. In-Circuit Serial Programming™ (ICSP™)  
programming capability  
2. Run-Time Self-Programming (RTSP)  
The TBLRDLand TBLWTLinstructions are used to read  
or write to bits <15:0> of program memory. TBLRDLand  
TBLWTL can access program memory in both Word  
and Byte modes.  
ICSP allows a dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family device to be serially programmed while  
in the end application circuit. This is simply done with  
two lines for programming clock and programming data  
(one of the alternate programming pin pairs: PGC1/  
PGD1, PGC2/PGD2 or PGC3/PGD3), and three other  
lines for power (VDD), ground (VSS) and Master Clear  
(MCLR). This allows customers to manufacture boards  
with unprogrammed devices and then program the dig-  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits <23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 4-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
© 2007 Microchip Technology Inc.  
DS70287A-page 67  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
4.2  
RTSP Operation  
4.3  
Control Registers  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family Flash program memory array is organized into  
rows of 64 instructions or 192 bytes. RTSP allows the  
user to erase a page of memory at a time, which con-  
sists of eight rows (512 instructions), and to program  
one row or one word at a time. Table 25-12 shows typ-  
ical erase and programming times. The 8-row erase  
pages and single-row write rows are edge-aligned,  
from the beginning of program memory, on boundaries  
of 1536 bytes and 192 bytes, respectively.  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 4-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 4.4 for further  
details.  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers in sequential order. The  
instruction words loaded must always be from a group  
of 64 boundary.  
4.4  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. A programming operation is nominally 4 ms in  
duration, and the processor stalls (waits) until the  
operation is finished. Setting the WR bit  
(NVMCON<15>) starts the operation; the WR bit is  
automatically cleared when the operation is finished.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register. A total  
of 64 TBLWTL and TBLWTH instructions are required  
to load the instructions.  
All of the table write operations are single-word writes  
(two instruction cycles), because only the buffers are  
written.  
A
programming cycle is required for  
programming each row.  
DS70287A-page 68  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 4-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
bit 0  
Legend:  
SO = Settable only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete.  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
If ERASE = 1:  
1111= Memory bulk erase operation  
1110= Reserved  
1101= Erase General Segment  
1100= Erase Secure Segment  
1011= Reserved  
0011= No operation  
0010= Memory page erase operation  
0001= No operation  
0000= Erase a single Configuration register byte  
If ERASE = 0:  
1111= No operation  
1110= Reserved  
1101= No operation  
1100= No operation  
1011= Reserved  
0011= Memory word program operation  
0010= No operation  
0001= Memory row program operation  
0000= Program a single Configuration register byte  
Note 1: These bits can only be reset on POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
© 2007 Microchip Technology Inc.  
DS70287A-page 69  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 4-2).  
4.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of program Flash  
memory at a time. To do this, it is necessary to erase  
the 8-row erase page that contains the desired row.  
The general process is as follows:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write #0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store it in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash mem-  
ory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 4-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN (NVM-  
CON<14>) bits.  
6. Repeat steps 4 and 5 using the next available 64  
instructions from the block in data RAM by incre-  
menting the value in TBLPAG until all  
512 instructions are written back to Flash memory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 4-3.  
c) Write 55h to NVMKEY.  
d) Write AAh to NVMKEY.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 4-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
DS70287A-page 70  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
EXAMPLE 4-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 4-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
© 2007 Microchip Technology Inc.  
DS70287A-page 71  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 72  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
5.0  
RESETS  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
Note:  
This data sheet summarizes the features  
of  
this  
group  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 5-1). A POR will clear all bits except for  
the POR bit (RCON<0>), which is set. The user can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode and Uninitialized W  
Register Reset  
A simplified block diagram of the Reset module is  
shown in Figure 5-1.  
Any active source of Reset will make the SYSRST  
signal active. Many registers associated with the CPU  
and peripherals are forced to a known Reset state.  
Most registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
FIGURE 5-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
© 2007 Microchip Technology Inc.  
DS70287A-page 73  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 5-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-9  
bit 8  
Unimplemented: Read as ‘0’  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS70287A-page 74  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 5-1:  
RCON: RESET CONTROL REGISTER(1) (CONTINUED)  
bit 1  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
bit 0  
POR: Power-on Reset Flag bit  
1= A Power-up Reset has occurred  
0= A Power-up Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
© 2007 Microchip Technology Inc.  
DS70287A-page 75  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 5-1:  
RESET FLAG BIT OPERATION  
Flag Bit Setting Event  
Trap conflict event  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
POR  
POR  
Illegal opcode or uninitialized  
W register access  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>  
POR (RCON<0>)  
MCLR Reset  
POR  
POR  
RESETinstruction  
WDT time-out  
PWRSAVinstruction, POR  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
BOR  
POR  
POR  
POR  
Note: All Reset flag bits may be set or cleared by the user software.  
5.1  
Clock Source Selection at Reset  
5.2  
Device Reset Times  
If clock switching is enabled, the system clock source at  
device Reset is chosen, as shown in Table 5-2. If clock  
switching is disabled, the system clock source is always  
selected according to the oscillator Configuration bits.  
Refer to Section 8.0 for further details.  
The Reset times for various types of device Reset are  
summarized in Table 5-3. The system Reset signal,  
SYSRST, is released after the POR and PWRT delay  
times expire.  
The time at which the device actually begins to execute  
code also depends on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable SYSRST delay times.  
TABLE 5-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The FSCM delay determines the time at which the  
FSCM begins to monitor the system clock source after  
the SYSRST signal is released.  
Reset Type  
Clock Source Determinant  
POR  
BOR  
Oscillator Configuration bits  
(FNOSC<2:0>)  
MCLR  
WDTR  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
DS70287A-page 76  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 5-3:  
Reset Type  
POR  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
FSCM  
Delay  
Clock Source  
SYSRST Delay  
Notes  
1, 2, 3  
EC, FRC, LPRC  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
EC, FRC, LPRC  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
Any Clock  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TRST  
TFSCM  
TFSCM  
TFSCM  
TLOCK  
1, 2, 3, 5, 6  
TOST  
1, 2, 3, 4, 6  
TOST + TLOCK  
1, 2, 3, 4, 5, 6  
BOR  
3
TLOCK  
TFSCM  
TFSCM  
TFSCM  
3, 5, 6  
TOST  
3, 4, 6  
TOST + TLOCK  
3, 4, 5, 6  
MCLR  
3
3
3
3
3
3
WDT  
Any Clock  
TRST  
Software  
Any Clock  
TRST  
Illegal Opcode  
Uninitialized W  
Trap Conflict  
Any Clock  
TRST  
Any Clock  
TRST  
Any Clock  
TRST  
Note 1: TPOR = Power-on Reset delay (10 μs nominal).  
2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal  
Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down  
states, including waking from Sleep mode, if the regulator is enabled.  
3: TRST = Internal state Reset time (20 μs nominal).  
4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the  
oscillator clock to the system.  
5: TLOCK = PLL lock time (20 μs nominal).  
6: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).  
5.2.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
5.2.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) have a relatively long start-up  
time. Therefore, one or more of the following conditions  
is possible after SYSRST is released:  
If the FSCM is enabled, it begins to monitor the system  
clock source when SYSRST is released. If a valid clock  
source is not available at this time, the device  
automatically switches to the FRC oscillator and the  
user can switch to the desired crystal oscillator in the  
Trap Service Routine.  
• The oscillator circuit has not begun to oscillate.  
5.2.2.1  
FSCM Delay for Crystal and PLL  
Clock Sources  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
When the system clock source is provided by a crystal  
oscillator and/or the PLL, a small delay, TFSCM, is  
automatically inserted after the POR and PWRT delay  
times. The FSCM does not begin to monitor the system  
clock source until this delay expires. The FSCM delay  
time is nominally 500 μs and provides additional time  
for the oscillator and/or PLL to stabilize. In most cases,  
the FSCM delay prevents an oscillator failure trap at a  
device Reset when the PWRT is disabled.  
• The PLL has not achieved a lock (if PLL is used).  
The device will not begin to execute code until a valid  
clock source has been released to the system.  
Therefore, the oscillator and PLL start-up delays must  
be considered when the Reset delay time must be  
known.  
© 2007 Microchip Technology Inc.  
DS70287A-page 77  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
5.3  
Special Function Register Reset  
States  
Most of the Special Function Registers (SFRs)  
associated with the CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function, and their  
Reset values are specified in each section of this manual.  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of two registers. The  
Reset value for the Reset Control register, RCON,  
depends on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, depends  
on the type of Reset and the programmed values of the  
oscillator Configuration bits in the FOSC Configuration  
register.  
DS70287A-page 78  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
6.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
6.0  
INTERRUPT CONTROLLER  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 6-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
The AIVT supports debugging by providing a means to  
switch between an application and  
a
support  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time. If the AIVT is not  
needed, the AIVT should be programmed with the  
same addresses used in the IVT.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the dsPIC33FJXXXMCX06/X08/X10  
Motor Control Family CPU. It has the following fea-  
tures:  
6.2  
Reset Sequence  
• Up to 8 processor exceptions and software traps  
• 7 user-selectable priority levels  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family device clears its registers in response to a  
Reset, which forces the PC to zero. The digital signal  
controller then begins program execution at location  
0x000000. The user programs a GOTOinstruction at the  
Reset address, which redirects program execution to  
the appropriate start-up routine.  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
6.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 6-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors consisting of  
8 nonmaskable trap vectors plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Interrupt vectors are prioritized in terms of their natural  
priority; this priority is linked to their position in the  
vector table. All other things being equal, lower  
addresses have a higher natural priority. For example,  
the interrupt associated with vector 0 will take priority  
over interrupts at any other vector address.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices implement up to 67 unique interrupts and 5  
nonmaskable traps. These are summarized in Table 6-  
1 and Table 6-2.  
© 2007 Microchip Technology Inc.  
DS70287A-page 79  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 6-1:  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY INTERRUPT  
VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
(1)  
Interrupt Vector Table (IVT)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 6-1 for the list of implemented interrupt vectors.  
DS70287A-page 80  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 6-1:  
INTERRUPT VECTORS  
Interrupt  
Vector  
Number  
Request(IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
INT0 – External Interrupt 0  
8
0
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x00003E  
0x000040  
0x000042  
0x000044  
0x000046  
0x000048  
0x00004A  
0x00004C  
0x00004E  
0x000050  
0x000052  
0x000054  
0x000056  
0x000058  
0x00005A  
0x00005C  
0x00005E  
0x000060  
0x000062  
0x000064  
0x000066  
0x000068  
0x00006A  
0x00006C  
0x00006E  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
0x000150  
0x000152  
0x000154  
0x000156  
0x000158  
0x00015A  
0x00015C  
0x00015E  
0x000160  
0x000162  
0x000164  
0x000166  
0x000168  
0x00016A  
0x00016C  
0x00016E  
9
1
IC1 – Input Compare 1  
OC1 – Output Compare 1  
T1 – Timer1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
2
3
4
DMA0 – DMA Channel 0  
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
5
6
7
8
T3 – Timer3  
9
SPI1E – SPI1 Error  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC1 – ADC 1  
DMA1 – DMA Channel 1  
Reserved  
SI2C1 – I2C1 Slave Events  
MI2C1 – I2C1 Master Events  
Reserved  
Change Notification Interrupt  
INT1 – External Interrupt 1  
ADC2 – ADC 2  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
DMA2 – DMA Channel 2  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer4  
T5 – Timer5  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2E – SPI2 Error  
SPI1 – SPI1 Transfer Done  
C1RX – ECAN1 Receive Data Ready  
C1 – ECAN1 Event  
DMA3 – DMA Channel 3  
IC3 – Input Capture 3  
IC4 – Input Capture 4  
IC5 – Input Capture 5  
IC6 – Input Capture 6  
OC5 – Output Compare 5  
OC6 – Output Compare 6  
OC7 – Output Compare 7  
OC8 – Output Compare 8  
Reserved  
© 2007 Microchip Technology Inc.  
DS70287A-page 81  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 6-1:  
INTERRUPT VECTORS (CONTINUED)  
Interrupt  
Vector  
Number  
Request(IRQ)  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
DMA4 – DMA Channel 4  
54  
55  
46  
47  
0x000070  
0x000072  
0x000074  
0x000076  
0x000078  
0x00007A  
0x00007C  
0x00007E  
0x000080  
0x000082  
0x000084  
0x000086  
0x000088  
0x00008E  
0x000090  
0x000092  
0x000094  
0x000096  
0x000098  
0x00009A  
0x00009C  
0x00009E  
0x0000A0  
0x0000A2  
0x000170  
0x000172  
0x000174  
0x000176  
0x000178  
0x00017A  
0x00017C  
0x00017E  
0x000180  
0x000182  
0x000184  
0x000186  
0x000188  
0x00018E  
0x000190  
0x000192  
0x000194  
0x000196  
0x000198  
0x00019A  
0x00019C  
0x00019E  
0x0001A0  
0x0001A2  
T6 – Timer6  
56  
48  
T7 – Timer7  
57  
49  
SI2C2 – I2C2 Slave Events  
MI2C2 – I2C2 Master Events  
T8 – Timer8  
58  
50  
59  
51  
60  
52  
T9 – Timer9  
61  
53  
INT3 – External Interrupt 3  
INT4 – External Interrupt 4  
C2RX – ECAN2 Receive Data Ready  
C2 – ECAN2 Event  
62  
54  
63  
55  
64  
56  
65  
57  
PWM – PWM Period Match  
QEI – Position Counter Compare  
DMA5 – DMA Channel 5  
Reserved  
66  
58  
69  
61  
70  
62  
71  
63  
FLTA – MCPWM Fault A  
FLTB – MCPWM Fault B  
U1E – UART1 Error  
72  
64  
73  
65  
74  
66  
U2E – UART2 Error  
75  
67  
Reserved  
76  
68  
DMA6 – DMA Channel 6  
DMA7 – DMA Channel 7  
C1TX – ECAN1 Transmit Data Request  
C2TX – ECAN2 Transmit Data Request  
Reserved  
77  
69  
78  
70  
79  
71  
80-125  
72-117  
0x0000A4-  
0x0000FE  
0x0001A4-  
0x0001FE  
TABLE 6-2:  
TRAP VECTORS  
Vector Number  
IVT Address  
AIVT Address  
Trap Source  
Reserved  
0
1
2
3
4
5
6
7
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000104  
0x000106  
0x000108  
0x00010A  
0x00010C  
0x00010E  
0x000110  
0x000112  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
DMA Error Trap  
Reserved  
Reserved  
DS70287A-page 82  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The IPC registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
6.3  
Interrupt Control and Status  
Registers  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices implement a total of 30 registers for the inter-  
rupt controller:  
The INTTREG register contains the associated  
interrupt vector number and the new CPU interrupt  
priority level, which are latched into vector number  
(VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit  
fields in the INTTREG register. The new interrupt prior-  
ity level is the priority of the pending interrupt.  
• INTCON1  
• INTCON2  
• IFS0 through IFS4  
• IEC0 through IEC4  
• IPC0 through IPC17  
• INTTREG  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 6-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP  
bits in the first position of IPC0 (IPC0<2:0>).  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable (NSTDIS) bit as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality. The CPU  
STATUS register, SR, contains the IPL<2:0> bits  
(SR<7:5>). These bits indicate the current CPU  
interrupt priority level. The user can change the current  
CPU priority level by writing to the IPL bits.  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a Status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
The CORCON register contains the IPL3 bit which,  
together with IPL<2:0>, also indicates the current CPU  
priority level. IPL3 is a read-only bit so that trap events  
cannot be masked by the user software.  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
All Interrupt registers are described in Register 6-1  
through Register 6-32 in the following pages.  
© 2007 Microchip Technology Inc.  
DS70287A-page 83  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-1:  
SR: CPU STATUS REGISTER(1)  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(1)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 2-1: “SR: CPU STATUS Register”.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
REGISTER 6-2:  
CORCON: CORE CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note 1: For complete register details, see Register 2-2: “CORCON: CORE Control Register”.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70287A-page 84  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
DMACERR MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Enable bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Enable bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B enabled  
0= Trap disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide by zero  
0= Math error trap was not caused by a divide by zero  
bit 5  
DMACERR: DMA Controller Error Status bit  
1= DMA controller error trap has occurred  
0= DMA controller error trap has not occurred  
bit 4  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
© 2007 Microchip Technology Inc.  
DS70287A-page 85  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
DS70287A-page 86  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
© 2007 Microchip Technology Inc.  
DS70287A-page 87  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
DMA1IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
R/W-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
DMA01IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70287A-page 88  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2007 Microchip Technology Inc.  
DS70287A-page 89  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
R/W-0  
U2RXIF  
DMA21IF  
bit 8  
R/W-0  
IC8IF  
R/W-0  
IC7IF  
R/W-0  
AD2IF  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
IC8IF: Input Capture Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
AD2IF: ADC2 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70287A-page 90  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)  
bit 3  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2007 Microchip Technology Inc.  
DS70287A-page 91  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
R/W-0  
T6IF  
R/W-0  
U-0  
R/W-0  
OC8IF  
R/W-0  
OC7IF  
R/W-0  
OC6IF  
R/W-0  
OC5IF  
R/W-0  
IC6IF  
DMA4IF  
bit 15  
bit 8  
R/W-0  
IC5IF  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
R/W-0  
R/W-0  
C1IF  
R/W-0  
R/W-0  
SPI2IF  
R/W-0  
DMA3IF  
C1RXIF  
SPI2EIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
T6IF: Timer6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
Unimplemented: Read as ‘0’  
OC8IF: Output Compare Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
OC7IF: Output Compare Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC6IF: Output Compare Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC6IF: Input Capture Channel 6 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C1IF: ECAN1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70287A-page 92  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)  
bit 2  
bit 1  
bit 0  
C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2EIF: SPI2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2007 Microchip Technology Inc.  
DS70287A-page 93  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
R/W-0  
FLTAIF  
bit 15  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
QEIIF  
R/W-0  
R/W-0  
C2IF  
DMA5IF  
PWMIF  
bit 8  
R/W-0  
C2RXIF  
bit 7  
R/W-0  
INT4IF  
R/W-0  
INT3IF  
R/W-0  
T9IF  
R/W-0  
T8IF  
R/W-0  
R/W-0  
R/W-0  
T7IF  
MI2C2IF  
SI2C2IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FLTAIF: PWM Fault A Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
QEIIF: QEI Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PWMIF: PWM Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C2IF: ECAN2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C2RXIF: ECAN2 Receive Data Ready Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T9IF: Timer9 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T8IF: Timer8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C2IF: I2C2 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70287A-page 94  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3 (CONTINUED)  
bit 1  
SI2C2IF: I2C2 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
T7IF: Timer7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
© 2007 Microchip Technology Inc.  
DS70287A-page 95  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
C2TXIF  
bit 7  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U2EIF  
R/W-0  
U1EIF  
R/W-0  
C1TXIF  
DMA7IF  
DMA6IF  
FLTBIF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
C2TXIF: ECAN2 Transmit Data Request Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
bit 5  
bit 4  
C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
FLTBIF: PWM Fault B Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70287A-page 96  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
DMA1IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
R/W-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
DMA0IE  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1EIE: SPI1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 97  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70287A-page 98  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
R/W-0  
U2TXIE  
U2RXIE  
INT2IE  
DMA2IE  
bit 15  
bit 8  
R/W-0  
IC8IE  
R/W-0  
IC7IE  
R/W-0  
AD2IE  
R/W-0  
R/W-0  
CNIE  
R/W-0  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
IC8IE: Input Capture Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
AD2IE: ADC2 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 99  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)  
bit 3  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70287A-page 100  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
R/W-0  
T6IE  
R/W-0  
U-0  
R/W-0  
OC8IE  
R/W-0  
OC7IE  
R/W-0  
OC6IE  
R/W-0  
OC5IE  
R/W-0  
IC6IE  
DMA4IE  
bit 15  
bit 8  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
R/W-0  
R/W-0  
C1IE  
R/W-0  
R/W-0  
R/W-0  
DMA3IE  
C1RXIE  
SPI2IE  
SPI2EIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
T6IE: Timer6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
bit 12  
Unimplemented: Read as ‘0’  
OC8IE: Output Compare Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
OC7IE: Output Compare Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC6IE: Output Compare Channel 6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC6IE: Input Capture Channel 6 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
C1IE: ECAN1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 101  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)  
bit 2  
bit 1  
bit 0  
C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI2EIE: SPI2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70287A-page 102  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
R/W-0  
U-0  
R/W-0  
R/W-0  
DCIIE  
R/W-0  
R/W-0  
QEIIE  
R/W-0  
R/W-0  
C2IE  
FLTAIE  
DMA5IE  
DCIEIE  
PWMIE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T9IE  
R/W-0  
T8IE  
R/W-0  
R/W-0  
R/W-0  
T7IE  
C2RXIE  
INT4IE  
INT3IE  
MI2C2IE  
SI2C2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FLTAIE: PWM Fault A Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
DCIIE: DCI Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DCIEIE: DCI Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
QEIIE: QEI Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
PWMIE: PWM Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
C2IE: ECAN2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
C2RXIE: ECAN2 Receive Data Ready Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT4IE: External Interrupt 4 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT3IE: External Interrupt 3 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T9IE: Timer9 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T8IE: Timer8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 103  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3 (CONTINUED)  
bit 2  
bit 1  
bit 0  
MI2C2IE: I2C2 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SI2C2IE: I2C2 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T7IE: Timer7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70287A-page 104  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U2EIE  
R/W-0  
U1EIE  
R/W-0  
C2TXIE  
C1TXIE  
DMA7IE  
DMA6IE  
FLTBIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
bit 5  
bit 4  
C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
U2EIE: UART2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 1  
bit 0  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
FLTBIE: PWM Fault B Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 105  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
IC1IP<2:0>  
INT0IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 106  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T2IP<2:0>  
OC2IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
IC2IP<2:0>  
DMA0IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 107  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
SPI1EIP<2:0>  
T3IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 108  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DMA1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-0  
AD1IP<2:0>  
U1TXIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 109  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
CNIP<2:0>  
bit 15  
bit 8  
U-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 110  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IC8IP<2:0>  
IC7IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
AD2IP<2:0>  
INT1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 111  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T4IP<2:0>  
OC4IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
OC3IP<2:0>  
DMA2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 112  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U2TXIP<2:0>  
U2RXIP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
INT2IP<2:0>  
T5IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 113  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C1IP<2:0>  
C1RXIP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
SPI2IP<2:0>  
SPI2EIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C1IP<2:0>: ECAN1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 114  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IC5IP<2:0>  
IC4IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
IC3IP<2:0>  
DMA3IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 115  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
OC7IP<2:0>  
OC6IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
OC5IP<2:0>  
IC6IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 116  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T6IP<2:0>  
DMA4IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
OC8IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T6IP<2:0>: Timer6 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
OC8IP<2:0>: Output Compare Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 117  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T8IP<2:0>  
MI2C2IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
SI2C2IP<2:0>  
T7IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T8IP<2:0>: Timer8 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2IP<2:0>: I2C2 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T7IP<2:0>: Timer7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 118  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C2RXIP<2:0>  
INT4IP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
INT3IP<2:0>  
T9IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C2RXIP<2:0>: ECAN2 Receive Data Ready Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
INT4IP<2:0>: External Interrupt 4 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T9IP<2:0>: Timer9 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 119  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
QEIIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-0  
PWMIP<2:0>  
C2IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
QEIIP<2:0>: QEI Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PWMIP<2:0>: PWM Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
C2IP<2:0>: ECAN2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 120  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
FLTAIP<2:0>  
bit 15  
bit 8  
U-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA5IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
FLTAIP<2:0>: PWM Fault A Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-7  
bit 6-4  
Unimplemented: Read as ‘0’  
DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
DS70287A-page 121  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U2EIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-0  
U1EIP<2:0>  
FLTBIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
U2EIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
FLTBIP<2:0>: PWM Fault B Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70287A-page 122  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
C2TXIP<2:0>  
C1TXIP<2:0>  
bit 15  
U-0  
R/W-0  
U-0  
R/W-0  
DMA7IP<2:0>  
DMA6IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 123  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 6-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
R-0  
R/W-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM: Vector Number of Pending Interrupt bits  
0111111= Interrupt Vector pending is number 135  
0000001= Interrupt Vector pending is number 9  
0000000= Interrupt Vector pending is number 8  
DS70287A-page 124  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
6.4.3  
TRAP SERVICE ROUTINE  
6.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
6.4.1  
INITIALIZATION  
To configure an interrupt source, do the following:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
6.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources may be programmed  
to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POPinstruction may be  
Note: At a device Reset, the IPCx registers are  
initialized such that all user interrupt  
sources are assigned to priority level 4.  
used to restore the previous SR value.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (level 8-level 15)  
cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISIinstruction provides a convenient way to dis-  
able interrupts of priority levels 1-6 for a fixed period of  
time. Level 7 interrupt sources are not disabled by the  
DISI instruction.  
4. Enable the interrupt source by setting the inter-  
rupt enable control bit associated with the  
source in the appropriate IECx register.  
6.4.2  
INTERRUPT SERVICE ROUTINE  
The method that is used to declare an ISR and initialize  
the IVT with the correct vector address will depend on  
the programming language (i.e., C or assembler) and  
the language development tool suite that is used to  
develop the application. In general, the user must clear  
the interrupt flag in the appropriate IFSx register for the  
source of interrupt that the ISR handles. Otherwise, the  
ISR will be re-entered immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and old CPU  
priority level.  
© 2007 Microchip Technology Inc.  
DS70287A-page 125  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 126  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
7.0  
DIRECT MEMORY ACCESS  
(DMA)  
Peripheral  
ECAN2 Reception  
ECAN2 Transmission  
IRQ Number  
55  
71  
Note:  
This data sheet summarizes the features  
of  
this  
group  
The DMA controller features eight identical data  
transfer channels. Each channel has its own set of  
control and status registers. Each DMA channel can be  
configured to copy data either from buffers stored in  
dual port DMA RAM to peripheral SFRs or from  
peripheral SFRs to buffers in DMA RAM.  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
The DMA controller supports the following features:  
• Word or byte sized data transfers.  
• Transfers from peripheral to DMA RAM or DMA  
RAM to peripheral.  
Direct Memory Access (DMA) is a very efficient  
mechanism of copying data between peripheral SFRs  
(e.g., the UART Receive register and Input Capture 1  
buffer) and buffers or variables stored in RAM, with  
minimal CPU intervention. The DMA controller can  
automatically copy entire blocks of data without  
requiring the user software to read or write the  
peripheral Special Function Registers (SFRs) every  
time a peripheral interrupt occurs. The DMA controller  
uses a dedicated bus for data transfers and, therefore,  
does not steal cycles from the code execution flow of  
the CPU. To exploit the DMA capability, the  
corresponding user buffers or variables must be  
located in DMA RAM.  
• Indirect Addressing of DMA RAM locations with or  
without automatic post-increment.  
• Peripheral Indirect Addressing – In some  
peripherals, the DMA RAM read/write addresses  
may be partially derived from the peripheral.  
• One-Shot Block Transfers – Terminating DMA  
transfer after one block transfer.  
• Continuous Block Transfers – Reloading DMA  
RAM buffer start address after every block  
transfer is complete.  
• Ping-Pong Mode – Switching between two DMA  
RAM start addresses between successive block  
transfers, thereby filling two buffers alternately.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family peripherals that can utilize DMA are listed in  
Table 7-1 along with their associated Interrupt Request  
(IRQ) numbers.  
• Automatic or manual initiation of block transfers.  
• Each channel can select from 20 possible  
sources of data sources or destinations.  
For each DMA channel, a DMA interrupt request is  
TABLE 7-1:  
PERIPHERALS WITH DMA  
SUPPORT  
generated when  
a
block transfer is complete.  
Alternatively, an interrupt can be generated when half of  
the block has been filled.  
Peripheral  
IRQ Number  
INT0  
0
1
Input Capture 1  
Input Capture 2  
Output Compare 1  
Output Compare 2  
Timer2  
5
2
6
7
Timer3  
8
SPI1  
10  
33  
11  
12  
30  
31  
13  
21  
34  
70  
SPI2  
UART1 Reception  
UART1 Transmission  
UART2 Reception  
UART2 Transmission  
ADC1  
ADC2  
ECAN1 Reception  
ECAN1 Transmission  
© 2007 Microchip Technology Inc.  
DS70287A-page 127  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 7-1:  
TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS  
Peripheral Indirect Address  
DMA Controller  
DMA  
Ready  
Peripheral 3  
DMA  
Channels  
DMA RAM  
SRAM  
PORT 1 PORT 2  
CPU DMA  
SRAM X-Bus  
DMA DS Bus  
CPU Peripheral DS Bus  
CPU DMA  
DMA  
Ready  
CPU DMA  
Non-DMA  
Ready  
DMA  
Ready  
Peripheral 2  
CPU  
Peripheral  
Peripheral 1  
Note: For clarity, CPU and DMA address buses are not shown.  
7.1  
DMAC Registers  
Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7)  
contains the following registers:  
• A 16-bit DMA Channel Control register  
(DMAxCON)  
• A 16-bit DMA Channel IRQ Select register  
(DMAxREQ)  
• A 16-bit DMA RAM Primary Start Address Offset  
register (DMAxSTA)  
• A 16-bit DMA RAM Secondary Start Address  
Offset register (DMAxSTB)  
• A 16-bit DMA Peripheral Address register  
(DMAxPAD)  
• A 10-bit DMA Transfer Count register (DMAxCNT)  
An additional pair of status registers, DMACS0 and  
DMACS1, are common to all DMAC channels.  
DS70287A-page 128  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-1:  
DMAxCON: DMA CHANNEL x CONTROL REGISTER  
R/W-0  
CHEN  
R/W-0  
SIZE  
R/W-0  
DIR  
R/W-0  
HALF  
R/W-0  
U-0  
U-0  
U-0  
NULLW  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMODE<1:0>  
MODE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
CHEN: Channel Enable bit  
1= Channel enabled  
0= Channel disabled  
SIZE: Data Transfer Size bit  
1= Byte  
0= Word  
DIR: Transfer Direction bit (source/destination bus select)  
1= Read from DMA RAM address; write to peripheral address  
0= Read from peripheral address; write to DMA RAM address  
HALF: Early Block Transfer Complete Interrupt Select bit  
1= Initiate block transfer complete interrupt when half of the data has been moved  
0= Initiate block transfer complete interrupt when all of the data has been moved  
NULLW: Null Data Peripheral Write Mode Select bit  
1= Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)  
0= Normal operation  
bit 10-6  
bit 5-4  
Unimplemented: Read as ‘0’  
AMODE<1:0>: DMA Channel Operating Mode Select bits  
11= Reserved  
10= Peripheral Indirect Addressing mode  
01= Register Indirect without Post-Increment mode  
00= Register Indirect with Post-Increment mode  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
MODE<1:0>: DMA Channel Operating Mode Select bits  
11= One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)  
10= Continuous, Ping-Pong modes enabled  
01= One-Shot, Ping-Pong modes disabled  
00= Continuous, Ping-Pong modes disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 129  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-2:  
DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER  
R/W-0  
FORCE(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
IRQSEL6(2) IRQSEL5(2) IRQSEL4(2) IRQSEL3(2) IRQSEL2(2)  
IRQSEL1(2) IRQSEL0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FORCE: Force DMA Transfer bit(1)  
1= Force a single DMA transfer (Manual mode)  
0= Automatic DMA transfer initiation by DMA request  
bit 14-7  
bit 6-0  
Unimplemented: Read as ‘0’  
IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits(2)  
0000000-1111111= DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ  
Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced  
DMA transfer is complete.  
2: Please see Table 6-1 for a complete listing of IRQ numbers for all interrupt sources.  
DS70287A-page 130  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-3:  
DMAxSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
STA<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
STA<7:0>  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STA<15:0>: Primary DMA RAM Start Address bits (source or destination)  
REGISTER 7-4:  
DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STB<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
STB<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)  
© 2007 Microchip Technology Inc.  
DS70287A-page 131  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-5:  
DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PAD<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
PAD<7:0>  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PAD<15:0>: Peripheral Address Register bits  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
REGISTER 7-6:  
DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNT<9:8>(2)  
bit 15  
bit 8  
R/W-0  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNT<7:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CNT<9:0>: DMA Transfer Count Register bits(2)  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
2: Number of DMA transfers = CNT<9:0> + 1.  
DS70287A-page 132  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0  
R/C-0  
PWCOL7  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
PWCOL6  
PWCOL5  
PWCOL4  
PWCOL3  
PWCOL2  
PWCOL1  
PWCOL0  
bit 8  
R/C-0  
XWCOL7  
bit 7  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
XWCOL6  
XWCOL5  
XWCOL4  
XWCOL3  
XWCOL2  
XWCOL1  
XWCOL0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
PWCOL7: Channel 7 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL6: Channel 6 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL5: Channel 5 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL4: Channel 4 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL3: Channel 3 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL2: Channel 2 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL1: Channel 1 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 8  
PWCOL0: Channel 0 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 7  
XWCOL7: Channel 7 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 6  
XWCOL6: Channel 6 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 5  
XWCOL5: Channel 5 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 4  
XWCOL4: Channel 4 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
© 2007 Microchip Technology Inc.  
DS70287A-page 133  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
XWCOL3: Channel 3 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL2: Channel 2 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL1: Channel 1 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL0: Channel 0 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
DS70287A-page 134  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-8:  
DMACS1: DMA CONTROLLER STATUS REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
LSTCH<3:0>  
bit 15  
bit 8  
R-0  
PPST7  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
LSTCH<3:0>: Last DMA Channel Active bits  
1111= No DMA transfer has occurred since system Reset  
1110-1000= Reserved  
0111= Last data transfer was by DMA Channel 7  
0110= Last data transfer was by DMA Channel 6  
0101= Last data transfer was by DMA Channel 5  
0100= Last data transfer was by DMA Channel 4  
0011= Last data transfer was by DMA Channel 3  
0010= Last data transfer was by DMA Channel 2  
0001= Last data transfer was by DMA Channel 1  
0000= Last data transfer was by DMA Channel 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PPST7: Channel 7 Ping-Pong Mode Status Flag bit  
1= DMA7STB register selected  
0= DMA7STA register selected  
PPST6: Channel 6 Ping-Pong Mode Status Flag bit  
1= DMA6STB register selected  
0= DMA6STA register selected  
PPST5: Channel 5 Ping-Pong Mode Status Flag bit  
1= DMA5STB register selected  
0= DMA5STA register selected  
PPST4: Channel 4 Ping-Pong Mode Status Flag bit  
1= DMA4STB register selected  
0= DMA4STA register selected  
PPST3: Channel 3 Ping-Pong Mode Status Flag bit  
1= DMA3STB register selected  
0= DMA3STA register selected  
PPST2: Channel 2 Ping-Pong Mode Status Flag bit  
1= DMA2STB register selected  
0= DMA2STA register selected  
PPST1: Channel 1 Ping-Pong Mode Status Flag bit  
1= DMA1STB register selected  
0= DMA1STA register selected  
PPST0: Channel 0 Ping-Pong Mode Status Flag bit  
1= DMA0STB register selected  
0= DMA0STA register selected  
© 2007 Microchip Technology Inc.  
DS70287A-page 135  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 7-9:  
DSADR: MOST RECENT DMA RAM ADDRESS  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<15:8>  
bit 15  
R-0  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
DSADR<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits  
DS70287A-page 136  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
clock sources  
8.0  
OSCILLATOR  
• An on-chip PLL to scale the internal operating  
frequency to the required system clock frequency  
CONFIGURATION  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
• The internal FRC oscillator can also be used with  
the PLL, thereby allowing full-speed operation  
without any external clock generation hardware  
• Clock switching between various clock sources  
• Programmable clock postscaler for system power  
savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
• A Clock Control register (OSCCON)  
• Nonvolatile Configuration bits for main oscillator  
selection  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family oscillator system provides the following:  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
• Various external and internal oscillator options as  
FIGURE 8-1:  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY OSCILLATOR  
SYSTEM DIAGRAM  
dsPIC33F  
Primary Oscillator  
DOZE<2:0>  
XT, HS, EC  
OSC2  
OSC1  
S2  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
S3  
S1  
FCY  
PLL(1)  
S1/S3  
÷ 2  
FOSC  
FRC  
Oscillator  
FRCDIVN  
S7  
FRCDIV<2:0>  
TUN<5:0>  
FRCDIV16  
FRC  
S6  
S0  
÷ 16  
LPRC  
SOSC  
LPRC  
Oscillator  
S5  
Secondary Oscillator  
SOSCO  
SOSCI  
S4  
LPOSCEN  
Clock Switch  
Reset  
Clock Fail  
S7  
NOSC<2:0> FNOSC<2:0>  
WDT, PWRT,  
FSCM  
Timer 1  
Note 1: See Figure 8-2 for PLL details  
© 2007 Microchip Technology Inc.  
DS70287A-page 137  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The Configuration bits allow users to choose between  
twelve different clock modes, shown in Table 8-1.  
8.1  
CPU Clocking System  
There are seven system clock options provided by the  
dsPIC33FJXXXMCX06/X08/X10MotorControlFamily:  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected), FOSC, is divided by 2  
to generate the device instruction clock (FCY). FCY  
defines the operating speed of the device, and speeds  
• FRC Oscillator  
• FRC Oscillator with PLL  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
• Secondary (LP) Oscillator  
• LPRC Oscillator  
up to  
40  
MHz  
are  
supported by  
the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
architecture.  
Instruction execution speed or device operating  
frequency, FCY, is given by the following equation:  
• FRC Oscillator with postscaler  
EQUATION 8-1:  
DEVICE OPERATING  
FREQUENCY  
8.1.1  
SYSTEM CLOCK SOURCES  
The FRC (Fast RC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. The user software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
FCY = FOSC/2  
8.1.3  
PLL CONFIGURATION  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides a significant amount of  
flexibility in selecting the device operating speed. A  
block diagram of the PLL is shown in Figure 8-2.  
The primary oscillator can use one of the following as  
its clock source:  
1. XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,  
... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected to be in the range of 0.8 MHz to 8 MHz.  
Since the minimum prescale factor is 2, this implies that  
FIN must be chosen to be in the range of 1.6 MHz to 16  
MHz. The prescale factor, ‘N1’, is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
2. HS (High-Speed Crystal): Crystals in the range  
of 10 MHz to 40 MHz. The crystal is connected  
to the OSC1 and OSC2 pins.  
3. EC (External Clock): External clock signal in the  
range of 0.8 MHz to 64 MHz. The external clock  
signal is directly applied to the OSC1 pin.  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
The LPRC (Low-Power RC) internal oscIllator runs at a  
nominal frequency of 32.768 kHz. It is also used as a  
reference clock by the Watchdog Timer (WDT) and  
Fail-Safe Clock Monitor (FSCM).  
The VCO output is further divided by a postscale factor,  
‘N2’. This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip  
Phase Locked Loop (PLL) to provide a wide range of  
output frequencies for device operation. PLL  
configuration is described in Section 8.1.3 “PLL  
Configuration”.  
For a primary oscillator or FRC oscillator output, ‘FIN’,  
the PLL output, ‘FOSC’, is given by the following  
equation:  
8.1.2  
SYSTEM CLOCK SELECTION  
The oscillator source that is used at a device Power-on  
Reset event is selected using Configuration bit settings.  
The oscillator Configuration bit settings are located in the  
Configuration registers in the program memory. (Refer to  
Section 22.1 “Configuration Bits” for further details.)  
The Initial Oscillator Selection Configuration bits,  
FNOSC<2:0> (FOSCSEL<2:0>), and the Primary  
EQUATION 8-2:  
FOSC CALCULATION  
M
FOSC = FIN *  
(N1 * N2)  
Oscillator  
Mode  
Select  
Configuration  
bits,  
POSCMD<1:0> (FOSC<1:0>), select the oscillator  
source that is used at a Power-on Reset. The FRC pri-  
mary oscillator is the default (unprogrammed) selection.  
DS70287A-page 138  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
For example, suppose a 10 MHz crystal is being used  
with “XT with PLL” as the selected oscillator mode. If  
PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO  
input of 10/2 = 5 MHz, which is within the acceptable  
range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then  
M = 32. This yields a VCO output of 5 * 32 = 160 MHz,  
which is within the 100-200 MHz ranged needed.  
EQUATION 8-3:  
XT WITH PLL MODE  
EXAMPLE  
FOSC  
1
2
10000000 * 32  
FCY =  
=
= 40 MIPS  
(
)
2
2 * 2  
If PLLPOST<1:0> = 0, then N2 = 2. This provides a  
Fosc of 160/2 = 80 MHz. The resultant device operating  
speed is 80/2 = 40 MIPS.  
FIGURE 8-2:  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
PLL BLOCK DIAGRAM  
0.8-8.0 MHz  
Here  
100-200 MHz  
Here  
12.5-80 MHz  
Here  
Source (Crystal, External Clock  
or Internal RC)  
FOSC  
PLLPRE  
X
VCO  
PLLPOST  
PLLDIV  
1.6-16.0 MHz  
Here  
Divide by  
2-33  
Divide by  
2, 4, 8  
Divide by  
2-513  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
Note  
1, 2  
Fast RC Oscillator with Divide-by-N  
(FRCDIVN)  
Internal  
xx  
111  
Internal  
xx  
110  
1
Fast RC Oscillator with Divide-by-16  
(FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Internal  
Secondary  
Primary  
xx  
xx  
10  
101  
100  
011  
1
1
Secondary (Timer1) Oscillator (SOSC)  
Primary Oscillator (HS) with PLL  
(HSPLL)  
Primary Oscillator (XT) with PLL  
(XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
Primary Oscillator (EC) with PLL  
(ECPLL)  
1
Primary Oscillator (HS)  
Primary  
Primary  
Primary  
Internal  
Internal  
10  
01  
00  
xx  
xx  
010  
010  
010  
001  
000  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
1
1
1
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
© 2007 Microchip Technology Inc.  
DS70287A-page 139  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
R/W-y  
bit 8  
COSC<2:0>  
NOSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
U-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
R/W-0  
R/W-0  
LOCK  
LPOSCEN  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Secondary oscillator (SOSC)  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with Divide-by-16  
111= Fast RC oscillator (FRC) with Divide-by-n  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Secondary oscillator (SOSC)  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with Divide-by-16  
111= Fast RC oscillator (FRC) with Divide-by-n  
bit 7  
CLKLOCK: Clock Lock Enable bit  
1= If (FCKSM0 = 1), then clock and PLL configurations are locked  
If (FCKSM0 = 0), then clock and PLL configurations may be modified  
0= Clock and PLL selections are not locked; configurations may be modified  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
LPOSCEN: Secondary (LP) Oscillator Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
DS70287A-page 140  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DOZEN(1)  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
000= FCY/1  
001= FCY/2  
010= FCY/4  
011= FCY/8 (default)  
100= FCY/16  
101= FCY/32  
110= FCY/64  
111= FCY/128  
bit 11  
DOZEN: DOZE Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
000= FRC divide by 1 (default)  
001= FRC divide by 2  
010= FRC divide by 4  
011= FRC divide by 8  
100= FRC divide by 16  
101= FRC divide by 32  
110= FRC divide by 64  
111= FRC divide by 256  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
00= Output/2  
01= Output/4 (default)  
10= Reserved  
11= Output/8  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
00000= Input/2 (default)  
00001= Input/3  
• • •  
11111= Input/33  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
© 2007 Microchip Technology Inc.  
DS70287A-page 141  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 8-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0(1)  
PLLDIV<8>  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
000000000= 2  
000000001= 3  
000000010= 4  
000110000= 50 (default)  
111111111= 513  
DS70287A-page 142  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 8-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits  
011111= Center frequency + 11.625%  
011110= Center frequency + 11.25% (8.23 MHz)  
000001= Center frequency + 0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency – 0.375% (7.345 MHz)  
100001= Center frequency – 11.625% (6.52 MHz)  
100000= Center frequency – 12% (6.49 MHz)  
© 2007 Microchip Technology Inc.  
DS70287A-page 143  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
8.2  
Clock Switching Operation  
Applications are free to switch between any of the four  
clock sources (Primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects that could result from this flexibility,  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices have a safeguard lock built into the switch  
process.  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, then the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
2. If a valid clock switch has been initiated, the  
Note:  
Primary Oscillator mode has three different  
submodes (XT, HS and EC) which are  
determined by the POSCMD<1:0> Config-  
uration bits. While an application can  
switch to and from Primary Oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
LOCK  
(OSCCON<5>)  
and  
the  
CF  
(OSCCON<3>) status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
8.2.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 22.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or LP (if LPOSCEN remains set).  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC  
Configuration bits.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing sensitive code should not be  
executed during this time.  
2: Direct clock switches between any primary  
oscillator mode with PLL and FRCPLL  
mode are not permitted. This applies to  
clock switches in either direction. In these  
instances, the application must switch to  
FRC mode as a transition clock source  
between the two PLL modes.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
8.2.2  
OSCILLATOR SWITCHING  
SEQUENCE  
At a minimum, performing a clock switch requires the  
following basic sequence:  
8.3  
Fail-Safe Clock Monitor (FSCM)  
1. If  
desired,  
read  
the  
COSC  
bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
DS70287A-page 144  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
9.2  
Instruction-Based Power-Saving  
Modes  
9.0  
POWER-SAVING FEATURES  
Note:  
This data sheet summarizes the features  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices have two special power-saving modes that are  
entered through the execution of a special PWRSAV  
instruction. Sleep mode stops clock operation and halts  
all code execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The assembly syntax of the PWRSAVinstruc-  
tion is shown in Example 9-1.  
of  
this  
group  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices provide the ability to manage power  
consumption by selectively managing clocking to the  
CPU and the peripherals. In general, a lower clock fre-  
quency and a reduction in the number of circuits being  
clocked constitutes lower consumed power.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices can manage power consumption in four differ-  
ent ways:  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to “wake-up”.  
9.2.1  
SLEEP MODE  
Sleep mode has the following features:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• Clock frequency  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
• Instruction-based Sleep and Idle modes  
• Software-controlled Doze mode  
• Selective peripheral control in software  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
9.1  
Clock Frequency and Clock  
Switching  
• Some device features or peripherals may continue  
to operate in Sleep mode. This includes items such  
as the input change notification on the I/O ports  
and peripherals that use an external clock input.  
Any peripheral that requires the system clock  
source for its operation is disabled in Sleep mode.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices allow a wide range of clock frequencies to be  
selected under application control. If the system clock  
configuration is not locked, users can choose  
low-power or high-precision oscillators by simply  
changing the NOSC bits (OSCCON<10:8>). The pro-  
cess of changing a system clock during operation, as  
well as limitations to the process, are discussed in  
more detail in Section 8.0 “Oscillator Configura-  
tion”.  
The device will wake-up from Sleep mode on any of the  
the following events:  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
• A WDT time-out  
On wake-up from Sleep, the processor restarts with the  
same clock source that was active when Sleep mode  
was entered.  
EXAMPLE 9-1:  
PWRSAVINSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
© 2007 Microchip Technology Inc.  
DS70287A-page 145  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
9.2.2  
IDLE MODE  
Idle mode has the following features:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Peripheral Module Disable”).  
It is also possible to use Doze mode to selectively  
reduce power consumption in event-driven applica-  
tions. This allows clock-sensitive functions, such as  
synchronous communications, to continue without  
interruption while the CPU idles, waiting for something  
to invoke an interrupt routine. Enabling the automatic  
return to full-speed CPU operation on interrupts is  
enabled by setting the ROI bit (CLKDIV<15>). By  
default, interrupt events have no effect on Doze mode  
operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake from Idle mode on any of the fol-  
lowing events:  
• Any interrupt that is individually enabled  
• Any device Reset  
For example, suppose the device is operating at  
20 MIPS and the CAN module has been configured for  
500 kbps based on this device operating speed. If the  
device is now placed in Doze mode with a clock  
frequency ratio of 1:4, the CAN module continues to  
communicate at the required bit rate of 500 kbps, but  
the CPU now starts executing instructions at a  
frequency of 5 MIPS.  
• A WDT time-out  
On wake-up from Idle, the clock is reapplied to the CPU  
and instruction execution begins immediately, starting  
with the instruction following the PWRSAVinstruction or  
the first instruction in the ISR.  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
9.4  
Peripheral Module Disable  
Any interrupt that coincides with the execution of a  
PWRSAV instruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled via the appropriate PMD  
control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
9.3  
Doze Mode  
Generally, changing clock speed and invoking one of the  
power-saving modes are the preferred strategies for  
reducing power consumption. There may be cir-  
cumstances, however, where this is not practical. For  
example, it may be necessary for an application to main-  
tain uninterrupted synchronous communication, even  
while it is doing nothing else. Reducing system clock  
speed may introduce communication errors, while using  
a power-saving mode may stop communications  
completely.  
A peripheral module is only enabled if both the associ-  
ated bit in the PMD register is cleared and the peripheral  
is supported by the specific dsPIC® DSC variant. If the  
peripheral is present in the device, it is enabled in the  
PMD register by default.  
Note:  
If a PMD bit is set, the corresponding mod-  
ule is disabled after a delay of 1 instruction  
cycle. Similarly, if a PMD bit is cleared, the  
corresponding module is enabled after a  
delay of 1 instruction cycle (assuming the  
module control registers are already  
configured to enable module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock contin-  
ues to operate from the same source and at the same  
speed. Peripheral modules continue to be clocked at  
the same speed, while the CPU clock speed is  
reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70287A-page 146  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
10.0 I/O PORTS  
Note:  
This data sheet summarizes the features  
of this group  
When a peripheral is enabled and actively driving an  
associated pin, the use of the pin as a general purpose  
output pin is disabled. The I/O pin may be read, but the  
output driver for the parallel port bit will be disabled. If  
a peripheral is enabled but the peripheral is not actively  
driving a pin, that pin may be driven by a port.  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
Writes to the latch, write the latch. Reads from the port  
(PORTx), read the port pins, while writes to the port  
pins, write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKIN) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
10.1 Parallel I/O (PIO) Ports  
Any bit and its associated data and control registers  
that are not valid for a particular device will be disabled.  
That means the corresponding LATx and TRISx  
registers and the port pins will read as zeros.  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through,” in  
which a port’s digital output can drive the input of a  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nevertheless  
regarded as a dedicated port because there is no  
other competing source of outputs. An example is the  
INT4 pin.  
Note:  
The voltage on a digital input pin can be  
between -0.3V to 5.6V.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O  
1
Output Enable  
0
1
0
PIO Module  
Output Data  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
© 2007 Microchip Technology Inc.  
DS70287A-page 147  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
10.2 Open-Drain Configuration  
10.4 I/O Port Write/Read Timing  
In addition to the PORT, LAT and TRIS registers for  
data control, each port pin can also be individually  
configured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically, this instruction  
would be a NOP.  
10.5 Input Change Notification  
The input change notification function of the I/O ports  
allows the dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices to generate interrupt requests  
to the processor in response to a change-of-state on  
selected input pins. This feature is capable of detecting  
input change-of-states even in Sleep mode, when the  
clocks are disabled. Depending on the device pin  
count, there are up to 24 external signals (CN0 through  
CN23) that can be selected (enabled) for generating an  
interrupt request on a change-of-state.  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired  
digital-only pins by using external pull-up resistors.  
(The open-drain I/O feature is not supported on pins  
which have analog functionality multiplexed on the pin.)  
The maximum open-drain voltage allowed is the same  
as the maximum VIH specification. The open-drain  
output feature is supported for both port pin and  
peripheral configurations.  
There are four control registers associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
CN interrupt enable (CNxIE) control bits for each of the  
CN input pins. Setting any of these bits enables a CN  
interrupt for the corresponding pins.  
10.3 Configuring Analog Port Pins  
The ADxPCFGH, ADxPCFGL and TRIS registers con-  
trol the operation of the ADC port pins. The port pins  
that are desired as analog inputs must have their cor-  
responding TRIS bit set (input). If the TRIS bit is  
cleared (output), the digital output level (VOH or VOL) is  
converted.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source that is connected  
to the pin and eliminate the need for external resistors  
when push button or keypad devices are connected.  
The pull-ups are enabled separately using the CNPU1  
and CNPU2 registers, which contain the weak pull-up  
enable (CNxPUE) bits for each of the CN pins. Setting  
any of the control bits enables the weak pull-ups for the  
corresponding pins.  
Clearing any bit in the ADxPCFGH or ADxPCFGL reg-  
ister configures the corresponding bit to be an analog  
pin. This is also the Reset state of any I/O pin that has  
an analog (ANx) function associated with it.  
Note:  
In devices with two ADC modules, if the  
corresponding PCFG bit in either  
AD1PCFGH(L) and AD2PCFGH(L) is  
cleared, the pin is configured as an analog  
input.  
Note:  
Pull-ups on change notification pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
The voltage on an analog input pin can be  
between -0.3V to (VDD + 0.3 V).  
EXAMPLE 10-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
btss  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
PORTB, #13  
; Next Instruction  
DS70287A-page 148  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
11.0 TIMER1  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
Figure 11-1 presents a block diagram of the 16-bit timer  
module.  
To configure Timer1 for operation, do the following:  
1. Set the TON bit (= 1) in the T1CON register.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits in the T1CON register.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits in the T1CON register.  
4. Set or clear the TSYNC bit in T1CON to select  
synchronous or asynchronous operation.  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the real-time clock or operate as  
a free-running interval timer/counter. Timer1 can oper-  
ate in three modes:  
5. Load the timer period value into the PR1  
register.  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP<2:0>, to set  
the interrupt priority.  
• 16-bit Timer  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
Timer1 also supports the following features:  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
1
Sync  
Comparator  
PR1  
TSYNC  
© 2007 Microchip Technology Inc.  
DS70287A-page 149  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When T1CS = 1:  
This bit is ignored.  
When T1CS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0> Timer1 Input Clock Prescale Select bits  
11 = 1:256  
10 = 1:64  
01 = 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin T1CK (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS70287A-page 150  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
12.0 TIMER2/3, TIMER4/5, TIMER6/7  
AND TIMER8/9  
Note:  
For 32-bit operation, T3CON, T5CON,  
T7CON and T9CON control bits are  
ignored. Only T2CON, T4CON, T6CON  
and T8CON control bits are used for setup  
and control. Timer2, Timer4, Timer6 and  
Timer8 clock and gate inputs are utilized  
for the 32-bit timer modules, but an inter-  
rupt is generated with the Timer3, Timer5,  
Ttimer7 and Timer9 interrupt flags.  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9  
for 32-bit operation, do the following:  
1. Set the corresponding T32 control bit.  
2. Select the prescaler ratio for Timer2, Timer4,  
Timer6 or Timer8 using the TCKPS<1:0> bits.  
The Timer2/3, Timer4/5, Timer6/7 and Timer8/9  
modules are 32-bit timers which can also be configured  
as four independent 16-bit timers with selectable oper-  
ating modes.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
4. Load the timer period value. PR3, PR5, PR7 or  
PR9 contains the most significant word of the  
value, while PR2, PR4, PR6 or PR8 contains the  
least significant word.  
As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and  
Timer8/9 operate in three modes:  
• Two Independent 16-bit Timers (e.g., Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
5. If interrupts are required, set the interrupt enable  
bit, T3IE, T5IE, T7IE or T9IE. Use the priority  
bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or  
T9IP<2:0>, to set the interrupt priority. While  
Timer2, Timer4, Timer6 or Timer8 control the  
timer, the interrupt appears as a Timer3, Timer5,  
Timer7 or Timer9 interrupt.  
• Single 32-bit Timer  
• Single 32-bit Synchronous Counter  
They also support the following features:  
• Timer Gate Operation  
• Selectable Prescaler Settings  
6. Set the corresponding TON bit.  
• Timer Operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period Register Match  
The timer value at any point is stored in the register  
pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or  
TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always  
contain the most significant word of the count, while  
TMR2, TMR4, TMR6 or TMR8 contain the least  
significant word.  
• Time Base for Input Capture and Output Compare  
Modules (Timer2 and Timer3 only)  
• ADC1 Event Trigger (Timer2/3 only)  
• ADC2 Event Trigger (Timer4/5 only)  
To configure any of the timers for individual 16-bit  
operation, do the following:  
Individually, all eight of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the event trigger; this  
is implemented only with Timer2/3. The operating  
modes and enabled features are determined by setting  
the appropriate bit(s) in the T2CON, T3CON, T4CON,  
T5CON, T6CON, T7CON, T8CON and T9CON regis-  
ters. T2CON, T4CON, T6CON and T8CON are shown  
in generic form in Register 12-1. T3CON, T5CON,  
T7CON and T9CON are shown in Register 12-2.  
1. Clear the T32 bit corresponding to that timer.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
For 32-bit timer/counter operation, Timer2, Timer4,  
Timer6 or Timer8 is the least significant word; Timer3,  
Timer5, Timer7 or Timer9 is the most significant word  
of the 32-bit timers.  
6. Set the TON bit.  
A block diagram for a 32-bit timer pair (Timer4/5)  
example is shown in Figure 12-1, and a timer (Timer4)  
operating in 16-bit mode example is shown in  
Figure 12-2.  
Note:  
Only Timer2 and Timer3 can trigger a  
DMA data transfer.  
© 2007 Microchip Technology Inc.  
DS70287A-page 151  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 12-1:  
TIMER2/3 (32-BIT) BLOCK DIAGRAM(1)  
TCKPS<1:0>  
2
TON  
1x  
01  
00  
T2CK  
Gate  
Sync  
Prescaler  
1, 8, 64, 256  
TCY  
TGATE  
TCS  
TGATE  
1
Q
Q
D
Set T3IF  
CK  
0
PR2  
PR3  
(2)  
ADC Event Trigger  
Equal  
Reset  
Comparator  
MSb  
LSb  
TMR3  
TMR2  
Sync  
16  
Read TMR2  
Write TMR2  
16  
16  
TMR3HLD  
16  
Data Bus<15:0>  
Note 1: The 32-bit timer control bit, T32, must be set for 32-bit timer/counter operation. All control bits are respective  
to the T2CON register.  
2: The ADC event trigger is available only on Timer2/3.  
DS70287A-page 152  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 12-2:  
TIMER2 (16-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TGATE  
TCS  
TGATE  
TCY  
1
0
Q
D
Set T2IF  
Q
CK  
Reset  
Equal  
TMR2  
Sync  
Comparator  
PR2  
© 2007 Microchip Technology Inc.  
DS70287A-page 153  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 12-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When T32 = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When T32 = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-bit Timer Mode Select bit(1)  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from pin TxCK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.  
DS70287A-page 154  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 12-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS<1:0>(1)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer3 Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1)  
1= External clock from pin TyCK (on the rising edge)  
0= Internal clock (FCY)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer  
functions are set through T2CON.  
© 2007 Microchip Technology Inc.  
DS70287A-page 155  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 156  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
input at ICx pin  
13.0 INPUT CAPTURE  
2. Capture timer value on every edge (rising and  
falling) of input at ICx pin  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
3. Prescaler Capture Event modes  
-Capture timer value on every 4th rising edge  
of input at ICx pin  
-Capture timer value on every 16th rising  
edge of input at ICx pin  
Each input capture channel can select between one of  
two 16-bit timers (Timer2 or Timer3) for the time base.  
The selected timer can use either an internal or  
external clock.  
Other operational features include the following:  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices support up to eight input capture  
channels.  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
• Input capture can also be used to provide  
additional sources of external interrupts  
1. Simple Capture Event modes  
Note:  
Only IC1 and IC2 can trigger a DMA data  
transfer. If DMA data transfers are  
required, the FIFO buffer size must be set  
to 1 (ICI<1:0> = 00).  
-Capture timer value on every falling edge of  
input at ICx pin  
-Capture timer value on every rising edge of  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-bit Timers  
TMRy TMRz  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Edge Detection Logic  
and  
Clock Synchronizer  
FIFO  
R/W  
Logic  
Prescaler  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE (ICxCON<4:3>)  
ICxBUF  
ICxI<1:0>  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSn Register)  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
© 2007 Microchip Technology Inc.  
DS70287A-page 157  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
13.1 Input Capture Registers  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
ICTMR(1)  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits(1)  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty; at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111=Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(Rising edge detect only, all other control bits are not applicable.)  
110=Unused (module disabled)  
101=Capture mode, every 16th rising edge  
100=Capture mode, every 4th rising edge  
011=Capture mode, every rising edge  
010=Capture mode, every falling edge  
001=Capture mode, every edge (rising and falling)  
(ICI<1:0> bits do not control interrupt generation for this mode.)  
000=Input capture module turned off  
Note 1: Timer selections may vary. Refer to the device data sheet for details.  
DS70287A-page 158  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
and then issue a write to set the OCM bits to ‘100’.  
14.0 OUTPUT COMPARE  
Disabling and re-enabling the timer, and clearing  
the TMRy register, are not required but may be  
advantageous for defining a pulse from a known  
event time boundary.  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
The output compare module does not have to be dis-  
abled after the falling edge of the output pulse. Another  
pulse can be initiated by rewriting the value of the  
OCxCON register.  
14.2 Setup for Continuous Output  
Pulse Generation  
When the OCM control bits (OCxCON<2:0>) are set to  
101’, the selected output compare channel initializes  
the OCx pin to the low state and generates output  
pulses on each and every compare match event.  
14.1 Setup for Single Output Pulse  
Generation  
When the OCM control bits (OCxCON<2:0>) are set to  
100’, the selected output compare channel initializes  
the OCx pin to the low state and generates a single  
output pulse.  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required (these steps assume the timer  
source is initially turned off, but this is not a requirement  
for the module operation):  
To generate a single output pulse, the following steps  
are required (these steps assume the timer source is  
initially turned off, but this is not a requirement for the  
module operation):  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse,  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in steps 2 and 3 above  
into the Output Compare register, OCxR, and the  
Output Compare Secondary register, OCxRS,  
respectively.  
5. Set the Timer Period register, PRy, to a value  
equal to or greater than the value in OCxRS, the  
Output Compare Secondary register.  
3. Calculate the time to the falling edge of the pulse,  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in step 2 and 3 above  
into the Output Compare register, OCxR, and the  
Output Compare Secondary register, OCxRS,  
respectively.  
5. Set the Timer Period register, PRy, to a value  
equal to or greater than the value in OCxRS, the  
Output Compare Secondary register.  
6. Set the OCM bits to ‘101’ and the OCTSEL bit to  
the desired timer source. The OCx pin state will  
now be driven low.  
6. Set the OCM bits to ‘100’ and the OCTSEL  
(OCxCON<3>) bit to the desired timer source. The  
OCx pin state will now be driven low.  
7. Enable the compare time base by setting the TON  
(TyCON<15>) bit to ‘1’.  
7. Set the TON (TyCON<15>) bit to ‘1’, which  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
enables the compare time base to count.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
9. When the compare time base, TMRy, matches  
the Output Compare Secondary register, OCxRS,  
the second and trailing edge (high-to-low) of the  
pulse is driven onto the OCx pin.  
9. When the incrementing timer, TMRy, matches the  
Output Compare Secondary register, OCxRS, the  
second and trailing edge (high-to-low) of the pulse  
is driven onto the OCx pin. No additional pulses  
are driven onto the OCx pin and it remains at low.  
As a result of the second compare match event,  
the OCxIF interrupt flag bit is set, which will result  
in an interrupt if the interrupt enable bit, OCxIE, is  
set. For further information on peripheral  
interrupts, refer to Section 6.0 “Interrupt Con-  
troller”.  
10. As a result of the second compare match event,  
the OCxIF interrupt flag bit is set.  
11. When the compare time base and the value in its  
respective Timer Period register match, the TMRy  
register resets to 0x0000 and resumes counting.  
12. Steps 8 through 11 are repeated and a continuous  
stream of pulses is generated, indefinitely. The  
OCxIF flag is set on each OCxRS-TMRy compare  
match event.  
10. To initiate another single pulse output, change the  
Timer and Compare register settings, if needed,  
© 2007 Microchip Technology Inc.  
DS70287A-page 159  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
EQUATION 14-1: CALCULATING THE PWM  
14.3 Pulse-Width Modulation Mode  
PERIOD  
The following steps should be taken when configuring  
the output compare module for PWM operation:  
PWM Period = [(PRy) + 1] • TCY • (Timer Prescale Value)  
where:  
1. Set the PWM period by writing to the selected  
Timer Period register (PRy).  
PWM Frequency = 1/[PWM Period]  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
Note: A PRy value of N will produce a PWM  
period of N + 1 time base count cycles. For  
example, a value of 7 written into the PRy  
register will yield a period consisting of  
eight time base cycles.  
3. Write the OCxR register with the initial duty cycle.  
4. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin utilization.  
5. Configure the output compare module for one of  
two PWM operation modes by writing to the Out-  
14.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the OCxRS  
register. The OCxRS register can be written to at any time,  
but the duty cycle value is not latched into OCxR until a  
match between PRy and TMRy occurs (i.e., the period is  
complete). This provides a double buffer for the PWM duty  
cycle and is essential for glitchless PWM operation. In the  
PWM mode, OCxR is a read-only register.  
put  
Compare  
Mode  
bits,  
OCM<2:0>  
(OCxCON<2:0>).  
6. Set the TMRy prescale value and enable the  
time base by setting TON = 1(TxCON<15>).  
Note: The OCxR register should be initialized  
before the output compare module is first  
enabled. The OCxR register becomes a  
read-only duty cycle register when the  
module is operated in the PWM modes.  
The value held in OCxR will become the  
PWM duty cycle for the first PWM period.  
The contents of the Output Compare  
Secondary register, OCxRS, will not be  
transferred into OCxR until a time base  
period match occurs.  
Some important boundary parameters of the PWM duty  
cycle include the following:  
• If the Output Compare register, OCxR, is loaded  
with 0000h, the OCx pin will remain low (0% duty  
cycle).  
• If OCxR is greater than PRy (Timer Period register),  
the pin will remain high (100% duty cycle).  
• If OCxR is equal to PRy, the OCx pin will be low  
for one time base count value and high for all  
other count values.  
14.3.1  
PWM PERIOD  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 14-1:  
See Example 14-1 for PWM mode timing details.  
Table 14-1 shows example PWM frequencies and  
resolutions for a device operating at 10 MIPS.  
EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION  
FCY  
FPWM  
log10  
(
)
bits  
Maximum PWM Resolution (bits) =  
log10(2)  
EXAMPLE 14-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS  
1. Find the Timer Period register value for a desired PWM frequency that is 52.08 kHz, where FCY = 16 MHz and the Timer2  
prescaler setting is 1:1.  
TCY  
= 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μs  
PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value)  
19.2 μs  
PR2  
= (PR2 + 1) • 62.5 ns • 1  
= 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:  
PWM Resolution  
=
=
=
log10(FCY/FPWM)/log102) bits  
(log10(16 MHz/52.08 kHz)/log102) bits  
8.3 bits  
DS70287A-page 160  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
TABLE 14-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MIPS (FCY = 40 MHz)  
PWM Frequency  
76 Hz  
610 Hz  
1.22 Hz  
9.77 kHz  
39 kHz  
313 kHz 1.25 MHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
(1)  
OCxIF  
(1)  
OCxRS  
S
R
Q
Output  
Logic  
(1)  
(1)  
OCxR  
OCx  
Output Enable  
3
OCM2:OCM0  
Mode Select  
(2)  
OCFA or OCFB  
Comparator  
0
OCTSEL  
1
0
1
16  
16  
TMR register inputs  
from time bases  
Period match signals  
from time bases  
(3)  
(3)  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels  
1 through 8.  
2: OCFA pin controls OC1-OC4 channels. OCFB pin controls OC5-OC8 channels.  
3: Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the  
time bases associated with the module.  
Note:  
Only OC1 and OC2 can trigger a DMA  
data transfer.  
The corresponding TRISx bits must be cleared to  
configure the associated I/O pins as OC outputs.  
© 2007 Microchip Technology Inc.  
DS70287A-page 161  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
14.4 Output Compare Register  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R-0 HC  
OCFLT  
R/W-0  
OCTSEL(1)  
R/W-0  
R/W-0  
OCM<2:0>  
bit 7  
Legend:  
HC = Cleared in Hardware  
W = Writable bit  
HS = Set in Hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x will halt in CPU Idle mode  
0= Output Compare x will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in HW only)  
0= No PWM Fault condition has occurred  
(This bit is only used when OCM<2:0> = 111.)  
bit 3  
OCTSEL: Output Compare Timer Select bit(1)  
1= Timer3 is the clock source for Output Compare x  
0= Timer2 is the clock source for Output Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx; Fault pin enabled  
110= PWM mode on OCx; Fault pin disabled  
101= Initialize OCx pin low; generate continuous output pulses on OCx pin  
100= Initialize OCx pin low; generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high; compare event forces OCx pin low  
001= Initialize OCx pin low; compare event forces OCx pin high  
000= Output compare channel is disabled  
Note 1: Refer to the device data sheet for specific time bases available to the output compare module.  
DS70287A-page 162  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
This module contains  
4 duty cycle generators,  
15.0 MOTOR CONTROL PWM  
MODULE  
numbered 1 through 4. The module has eight PWM  
output pins, numbered PWM1H/PWM1L through  
PWM4H/PWM4L. The eight I/O pins are grouped into  
high/low numbered pairs, denoted by the suffix H or L,  
respectively. For complementary loads, the low PWM  
pins are always the complement of the corresponding  
high I/O pin.  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
The PWM module allows several modes of operation  
which are beneficial for specific power control  
applications.  
“dsPIC33F  
Family  
Reference  
Manual”.Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
This module simplifies the task of generating multiple,  
synchronized Pulse-Width Modulated (PWM) outputs.  
In particular, the following power and motion control  
applications are supported by the PWM module:  
• 3-Phase AC Induction Motor  
• Switched Reluctance (SR) Motor  
• Brushless DC (BLDC) Motor  
• Uninterruptible Power Supply (UPS)  
The PWM module has the following features:  
• 8 PWM I/O pins with 4 duty cycle generators  
• Up to 16-bit resolution  
• ‘On-the-fly’ PWM frequency changes  
• Edge and Center-Aligned Output modes  
• Single Pulse Generation mode  
• Interrupt support for asymmetrical updates in  
Center-Aligned mode  
• Output override control for Electrically  
Commutative Motor (ECM) operation  
• ‘Special Event’ comparator for scheduling other  
peripheral events  
• Fault pins to optionally drive each of the PWM  
output pins to a defined state  
• Duty cycle updates are configurable to be  
immediate or synchronized to the PWM time base  
© 2007 Microchip Technology Inc.  
DS70287A-page 163  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 15-1:  
PWM MODULE BLOCK DIAGRAM  
PWMCON1  
PWM Enable and Mode SFRs  
Dead-Time Control SFRs  
Fault Pin Control SFRs  
PWMCON2  
DTCON1  
DTCON2  
FLTACON  
FLTBCON  
OVDCON  
PWM Manual  
Control SFR  
PWM Generator #4  
PDC4 Buffer  
PDC4  
Comparator  
PWM4H  
PWM4L  
Channel 4 Dead-Time  
Generator and  
Override Logic  
PWM Generator  
#3  
PWM3H  
PWM3L  
PTMR  
Comparator  
PTPER  
Channel 3 Dead-Time  
Generator and  
Output  
Driver  
Block  
Override Logic  
PWM Generator  
#2  
PWM2H  
PWM2L  
Channel 2 Dead-Time  
Generator and  
Override Logic  
PWM Generator  
#1  
Channel 1 Dead-Time  
Generator and  
PWM1H  
PWM1L  
Override Logic  
PTPER Buffer  
PTCON  
FLTA  
FLTB  
Special Event  
Postscaler  
Comparator  
SEVTCMP  
Special Event Trigger  
SEVTDIR  
PTDIR  
PWM Time Base  
Note:  
For clarity, details of PWM Generator #1, #2 and #3 are not shown.  
DS70287A-page 164  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
15.1.1  
FREE-RUNNING MODE  
15.1 PWM Time Base  
In Free-Running mode, the PWM time base counts  
upwards until the value in the PWM Time Base Period  
register (PTPER) is matched. The PTMR register is  
reset on the following input clock edge, and the time  
base will continue to count upwards as long as the  
PTEN bit remains set.  
The PWM time base is provided by a 15-bit timer with  
a prescaler and postscaler. The time base is accessible  
via the PTMR SFR. PTMR<15> is a read-only status  
bit, PTDIR, that indicates the present count direction of  
the PWM time base. If PTDIR is cleared, PTMR is  
counting upwards. If PTDIR is set, PTMR is counting  
downwards. The PWM time base is configured via the  
PTCON SFR. The time base is enabled/disabled by  
setting/clearing the PTEN bit in the PTCON SFR.  
PTMR is not cleared when the PTEN bit is cleared in  
software.  
When the PWM time base is in the Free-Running mode  
(PTMOD<1:0> = 00), an interrupt event is generated  
each time a match with the PTPER register occurs and  
the PTMR register is reset to zero. The postscaler  
selection bits may be used in this mode of the timer to  
reduce the frequency of the interrupt events.  
The PTPER SFR sets the counting period for PTMR.  
The user must write a 15-bit value to PTPER<14:0>.  
When the value in PTMR<14:0> matches the value in  
PTPER<14:0>, the time base will either reset to ‘0’ or  
reverse the count direction on the next occurring clock  
cycle. The action taken depends on the operating  
mode of the time base.  
15.1.2  
SINGLE-SHOT MODE  
In Single-Shot mode, the PWM time base begins  
counting upwards when the PTEN bit is set. When the  
value in the PTMR register matches the PTPER regis-  
ter, the PTMR register will be reset on the following  
input clock edge, and the PTEN bit will be cleared by  
the hardware to halt the time base.  
Note:  
If the PWM Period register is set to  
0x0000, the timer will stop counting and  
the interrupt and Special Event Trigger will  
not be generated, even if the special event  
value is also 0x0000. The module will not  
update the PWM Period register if it is  
already at 0x0000; therefore, the user  
must disable the module in order to update  
the PWM Period register.  
When the PWM time base is in the Single-Shot mode  
(PTMOD<1:0> = 01), an interrupt event is generated  
when a match with the PTPER register occurs. The  
PTMR register is reset to zero on the following input  
clock edge and the PTEN bit is cleared. The postscaler  
selection bits have no effect in this mode of the timer.  
15.1.3  
CONTINUOUS UP/DOWN COUNT  
MODES  
The PWM time base can be configured for four different  
modes of operation:  
In the Continuous Up/Down Count modes, the PWM  
time base counts upwards until the value in the PTPER  
register is matched. The timer will begin counting  
downwards on the following input clock edge. The  
PTDIR bit in the PTMR SFR is read-only and indicates  
the counting direction. The PTDIR bit is set when the  
timer counts downwards.  
• Free-Running mode  
• Single-Shot mode  
• Continuous Up/Down Count mode  
• Continuous Up/Down Count mode with interrupts  
for double updates  
These four modes are selected by the PTMOD<1:0>  
bits in the PTCON SFR. The Up/Down Count modes  
support center-aligned PWM generation. The Single-  
Shot mode allows the PWM module to support pulse  
control of certain Electronically Commutative Motors  
(ECMs).  
In the Up/Down Count mode (PTMOD<1:0> = 10), an  
interrupt event is generated each time the value of the  
PTMR register becomes zero and the PWM time base  
begins to count upwards. The postscaler selection bits  
may be used in this mode of the timer to reduce the  
frequency of the interrupt events.  
The interrupt signals generated by the PWM time base  
depend on the mode selection bits (PTMOD<1:0>) and  
the postscaler bits (PTOPS<3:0>) in the PTCON SFR.  
© 2007 Microchip Technology Inc.  
DS70287A-page 165  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The PWM period can be determined using  
Equation 15-1:  
15.1.4  
DOUBLE UPDATE MODE  
In the Double Update mode (PTMOD<1:0> = 11), an  
interrupt event is generated each time the PTMR regis-  
ter is equal to zero, as well as each time a period match  
occurs. The postscaler selection bits have no effect in  
this mode of the timer.  
EQUATION 15-1: PWM PERIOD  
TCY • (PTPER + 1)  
TPWM =  
(PTMR Prescale Value)  
The Double Update mode provides two additional  
functions to the user. First, the control loop bandwidth is  
doubled, because the PWM duty cycles can be updated  
twice per period. Second, asymmetrical center-aligned  
PWM waveforms can be generated, which are useful for  
minimizing output waveform distortion in certain motor  
control applications.  
If the PWM time base is configured for one of the Up/  
Down Count modes, the PWM period will be twice the  
value provided by Equation 15-1.  
The maximum resolution (in bits) for a given device  
oscillator and PWM frequency can be determined using  
Equation 15-2:  
Note:  
Programming a value of 0x0001 in the  
PWM Period register could generate a  
continuous interrupt pulse and hence,  
must be avoided.  
EQUATION 15-2: PWM RESOLUTION  
log (2 • TPWM/TCY)  
Resolution =  
log (2)  
15.1.5  
PWM TIME BASE PRESCALER  
The input clock to PTMR (FOSC/4) has prescaler  
options of 1:1, 1:4, 1:16 or 1:64, selected by control  
bits, PTCKPS<1:0>, in the PTCON SFR. The prescaler  
counter is cleared when any of the following occurs:  
15.3 Edge-Aligned PWM  
Edge-aligned PWM signals are produced by the module  
when the PWM time base is in Free-Running or Single-  
Shot mode. For edge-aligned PWM outputs, the output  
has a period specified by the value in PTPER and a duty  
cycle specified by the appropriate Duty Cycle register  
(see Figure 15-2). The PWM output is driven active at  
the beginning of the period (PTMR = 0) and is driven  
inactive when the value in the Duty Cycle register  
matches PTMR.  
• A write to the PTMR register  
• A write to the PTCON register  
• Any device Reset  
The PTMR register is not cleared when PTCON is  
written.  
15.1.6  
PWM TIME BASE POSTSCALER  
The match output of PTMR can optionally be post-  
scaled through a 4-bit postscaler (which gives a 1:1 to  
1:16 scaling).  
If the value in a particular Duty Cycle register is zero,  
then the output on the corresponding PWM pin will be  
inactive for the entire PWM period. In addition, the out-  
put on the PWM pin will be active for the entire PWM  
period if the value in the Duty Cycle register is greater  
than the value held in the PTPER register.  
The postscaler counter is cleared when any of the  
following occurs:  
• A write to the PTMR register  
• A write to the PTCON register  
• Any device Reset  
FIGURE 15-2:  
EDGE-ALIGNED PWM  
New Duty Cycle Latched  
The PTMR register is not cleared when PTCON is written.  
PTPER  
15.2 PWM Period  
PTMR  
Value  
PTPER is a 15-bit register and is used to set the counting  
period for the PWM time base. PTPER is a double-  
buffered register. The PTPER buffer contents are loaded  
into the PTPER register at the following instants:  
0
• Free-Running and Single-Shot modes: When the  
PTMR register is reset to zero after a match with  
the PTPER register.  
Duty Cycle  
Period  
• Up/Down Count modes: When the PTMR register  
is zero.  
The value held in the PTPER buffer is automatically  
loaded into the PTPER register when the PWM time  
base is disabled (PTEN = 0).  
DS70287A-page 166  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
15.5.1  
DUTY CYCLE REGISTER BUFFERS  
15.4 Center-Aligned PWM  
The four PWM Duty Cycle registers are double-  
buffered to allow glitchless updates of the PWM  
outputs. For each duty cycle, there is a Duty Cycle  
register that is accessible by the user and a second  
Duty Cycle register that holds the actual compare value  
used in the present PWM period.  
Center-aligned PWM signals are produced by the  
module when the PWM time base is configured in an  
Up/Down Count mode (see Figure 15-3).  
The PWM compare output is driven to the active state  
when the value of the Duty Cycle register matches the  
value of PTMR and the PWM time base is counting  
downwards (PTDIR = 1). The PWM compare output is  
driven to the inactive state when the PWM time base is  
counting upwards (PTDIR = 0) and the value in the  
PTMR register matches the duty cycle value.  
For edge-aligned PWM output, a new duty cycle value  
will be updated whenever a match with the PTPER  
register occurs and PTMR is reset. The contents of the  
duty cycle buffers are automatically loaded into the  
Duty Cycle registers when the PWM time base is  
disabled (PTEN = 0) and the UDIS bit is cleared in  
PWMCON2.  
If the value in a particular Duty Cycle register is zero,  
then the output on the corresponding PWM pin will be  
inactive for the entire PWM period. In addition, the out-  
put on the PWM pin will be active for the entire PWM  
period if the value in the Duty Cycle register is equal to  
the value held in the PTPER register.  
When the PWM time base is in the Up/Down Count  
mode, new duty cycle values are updated when the  
value of the PTMR register is zero, and the PWM time  
base begins to count upwards. The contents of the duty  
cycle buffers are automatically loaded into the Duty  
Cycle registers when the PWM time base is disabled  
(PTEN = 0).  
FIGURE 15-3:  
CENTER-ALIGNED PWM  
Period/2  
When the PWM time base is in the Up/Down Count  
mode with double updates, new duty cycle values are  
updated when the value of the PTMR register is zero,  
and when the value of the PTMR register matches the  
value in the PTPER register. The contents of the duty  
cycle buffers are automatically loaded into the Duty  
Cycle registers when the PWM time base is disabled  
(PTEN = 0).  
PTPER  
PTMR  
Value  
Duty  
Cycle  
0
15.5.2  
DUTY CYCLE IMMEDIATE UPDATES  
When the Immediate Update Enable bit is set (IUE = 1),  
any write to the Duty Cycle registers will update the  
new duty cycle value immediately. This feature gives  
the user the option to allow immediate updates of the  
active PWM Duty Cycle registers instead of waiting for  
the end of the current time base period. System stabil-  
ity is improved in closed-loop servo applications by  
reducing the delay between system observation and  
the issuance of system corrective commands when  
immediate updates are enabled (IUE = 1).  
Period  
15.5 PWM Duty Cycle Comparison  
Units  
There are four 16-bit Special Function Registers  
(PDC1, PDC2, PDC3 and PDC4) used to specify duty  
cycle values for the PWM module.  
The value in each Duty Cycle register determines the  
amount of time that the PWM output is in the active  
state. The Duty Cycle registers are 16 bits wide. The  
LSb of a Duty Cycle register determines whether the  
PWM edge occurs in the beginning. Thus, the PWM  
resolution is effectively doubled.  
If the PWM output is active at the time the new duty  
cycle is written and the new duty cycle is less than the  
current time base value, the PWM pulse width will be  
shortened. If the PWM output is active at the time the  
new duty cycle is written and the new duty cycle is  
greater than the current time base value, the PWM  
pulse width will be lengthened.  
If the PWM output is inactive at the time the new duty  
cycle is written and the new duty cycle is greater than  
the current time base value, the PWM output will  
become active immediately and will remain active for  
the newly written duty cycle value.  
© 2007 Microchip Technology Inc.  
DS70287A-page 167  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The PWM module allows two different dead times to be  
15.6 Complementary PWM Operation  
programmed. These two dead times may be used in  
one of two methods, described below, to increase user  
flexibility:  
In the Complementary mode of operation, each pair of  
PWM outputs is obtained by a complementary PWM  
signal. A dead time may be optionally inserted during  
device switching, when both outputs are inactive for a  
short period (refer to Section 15.7 “Dead-Time  
Generators”).  
• The PWM output signals can be optimized for  
different turn-off times in the high side and low  
side transistors in a complementary pair of tran-  
sistors. The first dead time is inserted between  
the turn-off event of the lower transistor of the  
complementary pair and the turn-on event of the  
upper transistor. The second dead time is inserted  
between the turn-off event of the upper transistor  
and the turn-on event of the lower transistor.  
In Complementary mode, the duty cycle comparison  
units are assigned to the PWM outputs as follows:  
• PDC1 register controls PWM1H/PWM1L outputs  
• PDC2 register controls PWM2H/PWM2L outputs  
• PDC3 register controls PWM3H/PWM3L outputs  
• PDC4 register controls PWM4H/PWM4L outputs  
• The two dead times can be assigned to individual  
PWM I/O pin pairs. This operating mode allows  
the PWM module to drive different transistor/load  
combinations with each complementary PWM I/O  
pin pair.  
The Complementary mode is selected for each PWM  
I/O pin pair by clearing the appropriate PMODx bit in the  
PWMCON1 SFR. The PWM I/O pins are set to  
Complementary mode by default upon a device Reset.  
15.7.1  
DEAD-TIME GENERATORS  
15.7 Dead-Time Generators  
Each complementary output pair for the PWM module  
has a 6-bit down counter that is used to produce the  
dead-time insertion. As shown in Figure 15-4, each  
dead-time unit has a rising and falling edge detector  
connected to the duty cycle comparison output.  
Dead-time generation may be provided when any of the  
PWM I/O pin pairs are operating in the Complementary  
Output mode. The PWM outputs use push-pull drive cir-  
cuits. Due to the inability of the power output devices to  
switch instantaneously, some amount of time must be  
provided between the turn-off event of one PWM output  
in a complementary pair and the turn-on event of the  
other transistor.  
FIGURE 15-4:  
DEAD-TIME TIMING DIAGRAM  
Duty Cycle Generator  
PWMxH  
PWMxL  
Time Selected by DTSxA bit (A or B)  
Time Selected by DTSxI bit (A or B)  
DS70287A-page 168  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
15.7.2  
DEAD-TIME ASSIGNMENT  
15.8 Independent PWM Output  
The DTCON2 SFR contains control bits that allow the  
dead times to be assigned to each of the complemen-  
tary outputs. Table 15-1 summarizes the function of  
each dead-time selection control bit.  
An Independent PWM Output mode is required for  
driving certain types of loads. A particular PWM output  
pair is in the Independent Output mode when the cor-  
responding PMODx bit in the PWMCON1 register is  
set. No dead-time control is implemented between  
adjacent PWM I/O pins when the module is operating  
in the Independent PWM Output mode and both I/O  
pins are allowed to be active simultaneously.  
TABLE 15-1: DEAD-TIME SELECTION BITS  
Bit  
Function  
DTS1A Selects PWM1L/PWM1H active edge dead time.  
In the Independent PWM Output mode, each duty cycle  
generator is connected to both of the PWM I/O pins in  
an output pair. By using the associated Duty Cycle reg-  
ister and the appropriate bits in the OVDCON register,  
the user may select the following signal output options  
for each PWM I/O pin operating in this mode:  
DTS1I  
Selects PWM1L/PWM1H inactive edge  
dead time.  
DTS2A Selects PWM2L/PWM2H active edge dead time.  
DTS2I  
Selects PWM2L/PWM2H inactive edge  
dead time.  
DTS3A Selects PWM3L/PWM3H active edge dead time.  
• I/O pin outputs PWM signal  
• I/O pin inactive  
DTS3I  
Selects PWM3L/PWM3H inactive edge  
dead time.  
• I/O pin active  
DTS4A Selects PWM4L/PWM4H active edge dead time.  
DTS4I  
Selects PWM4L/PWM4H inactive edge  
dead time.  
15.9 Single Pulse PWM Operation  
The PWM module produces single pulse outputs when  
the PTCON control bits PTMOD<1:0> = 10. Only edge-  
aligned outputs may be produced in the Single Pulse  
mode. In Single Pulse mode, the PWM I/O pin(s) are  
driven to the active state when the PTEN bit is set.  
When a match with a Duty Cycle register occurs, the  
PWM I/O pin is driven to the inactive state. When a  
match with the PTPER register occurs, the PTMR  
register is cleared, all active PWM I/O pins are driven  
to the inactive state, the PTEN bit is cleared and an  
interrupt is generated.  
15.7.3  
DEAD-TIME RANGES  
The amount of dead time provided by each dead-time  
unit is selected by specifying the input clock prescaler  
value and a 6-bit unsigned value. The amount of dead  
time provided by each unit may be set independently.  
Four input clock prescaler selections have been pro-  
vided to allow a suitable range of dead times, based on  
the device operating frequency. The clock prescaler  
option may be selected independently for each of the  
two dead-time values. The dead-time clock prescaler  
values are selected using the DTAPS<1:0> and  
DTBPS<1:0> control bits in the DTCON1 SFR. One of  
four clock prescaler options (TCY, 2 TCY, 4 TCY or 8 TCY)  
may be selected for each of the dead-time values.  
15.10 PWM Output Override  
The PWM output override bits allow the user to manu-  
ally drive the PWM I/O pins to specified logic states,  
independent of the duty cycle comparison units.  
After the prescaler values are selected, the dead time  
for each unit is adjusted by loading two 6-bit unsigned  
values into the DTCON1 SFR.  
All control bits associated with the PWM output over-  
ride function are contained in the OVDCON register.  
The upper half of the OVDCON register contains eight  
bits, POVDxH<4:1> and POVDxL<4:1>, that determine  
which PWM I/O pins will be overridden. The lower half  
of the OVDCON register contains eight bits,  
POUTxH<4:1> and POUTxL<4:1>, that determine the  
state of the PWM I/O pins when a particular output is  
overridden via the POVD bits.  
The dead-time unit prescalers are cleared on the  
following events:  
• On a load of the down timer due to a duty cycle  
comparison edge event.  
• On a write to the DTCON1 or DTCON2 registers.  
• On any device Reset.  
Note:  
The user should not modify the DTCON1  
or DTCON2 values while the PWM mod-  
ule is operating (PTEN = 1). Unexpected  
results may occur.  
15.10.1 COMPLEMENTARY OUTPUT MODE  
When a PWMxL pin is driven active via the OVDCON  
register, the output signal is forced to be the comple-  
ment of the corresponding PWMxH pin in the pair.  
Dead-time insertion is still performed when PWM  
channels are overridden manually.  
© 2007 Microchip Technology Inc.  
DS70287A-page 169  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
15.10.2 OVERRIDE SYNCHRONIZATION  
15.12.1 FAULT PIN ENABLE BITS  
If the OSYNC bit in the PWMCON2 register is set, all  
output overrides performed via the OVDCON register  
are synchronized to the PWM time base. Synchronous  
output overrides occur at the following times:  
The FLTACON and FLTBCON SFRs each have four  
control bits that determine whether a particular pair of  
PWM I/O pins is to be controlled by the Fault input pin.  
To enable a specific PWM I/O pin pair for Fault  
overrides, the corresponding bit should be set in the  
FLTACON or FLTBCON register.  
• Edge-Aligned mode – when PTMR is zero  
• Center-Aligned modes – when PTMR is zero and  
the value of PTMR matches PTPER  
If all enable bits are cleared in the FLTACON or  
FLTBCON register, then the corresponding Fault input  
pin has no effect on the PWM module and the pin may  
be used as a general purpose interrupt or I/O pin.  
15.11 PWM Output and Polarity Control  
There are three device Configuration bits associated  
with the PWM module that provide PWM output pin  
control:  
Note:  
The Fault pin logic can operate indepen-  
dent of the PWM logic. If all the enable bits  
in the FLTACON/FLTBCON registers are  
cleared, then the Fault pin(s) could be  
used as general purpose interrupt pin(s).  
Each Fault pin has an interrupt vector,  
interrupt flag bit and interrupt priority bits  
associated with it.  
• HPOL Configuration bit  
• LPOL Configuration bit  
• PWMPIN Configuration bit  
These three bits in the FPOR Configuration register  
(see Section 22.0 “Special Features”) work in con-  
junction with the eight PWM Enable bits (PENxH<4:1>,  
PENxL<4:1>) located in the PWMCON1 SFR. The  
Configuration bits and PWM Enable bits ensure that  
the PWM pins are in the correct states after a device  
Reset occurs. The PWMPIN configuration fuse allows  
the PWM module outputs to be optionally enabled on a  
device Reset. If PWMPIN = 0, the PWM outputs will be  
driven to their inactive states at Reset. If PWMPIN = 1  
(default), the PWM outputs will be tri-stated. The HPOL  
bit specifies the polarity for the PWMxH outputs,  
whereas the LPOL bit specifies the polarity for the  
PWMxL outputs.  
15.12.2 FAULT STATES  
The FLTACON and FLTBCON Special Function  
Registers have eight bits each that determine the state  
of each PWM I/O pin when it is overridden by a Fault  
input. When these bits are cleared, the PWM I/O pin is  
driven to the inactive state. If the bit is set, the PWM  
I/O pin will be driven to the active state. The active  
and inactive states are referenced to the polarity  
defined for each PWM I/O pin (HPOL and LPOL  
polarity control bits).  
A special case exists when a PWM module I/O pair is  
in the Complementary mode and both pins are pro-  
grammed to be active on a Fault condition. The  
PWMxH pin always has priority in the Complementary  
mode so that both I/O pins cannot be driven active  
simultaneously.  
15.11.1 OUTPUT PIN CONTROL  
The PENxH<4:1> and PENxL<4:1> control bits in the  
PWMCON1 SFR enable each high PWM output pin  
and each low PWM output pin, respectively. If a partic-  
ular PWM output pin is not enabled, it is treated as a  
general purpose I/O pin.  
15.12.3 FAULT PIN PRIORITY  
If both Fault input pins have been assigned to control a  
particular PWM I/O pin, the Fault state programmed for  
the Fault A input pin will take priority over the Fault B  
input pin.  
15.12 PWM Fault Pins  
There are two Fault pins (FLTA and FLTB) associated  
with the PWM module. When asserted, these pins can  
optionally drive each of the PWM I/O pins to a defined  
state.  
DS70287A-page 170  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
15.12.4 FAULT INPUT MODES  
15.14 PWM Special Event Trigger  
Each of the Fault input pins have two modes of  
operation:  
The PWM module has a Special Event Trigger that  
allows ADC conversions to be synchronized to the  
PWM time base. The ADC sampling and conversion  
time may be programmed to occur at any point within  
the PWM period. The Special Event Trigger allows the  
user to minimize the delay between the time when ADC  
conversion results are acquired and the time when the  
duty cycle value is updated.  
Latched Mode: When the Fault pin is driven low,  
the PWM outputs will go to the states defined in  
the FLTACON/FLTBCON registers. The PWM  
outputs will remain in this state until the Fault pin  
is driven high and the corresponding interrupt flag  
has been cleared in software. When both of these  
actions have occurred, the PWM outputs will  
return to normal operation at the beginning of the  
next PWM cycle or half-cycle boundary. If the  
interrupt flag is cleared before the Fault condition  
ends, the PWM module will wait until the Fault pin  
is no longer asserted to restore the outputs.  
The PWM Special Event Trigger has an SFR, named  
SEVTCMP, and five control bits to control its operation.  
The PTMR value for which a Special Event Trigger  
should occur is loaded into the SEVTCMP register.  
When the PWM time base is in an Up/Down Count  
mode, an additional control bit is required to specify the  
counting phase for the Special Event Trigger. The  
count phase is selected using the SEVTDIR control bit  
in the SEVTCMP SFR. If the SEVTDIR bit is cleared,  
the Special Event Trigger will occur on the upward  
counting cycle of the PWM time base. If the SEVTDIR  
bit is set, the Special Event Trigger will occur on the  
downward count cycle of the PWM time base. The  
SEVTDIR control bit has no effect unless the PWM time  
base is configured for an Up/Down Count mode.  
Cycle-by-Cycle Mode: When the Fault input pin  
is driven low, the PWM outputs remain in the  
defined Fault states for as long as the Fault pin is  
held low. After the Fault pin is driven high, the  
PWM outputs return to normal operation at the  
beginning of the following PWM cycle or  
half-cycle boundary.  
The operating mode for each Fault input pin is selected  
using the FLTAM and FLTBM control bits in the  
FLTACON and FLTBCON Special Function Registers.  
15.14.1 SPECIAL EVENT TRIGGER  
POSTSCALER  
Each of the Fault pins can be controlled manually in  
software.  
The PWM Special Event Trigger has a postscaler that  
allows a 1:1 to 1:16 postscale ratio. The postscaler is  
configured by writing the SEVOPS<3:0> control bits in  
the PWMCON2 SFR.  
15.13 PWM Update Lockout  
For a complex PWM application, the user may need to  
write up to four Duty Cycle registers and the PWM Time  
Base Period register, PTPER, at a given time. In some  
applications, it is important that all buffer registers be  
written before the new duty cycle and period values are  
loaded for use by the module.  
The special event output postscaler is cleared on the  
following events:  
• Any write to the SEVTCMP register  
• Any device Reset  
The PWM update lockout feature is enabled by setting  
the UDIS control bit in the PWMCON2 SFR. The UDIS  
bit affects all Duty Cycle Buffer registers and the PWM  
Time Base Period register, PTPER. No duty cycle  
changes or period value changes will have effect while  
UDIS = 1.  
15.15 PWM Operation During CPU Sleep  
Mode  
The Fault A and Fault B input pins have the ability to  
wake the CPU from Sleep mode. The PWM module  
generates an interrupt if either of the Fault pins is  
driven low while in Sleep.  
If the IUE bit is set, any change to the Duty Cycle  
registers will be immediately updated regardless of the  
UDIS bit state. The PWM Period register (PTPER)  
updates are not affected by the IUE control bit.  
15.16 PWM Operation During CPU Idle  
Mode  
The PTCON SFR contains a PTSIDL control bit. This  
bit determines if the PWM module will continue to  
operate or stop when the device enters Idle mode. If  
PTSIDL = 0, the module will continue to operate. If  
PTSIDL = 1, the module will stop operation as long as  
the CPU remains in Idle mode.  
© 2007 Microchip Technology Inc.  
DS70287A-page 171  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER  
R/W-0  
PTEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PTSIDL  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTEN: PWM Time Base Timer Enable bit  
1= PWM time base is on  
0= PWM time base is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTSIDL: PWM Time Base Stop in Idle Mode bit  
1= PWM time base halts in CPU Idle mode  
0= PWM time base runs in CPU Idle mode  
bit 12-8  
bit 7-4  
Unimplemented: Read as ‘0’  
PTOPS<3:0>: PWM Time Base Output Postscale Select bits  
1111= 1:16 postscale  
0001= 1:2 postscale  
0000= 1:1 postscale  
bit 3-2  
bit 1-0  
PTCKPS<1:0>: PWM Time Base Input Clock Prescale Select bits  
11= PWM time base input clock period is 64 TCY (1:64 prescale)  
10= PWM time base input clock period is 16 TCY (1:16 prescale)  
01= PWM time base input clock period is 4 TCY (1:4 prescale)  
00= PWM time base input clock period is TCY (1:1 prescale)  
PTMOD<1:0>: PWM Time Base Mode Select bits  
11= PWM time base operates in a Continuous Up/Down Count mode with interrupts for double  
PWM updates  
10= PWM time base operates in a Continuous Up/Down Count mode  
01= PWM time base operates in Single Pulse mode  
00= PWM time base operates in a Free-Running mode  
DS70287A-page 172  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-2: PTMR: PWM TIMER COUNT VALUE REGISTER  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PTDIR  
PTMR<14:8>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
PTMR<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTDIR: PWM Time Base Count Direction Status bit (read-only)  
1= PWM time base is counting down  
0= PWM time base is counting up  
bit 14-0  
PTMR <14:0>: PWM Time Base Register Count Value bits  
REGISTER 15-3: PTPER: PWM TIME BASE PERIOD REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
PTPER<14:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PTPER<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
PTPER<14:0>: PWM Time Base Period Value bits  
bit 14-0  
© 2007 Microchip Technology Inc.  
DS70287A-page 173  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-4: SEVTCMP: SPECIAL EVENT COMPARE REGISTER  
R/W-0  
SEVTDIR(1)  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEVTCMP<14:8>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
R/W-0  
bit 7  
R/W-0  
SEVTCMP<7:0>(2)  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SEVTDIR: Special Event Trigger Time Base Direction bit(1)  
1= A Special Event Trigger will occur when the PWM time base is counting downwards  
0= A Special Event Trigger will occur when the PWM time base is counting upwards  
bit 14-0  
SEVTCMP<14:0>: Special Event Compare Value bits(2)  
Note 1: SEVTDIR is compared with PTDIR (PTMR<15>) to generate the Special Event Trigger.  
2: SEVTCMP<14:0> is compared with PTMR<14:0> to generate the Special Event Trigger.  
DS70287A-page 174  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-5: PWMCON1: PWM CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMOD4  
PMOD3  
PMOD2  
PMOD1  
bit 15  
bit 8  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
PEN4H(1)  
PEN3H(1)  
PEN2H(1)  
PEN1H(1)  
PEN4L(1)  
PEN3L(1)  
PEN2L(1)  
PEN1L(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
PMOD<4:1>: PWM I/O Pair Mode bits  
1= PWM I/O pin pair is in the Independent PWM Output mode  
0= PWM I/O pin pair is in the Complementary Output mode  
bit 7-4  
bit 3-0  
PEN4H:PEN1H: PWMxH I/O Enable bits(1)  
1= PWMxH pin is enabled for PWM output  
0= PWMxH pin is disabled; I/O pin becomes general purpose I/O  
PEN4L:PEN1L: PWMxL I/O Enable bits(1)  
1= PWMxL pin is enabled for PWM output  
0= PWMxL pin is disabled; I/O pin becomes general purpose I/O  
Note 1: Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in  
the FPOR Configuration register.  
© 2007 Microchip Technology Inc.  
DS70287A-page 175  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-6: PWMCON2: PWM CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SEVOPS<3:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IUE  
R/W-0  
R/W-0  
UDIS  
OSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
SEVOPS<3:0>: PWM Special Event Trigger Output Postscale Select bits  
1111= 1:16 postscale  
0001= 1:2 postscale  
0000= 1:1 postscale  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
IUE: Immediate Update Enable bit  
1= Updates to the active PDC registers are immediate  
0= Updates to the active PDC registers are synchronized to the PWM time base  
bit 1  
bit 0  
OSYNC: Output Override Synchronization bit  
1= Output overrides via the OVDCON register are synchronized to the PWM time base  
0= Output overrides via the OVDCON register occur on next TCY boundary  
UDIS: PWM Update Disable bit  
1= Updates from Duty Cycle and Period Buffer registers are disabled  
0= Updates from Duty Cycle and Period Buffer registers are enabled  
DS70287A-page 176  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-7: DTCON1: DEAD-TIME CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DTB<5:0>  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DTBPS<1:0>  
bit 15  
R/W-0  
DTAPS<1:0>  
R/W-0  
R/W-0 R/W-0  
DTA<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
DTBPS<1:0>: Dead-Time Unit B Prescale Select bits  
11= Clock period for Dead-Time Unit B is 8 TCY  
10= Clock period for Dead-Time Unit B is 4 TCY  
01= Clock period for Dead-Time Unit B is 2 TCY  
00= Clock period for Dead-Time Unit B is TCY  
bit 13-8  
bit 7-6  
DTB<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit B bits  
DTAPS<1:0>: Dead-Time Unit A Prescale Select bits  
11= Clock period for Dead-Time Unit A is 8 TCY  
10= Clock period for Dead-Time Unit A is 4 TCY  
01= Clock period for Dead-Time Unit A is 2 TCY  
00= Clock period for Dead-Time Unit A is TCY  
bit 5-0  
DTA<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit A bits  
© 2007 Microchip Technology Inc.  
DS70287A-page 177  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-8: DTCON2: DEAD-TIME CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
DTS4I  
R/W-0  
R/W-0  
DTS3I  
R/W-0  
R/W-0  
DTS2I  
R/W-0  
R/W-0  
DTS1I  
DTS4A  
DTS3A  
DTS2A  
DTS1A  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
DTS4A: Dead-Time Select for PWM4 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DTS4I: Dead-Time Select for PWM4 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS3A: Dead-Time Select for PWM3 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS3I: Dead-Time Select for PWM3 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS2A: Dead-Time Select for PWM2 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS2I: Dead-Time Select for PWM2 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS1A: Dead-Time Select for PWM1 Signal Going Active bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DTS1I: Dead-Time Select for PWM1 Signal Going Inactive bit  
1= Dead time provided from Unit B  
0= Dead time provided from Unit A  
DS70287A-page 178  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-9: FLTACON: FAULT A CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FAOV4H  
FAOV4L  
FAOV3H  
FAOV3L  
FAOV2H  
FAOV2L  
FAOV1H  
FAOV1L  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLTAM  
FAEN4  
FAEN3  
FAEN2  
FAEN1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
FAOVxH<4:1>:FAOVxL<4:1>: Fault Input A PWM Override Value bits  
1= The PWM output pin is driven active on an external Fault input event  
0= The PWM output pin is driven inactive on an external Fault input event  
FLTAM: Fault A Mode bit  
1= The Fault A input pin functions in the Cycle-by-Cycle mode  
0= The Fault A input pin latches all control pins to the states programmed in FLTACON<15:8>  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
FAEN4: Fault Input A Enable bit  
1= PWM4H/PWM4L pin pair is controlled by Fault Input A  
0= PWM4H/PWM4L pin pair is not controlled by Fault Input A  
bit 2  
bit 1  
bit 0  
FAEN3: Fault Input A Enable bit  
1= PWM3H/PWM3L pin pair is controlled by Fault Input A  
0= PWM3H/PWM3L pin pair is not controlled by Fault Input A  
FAEN2: Fault Input A Enable bit  
1= PWM2H/PWM2L pin pair is controlled by Fault Input A  
0= PWM2H/PWM2L pin pair is not controlled by Fault Input A  
FAEN1: Fault Input A Enable bit  
1= PWM1H/PWM1L pin pair is controlled by Fault Input A  
0= PWM1H/PWM1L pin pair is not controlled by Fault Input A  
© 2007 Microchip Technology Inc.  
DS70287A-page 179  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-10: FLTBCON: FAULT B CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FBOV4H  
FBOV4L  
FBOV3H  
FBOV3L  
FBOV2H  
FBOV2L  
FBOV1H  
FBOV1L  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
FBEN4(1)  
R/W-0  
FBEN3(1)  
R/W-0  
FBEN2(1)  
R/W-0  
FBEN1(1)  
FLTBM  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
FBOVxH<4:1>:FBOVxL<4:1>: Fault Input B PWM Override Value bits  
1= The PWM output pin is driven active on an external Fault input event  
0= The PWM output pin is driven inactive on an external Fault input event  
FLTBM: Fault B Mode bit  
1= The Fault B input pin functions in the Cycle-by-Cycle mode  
0= The Fault B input pin latches all control pins to the states programmed in FLTBCON<15:8>  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
FBEN4: Fault Input B Enable bit(1)  
1= PWM4H/PWM4L pin pair is controlled by Fault Input B  
0= PWM4H/PWM4L pin pair is not controlled by Fault Input B  
bit 2  
bit 1  
bit 0  
FBEN3: Fault Input B Enable bit(1)  
1= PWM3H/PWM3L pin pair is controlled by Fault Input B  
0= PWM3H/PWM3L pin pair is not controlled by Fault Input B  
FBEN2: Fault Input B Enable bit(1)  
1= PWM2H/PWM2L pin pair is controlled by Fault Input B  
0= PWM2H/PWM2L pin pair is not controlled by Fault Input B  
FBEN1: Fault Input B Enable bit(1)  
1= PWM1H/PWM1L pin pair is controlled by Fault Input B  
0= PWM1H/PWM1L pin pair is not controlled by Fault Input B  
Note 1: Fault A pin has priority over Fault B pin, if enabled.  
DS70287A-page 180  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-11: OVDCON: OVERRIDE CONTROL REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
POVD4H  
POVD4L  
POVD3H  
POVD3L  
POVD2H  
POVD2L  
POVD1H  
POVD1L  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
POUT4H  
POUT4L  
POUT3H  
POUT3L  
POUT2H  
POUT2L  
POUT1H  
POUT1L  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
POVDxH<4:1>:POVDxL<4:1>: PWM Output Override bits  
1= Output on PWMx I/O pin is controlled by the PWM generator  
0= Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit  
POUTxH<4:1>:POUTxL<4:1>: PWM Manual Output bits  
1= PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared  
0= PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared  
© 2007 Microchip Technology Inc.  
DS70287A-page 181  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-12: PDC1: PWM DUTY CYCLE REGISTER 1  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PDC1<15:8>  
R/W-0  
PDC1<7:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC1<15:0>: PWM Duty Cycle #1 Value bits  
REGISTER 15-13: PDC2: PWM DUTY CYCLE REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PDC2<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
PDC2<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC2<15:0>: PWM Duty Cycle #2 Value bits  
DS70287A-page 182  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 15-14: PDC3: PWM DUTY CYCLE REGISTER 3  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PDC3<15:8>  
R/W-0  
PDC3<7:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC3<15:0>: PWM Duty Cycle #3 Value bits  
REGISTER 15-15: PDC4: PWM DUTY CYCLE REGISTER 4  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PDC4<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
PDC4<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDC4<15:0>: PWM Duty Cycle #4 Value bits  
© 2007 Microchip Technology Inc.  
DS70287A-page 183  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 184  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
This section describes the Quadrature Encoder Inter-  
16.0 QUADRATURE ENCODER  
face (QEI) module and associated operational modes.  
The QEI module provides the interface to incremental  
encoders for obtaining mechanical position data.  
INTERFACE (QEI) MODULE  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive ref-  
erence source. To complement the infor-  
mation in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
The operational features of the QEI include the follow-  
ing:  
• Three input channels for two phase signals and  
an index pulse  
• 16-bit up/down position counter  
• Count direction status  
• Position Measurement (x2 and x4) mode  
• Programmable digital noise filters on inputs  
FIGURE 16-1:  
QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM  
TQCKPS<1:0>  
2
Sleep Input  
TQCS  
TCY  
0
1
Synchronize  
Det  
Prescaler  
1, 8, 64, 256  
1
0
QEIM<2:0>  
QEIIF  
Event  
Flag  
D
Q
Q
TQGATE  
CK  
16-bit Up/Down Counter  
(POSCNT)  
2
Programmable  
Digital Filter  
QEA  
Reset  
Equal  
Quadrature  
Encoder  
Interface Logic  
UPDN_SRC  
Comparator/  
Zero Detect  
QEICON<11>  
0
1
3
QEIM<2:0>  
Mode Select  
Max Count Register  
(MAXCNT)  
Programmable  
Digital Filter  
QEB  
Programmable  
Digital Filter  
INDX  
3
PCDOUT  
Existing Pin Logic  
0
UPDN  
Up/Down  
1
© 2007 Microchip Technology Inc.  
DS70287A-page 185  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
If the POSRES bit is set to ‘1’, then the position counter  
16.1 Quadrature Encoder Interface  
Logic  
is reset when the index pulse is detected. If the  
POSRES bit is set to ‘0’, then the position counter is not  
reset when the index pulse is detected. The position  
counter will continue counting up or down, and will be  
reset on the rollover or underflow condition.  
A typical incremental (a.k.a. optical) encoder has three  
outputs: Phase A, Phase B and an index pulse. These  
signals are useful and often required in position and  
speed control of ACIM and SR motors.  
The interrupt is still generated on the detection of the  
index pulse and not on the position counter overflow/  
underflow.  
The two channels, Phase A (QEA) and Phase B (QEB),  
have a unique relationship. If Phase A leads Phase B,  
then the direction (of the motor) is deemed positive or  
forward. If Phase A lags Phase B, then the direction (of  
the motor) is deemed negative or reverse.  
16.2.3  
COUNT DIRECTION STATUS  
As mentioned in the previous section, the QEI logic  
generates a UPDN signal, based upon the relationship  
between Phase A and Phase B. In addition to the out-  
put pin, the state of this internal UPDN signal is  
supplied to an SFR bit, UPDN (QEICON<11>), as a  
read-only bit. To place the state of this signal on an I/O  
pin, the SFR bit, PCDOUT (QEICON<6>), must be set  
to ‘1’.  
A third channel, identified as the index pulse, occurs  
once per revolution and is used as a reference to estab-  
lish an absolute position. The index pulse coincides  
with Phase A and Phase B, both low.  
16.2 16-bit Up/Down Position  
Counter Mode  
The 16-bit up/down counter counts up or down on  
every count pulse, which is generated by the difference  
of the Phase A and Phase B input signals. The counter  
acts as an integrator whose count value is proportional  
to position. The direction of the count is determined by  
the UPDN signal, which is generated by the  
Quadrature Encoder Interface logic.  
16.3 Position Measurement Mode  
There are two supported measurement modes, called  
x2 and x4. These modes are selected by the  
QEIM<2:0> mode select bits located in SFR  
QEICON<10:8>.  
When control bits QEIM<2:0> = 100 or 101, the x2  
Measurement mode is selected and the QEI logic only  
looks at the Phase A input for the position counter  
increment rate. Every rising and falling edge of the  
Phase A signal causes the position counter to be incre-  
mented or decremented. The Phase B signal is still  
utilized for the determination of the counter direction,  
just as in the x4 Measurement mode.  
16.2.1  
POSITION COUNTER ERROR  
CHECKING  
Position counter error checking in the QEI is provided  
for and indicated by the CNTERR bit (QEICON<15>).  
The error checking only applies when the position  
counter is configured for Reset on the Index Pulse  
modes (QEIM<2:0> = 110or 100). In these modes, the  
contents of the POSCNT register are compared with  
the values 0xFFFF or MAXCNT + 1 (depending on  
direction). If these values are detected, an error condi-  
tion is generated by setting the CNTERR bit, and a QEI  
counter error interrupt is generated. The QEI counter  
error interrupt can be disabled by setting the CEID bit  
(DFLTCON<8>). The position counter continues to  
count encoder edges after an error has been detected.  
The POSCNT register continues to count up/down until  
a natural rollover/underflow. No interrupt is generated  
for the natural rollover/underflow event. The CNTERR  
bit is a read/write bit and is reset in software by the  
user.  
In the x2 Measurement mode, there are two ways the  
position counter is reset:  
1. Position counter is reset by detection of the  
index pulse, QEIM<2:0> = 100.  
2. Position counter is reset by a match with the  
MAXCNT, QEIM<2:0> = 101.  
When control bits QEIM<2:0> = 110 or 111, the x4  
Measurement mode is selected and the QEI logic looks  
at both edges of the Phase A and Phase B input sig-  
nals. Every edge of both signals causes the position  
counter to increment or decrement.  
In the x4 Measurement mode, there are two ways the  
position counter is reset:  
1. Position counter is reset by detection of the  
16.2.2  
POSITION COUNTER RESET  
index pulse, QEIM<2:0> = 110.  
The Position Counter Reset Enable bit, POSRES  
(QEI<2>), controls whether the position counter is reset  
when the index pulse is detected. This bit is only  
applicable when QEIM<2:0> = 100or 110.  
2. Position counter is reset by a match with the  
MAXCNT, QEIM<2:0> = 111.  
The x4 Measurement mode provides for finer resolu-  
tion data (more position counts) for determining motor  
position.  
DS70287A-page 186  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
In addition, control bit UPDN_SRC (QEICON<0>)  
16.4 Programmable Digital Noise  
determines whether the timer count direction state is  
based on the logic state written into the UPDN control/  
status bit (QEICON<11>) or the QEB pin state. When  
UPDN_SRC = 1, the timer count direction is controlled  
from the QEB pin. Conversely, when UPDN_SRC = 0,  
the timer count direction is controlled by the UPDN bit.  
Filters  
The digital noise filter section is responsible for  
rejecting noise on the incoming capture or quadrature  
signals. Schmitt Trigger inputs and a 3-clock cycle  
delay filter combine to reject low-level noise and large,  
short duration noise spikes that typically occur in noise  
prone applications, such as a motor system.  
Note:  
This timer does not support the External  
Asynchronous Counter mode of operation.  
If using an external clock source, the clock  
will automatically be synchronized to the  
internal instruction cycle.  
The filter ensures that the filtered output signal is not  
permitted to change until a stable value has been  
registered for three consecutive clock cycles.  
For the QEA, QEB and INDX pins, the clock divide  
frequency for the digital filter is programmed by bits,  
QECK<2:0> (DFLTCON<6:4>), and is derived from the  
base instruction cycle, TCY.  
16.6 QEI Module Operation During CPU  
Sleep Mode  
16.6.1  
QEI OPERATION DURING CPU  
SLEEP MODE  
To enable the filter output for channels QEA, QEB and  
INDX, the QEOUT bit must be ‘1’. The filter network for  
all channels is disabled on POR.  
The QEI module will be halted during the CPU Sleep  
mode.  
16.5 Alternate 16-bit Timer/Counter  
16.6.2  
TIMER OPERATION DURING CPU  
SLEEP MODE  
When the QEI module is not configured for the QEI  
mode, QEIM<2:0> = 001, the module can be con-  
figured as a simple 16-bit timer/counter. The setup and  
control of the auxiliary timer is accomplished through  
the QEICON SFR register. This timer functions identi-  
cally to Timer1. The QEA pin is used as the timer clock  
input.  
During CPU Sleep mode, the timer will not operate  
because the internal clocks are disabled.  
16.7 QEI Module Operation During CPU  
Idle Mode  
When configured as a timer, the POSCNT register  
serves as the Timer Count register and the MAXCNT  
register serves as the Period register. When a Timer/  
Period register match occurs, the QEI interrupt flag will  
be asserted.  
Since the QEI module can function as a Quadrature  
Encoder Interface or 16-bit timer, the following section  
describes operation of the module in both modes.  
16.7.1  
QEI OPERATION DURING CPU  
IDLE MODE  
The only exception between the general purpose  
timers and this timer is the added feature of external  
up/down input selection. When the UPDN pin is  
asserted high, the timer will increment. When the  
UPDN pin is asserted low, the timer will be decre-  
mented.  
When the CPU is placed in the Idle mode, the QEI  
module will operate if QEISIDL (QEICON<13>) = 0.  
This bit defaults to a logic ‘0’ upon executing POR. To  
halt the QEI module during the CPU Idle mode,  
QEISIDL should be set to ‘1’.  
Note:  
Changing the operational mode (i.e., from  
QEI to timer or vice versa) will not affect the  
Timer/Position Count register contents.  
The UPDN control/status bit (QEICON<11>) can be  
used to select the count direction state of the Timer  
register. When UPDN = 1, the timer will count up. When  
UPDN = 0, the timer will count down.  
© 2007 Microchip Technology Inc.  
DS70287A-page 187  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
16.7.2  
TIMER OPERATION DURING CPU  
IDLE MODE  
16.9 Control and Status Registers  
The QEI module has four user-accessible registers.  
The registers are accessible in either Byte or Word  
mode. These registers are as follows:  
When the CPU is placed in the Idle mode and the QEI  
module is configured in the 16-bit Timer mode, the  
16-bit timer will operate if QEISIDL (QEICON<13>) = 0.  
This bit defaults to a logic ‘0’ upon executing POR. To  
halt the timer module during the CPU Idle mode,  
QEISIDL should be set to ‘1’.  
• Control/Status Register (QEICON) – This register  
allows control of the QEI operation and status  
flags indicating the module’s state.  
• Digital Filter Control Register (DFLTCON) – This  
register allows control of the digital input filter  
operation.  
If the QEISIDL bit is cleared, the timer will function  
normally – as if the CPU Idle mode had not been  
entered.  
• Position Count Register (POSCNT) – This regis-  
ter allows reading and writing of the 16-bit position  
counter.  
16.8 Quadrature Encoder Interface  
Interrupts  
• Maximum Count Register (MAXCNT) – The  
MAXCNT register holds a value that is compared  
to the POSCNT counter in some operations.  
The Quadrature Encoder Interface has the ability to  
generate an interrupt on the occurrence of the following  
events:  
Note:  
The POSCNT register allows byte  
accesses; however, reading the register in  
byte mode may result in partially updated  
values in subsequent reads. Either use  
Word mode reads/writes or ensure that  
the counter is not counting during byte  
operations.  
• Interrupt on 16-bit up/down position counter  
rollover/underflow  
• Detection of qualified index pulse or if CNTERR  
bit is set  
• Timer period match event (overflow/underflow)  
• Gate accumulation event  
The QEI Interrupt Flag bit, QEIIF, is asserted upon  
occurrence of any of the above events. The QEIIF bit  
must be cleared in software. QEIIF is located in the  
IFS3 register.  
Enabling an interrupt is accomplished via the respec-  
tive enable bit, QEIIE. The QEIIE bit is located in the  
IEC3 register.  
DS70287A-page 188  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 16-1: QEICON: QEI CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
R-0  
R/W-0  
UPDN  
R/W-0  
R/W-0  
R/W-0  
bit 8  
CNTERR  
QEISIDL  
INDEX  
QEIM<2:0>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TQCS  
R/W-0  
UPDN_SRC  
bit 0  
SWPAB  
PCDOUT  
TQGATE  
TQCKPS<1:0>  
POSRES  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CNTERR: Count Error Status Flag bit  
1 = Position count error has occurred  
0 = No position count error has occurred  
(CNTERR flag only applies when QEIM<2:0> = ‘110’ or ‘100’)  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
QEISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
INDEX: Index Pin State Status bit (Read-Only)  
1= Index pin is High  
0= Index pin is Low  
UPDN: Position Counter Direction Status bit  
1= Position Counter direction is positive (+)  
0= Position Counter direction is negative (-)  
(Read-only bit when QEIM<2:0> = ‘1XX’)  
(Read/Write bit when QEIM<2:0> = ‘001’)  
bit 10-8  
QEIM<2:0>: Quadrature Encoder Interface Mode Select bits  
111= Quadrature Encoder Interface enabled (x4 mode) with position counter reset by match (MAXCNT)  
110= Quadrature Encoder Interface enabled (x4 mode) with Index Pulse reset of position counter  
101= Quadrature Encoder Interface enabled (x2 mode) with position counter reset by match (MAXCNT)  
100= Quadrature Encoder Interface enabled (x2 mode) with Index Pulse reset of position counter  
011= Unused (Module disabled)  
010= Unused (Module disabled)  
001= Starts 16-bit Timer  
000= Quadrature Encoder Interface/Timer off  
bit 7  
bit 6  
bit 5  
SWPAB: Phase A and Phase B Input Swap Select bit  
1= Phase A and Phase B inputs swapped  
0= Phase A and Phase B inputs not swapped  
PCDOUT: Position Counter Direction State Output Enable bit  
1= Position Counter direction status output enable (QEI logic controls state of I/O pin)  
0= Position Counter direction status output disabled (normal I/O pin operation)  
TQGATE: Timer Gated Time Accumulation Enable bit  
1= Timer gated time accumulation enabled  
0= Timer gated time accumulation disabled  
© 2007 Microchip Technology Inc.  
DS70287A-page 189  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 16-1: QEICON: QEI CONTROL REGISTER (CONTINUED)  
bit 4-3  
TQCKPS<1:0>: Timer Input Clock Prescale Select bits  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
(Prescaler utilized for 16-bit timer mode only)  
POSRES: Position Counter Reset Enable bit  
1= Index Pulse resets Position Counter  
0= Index Pulse does not reset Position Counter  
(Bit only applies when QEIM<2:0> = 100or 110)  
TQCS: Timer Clock Source Select bit  
1= External clock from pin QEA (on the rising edge)  
0= Internal clock (TCY)  
bit 2  
bit 1  
bit 0  
UPDN_SRC: Position Counter Direction Selection Control bit  
1= QEB pin state defines Position Counter direction  
0= Control/status bit UPDN (QEICON<11>) defines Position Counter (POSCNT) direction  
Note:  
When configured for QEI mode, control bit is a ‘don’t care’.  
DS70287A-page 190  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 16-2: DFLTCON: DIGITAL FILTER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CEID  
IMV<2:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
QEOUT  
QECK<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
IMV<1:0>: Index Match Value bits – These bits allow the user to specify the state of the QEA and QEB  
input pins during an index pulse when the POSCNT register is to be reset.  
In 4X Quadrature Count Mode:  
IMV1= Required state of Phase B input signal for match on index pulse  
IMV0= Required state of Phase A input signal for match on index pulse  
In 2X Quadrature Count Mode:  
IMV1= Selects phase input signal for index state match (0 = Phase A, 1 = Phase B)  
IMV0= Required state of the selected Phase input signal for match on index pulse  
bit 8  
CEID: Count Error Interrupt Disable bit  
1= Interrupts due to count errors are disabled  
0= Interrupts due to count errors are enabled  
bit 7  
QEOUT: QEA/QEB/INDX Pin Digital Filter Output Enable bit  
1= Digital filter outputs enabled  
0= Digital filter outputs disabled (normal pin operation)  
bit 6-4  
QECK<2:0>: QEA/QEB/INDX Digital Filter Clock Divide Select Bits  
111= 1:256 Clock Divide  
110= 1:128 Clock Divide  
101= 1:64 Clock Divide  
100= 1:32 Clock Divide  
011= 1:16 Clock Divide  
010= 1:4 Clock Divide  
001= 1:2 Clock Divide  
000= 1:1 Clock Divide  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
DS70287A-page 191  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 192  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Transmit writes are also double-buffered. The user writes  
17.0 SERIAL PERIPHERAL  
to SPIxBUF. When the master or slave transfer is com-  
pleted, the contents of the shift register (SPIxSR) are  
moved to the receive buffer. If any transmit data has been  
written to the buffer register, the contents of the transmit  
buffer are moved to SPIxSR. The received data is thus  
placed in SPIxBUF and the transmit data in SPIxSR is  
ready for the next transfer.  
INTERFACE (SPI)  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
Note:  
Both the transmit buffer (SPIxTXB) and  
the receive buffer (SPIxRXB) are mapped  
to the same register address, SPIxBUF.  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register.  
The Serial Peripheral Interface (SPI) module is a syn-  
chronous serial interface useful for communicating with  
other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift regis-  
ters, display drivers, ADC, etc. The SPI module is  
compatible with SPI and SIOP from Motorola®.  
To set up the SPI module for the Master mode of  
operation, do the following:  
1. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFSn  
register.  
b) Set the SPIxIE bit in the respective IECn  
register.  
Note: In this section, the SPI modules are  
referred to together as SPIx, or separately  
as SPI1 and SPI2. Special Function Reg-  
isters will follow a similar notation. For  
example, SPIxCON refers to the control  
register for the SPI1 or SPI2 module.  
c) Write the SPIxIP bits in the respective IPCn  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON  
register with MSTEN (SPIxCON1<5>) = 1.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates various status conditions.  
4. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
5. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start as  
soon as data is written to the SPIxBUF register.  
The serial interface consists of 4 pins: SDIx (serial data  
input), SDOx (serial data output), SCKx (shift clock input  
or output) and SSx (active low slave select).  
To set up the SPI module for the Slave mode of operation,  
do the following:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
In Master mode operation, SCK is a clock output, but in  
Slave mode, it is a clock input.  
a) Clear the SPIxIF bit in the respective IFSn  
register.  
A series of eight (8) or sixteen (16) clock pulses shift out  
bits from the SPIxSR to the SDOx pin and simultaneously  
shift in data from the SDIx pin. An interrupt is generated  
when the transfer is complete and the corresponding  
interrupt flag bit (SPI1IF or SPI2IF) is set. This interrupt  
can be disabled through an interrupt enable bit (SPI1IE  
or SPI2IE).  
b) Set the SPIxIE bit in the respective IECn  
register.  
c) Write the SPIxIP bits in the respective IPCn  
register to set the interrupt priority.  
3. Write the desired settings to the SPIxCON1 and  
SPIxCON2  
(SPIxCON1<5>) = 0.  
registers  
with  
MSTEN  
The receive operation is double-buffered. When a com-  
plete byte is received, it is transferred from SPIxSR to  
SPIxBUF.  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit  
(SPIxCON1<7>) must be set to enable the SSx  
pin.  
If the receive buffer is full when new data is being trans-  
ferred from SPIxSR to SPIxBUF, the module will set the  
SPIROV bit, indicating an overflow condition. The trans-  
fer of the data from SPIxSR to SPIxBUF will not be com-  
pleted and the new data will be lost. The module will not  
respond to SCL transitions while SPIROV is ‘1’, effec-  
tively disabling the module until SPIxBUF is read by user  
software.  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
7. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
© 2007 Microchip Technology Inc.  
DS70287A-page 193  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The SPI module generates an interrupt indicating com-  
pletion of a byte or word transfer, as well as a separate  
interrupt for all SPI error conditions.  
Note:  
Both SPI1 and SPI2 can trigger a DMA  
data transfer. If SPI1 or SPI2 is selected  
as the DMA IRQ source, a DMA transfer  
occurs when the SPI1IF or SPI2IF bit gets  
set as a result of an SPI1 or SPI2 byte or  
word transfer.  
FIGURE 17-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
DS70287A-page 194  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 17-2:  
SPI MASTER/SLAVE CONNECTION  
PROCESSOR 1 (SPI Master)  
PROCESSOR 2 (SPI Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
(SPIxRXB)  
Serial Receive Buffer  
(SPIxRXB)  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Transmit Buffer  
(SPIxTXB)  
Serial Transmit Buffer  
(SPIxTXB)  
Serial Clock  
SCKx  
SCKx  
SSx(1)  
SPI Buffer  
SPI Buffer  
(SPIxBUF)(2)  
(SPIxBUF)(2)  
MSTEN (SPIxCON1<5>) = 1  
SSEN (SPIxCON1<7>) = 1, and MSTEN (SPIxCON1<5>) = 0  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to/read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
FIGURE 17-3:  
SPI MASTER, FRAME MASTER CONNECTION DIAGRAM  
dsPIC33F  
PROCESSOR 2  
SDIx  
SDOx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
FIGURE 17-4:  
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM  
dsPIC33F  
PROCESSOR 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
© 2007 Microchip Technology Inc.  
DS70287A-page 195  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 17-5:  
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM  
dsPIC33F  
PROCESSOR 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
FIGURE 17-6:  
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
dsPIC33F  
PROCESSOR 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED  
FCY  
FSCK =  
Primary Prescaler * Secondary Prescaler  
TABLE 17-1: SAMPLE SCKx FREQUENCIES  
Secondary Prescaler Settings  
FCY = 40 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
Primary Prescaler Settings  
1:1  
4:1  
Invalid  
10000  
2500  
625  
Invalid  
5000  
10000  
2500  
6666.67  
1666.67  
416.67  
104.17  
5000  
1250  
16:1  
64:1  
1250  
625  
312.50  
78.125  
312.5  
156.25  
FCY = 5 MHz  
Primary Prescaler Settings  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
16:1  
64:1  
20  
13  
10  
Note: SCKx frequencies shown in kHz.  
DS70287A-page 196  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 17-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the  
previous data in the SPIxBUF register.  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started; SPIxTXB is full  
0= Transmit started; SPIxTXB is empty  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete; SPIxRXB is full  
0= Receive is not complete; SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
© 2007 Microchip Technology Inc.  
DS70287A-page 197  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
SPRE<2:0>  
PPRE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled; pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4-2  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module. Pin controlled by port function.  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
SPRE<2:0>: Secondary Prescale bits (Master mode)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
...  
000= Secondary prescale 8:1  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
DS70287A-page 198  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 17-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
© 2007 Microchip Technology Inc.  
DS70287A-page 199  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 17-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
Unimplemented: This bit must not be set to ‘1’ by the user application.  
DS70287A-page 200  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2
18.2 I C Registers  
18.0 INTER-INTEGRATED CIRCUIT  
2
(I C)  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write.  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
I2CxRSR is the shift register used for shifting data,  
whereas I2CxRCV is the buffer register to which data  
bytes are written, or from which data bytes are read.  
I2CxRCV is the receive buffer. I2CxTRN is the transmit  
register to which bytes are written during a transmit  
operation.  
The I2CxADD register holds the slave address. A  
status bit, ADD10, indicates 10-bit Address mode. The  
I2CxBRG acts as the Baud Rate Generator (BRG)  
reload value.  
The Inter-Integrated Circuit (I2C) module, with its 16-bit  
interface, provides complete hardware support for both  
Slave and Multi-Master modes of the I2C serial commu-  
nication standard.  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV  
and an interrupt pulse is generated.  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices have up to two I2C interface modules,  
denoted as I2C1 and I2C2. Each I2C module has a 2-  
pin interface: the SCLx pin is clock and the SDAx pin is  
data.  
2
18.3 I C Interrupts  
Each I2C module ‘x’ (x = 1 or 2) offers the following key  
features:  
• I2C interface supports both master and slave  
operation.  
The I2C module generates two interrupt flags, MI2CxIF  
(I2C Master Events Interrupt Flag) and SI2CxIF (I2C  
Slave Events Interrupt Flag). A separate interrupt is  
generated for each I2C error condition.  
• I2C Slave mode supports 7- and 10-bit addresses.  
• I2C Master mode supports 7- and 10-bit  
addresses.  
• I2C port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for the I2C port can  
be used as a handshake mechanism to suspend  
and resume serial transfer (SCLREL control).  
18.4 Baud Rate Generator  
In I2C Master mode, the reload value for the BRG is  
located in the I2CxBRG register. When the BRG is  
loaded with this value, the BRG counts down to ‘0’ and  
stops until another reload has taken place. If clock arbi-  
tration is taking place, for instance, the BRG is reloaded  
when the SCLx pin is sampled high.  
• I2C supports multi-master operation; it detects  
bus collision and will arbitrate accordingly.  
As per the I2C standard, FSCL may be 100 kHz or  
400 kHz. However, the user can specify any baud rate  
up to 1 MHz. I2CxBRG values of ‘0’ or ‘1’ are illegal.  
18.1 Operating Modes  
EQUATION 18-1: SERIAL CLOCK RATE  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
FCY  
FCY  
– 1  
I2CxBRG =  
)
(
FSCL 10,000,000  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit address  
• I2C slave operation with 10-bit address  
• I2C master operation with 7- or 10-bit address  
For details about the communication sequence in each  
of these modes, please refer to the “dsPIC30F Family  
Reference Manual”.  
© 2007 Microchip Technology Inc.  
DS70287A-page 201  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 18-1:  
I2C™ BLOCK DIAGRAM (X = 1 OR 2)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSb  
Address Match  
Match Detect  
Write  
Read  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70287A-page 202  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
2
18.5 I C Module Addresses  
18.8 General Call Address Support  
The I2CxADD register contains the Slave mode  
addresses. The register is a 10-bit register.  
The general call address can address all devices.  
When this address is used, all devices should, in  
theory, respond with an Acknowledgement.  
If the A10M bit (I2CxCON<10>) is ‘0’, the address is  
interpreted by the module as a 7-bit address. When an  
address is received, it is compared to the 7 Least  
Significant bits of the I2CxADD register.  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R_W = 0.  
If the A10M bit is ‘1’, the address is assumed to be a  
10-bit address. When an address is received, it will be  
compared with the binary value, ‘11110 A9 A8’  
(where A9and A8are the two Most Significant bits of  
I2CxADD). If that value matches, the next address will  
be compared with the Least Significant 8 bits of  
I2CxADD, as specified in the 10-bit addressing  
protocol.  
The general call address is recognized when the General  
Call Enable (GCEN) bit is set (I2CxCON<7> = 1). When  
the interrupt is serviced, the source for the interrupt can  
be checked by reading the contents of the I2CxRCV to  
determine if the address was device-specific or a general  
call address.  
18.9 Automatic Clock Stretch  
TABLE 18-1: 7-BIT I2C™ SLAVE  
ADDRESSES SUPPORTED BY  
dsPIC33FJXXXMCX06/X08/  
X10 MOTOR CONTROL  
FAMILY  
In Slave modes, the module can synchronize buffer  
reads and writes to the master device by clock stretch-  
ing.  
18.9.1  
TRANSMIT CLOCK STRETCHING  
Both 10-bit and 7-bit Transmit modes implement clock  
stretching by asserting the SCLREL bit after the falling  
edge of the ninth clock if the TBF bit is cleared  
(indicating the buffer is empty).  
0x00  
General call address or Start byte  
Reserved  
0x01-0x03  
0x04-0x07  
0x08-0x77  
0x78-0x7b  
Hs mode Master codes  
Valid 7-bit addresses  
In Slave Transmit modes, clock stretching is always  
performed, irrespective of the STREN bit. The user’s  
ISR must set the SCLREL bit before transmission is  
allowed to continue. By holding the SCLx line low, the  
user has time to service the ISR and load the contents  
of the I2CxTRN before the master device can initiate  
another transmit sequence.  
Valid 10-bit addresses  
(lower 7 bits)  
0x7c-0x7f  
Reserved  
18.6 Slave Address Masking  
The I2CxMSK register (Register 18-3) designates  
address bit positions as “don’t care” for both 7-bit and  
10-bit Address modes. Setting a particular bit location  
to ‘1’ in the I2CxMSK register causes the slave module  
to respond whether the corresponding address bit  
value is a ‘0’ or ‘1’. For example, when I2CxMSK is set  
to ‘00100000’, the slave module will detect both  
addresses, ‘0000000’ and ‘00100000’.  
18.9.2  
RECEIVE CLOCK STRETCHING  
The STREN bit in the I2CxCON register can be used to  
enable clock stretching in Slave Receive mode. When  
the STREN bit is set, the SCLx pin will be held low at  
the end of each data receive sequence.  
The user’s ISR must set the SCLREL bit before recep-  
tion is allowed to continue. By holding the SCLx line  
low, the user has time to service the ISR and read the  
contents of the I2CxRCV before the master device can  
initiate another receive sequence. This will prevent  
buffer overruns from occurring.  
To enable address masking, the IPMI (Intelligent  
Peripheral Management Interface) must be disabled by  
clearing the IPMIEN bit (I2CxCON<11>).  
18.7 IPMI Support  
18.10 Software Controlled Clock  
The control bit IPMIEN enables the module to support  
the Intelligent Peripheral Management Interface (IPMI).  
When this bit is set, the module accepts and acts upon  
all addresses.  
Stretching (STREN = 1)  
When the STREN bit is ‘1’, the SCLREL bit may be  
cleared by software to allow software to control the  
clock stretching.  
If the STREN bit is ‘0’, a software write to the SCLREL  
bit will be disregarded and have no effect on the  
SCLREL bit.  
© 2007 Microchip Technology Inc.  
DS70287A-page 203  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
18.11 Slope Control  
18.13 Multi-Master Communication, Bus  
Collision and Bus Arbitration  
The I2C standard requires slope control on the SDAx  
and SCLx signals for Fast mode (400 kHz). The control  
bit DISSLW enables the user to disable slew rate con-  
trol if desired. It is necessary to disable the slew rate  
control for 1 MHz mode.  
Multi-Master mode support is achieved by bus  
arbitration. When the master outputs address/data bits  
onto the SDAx pin, arbitration takes place when the  
master outputs a ‘1’ on SDAx by letting SDAx float high  
while another master asserts a ‘0’. When the SCLx pin  
floats high, data should be stable. If the expected data  
on SDAx is a ‘1’ and the data sampled on the  
SDAx pin = 0, then a bus collision has taken place. The  
master will set the I2C master events interrupt flag and  
reset the master portion of the I2C port to its Idle state.  
18.12 Clock Arbitration  
Clock arbitration occurs when the master deasserts the  
SCLx pin (SCLx allowed to float high) during any  
receive, transmit or Restart/Stop condition. When the  
SCLx pin is allowed to float high, the Baud Rate Gen-  
erator (BRG) is suspended from counting until the  
SCLx pin is actually sampled high. When the SCLx pin  
is sampled high, the Baud Rate Generator is reloaded  
with the contents of I2CxBRG and begins counting.  
This ensures that the SCLx high time will always be at  
least one BRG rollover count in the event that the clock  
is held low by an external device.  
DS70287A-page 204  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0 HC  
ACKEN  
R/W-0 HC  
RCEN  
R/W-0 HC  
PEN  
R/W-0 HC  
RSEN  
R/W-0 HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HC = Cleared in hardware  
x = Bit is unknown  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C pins are controlled by port functions.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear  
at beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode disabled  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMBus specification  
0= Disable SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
© 2007 Microchip Technology Inc.  
DS70287A-page 205  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 18-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Hardware clear at end of master Acknowledge sequence.  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of  
master Repeated Start sequence.  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.  
0= Start condition not in progress  
DS70287A-page 206  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0 HSC  
R-0 HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0 HS  
BCL  
R-0 HSC  
GCSTAT  
R-0 HSC  
ADD10  
ACKSTAT  
bit 15  
bit 8  
R/C-0 HS  
IWCOL  
R/C-0 HS  
I2COV  
R-0 HSC  
D_A  
R/C-0 HSC R/C-0 HSC  
R-0 HSC  
R_W  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HSC = Hardware set/cleared  
x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
© 2007 Microchip Technology Inc.  
DS70287A-page 207  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 18-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete; I2CxRCV is full  
0= Receive not complete; I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
DS70287A-page 208  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 18-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSKx: Mask for Address bit x Select bit  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
© 2007 Microchip Technology Inc.  
DS70287A-page 209  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 210  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
• Hardware Flow Control Option with UxCTS and  
UxRTS pins  
19.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Fully Integrated Baud Rate Generator with 16-bit  
Prescaler  
• Baud Rates Ranging from 1 Mbps to 15 bps at  
16 MIPS  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
• 4-deep First-In-First-Out (FIFO) Transmit Data  
Buffer  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
• A Separate Interrupt for all UART Error Conditions  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules avail-  
able in the dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family device family. The UART is a full-duplex  
asynchronous system that can communicate with  
peripheral devices, such as personal computers, LIN,  
RS-232 and RS-485 interfaces. The module also sup-  
ports a hardware flow control option with the UxCTS  
and UxRTS pins and also includes an IrDA® encoder  
and decoder.  
• 16x Baud Clock Output for IrDA Support  
A simplified block diagram of the UART is shown in  
Figure 19-1. The UART module consists of the key  
important hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
The primary features of the UART module are:  
• Full-Duplex, 8 or 9-bit Data Transmission through  
the UxTX and UxRX pins  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
FIGURE 19-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLK  
Hardware Flow Control  
UART Receiver  
UxRTS  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
Note 1: Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as  
a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as  
a result of a UART1 or UART2 transmission or reception.  
2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e.,  
UTXISEL<1:0> = 00and URXISEL<1:0> = 00).  
© 2007 Microchip Technology Inc.  
DS70287A-page 211  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Equation 19-2 shows the formula for computation of  
the baud rate with BRGH = 1.  
19.1 UART Baud Rate Generator (BRG)  
The UART module includes a dedicated 16-bit Baud  
Rate Generator. The BRGx register controls the period  
of a free-running 16-bit timer. Equation 19-1 shows the  
formula for computation of the baud rate with  
BRGH = 0.  
EQUATION 19-2: UART BAUD RATE WITH  
BRGH = 1  
FCY  
Baud Rate =  
4 • (BRGx + 1)  
EQUATION 19-1: UART BAUD RATE WITH  
BRGH = 0  
FCY  
4 • Baud Rate  
– 1  
BRGx =  
FCY  
Baud Rate =  
16 • (BRGx + 1)  
Note: FCY denotes the instruction cycle clock  
frequency (FOSC/2).  
FCY  
16 • Baud Rate  
– 1  
BRGx =  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for BRGx = 0), and the minimum baud rate possible is  
FCY/(4 * 65536).  
Note: FCY denotes the instruction cycle clock  
frequency (FOSC/2).  
Writing a new value to the BRGx register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
Example 19-1 shows the calculation of the baud rate  
error for the following conditions:  
• FCY = 4 MHz  
• Desired Baud Rate = 9600  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for BRGx = 0), and the minimum baud rate  
possible is FCY/(16 * 65536).  
EXAMPLE 19-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)  
Desired Baud Rate  
=
FCY/(16 (BRGx + 1))  
Solving for BRGx Value:  
BRGx  
BRGx  
BRGx  
=
=
=
((FCY/Desired Baud Rate)/16) – 1  
((4000000/9600)/16) – 1  
25  
Calculated Baud Rate  
=
=
4000000/(16 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 – 9600)/9600  
0.16%  
DS70287A-page 212  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
19.2 Transmitting in 8-bit Data Mode  
19.5 Receiving in 8-bit or 9-bit Data  
Mode  
1. Set up the UART:  
a) Write appropriate values for data, parity and  
Stop bits.  
1. Set up the UART (as described in Section 19.2  
“Transmitting in 8-bit Data Mode”).  
b) Write appropriate baud rate value to the  
BRGx register.  
2. Enable the UART.  
3. A receive interrupt will be generated when one  
or more data characters have been received as  
per interrupt control bits, URXISEL<1:0>.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UART.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write data byte to lower byte of UxTXREG word.  
The value will be immediately transferred to the  
Transmit Shift Register (TSR) and the serial bit  
stream will start shifting out with the next rising  
edge of the baud clock.  
5. Read UxRXREG.  
The act of reading the UxRXREG character will move  
the next character to the top of the receive FIFO,  
including a new set of PERR and FERR values.  
5. Alternately, the data byte may be transferred  
while UTXEN = 0, and then the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
19.6 Flow Control Using UxCTS and  
UxRTS Pins  
UARTx Clear to Send (UxCTS) and Request to Send  
(UxRTS) are the two hardware controlled active-low  
pins that are associated with the UART module. These  
two pins allow the UART to operate in Simplex and  
Flow Control modes. They are implemented to control  
the transmission and the reception between the Data  
Terminal Equipment (DTE). The UEN<1:0> bits in the  
UxMODE register configures these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bits, UTXISEL<1:0>.  
19.3 Transmitting in 9-bit Data Mode  
1. Set up the UART (as described in Section 19.2  
“Transmitting in 8-bit Data Mode”).  
2. Enable the UART.  
19.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write UxTXREG as a 16-bit value only.  
The UART module provides two types of infrared UART  
support:  
5. A word write to UxTXREG triggers the transfer  
of the 9-bit data to the TSR. Serial bit stream will  
start shifting out with the first rising edge of the  
baud clock.  
• IrDA clock output to support external IrDA  
encoder and decoder device (legacy module  
support)  
6. A transmit interrupt will be generated as per the  
setting of control bits, UTXISEL<1:0>.  
• Full implementation of the IrDA encoder and  
decoder.  
19.4 Break and Sync Transmit  
Sequence  
19.7.1  
EXTERNAL IrDA SUPPORT – IrDA  
CLOCK OUTPUT  
To support external IrDA encoder and decoder devices,  
the BCLK pin (same as the UxRTS pin) can be  
configured to generate the 16x baud clock. With  
UEN<1:0> = 11, the BCLK pin will output the 16x baud  
clock if the UART module is enabled; it can be used to  
support the IrDA codec chip.  
The following sequence will send a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UART for the desired mode.  
2. Set UTXEN and UTXBRK – sets up the Break  
character.  
19.7.2  
BUILT-IN IrDA ENCODER AND  
DECODER  
3. Load the UxTXREG register with a dummy  
character to initiate transmission (value is  
ignored).  
The UART has full implementation of the IrDA encoder  
and decoder as part of the UART module. The built-in  
IrDA encoder and decoder functionality is enabled  
using the IREN bit (UxMODE<12>). When enabled  
(IREN = 1), the receive pin (UxRX) acts as the input  
from the infrared receiver. The transmit pin (UxTX) acts  
as the output to the infrared transmitter.  
4. Write 0x55 to UxTXREG – loads Sync character  
into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
© 2007 Microchip Technology Inc.  
DS70287A-page 213  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 19-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(1)  
R/W-0  
U-0  
R/W-0(2)  
R/W-0(2)  
UARTEN  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0 HC  
WAKE  
R/W-0  
R/W-0 HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode.  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA Encoder and Decoder Enable bit(1)  
1= IrDA encoder and decoder enabled  
0= IrDA encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11=UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches  
10=UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01=UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches  
00=UxTX and UxRX pins are enabled and used; and UxRTS/BCLK pins controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
2: Bit availability depends on pin availability.  
DS70287A-page 214  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
2: Bit availability depends on pin availability.  
© 2007 Microchip Technology Inc.  
DS70287A-page 215  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
UTXINV(1)  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
R-0  
R-1  
UTXISEL1  
UTXISEL0  
UTXEN  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11=Reserved; do not use  
10=Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the  
transmit buffer becomes empty  
01=Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00=Interrupt when a character is transferred to the Transmit Shift Register (this implies there is  
at least one character open in the transmit buffer)  
bit 14  
UTXINV: IrDA Encoder Transmit Polarity Inversion bit(1)  
1= IrDA encoded, UxTX Idle state is ‘1’  
0= IrDA encoded, UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled  
by port.  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11=Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)  
10=Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x=Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer. Receive buffer has one or more characters.  
bit 5  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.  
0= Address Detect mode disabled  
Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled  
(IREN = 1).  
DS70287A-page 216  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 4  
bit 3  
bit 2  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (read/clear only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state.  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled  
(IREN = 1).  
© 2007 Microchip Technology Inc.  
DS70287A-page 217  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 218  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
for both CAN1 and CAN2) for time-stamping and  
network synchronization  
20.0 ENHANCED CAN MODULE  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
• Low-power Sleep and Idle mode  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
20.1 Overview  
20.2 Frame Types  
The Enhanced Controller Area Network (ECAN™)  
module is a serial interface, useful for communicating  
with other CAN modules or microcontroller devices.  
This interface/protocol was designed to allow commu-  
The CAN module transmits various types of frames  
which include data messages, or remote transmission  
requests initiated by the user, as other frames that are  
automatically generated for control purposes. The  
following frame types are supported:  
nications  
within  
noisy  
environments.  
The  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices contain up to two ECAN modules.  
• Standard Data Frame:  
A standard data frame is generated by a node  
when the node wishes to transmit data. It includes  
an 11-bit Standard Identifier (SID), but not an  
18-bit Extended Identifier (EID).  
The CAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH specification. The module will support CAN 1.2,  
CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active  
versions of the protocol. The module implementation is  
a full CAN system. The CAN specification is not covered  
within this data sheet. The reader may refer to the  
BOSCH CAN specification for further details.  
• Extended Data Frame:  
An extended data frame is similar to a standard  
data frame, but includes an extended identifier as  
well.  
The module features are as follows:  
• Remote Frame:  
• Implementation of the CAN protocol, CAN 1.2,  
CAN 2.0A and CAN 2.0B  
It is possible for a destination node to request the  
data from the source. For this purpose, the  
destination node sends a remote frame with an  
identifier that matches the identifier of the required  
data frame. The appropriate data source node will  
then send a data frame as a response to this  
remote request.  
• Standard and extended data frames  
• 0-8 bytes data length  
• Programmable bit rate up to 1 Mbit/sec  
• Automatic response to remote transmission  
requests  
• Error Frame:  
• Up to 8 transmit buffers with application specified  
prioritization and abort capability (each buffer may  
contain up to 8 bytes of data)  
An error frame is generated by any node that  
detects a bus error. An error frame consists of two  
fields: an error flag field and an error delimiter  
field.  
• Up to 32 receive buffers (each buffer may contain  
up to 8 bytes of data)  
• Up to 16 full (standard/extended identifier)  
acceptance filters  
• Overload Frame:  
An overload frame can be generated by a node as  
a result of two conditions. First, the node detects  
a dominant bit during interframe space which is an  
illegal condition. Second, due to internal condi-  
tions, the node is not yet able to start reception of  
the next message. A node may generate a maxi-  
mum of 2 sequential overload frames to delay the  
start of the next message.  
• 3 full acceptance filter masks  
• DeviceNet™ addressing support  
• Programmable wake-up functionality with  
integrated low-pass filter  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Interframe Space:  
Interframe space separates a proceeding frame  
(of whatever type) from a following data or remote  
frame.  
• Programmable clock source  
• Programmable link to input capture module (IC2  
© 2007 Microchip Technology Inc.  
DS70287A-page 219  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 20-1:  
ECAN™ MODULE BLOCK DIAGRAM  
RXF15 Filter  
RXF14 Filter  
RXF13 Filter  
RXF12 Filter  
RXF11 Filter  
RXF10 Filter  
RXF9 Filter  
RXF8 Filter  
RXF7 Filter  
RXF6 Filter  
RXF5 Filter  
RXF4 Filter  
RXF3 Filter  
RXF2 Filter  
RXF1 Filter  
RXF0 Filter  
DMA Controller  
TRB7 TX/RX Buffer Control Register  
TRB6 TX/RX Buffer Control Register  
TRB5 TX/RX Buffer Control Register  
TRB4 TX/RX Buffer Control Register  
TRB3 TX/RX Buffer Control Register  
TRB2 TX/RX Buffer Control Register  
TRB1 TX/RX Buffer Control Register  
TRB0 TX/RX Buffer Control Register  
RXM2 Mask  
RXM1 Mask  
RXM0 Mask  
Transmit Byte  
Sequencer  
Message Assembly  
Buffer  
Control  
Configuration  
Logic  
CPU  
Bus  
CAN Protocol  
Engine  
Interrupts  
(1)  
(1)  
CiTX  
CiRX  
Note 1: i = 1 or 2 refers to a particular ECAN module (ECAN1 or ECAN2).  
DS70287A-page 220  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
20.3 Modes of Operation  
Note:  
Typically, if the CAN module is allowed to  
transmit in a particular mode of operation  
and a transmission is requested immedi-  
ately after the CAN module has been  
placed in that mode of operation, the mod-  
ule waits for 11 consecutive recessive bits  
on the bus before starting transmission. If  
the user switches to Disable mode within  
this 11-bit period, then this transmission is  
aborted and the corresponding TXABT bit  
is set and TXREQ bit is cleared.  
The CAN module can operate in one of several operation  
modes selected by the user. These modes include:  
• Initialization Mode  
• Disable Mode  
• Normal Operation Mode  
• Listen Only Mode  
• Listen All Messages Mode  
• Loopback Mode  
Modes are requested by setting the REQOP<2:0> bits  
(CiCTRL1<10:8>). Entry into a mode is Acknowledged  
20.3.3  
NORMAL OPERATION MODE  
by  
monitoring  
the  
OPMODE<2:0>  
bits  
Normal Operation mode is selected when  
REQOP<2:0> = 000. In this mode, the module is  
activated and the I/O pins will assume the CAN bus  
functions. The module will transmit and receive CAN  
bus messages via the CiTX and CiRX pins.  
(CiCTRL1<7:5>). The module will not change the mode  
and the OPMODE bits until a change in mode is  
acceptable, generally during bus Idle time, which is  
defined as at least 11 consecutive recessive bits.  
20.3.1  
INITIALIZATION MODE  
20.3.4  
LISTEN ONLY MODE  
In the Initialization mode, the module will not transmit or  
receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer will  
have access to Configuration registers that are access  
restricted in other modes. The module will protect the  
user from accidentally violating the CAN protocol  
through programming errors. All registers which control  
the configuration of the module can not be modified  
while the module is on-line. The CAN module will not  
be allowed to enter the Configuration mode while a  
transmission is taking place. The Configuration mode  
serves as a lock to protect the following registers:  
If the Listen Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or Acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is neces-  
sary that there are at least two further nodes that  
communicate with each other.  
20.3.5  
LISTEN ALL MESSAGES MODE  
The module can be set to ignore all errors and receive  
any message. The Listen All Messages mode is acti-  
vated by setting REQOP<2:0> = ‘111’. In this mode,  
the data which is in the message assembly buffer, until  
the time an error occurred, is copied in the receive  
buffer and can be read via the CPU interface.  
• All Module Control Registers  
• Baud Rate and Interrupt Configuration Registers  
• Bus Timing Registers  
• Identifier Acceptance Filter Registers  
• Identifier Acceptance Mask Registers  
20.3.2  
DISABLE MODE  
20.3.6  
LOOPBACK MODE  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts will  
remain and the error counters will retain their value.  
If the Loopback mode is activated, the module will con-  
nect the internal transmit signal to the internal receive  
signal at the module boundary. The transmit and  
receive pins revert to their port I/O function.  
If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the  
module will enter the Module Disable mode. If the module  
is active, the module will wait for 11 recessive bits on the  
CAN bus, detect that condition as an Idle bus, then  
accept the module disable command. When the  
OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indi-  
cates whether the module successfully went into Module  
Disable mode. The I/O pins will revert to normal I/O  
function when the module is in the Module Disable mode.  
20.4 Message Reception  
20.4.1  
RECEIVE BUFFERS  
The CAN bus module has up to 32 receive buffers,  
located in DMA RAM. The first 8 buffers need to be  
configured as receive buffers by clearing the  
corresponding TX/RX buffer selection (TXENn) bit in a  
CiTRmnCON register. The overall size of the CAN  
buffer area in DMA RAM is selectable by the user and  
The module can be programmed to apply a low-pass  
filter function to the CiRX input line while the module or  
the CPU is in Sleep mode. The WAKFIL bit  
(CiCFG2<14>) enables or disables the filter.  
is  
defined  
by  
the  
DMABS<2:0>  
bits  
(CiFCTRL<15:13>). The first 16 buffers can be  
assigned to receive filters, while the rest can be used  
only as a FIFO buffer.  
© 2007 Microchip Technology Inc.  
DS70287A-page 221  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
An additional buffer is always committed to monitoring  
the bus for incoming messages. This buffer is called the  
Message Assembly Buffer (MAB).  
20.4.5  
RECEIVE ERRORS  
The CAN module will detect the following receive  
errors:  
All messages are assembled by the MAB and are trans-  
ferred to the buffers only if the acceptance filter criterion  
are met. When a message is received, the RBIF flag  
(CiINTF<1>) will be set. The user would then need to  
inspect the CiVEC and/or CiRXFUL1 register to deter-  
mine which filter and buffer caused the interrupt to get  
generated. The RBIF bit can only be set by the module  
when a message is received. The bit is cleared by the  
user when it has completed processing the message in  
the buffer. If the RBIE bit is set, an interrupt will be  
generated when a message is received.  
• Cyclic Redundancy Check (CRC) Error  
• Bit Stuffing Error  
• Invalid Message Receive Error  
These receive errors do not generate an interrupt.  
However, the receive error counter is incremented by  
one in case one of these errors occur. The RXWAR bit  
(CiINTF<9>) indicates that the receive error counter  
has reached the CPU warning limit of 96 and an  
interrupt is generated.  
20.4.6  
RECEIVE INTERRUPTS  
20.4.2  
FIFO BUFFER MODE  
Receive interrupts can be divided into 3 major groups,  
each including various conditions that generate  
interrupts:  
The ECAN module provides FIFO buffer functionality if  
the buffer pointer for a filter has a value of ‘1111’. In this  
mode, the results of a hit on that buffer will write to the  
next available buffer location within the FIFO.  
• Receive Interrupt:  
A message has been successfully received and  
loaded into one of the receive buffers. This inter-  
rupt is activated immediately after receiving the  
End-of-Frame (EOF) field. Reading the RXnIF flag  
will indicate which receive buffer caused the  
interrupt.  
The CiFCTRL register defines the size of the FIFO. The  
FSA<4:0> bits in this register define the start of the  
FIFO buffers. The end of the FIFO is defined by the  
DMABS<2:0> bits if DMA is enabled. Thus, FIFO sizes  
up to 32 buffers are supported.  
20.4.3  
MESSAGE ACCEPTANCE FILTERS  
• Wake-up Interrupt:  
The CAN module has woken up from Disable  
mode or the device has woken up from Sleep  
mode.  
The message acceptance filters and masks are used to  
determine if a message in the message assembly  
buffer should be loaded into either of the receive buff-  
ers. Once a valid message has been received into the  
Message Assembly Buffer (MAB), the identifier fields of  
the message are compared to the filter values. If there  
is a match, that message will be loaded into the  
appropriate receive buffer. Each filter is associated with  
a buffer pointer (FnBP<3:0>), which is used to link the  
filter to one of 16 receive buffers.  
• Receive Error Interrupts:  
A receive error interrupt will be indicated by the  
ERRIF bit. This bit shows that an error condition  
occurred. The source of the error can be deter-  
mined by checking the bits in the CAN Interrupt  
Flag register, CiINTF.  
- Invalid Message Received:  
The acceptance filter looks at incoming messages for  
the IDE bit (CiTRBnSID<0>) to determine how to com-  
pare the identifiers. If the IDE bit is clear, the message  
is a standard frame and only filters with the EXIDE bit  
(CiRXFnSID<3>) clear are compared. If the IDE bit is  
set, the message is an extended frame, and only filters  
with the EXIDE bit set are compared.  
If any type of error occurred during reception of  
the last message, an error will be indicated by  
the IVRIF bit.  
- Receiver Overrun:  
The RBOVIF bit (CiINTF<2>) indicates that an  
overrun condition occurred.  
20.4.4  
MESSAGE ACCEPTANCE FILTER  
MASKS  
- Receiver Warning:  
The RXWAR bit indicates that the receive error  
counter (RERRCNT<7:0>) has reached the  
warning limit of 96.  
The mask bits essentially determine which bits to apply  
the filter to. If any mask bit is set to a zero, then that bit  
will automatically be accepted regardless of the filter  
bit. There are three programmable acceptance filter  
masks associated with the receive buffers. Any of  
these three masks can be linked to each filter by select-  
ing the desired mask in the FnMSK<1:0> bits in the  
appropriate CiFMSKSELn register.  
- Receiver Error Passive:  
The RXEP bit indicates that the receive error  
counter has exceeded the error passive limit of  
127 and the module has gone into error passive  
state.  
DS70287A-page 222  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
20.5.4  
AUTOMATIC PROCESSING OF  
REMOTE TRANSMISSION  
REQUESTS  
20.5 Message Transmission  
20.5.1 TRANSMIT BUFFERS  
The CAN module has up to eight transmit buffers,  
located in DMA RAM. These 8 buffers need to be con-  
figured as transmit buffers by setting the corresponding  
TX/RX buffer selection (TXENn or TXENm) bit in a  
CiTRmnCON register. The overall size of the CAN  
buffer area in DMA RAM is selectable by the user and  
If the RTRENn bit (in the CiTRmnCON register) for a  
particular transmit buffer is set, the hardware automat-  
ically transmits the data in that buffer in response to  
remote transmission requests matching the filter that  
points to that particular buffer. The user does not need  
to manually initiate a transmission in this case.  
is  
defined  
by  
the  
DMABS<2:0>  
bits  
(CiFCTRL<15:13>).  
20.5.5  
ABORTING MESSAGE  
TRANSMISSION  
Each transmit buffer occupies 16 bytes of data. Eight of  
the bytes are the maximum 8 bytes of the transmitted  
message. Five bytes hold the standard and extended  
identifiers and other message arbitration information.  
The last byte is unused.  
The system can also abort a message by clearing the  
TXREQ bit associated with each message buffer. Set-  
ting the ABAT bit (CiCTRL1<12>) will request an abort  
of all pending messages. If the message has not yet  
started transmission, or if the message started but is  
interrupted by loss of arbitration or an error, the abort  
will be processed. The abort is indicated when the  
module sets the TXABT bit and the TXnIF flag is not  
automatically set.  
20.5.2  
TRANSMIT MESSAGE PRIORITY  
Transmit priority is a prioritization within each node of  
the pending transmittable messages. There are four  
levels of transmit priority. If the TXnPRI<1:0> bits (in  
CiTRmnCON) for a particular message buffer are  
set to ‘11’, that buffer has the highest priority. If the  
TXnPRI<1:0> bits for a particular message buffer  
are set to ‘10’ or ‘01’, that buffer has an intermediate  
priority. If the TXnPRI<1:0> bits for a particular  
message buffer are ‘00’, that buffer has the lowest pri-  
ority. If two or more pending messages have the same  
priority, the messages are transmitted in decreasing  
order of buffer index.  
20.5.6  
TRANSMISSION ERRORS  
The CAN module will detect the following transmission  
errors:  
• Acknowledge Error  
• Form Error  
• Bit Error  
These transmission errors will not necessarily generate  
an interrupt but are indicated by the transmission error  
counter. However, each of these errors will cause the  
transmission error counter to be incremented by one.  
Once the value of the error counter exceeds the value  
of 96, the ERRIF (CiINTF<5>) and the TXWAR bit  
(CiINTF<10>) are set. Once the value of the error  
counter exceeds the value of 96, an interrupt is  
generated and the TXWAR bit in the Interrupt Flag  
register is set.  
20.5.3  
TRANSMISSION SEQUENCE  
To initiate transmission of the message, the TXREQn bit  
(in CiTRmnCON) must be set. The CAN bus module  
resolves any timing conflicts between the setting of the  
TXREQn bit and the Start-of-Frame (SOF), ensuring that  
if the priority was changed, it is resolved correctly before  
the SOF occurs. When TXREQn is set, the TXABTn,  
TXLARBn and TXERRn flag bits are automatically  
cleared.  
Setting the TXREQn bit simply flags a message buffer  
as enqueued for transmission. When the module  
detects an available bus, it begins transmitting the  
message which has been determined to have the  
highest priority.  
If the transmission completes successfully on the first  
attempt, the TXREQn bit is cleared automatically and  
an interrupt is generated if TXnIE was set.  
If the message transmission fails, one of the error con-  
dition flags will be set and the TXREQn bit will remain  
set, indicating that the message is still pending for  
transmission. If the message encountered an error  
condition during the transmission attempt, the TXERRn  
bit will be set and the error condition may cause an  
interrupt. If the message loses arbitration during the  
transmission attempt, the TXLARBn bit is set. No  
interrupt is generated to signal the loss of arbitration.  
© 2007 Microchip Technology Inc.  
DS70287A-page 223  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
20.5.7  
TRANSMIT INTERRUPTS  
20.6 Baud Rate Setting  
Transmit interrupts can be divided into 2 major groups,  
each including various conditions that generate  
interrupts:  
All nodes on any particular CAN bus must have the  
same nominal bit rate. In order to set the baud rate, the  
following parameters have to be initialized:  
• Transmit Interrupt:  
• Synchronization Jump Width  
• Baud Rate Prescaler  
At least one of the three transmit buffers is empty  
(not scheduled) and can be loaded to schedule a  
message for transmission. Reading the TXnIF  
flags will indicate which transmit buffer is available  
and caused the interrupt.  
• Phase Segments  
• Length Determination of Phase Segment 2  
• Sample Point  
• Propagation Segment bits  
• Transmit Error Interrupts:  
A transmission error interrupt will be indicated by  
the ERRIF flag. This flag shows that an error con-  
dition occurred. The source of the error can be  
determined by checking the error flags in the CAN  
Interrupt Flag register, CiINTF. The flags in this  
register are related to receive and transmit errors.  
20.6.1  
BIT TIMING  
All controllers on the CAN bus must have the same  
baud rate and bit length. However, different controllers  
are not required to have the same master oscillator  
clock. At different clock frequencies of the individual  
controllers, the baud rate has to be adjusted by  
adjusting the number of time quanta in each segment.  
- Transmitter Warning Interrupt:  
The TXWAR bit indicates that the transmit error  
counter has reached the CPU warning limit  
of 96.  
The nominal bit time can be thought of as being divided  
into separate non-overlapping time segments. These  
segments are shown in Figure 20-2.  
- Transmitter Error Passive:  
Synchronization Segment (Sync Seg)  
Propagation Time Segment (Prop Seg)  
Phase Segment 1 (Phase1 Seg)  
Phase Segment 2 (Phase2 Seg)  
The TXEP bit (CiINTF<12>) indicates that the  
transmit error counter has exceeded the error  
passive limit of 127 and the module has gone to  
error passive state.  
The time segments and also the nominal bit time are  
made up of integer units of time called time quanta or  
TQ. By definition, the nominal bit time has a minimum  
of 8 TQ and a maximum of 25 TQ. Also, by definition,  
the minimum nominal bit time is 1 μsec corresponding  
to a maximum bit rate of 1 MHz.  
- Bus Off:  
The TXBO bit (CiINTF<13>) indicates that the  
transmit error counter has exceeded 255 and  
the module has gone to the bus off state.  
Note:  
Both ECAN1 and ECAN2 can trigger a  
DMA data transfer. If C1TX, C1RX, C2TX  
or C2RX is selected as a DMA IRQ  
source, a DMA transfer occurs when the  
C1TXIF, C1RXIF, C2TXIF or C2RXIF bit  
gets set as a result of an ECAN1 or  
ECAN2 transmission or reception.  
FIGURE 20-2:  
ECAN™ MODULE BIT TIMING  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
Sync  
Sample Point  
TQ  
DS70287A-page 224  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Typically, the sampling of the bit should take place at  
about 60-70% through the bit time, depending on the  
system parameters.  
20.6.2  
PRESCALER SETTING  
There is a programmable prescaler with integral values  
ranging from 1 to 64, in addition to a fixed divide-by-2  
for clock generation. The time quantum (TQ) is a fixed  
unit of time derived from the oscillator period and is  
given by Equation 20-1.  
20.6.6  
SYNCHRONIZATION  
To compensate for phase shifts between the oscillator  
frequencies of the different bus stations, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time (Synchro-  
nous Segment). The circuit will then adjust the values  
of Phase1 Seg and Phase2 Seg. There are two  
mechanisms used to synchronize.  
Note:  
FCAN must not exceed 40 MHz. If  
CANCKS = 0, then FCY must not exceed  
20 MHz.  
EQUATION 20-1: TIME QUANTUM FOR  
CLOCK GENERATION  
TQ = 2 (BRP<5:0> + 1)/FCAN  
20.6.6.1  
Hard Synchronization  
Hard synchronization is only done whenever there is a  
‘recessive’ to ‘dominant’ edge during bus Idle, indicat-  
ing the start of a message. After hard synchronization,  
the bit time counters are restarted with the Sync Seg.  
Hard synchronization forces the edge which has  
caused the hard synchronization to lie within the  
synchronization segment of the restarted bit time. If a  
hard synchronization is done, there will not be a  
resynchronization within that bit time.  
20.6.3  
PROPAGATION SEGMENT  
This part of the bit time is used to compensate physical  
delay times within the network. These delay times con-  
sist of the signal propagation time on the bus line and  
the internal delay time of the nodes. The Prop Seg can  
be programmed from 1 TQ to 8 TQ by setting the  
PRSEG<2:0> bits (CiCFG2<2:0>).  
20.6.4  
PHASE SEGMENTS  
20.6.6.2  
Resynchronization  
The phase segments are used to optimally locate the  
sampling of the received bit within the transmitted bit  
time. The sampling point is between Phase1 Seg and  
Phase2 Seg. These segments are lengthened or short-  
ened by resynchronization. The end of the Phase1 Seg  
determines the sampling point within a bit period. The  
segment is programmable from 1 TQ to 8 TQ. Phase2  
Seg provides delay to the next transmitted data transi-  
tion. The segment is programmable from 1 TQ to 8 TQ,  
or it may be defined to be equal to the greater of  
Phase1 Seg or the information processing time (2 TQ).  
The Phase1 Seg is initialized by setting bits  
SEG1PH<2:0> (CiCFG2<5:3>) and Phase2 Seg is  
initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).  
As a result of resynchronization, Phase1 Seg may be  
lengthened or Phase2 Seg may be shortened. The  
amount of lengthening or shortening of the phase  
buffer segment has an upper boundary known as the  
synchronization jump width, and is specified by the  
SJW<1:0> bits (CiCFG1<7:6>). The value of the syn-  
chronization jump width will be added to Phase1 Seg or  
subtracted from Phase2 Seg. The resynchronization  
jump width is programmable between 1 TQ and 4 TQ.  
The following requirement must be fulfilled while setting  
the SJW<1:0> bits:  
Phase2 Seg > Synchronization Jump Width  
The following requirement must be fulfilled while setting  
the lengths of the phase segments:  
Note:  
In the register descriptions that follow, ‘i’ in  
the register identifier denotes the specific  
ECAN module (ECAN1 or ECAN2).  
Prop Seg + Phase1 Seg Phase2 Seg  
‘n’ in the register identifier denotes the  
buffer, filter or mask number.  
20.6.5  
SAMPLE POINT  
The sample point is the point of time at which the bus  
level is read and interpreted as the value of that respec-  
tive bit. The location is at the end of Phase1 Seg. If the  
bit timing is slow and contains many TQ, it is possible to  
specify multiple sampling of the bus line at the sample  
point. The level determined by the CAN bus then corre-  
sponds to the result from the majority decision of three  
values. The majority samples are taken at the sample  
point and twice before with a distance of TQ/2. The  
CAN module allows the user to choose between sam-  
pling three times at the same point or once at the same  
point, by setting or clearing the SAM bit (CiCFG2<6>).  
‘m’ in the register identifier denotes the  
word number within a particular CAN data  
field.  
© 2007 Microchip Technology Inc.  
DS70287A-page 225  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-1: CiCTRL1: ECAN CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
CSIDL  
R/W-0  
ABAT  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
CANCKS  
REQOP<2:0>  
bit 15  
R-1  
R-0  
R-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
WIN  
OPMODE<2:0>  
CANCAP  
bit 7  
Legend:  
bit 0  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ABAT: Abort All Pending Transmissions bit  
Signal all transmit buffers to abort transmission. Module will clear this bit when all transmissions  
are aborted  
bit 11  
CANCKS: CAN Master Clock Select bit  
1= CAN FCAN clock is FCY  
0= CAN FCAN clock is FOSC  
bit 10-8  
REQOP<2:0>: Request Operation Mode bits  
000= Set Normal Operation mode  
001= Set Disable mode  
010= Set Loopback mode  
011= Set Listen Only Mode  
100= Set Configuration mode  
101= Reserved – do not use  
110= Reserved – do not use  
111= Set Listen All Messages mode  
bit 7-5  
OPMODE<2:0>: Operation Mode bits  
000= Module is in Normal Operation mode  
001= Module is in Disable mode  
010= Module is in Loopback mode  
011= Module is in Listen Only mode  
100= Module is in Configuration mode  
101= Reserved  
110= Reserved  
111= Module is in Listen All Messages mode  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CANCAP: CAN Message Receive Timer Capture Event Enable bit  
1= Enable input capture based on CAN message receive  
0= Disable CAN capture  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
WIN: SFR Map Window Select bit  
1= Use filter window  
0= Use buffer window  
DS70287A-page 226  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-2: CiCTRL2: ECAN CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DNCNT<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DNCNT<4:0>: DeviceNet™ Filter Bit Number bits  
10010-11111= Invalid selection  
10001= Compare up to data byte 3, bit 6 with EID<17>  
....  
00001= Compare up to data byte 1, bit 7 with EID<0>  
00000= Do not compare data bytes  
© 2007 Microchip Technology Inc.  
DS70287A-page 227  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-3: CiVEC: ECAN INTERRUPT CODE REGISTER  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FILHIT<4:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-1  
R-0  
R-0  
R-0  
ICODE<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Number bits  
10000-11111= Reserved  
01111= Filter 15  
....  
00001= Filter 1  
00000= Filter 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
ICODE<6:0>: Interrupt Flag Code bits  
1000101-1111111= Reserved  
1000100= FIFO almost full interrupt  
1000011= Receiver overflow interrupt  
1000010= Wake-up interrupt  
1000001= Error interrupt  
1000000= No interrupt  
0010000-0111111= Reserved  
0001111= RB15 buffer Interrupt  
....  
0001001= RB9 buffer interrupt  
0001000= RB8 buffer interrupt  
0000111= TRB7 buffer interrupt  
0000110= TRB6 buffer interrupt  
0000101= TRB5 buffer interrupt  
0000100= TRB4 buffer interrupt  
0000011= TRB3 buffer interrupt  
0000010= TRB2 buffer interrupt  
0000001= TRB1 buffer interrupt  
0000000= TRB0 Buffer interrupt  
DS70287A-page 228  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-4: CiFCTRL: ECAN FIFO CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMABS<2:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FSA<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
DMABS<2:0>: DMA Buffer Size bits  
111= Reserved  
110= 32 buffers in DMA RAM  
101= 24 buffers in DMA RAM  
100= 16 buffers in DMA RAM  
011= 12 buffers in DMA RAM  
010= 8 buffers in DMA RAM  
001= 6 buffers in DMA RAM  
000= 4 buffers in DMA RAM  
bit 12-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FSA<4:0>: FIFO Area Starts with Buffer bits  
11111= RB31 buffer  
11110= RB30 buffer  
....  
00001= TRB1 buffer  
00000= TRB0 buffer  
© 2007 Microchip Technology Inc.  
DS70287A-page 229  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-5: CiFIFO: ECAN FIFO STATUS REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FBP<5:0>  
R-0  
R-0  
R-0  
R-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R-0  
FNRB<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FBP<5:0>: FIFO Write Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
....  
000001= TRB1 buffer  
000000= TRB0 buffer  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FNRB<5:0>: FIFO Next Read Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
....  
000001= TRB1 buffer  
000000= TRB0 buffer  
DS70287A-page 230  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-6: CiINTF: ECAN INTERRUPT FLAG REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TXBO  
TXBP  
RXBP  
TXWAR  
RXWAR  
EWARN  
bit 15  
bit 8  
R/C-0  
IVRIF  
R/C-0  
R/C-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
RBIF  
R/C-0  
TBIF  
WAKIF  
ERRIF  
FIFOIF  
RBOVIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
TXBO: Transmitter in Error State Bus Off bit  
TXBP: Transmitter in Error State Bus Passive bit  
RXBP: Receiver in Error State Bus Passive bit  
TXWAR: Transmitter in Error State Warning bit  
RXWAR: Receiver in Error State Warning bit  
EWARN: Transmitter or Receiver in Error State Warning bit  
IVRIF: Invalid Message Received Interrupt Flag bit  
WAKIF: Bus Wake-up Activity Interrupt Flag bit  
ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)  
Unimplemented: Read as ‘0’  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
FIFOIF: FIFO Almost Full Interrupt Flag bit  
RBOVIF: RX Buffer Overflow Interrupt Flag bit  
RBIF: RX Buffer Interrupt Flag bit  
bit 2  
bit 1  
bit 0  
TBIF: TX Buffer Interrupt Flag bit  
© 2007 Microchip Technology Inc.  
DS70287A-page 231  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-7: CiINTE: ECAN INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IVRIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
TBIE  
WAKIE  
FIFOIE  
RBOVIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
IVRIE: Invalid Message Received Interrupt Enable bit  
WAKIE: Bus Wake-up Activity Interrupt Flag bit  
ERRIE: Error Interrupt Enable bit  
Unimplemented: Read as ‘0’  
FIFOIE: FIFO Almost Full Interrupt Enable bit  
RBOVIE: RX Buffer Overflow Interrupt Enable bit  
RBIE: RX Buffer Interrupt Enable bit  
TBIE: TX Buffer Interrupt Enable bit  
DS70287A-page 232  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-8: CiEC: ECAN TRANSMIT/RECEIVE ERROR COUNT REGISTER  
R-0  
bit 15  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TERRCNT<7:0>  
bit 8  
bit 0  
R-0  
R-0  
RERRCNT<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
TERRCNT<7:0>: Transmit Error Count bits  
RERRCNT<7:0>: Receive Error Count bits  
© 2007 Microchip Technology Inc.  
DS70287A-page 233  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-9: CiCFG1: ECAN BAUD RATE CONFIGURATION REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SJW<1:0>  
BRP<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SJW<1:0>: Synchronization Jump Width bits  
11= Length is 4 x TQ  
10= Length is 3 x TQ  
01= Length is 2 x TQ  
00= Length is 1 x TQ  
bit 5-0  
BRP<5:0>: Baud Rate Prescaler bits  
11 1111= TQ = 2 x 64 x 1/FCAN  
00 0010= TA = 2 x 3 x 1/FCAN  
00 0001= TA = 2 x 2 x 1/FCAN  
00 0000= TQ = 2 x 1 x 1/FCAN  
DS70287A-page 234  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-10: CiCFG2: ECAN BAUD RATE CONFIGURATION REGISTER 2  
U-0  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
WAKFIL  
SEG2PH<2:0>  
bit 15  
R/W-x  
R/W-x  
SAM  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEG2PHTS  
SEG1PH<2:0>  
PRSEG<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
WAKFIL: Select CAN bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 13-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SEG2PH<2:0>: Phase Buffer Segment 2 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN bus Line bit  
1= Bus line is sampled three times at the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
bit 2-0  
SEG1PH<2:0>: Phase Buffer Segment 1 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
PRSEG<2:0>: Propagation Time Segment bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
© 2007 Microchip Technology Inc.  
DS70287A-page 235  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-11: CiFEN1: ECAN ACCEPTANCE FILTER ENABLE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLTEN15  
FLTEN14  
FLTEN13  
FLTEN12  
FLTEN11  
FLTEN10  
FLTEN9  
FLTEN8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN7  
FLTEN6  
FLTEN5  
FLTEN4  
FLTEN3  
FLTEN2  
FLTEN1  
FLTEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
FLTENn: Enable Filter n to Accept Messages bits  
1= Enable Filter n  
0= Disable Filter n  
REGISTER 20-12: CiBUFPNT1: ECAN FILTER 0-3 BUFFER POINTER REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F3BP<3:0>  
F2BP<3:0>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0 R/W-0  
F1BP<3:0>  
R/W-0  
R/W-0  
R/W-0 R/W-0  
F0BP<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F3BP<3:0>: RX Buffer Written when Filter 3 Hits bits  
F2BP<3:0>: RX Buffer Written when Filter 2 Hits bits  
F1BP<3:0>: RX Buffer Written when Filter 1 Hits bits  
F0BP<3:0>: RX Buffer Written when Filter 0 Hits bits  
bit 3-0  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
....  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
DS70287A-page 236  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-13: CiBUFPNT2: ECAN FILTER 4-7 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
F7BP<3:0>  
F6BP<3:0>  
R/W-0  
F5BP<3:0>  
R/W-0  
R/W-0  
F4BP<3:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits  
F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits  
F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits  
F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits  
bit 3-0  
REGISTER 20-14: CiBUFPNT3: ECAN FILTER 8-11 BUFFER POINTER REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11BP<3:0>  
F10BP<3:0>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0 R/W-0  
F9BP<3:0>  
R/W-0  
R/W-0  
R/W-0 R/W-0  
F8BP<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F11BP<3:0>: RX Buffer Written when Filter 11 Hits bits  
F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits  
F9BP<3:0>: RX Buffer Written when Filter 9 Hits bits  
F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits  
bit 3-0  
© 2007 Microchip Technology Inc.  
DS70287A-page 237  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-15: CiBUFPNT4: ECAN FILTER 12-15 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
F15BP<3:0>  
F14BP<3:0>  
R/W-0  
F13BP<3:0>  
R/W-0  
R/W-0  
F12BP<3:0>  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
bit 7-4  
F15BP<3:0>: RX Buffer Written when Filter 15 Hits bits  
F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits  
F13BP<3:0>: RX Buffer Written when Filter 13 Hits bits  
F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits  
bit 3-0  
DS70287A-page 238  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-16: CiRXFnSID: ECAN ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1, ..., 15)  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
EXIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Message address bit SIDx must be ‘1’ to match filter  
0= Message address bit SIDx must be ‘0’ to match filter  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDE: Extended Identifier Enable bit  
If MIDE = 1then:  
1= Match only messages with extended identifier addresses  
0= Match only messages with standard identifier addresses  
If MIDE = 0then:  
Ignore EXIDE bit.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
REGISTER 20-17: CiRXFnEID: ECAN ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 15  
bit 8  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
© 2007 Microchip Technology Inc.  
DS70287A-page 239  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-18: CiFMSKSEL1: ECAN FILTER 7-0 MASK SELECTION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7MSK<1:0>  
F6MSK<1:0>  
F5MSK<1:0>  
F4MSK<1:0>  
bit 15  
bit 8  
R/W-0 R/W-0  
F3MSK<1:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F2MSK<1:0>  
F1MSK<1:0>  
F0MSK<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-12  
bit 11-10  
bit 9-8  
F7MSK<1:0>: Mask Source for Filter 7 bit  
F6MSK<1:0>: Mask Source for Filter 6 bit  
F5MSK<1:0>: Mask Source for Filter 5 bit  
F4MSK<1:0>: Mask Source for Filter 4 bit  
F3MSK<1:0>: Mask Source for Filter 3 bit  
F2MSK<1:0>: Mask Source for Filter 2 bit  
F1MSK<1:0>: Mask Source for Filter 1 bit  
F0MSK<1:0>: Mask Source for Filter 0 bit  
11= No mask  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
DS70287A-page 240  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-19: CiRXMnSID: ECAN ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
MIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Include bit SIDx in filter comparison  
0= Bit SIDx is don’t care in filter comparison  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
MIDE: Identifier Receive Mode bit  
1= Match only message types (standard or extended address) that correspond to EXIDE bit in filter  
0= Match either standard or extended address message if filters match  
(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
REGISTER 20-20: CiRXMnEID: ECAN ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 15  
bit 8  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
© 2007 Microchip Technology Inc.  
DS70287A-page 241  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-21: CiRXFUL1: ECAN RECEIVE BUFFER FULL REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL15  
RXFUL14  
RXFUL13  
RXFUL12  
RXFUL11  
RXFUL10  
RXFUL9  
RXFUL8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL7  
RXFUL6  
RXFUL5  
RXFUL4  
RXFUL3  
RXFUL2  
RXFUL1  
RXFUL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<15:0>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (clear by application software)  
REGISTER 20-22: CiRXFUL2: ECAN RECEIVE BUFFER FULL REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL31  
RXFUL30  
RXFUL29  
RXFUL28  
RXFUL27  
RXFUL26  
RXFUL25  
RXFUL24  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL23  
RXFUL22  
RXFUL21  
RXFUL20  
RXFUL19  
RXFUL18  
RXFUL17  
RXFUL16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<31:16>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (clear by application software)  
DS70287A-page 242  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-23: CiRXOVF1: ECAN RECEIVE BUFFER OVERFLOW REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF15  
RXOVF14  
RXOVF13  
RXOVF12  
RXOVF11  
RXOVF10  
RXOVF9  
RXOVF8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF7  
RXOVF6  
RXOVF5  
RXOVF4  
RXOVF3  
RXOVF2  
RXOVF1  
RXOVF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF<15:0>: Receive Buffer n Overflow bits  
1= Module pointed a write to a full buffer (set by module)  
0= Overflow is cleared (clear by application software)  
REGISTER 20-24: CiRXOVF2: ECAN RECEIVE BUFFER OVERFLOW REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF31  
RXOVF30  
RXOVF29  
RXOVF28  
RXOVF27  
RXOVF26  
RXOVF25  
RXOVF24  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF23  
RXOVF22  
RXOVF21  
RXOVF20  
RXOVF19  
RXOVF18  
RXOVF17  
RXOVF16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF<31:16>: Receive Buffer n Overflow bits  
1= Module pointed a write to a full buffer (set by module)  
0= Overflow is cleared (clear by application software)  
© 2007 Microchip Technology Inc.  
DS70287A-page 243  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-25: CiTRmnCON: ECAN TX/RX BUFFER m CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENn  
TXABTn  
TXLARBn  
TXERRn  
TXREQn  
RTRENn  
TXnPRI<1:0>  
bit 15  
bit 8  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENm  
TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm  
RTRENm  
TXmPRI<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
See Definition for Bits 7-0, Controls Buffer n  
TXENm: TX/RX Buffer Selection bit  
1= Buffer TRBn is a transmit buffer  
0= Buffer TRBn is a receive buffer  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
TXABTm: Message Aborted bit(1)  
1= Message was aborted  
0= Message completed transmission successfully  
TXLARBm: Message Lost Arbitration bit(1)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERRm: Error Detected During Transmission bit(1)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQm: Message Send Request bit  
Setting this bit to ‘1’ requests sending a message. The bit will automatically clear when the message  
is successfully sent. Clearing the bit to ‘0’ while set will request a message abort.  
RTRENm: Auto-Remote Transmit Enable bit  
1= When a remote transmit is received, TXREQ will be set  
0= When a remote transmit is received, TXREQ will be unaffected  
TXmPRI<1:0>: Message Transmission Priority bits  
11= Highest message priority  
10= High intermediate message priority  
01= Low intermediate message priority  
00= Lowest message priority  
Note 1: This bit is cleared when TXREQ is set.  
DS70287A-page 244  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Note:  
The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.  
REGISTER 20-26: CiTRBnSID: ECAN BUFFER n STANDARD IDENTIFIER (n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
bit 15  
bit 8  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
IDE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SID<10:0>: Standard Identifier bits  
SRR: Substitute Remote Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 0  
IDE: Extended Identifier bit  
1= Message will transmit extended identifier  
0= Message will transmit standard identifier  
REGISTER 20-27: CiTRBnEID: ECAN BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
R/W-x  
EID15  
R/W-x  
EID14  
bit 15  
bit 8  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
R/W-x  
EID7  
R/W-x  
EID6  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
EID<17:6>: Extended Identifier bits  
© 2007 Microchip Technology Inc.  
DS70287A-page 245  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-28: CiTRBnDLC: ECAN BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31)  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
R/W-x  
RTR  
R/W-x  
RB1  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
EID<5:0>: Extended Identifier bits  
RTR: Remote Transmission Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 8  
RB1: Reserved Bit 1  
User must set this bit to ‘0’ per CAN protocol.  
Unimplemented: Read as ‘0’  
bit 7-5  
bit 4  
RB0: Reserved Bit 0  
User must set this bit to ‘0’ per CAN protocol.  
DLC<3:0>: Data Length Code bits  
bit 3-0  
REGISTER 20-29: CiTRBnDm: ECAN BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)(1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
TRBnDm7  
TRBnDm6  
TRBnDm5  
TRBnDm4 TRBnDm3  
TRBnDm2  
TRBnDm1  
TRBnDm0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
TRnDm<7:0>: Data Field Buffer ‘n’ Byte ‘m’ bits  
Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.  
DS70287A-page 246  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 20-30: CiTRBnSTAT: ECAN RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers)  
Encodes number of filter that resulted in writing this buffer.  
Unimplemented: Read as ‘0’  
bit 7-0  
© 2007 Microchip Technology Inc.  
DS70287A-page 247  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 248  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
voltage reference inputs may be shared with other ana-  
21.0 10-BIT/12-BIT  
log input pins. The actual number of analog input pins  
and external voltage reference input configuration will  
depend on the specific device. Refer to the device data  
sheet for further details.  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
Note:  
This data sheet summarizes the features  
A block diagram of the ADC is shown in Figure 21-1.  
of  
this  
group  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
21.2 ADC Initialization  
The following configuration steps should be performed.  
1. Configure the ADC module:  
a) Select port pins as analog inputs  
(ADxPCFGH<15:0> or ADxPCFGL<15:0>)  
b) Select voltage reference source to match  
expected range on analog inputs  
(ADxCON2<15:13>)  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices have up to 32 ADC input channels.  
These devices also have up to 2 ADC modules (ADCx,  
where ‘x’ = 1 or 2), each with its own set of  
Special Function Registers.  
c) Select the analog conversion clock to  
match desired data rate with processor  
clock (ADxCON3<5:0>)  
d) Determine how many S/H channels will be  
used  
(ADxCON2<9:8>  
and  
The AD12B bit (ADxCON1<10>) allows each of the  
ADC modules to be configured by the user as either a  
10-bit, 4-sample/hold ADC (default configuration) or a  
12-bit, 1-sample/hold ADC.  
ADxPCFGH<15:0> or ADxPCFGL<15:0>)  
e) Select the appropriate sample/conversion  
sequence  
(ADxCON1<7:5>  
and  
ADxCON3<12:8>)  
Note:  
The ADC module needs to be disabled  
before modifying the AD12B bit.  
f) Select how conversion results are  
presented in the buffer (ADxCON1<9:8>)  
g) Turn on ADC module (ADxCON1<15>)  
2. Configure ADC interrupt (if required):  
a) Clear the ADxIF bit  
21.1 Key Features  
The 10-bit ADC configuration has the following key  
features:  
b) Select ADC interrupt priority  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 1.1 Msps  
• Up to 32 analog input pins  
21.3 ADC and DMA  
If more than one conversion result needs to be buffered  
before triggering an interrupt, DMA data transfers can  
be used. Both ADC1 and ADC2 can trigger a DMA data  
transfer. If ADC1 or ADC2 is selected as the DMA IRQ  
source, a DMA transfer occurs when the AD1IF or  
AD2IF bit gets set as a result of an ADC1 or ADC2  
sample conversion sequence.  
• External voltage reference input pins  
• Simultaneous sampling of up to four analog input  
pins  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• Selectable Buffer Fill modes  
The SMPI<3:0> bits (ADxCON2<5:2>) are used to  
select how often the DMA RAM buffer pointer is  
incremented.  
• Four result alignment options (signed/unsigned,  
fractional/integer)  
• Operation during CPU Sleep and Idle modes  
The ADDMABM bit (ADxCON1<12>) determines how  
the conversion results are filled in the DMA RAM buffer  
area being used for ADC. If this bit is set, DMA buffers  
are written in the order of conversion. The module will  
provide an address to the DMA channel that is the  
same as the address used for the non-DMA  
stand-alone buffer. If the ADDMABM bit is cleared, then  
DMA buffers are written in Scatter/Gather mode. The  
module will provide a scatter/gather address to the  
DMA channel, based on the index of the analog input  
and the size of the DMA buffer.  
The 12-bit ADC configuration supports all the above  
features, except:  
• In the 12-bit configuration, conversion speeds of  
up to 500 Ksps are supported  
• There is only 1 sample/hold amplifier in the 12-bit  
configuration, so simultaneous sampling of  
multiple channels is not supported.  
Depending on the particular device pinout, the ADC  
can have up to 32 analog input pins, designated AN0  
through AN31. In addition, there are two analog input  
pins for external voltage reference connections. These  
© 2007 Microchip Technology Inc.  
DS70287A-page 249  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 21-1:  
ADC1 MODULE BLOCK DIAGRAM  
AVDD  
AVSS  
VREF+(1)  
VREF-(1)  
AN0  
AN3  
AN0  
AN1  
AN2  
+
CH1(2)  
CH2(2)  
CH3(2)  
S/H  
ADC1  
AN6  
AN9  
VREF-  
-
Conversion Logic  
Conversion  
Result  
AN1  
AN4  
+
S/H  
AN7  
AN10  
VREF-  
-
16-bit  
ADC Output  
Buffer  
AN2  
AN5  
+
S/H  
AN8  
AN11  
VREF-  
CH1,CH2,  
CH3,CH0  
-
Sample/Sequence  
Control  
Sample  
00000  
00001  
00010  
00011  
Input  
Switches  
Input MUX  
Control  
AN3  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
11110  
11111  
AN30  
AN31  
+
CH0  
VREF-  
AN1  
S/H  
-
Note 1: VREF+, VREF- inputs may be multiplexed with other analog inputs. See device data sheet for details.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
DS70287A-page 250  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 21-2:  
ADC2 MODULE BLOCK DIAGRAM(1)  
AVDD  
AVSS  
VREF+(2)  
VREF-(2)  
AN0  
AN3  
AN0  
AN1  
AN2  
+
CH1(3)  
CH2(3)  
CH3(3)  
S/H  
ADC2  
AN6  
AN9  
VREF-  
-
Conversion Logic  
Conversion  
Result  
AN1  
AN4  
+
S/H  
AN7  
AN10  
VREF-  
-
16-bit  
ADC Output  
Buffer  
AN2  
AN5  
+
S/H  
AN8  
AN11  
VREF-  
CH1,CH2,  
CH3,CH0  
-
Sample/Sequence  
Control  
Sample  
00000  
00001  
00010  
00011  
Input  
Switches  
Input MUX  
Control  
AN3  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
AN10  
AN11  
11110  
11111  
AN14  
AN15  
+
CH0  
VREF-  
AN1  
S/H  
-
Note 1: On devices with two ADC modules, AN0-AN15 can be read by either ADC1, ADC2 or both ADCs.  
2: VREF+, VREF- inputs may be multiplexed with other analog inputs. See device data sheet for details.  
3: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
© 2007 Microchip Technology Inc.  
DS70287A-page 251  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
EQUATION 21-1: ADC CONVERSION CLOCK PERIOD  
TCY(ADCS + 1)  
TAD  
TAD =  
– 1  
ADCS =  
TCY  
FIGURE 21-3:  
ADC TRANSFER FUNCTION (10-BIT EXAMPLE)  
Output Code  
11 1111 1111 (= 1023)  
11 1111 1110 (= 1022)  
10 0000 0011 (= 515)  
10 0000 0010 (= 514)  
10 0000 0001 (= 513)  
10 0000 0000 (= 512)  
01 1111 1111 (= 511)  
01 1111 1110 (= 510)  
01 1111 1101 (= 509)  
00 0000 0001 (= 1)  
00 0000 0000 (= 0)  
VREFL  
VREFH  
VREFH – VREFL  
1024  
512 * (VREFH – VREFL)  
1024  
1023 * (VREFH – VREFL)  
1024  
VREFL +  
VREFL +  
VREFL +  
(VINH – VINL)  
FIGURE 21-4:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
ADxCON3<15>  
ADC Internal  
RC Clock  
0
1
TAD  
ADxCON3<5:0>  
6
ADC Conversion  
Clock Multiplier  
TCY  
(1)  
TOSC  
X2  
1, 2, 3, 4, 5,..., 64  
Note:  
Refer to Figure 8-2 for the derivation of FOSC when the PLL is enabled. If the PLL is not used, FOSC is equal to  
the clock source frequency. TOSC = 1/FOSC.  
DS70287A-page 252  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2)  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADSIDL  
ADDMABM  
AD12B  
FORM<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
ASAM  
R/W-0  
HC,HS  
R/C-0  
HC, HS  
SSRC<2:0>  
SIMSAM  
SAMP  
DONE  
bit 7  
bit 0  
Legend:  
HC = Cleared by hardware  
W = Writable bit  
HS = Set by hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
ADON: ADC Operating Mode bit  
1= ADC module is operating  
0= ADC is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ADDMABM: DMA Buffer Build Mode bit  
1= DMA buffers are written in the order of conversion. The module will provide an address to the DMA  
channel that is the same as the address used for the non-DMA stand-alone buffer.  
0= DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address  
to the DMA channel, based on the index of the analog input and the size of the DMA buffer.  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
AD12B: 10-bit or 12-bit Operation Mode bit  
1= 12-bit, 1-channel ADC operation  
0= 10-bit, 4-channel ADC operation  
bit 9-8  
FORM<1:0>: Data Output Format bits  
For 10-bit operation:  
11= Signed fractional (DOUT = sddd dddd dd00 0000, where s= .NOT.d<9>)  
10= Fractional (DOUT = dddd dddd dd00 0000)  
01= Signed integer (DOUT = ssss sssd dddd dddd, where s= .NOT.d<9>)  
00= Integer (DOUT = 0000 00dd dddd dddd)  
For 12-bit operation:  
11= Signed fractional (DOUT = sddd dddd dddd 0000, where s= .NOT.d<11>)  
10= Fractional (DOUT = dddd dddd dddd 0000)  
01= Signed Integer (DOUT = ssss sddd dddd dddd, where s= .NOT.d<11>)  
00= Integer (DOUT = 0000 dddd dddd dddd)  
bit 7-5  
SSRC<2:0>: Sample Clock Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
101= Reserved  
100= Reserved  
011= MPWM interval ends sampling and starts conversion  
010= GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion  
001= Active transition on INTx pin ends sampling and starts conversion  
000= Clearing sample bit ends sampling and starts conversion  
bit 4  
Unimplemented: Read as ‘0’  
© 2007 Microchip Technology Inc.  
DS70287A-page 253  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)(where x = 1 or 2)  
bit 3  
SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01or 1x)  
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’  
1= Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or  
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)  
0= Samples multiple channels individually in sequence  
bit 2  
bit 1  
ASAM: ADC Sample Auto-Start bit  
1= Sampling begins immediately after last conversion. SAMP bit is auto-set.  
0= Sampling begins when SAMP bit is set  
SAMP: ADC Sample Enable bit  
1= ADC sample/hold amplifiers are sampling  
0= ADC sample/hold amplifiers are holding  
If ASAM = 0, software may write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.  
If SSRC = 000, software may write ‘0’ to end sampling and start conversion. If SSRC 000,  
automatically cleared by hardware to end sampling and start conversion.  
bit 0  
DONE: ADC Conversion Status bit  
1= ADC conversion cycle is completed.  
0= ADC conversion not started or in progress  
Automatically set by hardware when ADC conversion is complete. Software may write ‘0’ to clear  
DONE status (software not allowed to write ‘1’). Clearing this bit will NOT affect any operation in  
progress. Automatically cleared by hardware at start of a new conversion.  
DS70287A-page 254  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
SMPI<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Converter Voltage Reference Configuration bits  
ADREF+  
ADREF-  
000  
001  
010  
011  
1xx  
AVDD  
External VREF+  
AVDD  
Avss  
Avss  
External VREF-  
External VREF-  
Avss  
External VREF+  
AVDD  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ during Sample A bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
CHPS<1:0>: Selects Channels Utilized bits  
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’  
1x= Converts CH0, CH1, CH2 and CH3  
01= Converts CH0 and CH1  
00= Converts CH0  
BUFS: Buffer Fill Status bit (only valid when BUFM = 1)  
1= ADC is currently filling second half of buffer, user should access data in the first half  
0= ADC is currently filling first half of buffer, user should access data in the second half  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion  
operations per interrupt.  
1111= Increments the DMA address or generates interrupt after completion of every 16th  
sample/conversion operation  
1110= Increments the DMA address or generates interrupt after completion of every 15th  
sample/conversion operation  
0001= Increments the DMA address or generates interrupt after completion of every 2nd  
sample/conversion operation  
0000= Increments the DMA address or generates interrupt after completion of every  
sample/conversion operation  
bit 1  
bit 0  
BUFM: Buffer Fill Mode Select bit  
1= Starts filling first half of buffer on first interrupt and the second half of buffer on next interrupt  
0= Always starts filling buffer from the beginning  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
© 2007 Microchip Technology Inc.  
DS70287A-page 255  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-3: ADxCON3: ADCx CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
SAMC<4:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADCS<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: ADC Conversion Clock Source bit  
1= ADC internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto Sample Time bits  
11111= 31 TAD  
00001= 1 TAD  
00000= 0 TAD  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ADCS<5:0>: ADC Conversion Clock Select bits  
111111= TCY ·(ADCS<7:0> + 1) = 64 ·TCY = TAD  
000010= TCY ·(ADCS<7:0> + 1) = 3 ·TCY = TAD  
000001= TCY ·(ADCS<7:0> + 1) = 2 ·TCY = TAD  
000000= TCY ·(ADCS<7:0> + 1) = 1 ·TCY = TAD  
DS70287A-page 256  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-4: ADxCON4: ADCx CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
DMABL<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits  
111= Allocates 128 words of buffer to each analog input  
110= Allocates 64 words of buffer to each analog input  
101= Allocates 32 words of buffer to each analog input  
100= Allocates 16 words of buffer to each analog input  
011= Allocates 8 words of buffer to each analog input  
010= Allocates 4 words of buffer to each analog input  
001= Allocates 2 words of buffer to each analog input  
000= Allocates 1 word of buffer to each analog input  
© 2007 Microchip Technology Inc.  
DS70287A-page 257  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NB<1:0>  
CH123SB  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NA<1:0>  
CH123SA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits  
When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 8  
CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit  
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
bit 7-3  
bit 2-1  
Unimplemented: Read as ‘0’  
CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits  
When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 0  
CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit  
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
DS70287A-page 258  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CH0NB  
CH0SB<4:0>  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
CH0NA  
CH0SA<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for Sample B bit  
Same definition as bit 7.  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits  
Same definition as bit<4:0>.  
bit 7  
CH0NA: Channel 0 Negative Input Select for Sample A bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 6-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits  
11111= Channel 0 positive input is AN31  
11110= Channel 0 positive input is AN30  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
© 2007 Microchip Technology Inc.  
DS70287A-page 259  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS31  
CSS30  
CSS29  
CSS28  
CSS27  
CSS26  
CSS25  
CSS24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS23  
CSS22  
CSS21  
CSS20  
CSS19  
CSS18  
CSS17  
CSS16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CSS<31:16>: ADC Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 32 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected  
for scan without a corresponding input on device will convert ADREF-.  
REGISTER 21-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSS11  
R/W-0  
R/W-0  
CSS9  
R/W-0  
CSS8  
CSS15  
CSS14  
CSS13  
CSS12  
CSS10  
bit 15  
bit 8  
R/W-0  
CSS7  
R/W-0  
CSS6  
R/W-0  
CSS5  
R/W-0  
CSS4  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CSS<15:0>: ADC Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected  
for scan without a corresponding input on device will convert ADREF-.  
DS70287A-page 260  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
REGISTER 21-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG31  
PCFG30  
PCFG29  
PCFG28  
PCFG27  
PCFG26  
PCFG25  
PCFG24  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG23  
PCFG22  
PCFG21  
PCFG20  
PCFG19  
PCFG18  
PCFG17  
PCFG16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<31:16>: ADC Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVSS  
0= Port pin in Analog mode, port read input disabled, ADC samples pin voltage  
Note 1: On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on  
ports without a corresponding input on device.  
2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 port Configuration register exists.  
REGISTER 21-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG15  
PCFG14  
PCFG13  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<15:0>: ADC Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVSS  
0= Port pin in Analog mode, port read input disabled, ADC samples pin voltage  
Note 1: On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on  
ports without a corresponding input on device.  
2: On devices with two analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the  
configuration of port pins multiplexed with AN0-AN15.  
© 2007 Microchip Technology Inc.  
DS70287A-page 261  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 262  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
22.1 Configuration Bits  
22.0 SPECIAL FEATURES  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select vari-  
ous device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
Note:  
This data sheet summarizes the features  
of this group  
of dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Refer to the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F family reference  
manual chapters.  
The device Configuration register map is shown in  
Table 22-1.  
The individual Configuration bit descriptions for the  
FBS, FSS, FGS, FOSCSEL, FOSC, FWDT, FPOR and  
FICD Configuration registers are shown in Table 22-2.  
Note that address 0xF80000 is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (0x800000-0xFFFFFF) which can only be  
accessed using table reads and table writes.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices include several features intended to maximize  
application flexibility and reliability, and minimize cost  
through elimination of external components. These are:  
The upper byte of all device Configuration registers  
should always be ‘1111 1111’. This makes them  
appear to be NOPinstructions in the remote event that  
their locations are ever executed by accident. Since  
Configuration bits are not implemented in the  
corresponding locations, writing ‘1’s to these locations  
has no effect on device operation.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
TABLE 22-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
RBS<1:0>  
RSS<1:0>  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0xF80000 FBS  
BSS<2:0>  
SSS<2:0>  
GSS1  
BWRP  
SWRP  
0xF80002 FSS  
0xF80004 FGS  
GSS0 GWRP  
FNOSC<2:0>  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E RESERVED3  
0xF80010 FUID0  
0xF80012 FUID1  
0xF80014 FUID2  
0xF80016 FUID3  
IESO  
FCKSM<1:0>  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
FWDTEN WINDIS  
WDTPRE  
PWMPIN  
HPOL  
LPOL  
FPWRT<2:0>  
Reserved(1)  
User Unit ID Byte 0  
User Unit ID Byte 1  
User Unit ID Byte 2  
User Unit ID Byte 3  
Note 1: These reserved bits read as ‘1’ and must be programmed as ‘1’.  
2: Unimplemented bits are read as ‘0’.  
© 2007 Microchip Technology Inc.  
DS70287A-page 263  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 22-2: DSPIC33F CONFIGURATION BITS DESCRIPTION  
Bit Field  
Register  
Description  
BWRP  
FBS  
Boot Segment Program Flash Write Protection  
1= Boot segment may be written  
0= Boot segment is write-protected  
BSS<2:0>  
FBS  
Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 1K IW less VS  
110= Standard security; boot program Flash segment starts at End of  
VS, ends at 0007FEh  
010= High security; boot program Flash segment starts at End of VS,  
ends at 0007FEh  
Boot space is 4K IW less VS  
101= Standard security; boot program Flash segment starts at End of  
VS, ends at 001FFEh  
001= High security; boot program Flash segment starts at End of VS,  
ends at 001FFEh  
Boot space is 8K IW less VS  
100= Standard security; boot program Flash segment starts at End of  
VS, ends at 003FFEh  
000= High security; boot program Flash segment starts at End of VS,  
ends at 003FFEh  
RBS<1:0>  
SWRP  
FBS  
FSS  
Boot Segment RAM Code Protection  
10= No Boot RAM defined  
10= Boot RAM is 128 Bytes  
01= Boot RAM is 256 Bytes  
00= Boot RAM is 1024 Bytes  
Secure Segment Program Flash Write Protection  
1= Secure segment may be written  
0= Secure segment is write-protected.  
DS70287A-page 264  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 22-2: DSPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
SSS<2:0>  
FSS  
Secure Segment Program Flash Code Protection Size  
(FOR 128K and 256K DEVICES)  
X11= No Secure program Flash segment  
Secure space is 8K IW less BS  
110= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x003FFE  
010= High security; secure program Flash segment starts at End of  
BS, ends at 0x003FFE  
Secure space is 16K IW less BS  
101= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x007FFE  
001= High security; secure program Flash segment starts at End of  
BS, ends at 0x007FFE  
Secure space is 32K IW less BS  
100= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x00FFFE  
000= High security; secure program Flash segment starts at End of  
BS, ends at 0x00FFFE  
(FOR 64K DEVICES)  
X11= No Secure program Flash segment  
Secure space is 4K IW less BS  
110= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x001FFE  
010= High security; secure program Flash segment starts at End of  
BS, ends at 0x001FFE  
Secure space is 8K IW less BS  
101= Standard security; secure program Flash segment starts at End  
of BS, ends at 0x003FFE  
001= High security; secure program Flash segment starts at End of  
BS, ends at 0x003FFE  
Secure space is 16K IW less BS  
100= Standard security; secure program Flash segment starts at End  
of BS, ends at 007FFEh  
000= High security; secure program Flash segment starts at End of  
BS, ends at 0x007FFE  
RSS<1:0>  
GSS<1:0>  
FSS  
FGS  
Secure Segment RAM Code Protection  
10= No Secure RAM defined  
10= Secure RAM is 256 Bytes less BS RAM  
01= Secure RAM is 2048 Bytes less BS RAM  
00= Secure RAM is 4096 Bytes less BS RAM  
General Segment Code-Protect bit  
11= User program memory is not code-protected  
10= Standard security; general program Flash segment starts at End  
of SS, ends at EOM  
0x= High security; general program Flash segment starts at End of SS,  
ends at EOM  
© 2007 Microchip Technology Inc.  
DS70287A-page 265  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 22-2: DSPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
GWRP  
FGS  
General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
IESO  
FOSCSEL  
FOSCSEL  
Two-speed Oscillator Start-up Enable bit  
1= Start-up device with FRC, then automatically switch to the  
user-selected oscillator source when ready  
0= Start-up device with user-selected oscillator source  
FNOSC<2:0>  
Initial Oscillator Source Selection bits  
111= Internal Fast RC (FRC) oscillator with postscaler  
110= Internal Fast RC (FRC) oscillator with divide-by-16  
101= LPRC oscillator  
100= Secondary (LP) oscillator  
011= Primary (XT, HS, EC) oscillator with PLL  
010= Primary (XT, HS, EC) oscillator  
001= Internal Fast RC (FRC) oscillator with PLL  
000= FRC oscillator  
FCKSM<1:0>  
FOSC  
Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFNC  
FOSC  
FOSC  
OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
POSCMD<1:0>  
Primary Oscillator Mode Select bits  
11= Primary oscillator disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
FWDTEN  
FWDT  
Watchdog Timer Enable bit  
1= Watchdog Timer always enabled (LPRC oscillator cannot be disabled.  
Clearing the SWDTEN bit in the RCON register will have no effect.)  
0= Watchdog Timer enabled/disabled by user software (LPRC can be  
disabled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
WDTPRE  
WDTPOST  
FWDT  
FWDT  
FWDT  
Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
.
.
.
0001= 1:2  
0000= 1:1  
PWMPIN  
FPOR  
Motor Control PWM Module Pin Mode bit  
1= PWM module pins controlled by PORT register at device Reset  
(tri-stated)  
0= PWM module pins controlled by PWM module at device Reset  
(configured as output pins)  
DS70287A-page 266  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 22-2: DSPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
HPOL  
FPOR  
Motor Control PWM High Side Polarity bit  
1= PWM module high side output pins have active-high output polarity  
0= PWM module high side output pins have active-low output polarity  
LPOL  
FPOR  
FPOR  
Motor Control PWM Low Side Polarity bit  
1= PWM module low side output pins have active-high output polarity  
0= PWM module low side output pins have active-low output polarity  
FPWRT<2:0>  
Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
Reserved  
RESERVED3, Reserved (either read as ‘1’ and write as ‘1’, or read as ‘0’ and  
FPOR write as ‘0’)  
FGS, FOSCSEL, Unimplemented (read as ‘0’, write as ‘0’)  
FOSC, FWDT,  
FPOR  
FIGURE 22-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR(1)  
22.2 On-Chip Voltage Regulator  
All of the dsPIC33FJXXXMCX06/X08/X10 Motor Con-  
trol Family devices power their core digital logic at a  
nominal 2.5V. This may create an issue for designs that  
are required to operate at a higher typical voltage, such  
as 3.3V. To simplify system design, all devices in the  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
family incorporate an on-chip regulator that allows the  
device to run its core logic from VDD.  
3.3V  
dsPIC33F  
VDD  
VDDCORE/VCAP  
VSS  
The regulator provides power to the core from the other  
VDD pins. The regulator requires that a low-ESR (less  
than 5 ohms) capacitor (such as tantalum or ceramic)  
be connected to the VDDCORE/VCAP pin (Figure 22-1).  
This helps to maintain the stability of the regulator. The  
recommended value for the filter capacitor is provided  
in TABLE 25-13: “Internal Voltage Regulator Speci-  
fications” located in Section 25.1 “DC Characteris-  
tics”.  
CF  
Note 1: These are typical operating voltages. Refer  
to TABLE 25-13: “Internal Voltage Regu-  
lator Specifications” located in  
Section 25.1 “DC Characteristics” for the  
full operating ranges of VDD and VDDCORE.  
On a POR, it takes approximately 20 μs for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
© 2007 Microchip Technology Inc.  
DS70287A-page 267  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
The WDT, prescaler and postscaler are reset:  
22.3 BOR: Brown-Out Reset  
• On any device Reset  
The BOR (Brown-out Reset) module is based on an  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
internal voltage reference circuit that monitors the  
regulated supply voltage VDDCORE. The main purpose  
of the BOR module is to generate a device Reset when  
a brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (i.e.,  
missing portions of the AC cycle waveform due to bad  
power transmission lines or voltage sags due to  
excessive current draw when a large inductive load is  
turned on).  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
A BOR will generate a Reset pulse which will reset the  
device. The BOR will select the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>). Furthermore, if an oscillator mode is  
selected, the BOR will activate the Oscillator Start-up  
Timer (OST). The system clock is held until OST  
expires. If the PLL is used, then the clock will be held  
until the LOCK bit (OSCCON<5>) is ‘1’.  
If the WDT is enabled, it will continue to run during Sleep  
or Idle modes. When the WDT time-out occurs, the  
device will wake the device and code execution will con-  
tinue from where the PWRSAVinstruction was executed.  
The corresponding SLEEP or IDLE bits (RCON<3,2>) will  
need to be cleared in software after the device wakes up.  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
Concurrently, the PWRT time-out (TPWRT) will be  
applied before the internal Reset is released. If TPWRT  
= 0 and a crystal oscillator is being used, then a  
nominal delay of TFSCM = 100 is applied. The total  
delay in this case is TFSCM.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
The BOR Status bit (RCON<1>) will be set to indicate  
that a BOR has occurred. The BOR circuit, if enabled,  
continues to operate while in Sleep or Idle modes and  
will reset the device should VDD fall below the BOR  
threshold voltage.  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN con-  
trol bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for crit-  
ical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
22.4 Watchdog Timer (WDT)  
For dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices, the WDT is driven by the LPRC oscil-  
lator. When the WDT is enabled, the clock source is  
also enabled.  
Note:  
If the WINDIS bit (FWDT<6>) is cleared, the  
CLRWDTinstruction should be executed by  
the application software only during the last  
1/4 of the WDT period. This CLRWDT win-  
dow can be determined by using a timer. If  
a CLRWDT instruction is executed before  
this window, a WDT Reset occurs.  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>) which allow the selec-  
tion of a total of 16 settings, from 1:1 to 1:32,768. Using  
the prescaler and postscaler, time-out periods ranging  
from 1 ms to 131 seconds can be achieved.  
DS70287A-page 268  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 22-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
WDTPOST<3:0>  
Sleep/Idle  
WDTPRE  
Prescaler  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
0
RS  
RS  
Postscaler  
WDT  
Reset  
(divide by N1)  
(divide by N2)  
LPRC Clock  
WDT Window Select  
WINDIS  
CLRWDTInstruction  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
sequence. This allows customers to manufacture  
boards with unprogrammed devices and then program  
the digital signal controller just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware, to be programmed. Please refer to  
the “dsPIC33F Flash Programming Specification”  
(DS70152) document for details about ICSP.  
22.5 JTAG Interface  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
devices implement a JTAG interface, which supports  
boundary scan device testing, as well as in-circuit pro-  
gramming. Detailed information on the interface will be  
provided in future revisions of the document.  
22.6 Code Protection and  
CodeGuard™ Security  
Any 1 out of 3 pairs of programming clock/data pins  
may be used:  
The dsPIC33F product families offer the advanced  
implementation of CodeGuard™ Security. CodeGuard  
Security enables multiple parties to securely share  
resources (memory, interrupts and peripherals) on a  
single chip. This feature helps protect individual  
Intellectual Property in collaborative system designs.  
• PGC1/EMUC1 and PGD1/EMUD1  
• PGC2/EMUC2 and PGD2/EMUD2  
• PGC3/EMUC3 and PGD3/EMUD3  
22.8 In-Circuit Debugger  
When coupled with software encryption libraries, Code-  
Guard™ Security can be used to securely update Flash  
even when multiple IP are resident on the single chip.  
The code protection features vary depending on the  
actual dsPIC33F implemented. The following sections  
provide an overview of these features.  
When MPLAB® ICD 2 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This func-  
tion allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pin functions.  
The code protection features are controlled by the  
Configuration registers: FBS, FSS and FGS.  
Any 1 out of 3 pairs of debugging clock/data pins may  
be used:  
• PGC1/EMUC1 and PGD1/EMUD1  
• PGC2/EMUC2 and PGD2/EMUD2  
• PGC3/EMUC3 and PGD3/EMUD3  
Note:  
Refer to the CodeGuard Security  
Reference Manual (DS70180) for further  
information on usage, configuration and  
operation of CodeGuard Security.  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, PGC, PGD and the EMUDx/EMUCx  
pin pair. In addition, when the feature is enabled, some  
of the resources are not available for general use.  
These resources include the first 80 bytes of data RAM  
and two I/O pins.  
22.7  
In-Circuit Serial Programming  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
family digital signal controllers can be serially pro-  
grammed while in the end application circuit. This is  
© 2007 Microchip Technology Inc.  
DS70287A-page 269  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 270  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
23.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of this group of dsPIC33FJXXXMCX06/  
X08/X10 Motor Control Family devices. It  
is not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Refer to the Microchip web site  
(www.microchip.com) for the latest  
dsPIC33F family reference manual  
chapters.  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement may  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC33F instruction set is identical to that of the  
dsPIC30F.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions may use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• DSP operations  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write back destination  
• Control operations  
Table 23-1 shows the general symbols used in  
describing the instructions.  
The dsPIC33F instruction set summary in Table 23-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication and may include:  
• The accumulator to be used (required)  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
The control instructions may use some of the following  
operands:  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
• A program memory address  
However, word or byte-oriented file register instructions  
have two operands:  
• The mode of the table read and table write  
instructions  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
© 2007 Microchip Technology Inc.  
DS70287A-page 271  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
All instructions are a single word, except for certain  
double-word instructions, which were made double-  
word instructions so that all the required information is  
available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
reads and writes and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles. Certain instructions that involve skipping over the  
subsequent instruction require either two or three cycles  
if the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles. The double-word instructions execute in two  
instruction cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
Note:  
For more details on the instruction set,  
refer to the “dsPIC30F/33F Programmer’s  
Reference Manual” (DS70157).  
TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator write back destination address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, may be blank  
DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
DS70287A-page 272  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier working register pair for Square instructions ∈  
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier working register pair for DSP instructions ∈  
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2,  
[W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4..W7}  
Y data space prefetch address register for DSP instructions  
{[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2,  
[W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2,  
[W11 + W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4..W7}  
© 2007 Microchip Technology Inc.  
DS70287A-page 273  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
TABLE 23-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
None  
None  
None  
None  
None  
None  
Branch if unsigned less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
9
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
1
None  
Bit Toggle Ws  
1
None  
DS70287A-page 274  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
10  
BTSC  
BTSS  
BTST  
BTSC  
BTSC  
BTSS  
BTSS  
f,#bit4  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
Bit Test f, Skip if Clear  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
11  
12  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
Bit Test Ws to Z  
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
C
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
C
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
None  
Wn  
Call indirect subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
Ws  
None  
CLR  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
CLRWDT  
COM  
f
COM  
COM  
CP  
f,WREG  
Ws,Wd  
f
WREG = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
Disable Interrupts for k instruction cycles  
© 2007 Microchip Technology Inc.  
DS70287A-page 275  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Signed 32/16-bit Integer Divide  
Wm,Wn  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
N,Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
None  
None  
None  
None  
N,Z  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and store accumulator  
None  
None  
None  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70287A-page 276  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
C,DC,N,OV,Z  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
© 2007 Microchip Technology Inc.  
DS70287A-page 277  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
SAC  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = sign-extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBB  
SUBB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
Wd = Wb – Ws  
Wd = Wb – lit5  
73  
SUBB  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
f,WREG  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
74  
75  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
Wb,Ws,Wd  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Wb,#lit5,Wd  
Wn  
Wd = lit5 – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
None  
None  
None  
None  
None  
None  
None  
N,Z  
76  
SWAP  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Wn  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
Wd = Wb .XOR. Ws  
N,Z  
XOR  
Wd = Wb .XOR. lit5  
N,Z  
83  
ZE  
ZE  
Wnd = Zero-extend Ws  
C,Z,N  
DS70287A-page 278  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
24.1 MPLAB Integrated Development  
Environment Software  
24.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2007 Microchip Technology Inc.  
DS70287A-page 279  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
24.2 MPASM Assembler  
24.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
24.6 MPLAB SIM Software Simulator  
24.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
24.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS70287A-page 280  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
24.7 MPLAB ICE 2000  
24.9 MPLAB ICD 2 In-Circuit Debugger  
High-Performance  
In-Circuit Emulator  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
24.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
24.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2007 Microchip Technology Inc.  
DS70287A-page 281  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
24.11 PICSTART Plus Development  
Programmer  
24.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
24.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70287A-page 282  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
25.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJXXXMCX06/X08/X10 Motor Control Family electrical characteristics.  
Additional information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the dsPIC33FJXXXMCX06/X08/X10 Motor Control Family family are listed below. Expo-  
sure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the  
device at these or any other conditions above the parameters indicated in the operation listings of this specification is  
not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias...............................................................................................................-40°C to +85°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital-only pin with respect to VSS .................................................................................. -0.3V to +5.6V  
Voltage on VDDCORE with respect to VSS ................................................................................................ 2.25V to 2.75V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum output current sunk by any I/O pin(3) ........................................................................................................4 mA  
Maximum output current sourced by any I/O pin(3)...................................................................................................4 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).  
3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGCx  
and PGDx pins, which are able to sink/source 12 mA.  
© 2007 Microchip Technology Inc.  
DS70287A-page 283  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
25.1 DC Characteristics  
TABLE 25-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJXXXMCX06/X08/X10 Motor  
Control Family  
DC5  
3.0-3.6V  
-40°C to +85°C  
40  
TABLE 25-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
Operating Junction Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Operating Ambient Temperature Range  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD Σ IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = Σ ({VDD VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/θJA  
TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)  
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)  
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)  
θJA  
θJA  
θJA  
θJA  
48.4  
52.3  
38.7  
38.3  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.  
TABLE 25-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
3.0  
1.1  
1.3  
3.6  
1.8  
V
V
V
DC12  
DC16  
VDR  
RAM Data Retention Voltage(2)  
VDD Start Voltage(4)  
VPOR  
VSS  
to ensure internal  
Power-on Reset signal  
DC17  
DC18  
SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
VDD Core(3)  
0.03  
2.25  
V/ms 0-3.0V in 0.1s  
VCORE  
2.75  
V
Voltage is dependent on  
load, temperature and VDD  
Internal regulator voltage  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
3: These parameters are characterized but not tested in manufacturing.  
4: VDD Core voltage must remain at VSS for a minimum of 200 µs to ensure POR.  
DS70287A-page 284  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(2)  
DC20d  
DC20  
24  
27  
27  
36  
37  
38  
43  
46  
46  
61  
65  
65  
83  
84  
84  
29  
30  
31  
42  
42  
43  
50  
51  
52  
70  
70  
71  
88  
88  
89  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
DC20a  
DC21d  
DC21  
DC21a  
DC22d  
DC22  
DC22a  
DC23d  
DC23  
DC23a  
DC24d  
DC24  
DC24a  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VSS.  
MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are  
operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits  
are all zeroed).  
© 2007 Microchip Technology Inc.  
DS70287A-page 285  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core OFF Clock ON Base Current(2)  
DC40d  
DC40  
3
3
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
7
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
DC40a  
DC40d  
DC41  
3
8
5
10  
10  
11  
12  
15  
16  
17  
21  
22  
21  
23  
24  
5
DC41a  
DC42d  
DC42  
6
9
9
DC42a  
DC43d  
DC43  
10  
15  
15  
15  
16  
16  
16  
DC43a  
DC44d  
DC44  
DC44a  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module  
Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to VSS.  
TABLE 25-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)(2)  
DC60d  
DC60  
290  
293  
317  
8
963  
988  
990  
13  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
3.0V  
3.0V  
Base Power-Down Current(3,4)  
DC60a  
DC61d  
DC61  
(3)  
10  
15  
Watchdog Timer Current: ΔIWDT  
DC61a  
12  
20  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off.  
3: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
DS70287A-page 286  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Doze  
Ratio  
Parameter No.  
Typical(1)  
Max  
Units  
Conditions  
DC73a  
DC73f  
DC73g  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
25  
23  
23  
42  
26  
25  
41  
25  
24  
32  
27  
26  
47  
27  
27  
48  
28  
28  
1:2  
1:64  
1:128  
1:2  
mA  
-40°C  
mA  
+25°C  
3.3V  
40 MIPS  
1:64  
1:128  
1:2  
mA  
+85°C  
1:64  
1:128  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.  
© 2007 Microchip Technology Inc.  
DS70287A-page 287  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Input Low Voltage  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
DI10  
DI15  
DI16  
DI17  
DI18  
DI19  
I/O pins  
MCLR  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.2 VDD  
V
V
V
V
V
V
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
SMBus disabled  
SDAx, SCLx  
SMBus enabled  
VIH  
Input High Voltage  
DI20  
I/O pins:  
with analog functions  
digital-only  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
DI25  
DI26  
DI27  
DI28  
DI29  
MCLR  
0.8 VDD  
0.7 VDD  
0.7 VDD  
0.7 VDD  
0.8 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
OSC1 (XT mode)  
OSC1 (HS mode)  
SDAx, SCLx  
SMBus disabled  
SMBus enabled  
SDAx, SCLx  
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
50  
250  
400  
μA VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2)(3)  
DI50  
I/O ports  
±2  
±1  
±2  
μA VSS VPIN VDD,  
Pin at high-impedance  
DI51  
Analog Input Pins  
Analog Input Pins  
μA VSS VPIN VDD,  
Pin at high-impedance  
DI51A  
μA Analog pins shared with  
external reference pins  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
μA  
VSS VPIN VDD  
μA VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS70287A-page 288  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
VOL  
Output Low Voltage  
I/O ports  
DO10  
DO16  
0.4  
0.4  
V
V
IOL = 2 mA, VDD = 3.3V  
IOL = 2 mA, VDD = 3.3V  
OSC2/CLKO  
VOH  
Output High Voltage  
I/O ports  
DO20  
DO26  
2.40  
2.41  
V
V
IOH = -2.3 mA, VDD = 3.3V  
IOH = -1.3 mA, VDD = 3.3V  
OSC2/CLKO  
TABLE 25-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1) Typ Max(1) Units  
2.40 2.55  
Conditions  
BO10  
VBOR  
BOR Event on VDD transition  
high-to-low  
V
-40°C to +85°C  
BOR event is tied to VDD core voltage  
decrease  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
© 2007 Microchip Technology Inc.  
DS70287A-page 289  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
100  
1000  
E/W -40°C to +85°C  
VPR  
VDD for Read  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications  
are violated  
Supply Current during  
Programming  
mA  
D136  
D137  
D138  
TRW  
TPE  
Row Write Time  
20  
1.6  
20  
40  
ms  
ms  
μs  
Page Erase Time  
Word Write Cycle Time  
TWW  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value  
1
10  
μF  
Capacitor must be low  
series resistance  
(< 5 ohms)  
DS70287A-page 290  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
25.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
AC characteristics and timing parameters.  
TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Operating voltage VDD range as described in Section 25.0 “Electrical  
Characteristics”.  
FIGURE 25-1:  
Load Condition 1 – for all pins except OSC2  
VDD/2  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSC2  
OSC2/SOSC2 pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
© 2007 Microchip Technology Inc.  
DS70287A-page 291  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS41  
OS40  
TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symb  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency  
3.5  
10  
10  
40  
33  
MHz XT  
MHz HS  
kHz SOSC  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
12.5  
25  
DC  
DC  
ns  
ns  
TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.375 x TOSC  
0.625 x  
TOSC  
ns  
EC  
EC  
OS31  
TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
OS40  
OS41  
TckR CLKO Rise Time(3)  
5.2  
5.2  
ns  
ns  
TckF  
CLKO Fall Time(3)  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
DS70287A-page 292  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range(2)  
0.8  
8.0  
MHz ECPLL, HSPLL, XTPLL  
modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
100  
200  
MHz  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)  
0.9  
1.5  
0.5  
3.1  
3.0  
ms  
-3.0  
%
Measured over 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
TABLE 25-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1,2)  
FRC -2 +2  
F20  
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
2: FRC set to initial frequency of 7.37 MHz (+1-2%) at 25° C FRC.  
TABLE 25-19: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21  
-20  
±6  
+20  
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
Note 1: Change of LPRC frequency as VDD changes.  
© 2007 Microchip Technology Inc.  
DS70287A-page 293  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-3:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-20: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
20  
2
10  
10  
25  
25  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (output)  
CNx High or Low Time (input)  
ns  
DI40  
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS70287A-page 294  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 25-1 for load conditions.  
© 2007 Microchip Technology Inc.  
DS70287A-page 295  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
μs  
-40°C to +85°C  
TPWRT  
2
4
8
16  
32  
64  
128  
ms  
-40°C to +85°C  
User programmable  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O High-Impedance from MCLR 0.68  
Low or Watchdog Timer Reset  
0.72  
1.2  
SY20  
TWDT1  
Watchdog Timer Time-out Period  
(No Prescaler)  
1.9  
2.1  
2.3  
ms  
VDD = 3V, -40°C to +85°C  
SY30  
SY35  
TOST  
Oscillator Start-up Timer Period  
Fail-Safe Clock Monitor Delay  
1024 TOSC  
500  
TOSC = OSC1 period  
-40°C to +85°C  
TFSCM  
900  
μs  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS70287A-page 296  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-5:  
TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 40  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK Oscillator Input  
frequency Range (oscillator enabled  
by setting bit TCS (T1CON<1>))  
DC  
50  
kHz  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer1 is a Type A.  
© 2007 Microchip Technology Inc.  
DS70287A-page 297  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TB10  
TB11  
TB15  
TtxH  
TtxL  
TtxP  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input  
Period  
Synchronous,  
no prescaler  
TCY + 40  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXT-  
MRL  
Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
TABLE 25-24: TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING  
REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TC11  
TC15  
TtxH  
TtxL  
TtxP  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter TC15  
0.5 TCY + 20  
TCY + 40  
Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
DS70287A-page 298  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-6:  
TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS  
QEB  
TQ11  
TQ10  
TQ15  
TQ20  
POSCNT  
TABLE 25-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TQ10 TtQH  
TQ11 TtQL  
TQ15 TtQP  
TQCK High Time Synchronous,  
with prescaler  
TCY + 20  
ns  
Must also meet  
parameter TQ15  
TQCK Low Time  
Synchronous,  
with prescaler  
TCY + 20  
ns  
ns  
Must also meet  
parameter TQ15  
TQCP Input  
Period  
Synchronous, 2 * TCY + 40  
with prescaler  
TQ20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2007 Microchip Technology Inc.  
DS70287A-page 299  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-7:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-26: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 25-8:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter D032  
See parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70287A-page 300  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-9:  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA/OCFB  
OC15  
OCx  
TABLE 25-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
50  
ns  
OC20  
TFLT  
Fault Input Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2007 Microchip Technology Inc.  
DS70287A-page 301  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-10:  
MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS  
MP30  
FLTA/B  
PWMx  
MP20  
FIGURE 25-11:  
MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-29: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
MP10  
MP11  
TFPWM  
TRPWM  
TFD  
PWM Output Fall Time  
PWM Output Rise Time  
50  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Fault Input to PWM  
I/O Change  
MP20  
MP30  
TFH  
Minimum Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70287A-page 302  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-12:  
QEA/QEB INPUT CHARACTERISTICS  
TQ36  
QEA  
(input)  
TQ30  
TQ31  
TQ35  
QEB  
(input)  
TQ41  
TQ40  
TQ30  
TQ31  
TQ35  
QEB  
Internal  
TABLE 25-30: QUADRATURE DECODER TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Typ(2)  
Max  
Units  
Conditions  
TQ30  
TQ31  
TQ35  
TQ36  
TQ40  
TQUL  
Quadrature Input Low Time  
Quadrature Input High Time  
Quadrature Input Period  
Quadrature Phase Period  
6 TCY  
6 TCY  
ns  
ns  
ns  
ns  
ns  
TQUH  
TQUIN  
TQUP  
TQUFL  
12 TCY  
3 TCY  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 3)  
TQ41  
TQUFH  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 3)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. “Quadrature Encoder  
Interface (QEI)” in the “dsPIC33F Family Reference Manual”.  
© 2007 Microchip Technology Inc.  
DS70287A-page 303  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-13:  
QEI MODULE INDEX PULSE TIMING CHARACTERISTICS  
QEA  
(input)  
QEB  
(input)  
Ungated  
Index  
TQ50  
TQ51  
Index Internal  
TQ55  
Position  
Counter Reset  
TABLE 25-31: QEI INDEX PULSE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
TQ50  
TQ51  
TQ55  
TqIL  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
TqiH  
Tqidxr  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
3 TCY  
ns  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
Index Pulse Recognized to Position  
Counter Reset (ungated index)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for  
forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but  
index pulse recognition occurs on falling edge.  
DS70287A-page 304  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-14:  
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
LSb In  
Bit 14 - - - -1  
SP41  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-32: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKx Output Low Time(3)  
SCKx Output High Time(3)  
SCKx Output Fall Time(4)  
SCKx Output Rise Time(4)  
SDOx Data Output Fall Time(4)  
SDOx Data Output Rise Time(4)  
TCY/2  
TCY/2  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
See parameter D032  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40  
SP41  
TdiV2scH, Setup Time of SDIx Data Input  
23  
30  
ns  
ns  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007 Microchip Technology Inc.  
DS70287A-page 305  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-15:  
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
LSb  
MSb  
SP40  
SDOX  
SDIX  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-33: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
TscL  
TscH  
TscF  
TscR  
TdoF  
SCKx Output Low Time(3)  
SCKx Output High Time(3)  
SCKx Output Fall Time(4)  
SCKx Output Rise Time(4)  
TCY/2  
TCY/2  
ns  
ns  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
See parameter D032  
SDOx Data Output Fall  
Time(4)  
SP31  
SP35  
SP36  
SP40  
SP41  
TdoR  
SDOx Data Output Rise  
Time(4)  
20  
30  
20  
6
20  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70287A-page 306  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-16:  
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP =  
0
)
)
SP71  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP =  
1
SP73  
LSb  
SP35  
MSb  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 25-1 for load conditions.  
TABLE 25-34: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKx Input Low Time  
30  
30  
10  
10  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx Input High Time  
SCKx Input Fall Time(3)  
SCKx Input Rise Time(3)  
SDOx Data Output Fall Time(3)  
SDOx Data Output Rise Time(3)  
See parameter D032  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40  
SP41  
SP50  
SP51  
SP52  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
20  
20  
50  
ns  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
High-Impedance(3)  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY +40  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2007 Microchip Technology Inc.  
DS70287A-page 307  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-17:  
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 25-1 for load conditions.  
DS70287A-page 308  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-35: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKx Input Low Time  
30  
30  
10  
10  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKx Input High Time  
SCKx Input Fall Time(3)  
SCKx Input Rise Time(3)  
SDOx Data Output Fall Time(3)  
SDOx Data Output Rise Time(3)  
See parameter D032  
See parameter D031  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
20  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
20  
TssL2scH, SSx to SCKx or SCKx ↑  
TssL2scL Input  
120  
TssH2doZ SSx to SDOX Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2007 Microchip Technology Inc.  
DS70287A-page 309  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-18:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 25-1 for load conditions.  
FIGURE 25-19:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 25-1 for load conditions.  
DS70287A-page 310  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-36: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
IM50  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
CB  
Bus Capacitive Loading  
400  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit (I2C™)”  
in the “dsPIC33F Family Reference Manual”.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
© 2007 Microchip Technology Inc.  
DS70287A-page 311  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-20:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 25-21:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70287A-page 312  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-37: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min  
Max Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
1.3  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
μs  
μs  
IS11  
THI:SCL  
Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
μs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL  
Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
© 2007 Microchip Technology Inc.  
DS70287A-page 313  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-22:  
CAN MODULE I/O TIMING CHARACTERISTICS  
CiTx Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CiRx Pin  
(input)  
CA20  
TABLE 25-38: CAN MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
CA10  
CA11  
CA20  
TioF  
TioR  
Tcwf  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Pulse Width to Trigger  
CAN Wake-up Filter  
120  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70287A-page 314  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-39: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01  
AD02  
AVDD  
Module VDD Supply  
Greater of  
VDD – 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
AVSS  
Module VSS Supply  
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
VREFH  
Reference Voltage High  
AVSS + 2.7  
3.0  
AVDD  
3.6  
V
V
See Note 1  
AD05a  
VREFH = AVDD  
VREFL = AVSS = 0  
AD06  
VREFL  
Reference Voltage Low  
AVSS  
0
AVDD – 2.7  
0
V
V
See Note 1  
AD06a  
VREFH = AVDD  
VREFL = AVSS = 0  
AD07  
AD08  
VREF  
IREF  
Absolute Reference Voltage  
Current Drain  
2.7  
3.6  
V
VREF = VREFH - VREFL  
400  
550  
10  
μA ADC operating  
μA ADC off  
Analog Input  
AD12  
AD13  
AD17  
VINH  
VINL  
RIN  
Input Voltage Range VINH  
Input Voltage Range VINL  
VINL  
VREFH  
V
This voltage reflects  
Sample and Hold Channels  
0, 1, 2, and 3 (CH0-CH3),  
positive input  
VREFL  
AVSS + 1V  
V
This voltage reflects  
Sample and Hold Channels  
0, 1, 2, and 3 (CH0-CH3),  
negative input  
Recommended Impedance  
of Analog Voltage Source  
200  
200  
Ω
Ω
10-bit ADC  
12-bit ADC  
Note 1: These parameters are not characterized or tested in manufacturing.  
© 2007 Microchip Technology Inc.  
DS70287A-page 315  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-40: ADC MODULE SPECIFICATIONS (12-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-  
AD20a Nr  
AD21a INL  
Resolution  
12 data bits  
bits  
Integral Nonlinearity  
-2  
+2  
<1  
3
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
AD22a DNL  
Differential Nonlinearity  
Gain Error  
>-1  
1.25  
1.25  
1.5  
1.52  
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
Offset Error  
2
LSb VINL = AVSS = VREFL = 0V, AVDD  
= VREFH = 3.6V  
Monotonicity  
Guaranteed  
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-  
AD20b Nr  
AD21b INL  
AD22b DNL  
Resolution  
12 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
>-1  
2
3
+2  
<1  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
Offset Error  
2
3
5
Monotonicity  
Guaranteed  
Dynamic Performance (12-bit Mode)  
AD30a THD  
Total Harmonic Distortion  
-77  
59  
-69  
63  
-61  
64  
dB  
dB  
AD31a SINAD  
Signal to Noise and  
Distortion  
AD32a SFDR  
Spurious Free Dynamic  
Range  
63  
72  
74  
dB  
AD33a  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
250  
kHz  
bits  
AD34a ENOB  
10.95  
11.1  
DS70287A-page 316  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-41: ADC MODULE SPECIFICATIONS (10-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-  
AD20c Nr  
AD21c INL  
Resolution  
10 data bits  
bits  
Integral Nonlinearity  
-1.5  
>-1  
1
+1.5  
<1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22c DNL  
Differential Nonlinearity  
Gain Error  
3
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23c  
AD24c  
AD25c  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
1
2
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed  
ADC Accuracy (10-bit Mode) – Measurements with internal VREF+/VREF-  
AD20d Nr  
AD21d INL  
AD22d DNL  
Resolution  
10 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-1  
>-1  
1
5
+1  
<1  
6
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23d  
AD24d  
AD25d  
GERR  
EOFF  
Offset Error  
1
2
3
Monotonicity  
Guaranteed  
Dynamic Performance (10-bit Mode)  
AD30b THD  
Total Harmonic Distortion  
-64  
57  
-67  
58  
dB  
dB  
AD31b SINAD  
Signal to Noise and  
Distortion  
AD32b SFDR  
Spurious Free Dynamic  
Range  
60  
62  
dB  
AD33b  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
550  
9.8  
kHz  
bits  
AD34b ENOB  
9.1  
9.7  
© 2007 Microchip Technology Inc.  
DS70287A-page 317  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-23:  
ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS  
(ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
CONV  
ADxIF  
Buffer(0)  
1
2
3
4
5
6
7
8
9
– Software sets ADxCON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in Section 16. “10/12-bit ADC with DMA” in the “dsPIC33F  
Family Reference Manual”.  
– Software clears ADxCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 11.  
3
4
5
6
7
8
9
– Convert bit 10.  
– Convert bit 1.  
– Convert bit 0.  
– One TAD for end of conversion.  
DS70287A-page 318  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-42: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50a TAD  
AD51a tRC  
ADC Clock Period  
117.6  
ns  
ns  
ADC Internal RC Oscillator  
Period  
250  
Conversion Rate  
AD55a tCONV  
AD56a FCNV  
AD57a TSAMP  
Conversion Time  
Throughput Rate  
Sample Time  
14 TAD  
Ksps  
500  
3.0 TAD  
Timing Parameters  
AD60a tPCS  
AD61a tPSS  
AD62a tCSS  
AD63a tDPU  
Conversion Start from Sample  
Trigger(2)  
0.5 TAD  
1.0 TAD  
1.5 TAD  
μs  
Sample Start from Setting  
Sample (SAMP) bit(2)  
Conversion Completion to  
0.5 TAD  
Sample Start (ASAM = 1)(2)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(2)  
1
5
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
2: These parameters are characterized but not tested in manufacturing.  
© 2007 Microchip Technology Inc.  
DS70287A-page 319  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-24:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
AD55  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets ADxCON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in Section 16. “10/12-bit ADC with DMA” in the “dsPIC33F  
Family Reference Manual”.  
– Software clears ADxCON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 9.  
3
4
5
6
7
8
– Convert bit 8.  
– Convert bit 0.  
– One TAD for end of conversion.  
DS70287A-page 320  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
FIGURE 25-25:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Execution  
Set ADON  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
TSAMP  
TSAMP  
AD55  
AD55  
TCONV  
CONV  
ADxIF  
Buffer(0)  
Buffer(1)  
1
2
3
4
5
6
7
3
4
5
6
8
3
4
– Software sets ADxCON. ADON to start AD operation.  
– Convert bit 0.  
1
2
5
6
7
8
– Sampling starts after discharge period. TSAMP is described in  
Section 16. “10/12-bit ADC with DMA” in the “dsPIC33F  
Family Reference Manual”.  
– One TAD for end of conversion.  
– Begin conversion of next channel.  
– Sample for time specified by SAMC<4:0>.  
– Convert bit 9.  
– Convert bit 8.  
3
4
© 2007 Microchip Technology Inc.  
DS70287A-page 321  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
TABLE 25-43: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters  
AD50b TAD  
AD51b tRC  
ADC Clock Period  
76  
ns  
ns  
ADC Internal RC Oscillator Period  
250  
Conversion Rate  
AD55b tCONV  
AD56b FCNV  
Conversion Time  
Throughput Rate  
12 TAD  
1.1  
MSPS  
AD57b TSAMP Sample Time  
2 TAD  
Timing Parameters  
AD60b tPCS  
Conversion Start from Sample  
1.0 TAD  
Auto-Convert Trigger  
(SSRC<2:0> = 111) not  
selected  
Trigger(1)  
AD61b tPSS  
AD62b tCSS  
AD63b tDPU  
Sample Start from Setting  
Sample (SAMP) bit(1)  
0.5 TAD  
0.5 TAD  
1.5 TAD  
μs  
Conversion Completion to  
1
5
Sample Start (ASAM = 1)(1)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(1)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
DS70287A-page 322  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
26.0 PACKAGING INFORMATION  
26.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ  
256MC706  
-I/PT  
0510017  
e
3
80-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC33FJ128  
MC708-I/PT  
0510017  
e
3
100-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC33FJ256  
MC710-I/PT  
e
3
0510017  
100-Lead TQFP (14x14x1mm)  
100-Lead TQFP (14x14x1mm)  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC33FJ256  
MC710-I/PF  
0510017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2007 Microchip Technology Inc.  
DS70287A-page 323  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
26.2 Package Details  
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
64  
MAX  
Number of Leads  
N
e
Lead Pitch  
0.50 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
D
E1  
D1  
c
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
0.22  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-085B  
DS70287A-page 324  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
123  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
80  
MAX  
Number of Leads  
Lead Pitch  
N
e
0.50 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
14.00 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
0.22  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-092B  
© 2007 Microchip Technology Inc.  
DS70287A-page 325  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
Units  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
Number of Leads  
N
e
100  
Lead Pitch  
0.40 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
14.00 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
D
E1  
D1  
c
0.09  
0.13  
11°  
0.20  
0.23  
13°  
b
0.18  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-100B  
DS70287A-page 326  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
e
E1  
E
b
N
α
NOTE 1  
1 23  
NOTE 2  
A
φ
c
A2  
A1  
β
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
100  
MAX  
Number of Leads  
Lead Pitch  
N
e
0.50 BSC  
Overall Height  
A
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
Foot Length  
0.60  
Footprint  
L1  
φ
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Overall Width  
E
16.00 BSC  
16.00 BSC  
14.00 BSC  
14.00 BSC  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
0.22  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
12°  
11°  
12°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-110B  
© 2007 Microchip Technology Inc.  
DS70287A-page 327  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 328  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
A.5  
Oscillator Operation  
APPENDIX A: DIFFERENCES  
BETWEEN “PS”  
The default values of the PLL postscaler and feedback  
divisor bits are different between the “PS” devices and  
final production devices. Please refer to Section 8.0  
“Oscillator Configuration” for the register definitions  
and Reset states.  
(PROTOTYPE SAMPLE)  
DEVICES AND FINAL  
PRODUCTION DEVICES  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices marked “PS” have some key differ-  
ences from the final production devices (devices not  
marked “PS”). The major differences are listed in this  
appendix. In addition, there are minor differences in  
several SFR names, bits and Reset states, which are  
described in Section 3.0 “Memory Organization”  
and the corresponding peripheral sections.  
A.6  
CAN and Enhanced CAN  
The dsPIC33FJXXXMCX06/X08/X10 Motor Control  
Family devices marked “PS” have up to two CAN mod-  
ules. The functionality and register layout of these mod-  
ules are identical to those of dsPIC30F devices, and  
are described in Section 20.0 “Enhanced CAN Mod-  
ule” of this data sheet. These modules do not provide  
DMA support.  
A.1  
Device Names  
The final production devices have up to two Enhanced  
CAN (ECAN™ technology) modules. These modules  
have significantly more features than the CAN mod-  
ules, mainly in the form of an increased number of  
available buffers, filters and masks, as well as DMA  
support.  
The Prototype Sample devices have a suffix “PS” in  
their names, as marked on the device package. This  
distinguishes them from Engineering Sample devices  
(which are suffixed “ES”) and final production devices  
(that have neither a “PS” nor an “ES” suffix on the  
device package marking).  
Prototype samples are available only for a subset of the  
final production devices. Please refer to the device  
tables in this data sheet for a listing of all devices.  
A.7  
ADC Differences  
Both “PS” and final production devices contain up to  
two ADC modules.  
The “PS” devices have a 16-word deep ADC result  
buffer.  
A.2  
RAM Sizes  
The total RAM size, including the size of the dual ported  
DMA RAM, is different between each “PS” device and  
the corresponding final production device. For exam-  
ple, the final production devices have 2 Kbytes DMA  
RAM, whereas the “PS” devices have 1 Kbyte DMA  
RAM. Please refer to the device tables in this data  
The final production devices have enhanced DMA sup-  
port in the form of additional DMA RAM and Peripheral  
Indirect Addressing. This renders the 16-word ADC  
buffer redundant. Hence, the buffer has been replaced  
by a single ADC Result register.  
sheet  
for  
the  
memory  
sizes  
of  
each  
A.8  
Device Packages  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
device.  
The final production devices are offered in the following  
TQFP packages:  
A.3  
Interrupts  
• 64-pin TQFP 10x10x1 mm  
• 80-pin TQFP 12x12x1 mm  
• 100-pin TQFP 12x12x1 mm  
• 100-pin TQFP 14x14x1 mm  
The final production devices have four more interrupt  
sources (vectors) than the “PS” devices do. Also, two  
of the interrupt vectors are associated with slightly dif-  
ferent events from the corresponding interrupts in the  
“PS” devices. Please refer to Section 6.0 “Interrupt  
Controller” for more details.  
The “PS” devices are offered in the following TQFP  
packages:  
• 64-pin TQFP 10x10x1 mm  
• 80-pin TQFP 12x12x1 mm  
• 100-pin TQFP 14x14x1 mm  
A.4  
DMA Enhancements  
Both “PS” and final production devices can perform  
Direct Memory Access (DMA) data transfers.  
In addition to all of the features supported by the DMA  
controller in the “PS” devices, the DMA controller in the  
final production devices also supports the Peripheral  
Indirect Addressing mode. Please refer to Section 7.0  
“Direct Memory Access (DMA)” for a description of  
this feature.  
© 2007 Microchip Technology Inc.  
DS70287A-page 329  
dsPIC33FJXXXMCX06/X08/X10 Motor Control Family  
APPENDIX B: REVISION HISTORY  
Revision A (June 2007)  
Initial release of this document  
DS70287A-page 330  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
INDEX  
Configuring Analog Port Pins............................................ 148  
CPU  
A
A/D Converter ................................................................... 249  
DMA.......................................................................... 249  
Initialization ............................................................... 249  
Key Features............................................................. 249  
AC Characteristics ............................................................ 291  
Internal RC Accuracy................................................ 293  
Load Conditions........................................................ 291  
ADC Module  
Control Register.......................................................... 20  
CPU Clocking System ...................................................... 138  
Options ..................................................................... 138  
Selection................................................................... 138  
Customer Change Notification Service............................. 337  
Customer Notification Service .......................................... 337  
Customer Support............................................................. 337  
ADC11 Register Map.................................................. 46  
ADC2 Register Map.................................................... 46  
Alternate Vector Table (AIVT)............................................. 79  
Arithmetic Logic Unit (ALU)................................................. 23  
Assembler  
MPASM Assembler................................................... 280  
Automatic Clock Stretch.................................................... 203  
Receive Mode........................................................... 203  
Transmit Mode.......................................................... 203  
D
Data Accumulators and Adder/Subtractor .......................... 25  
Data Space Write Saturation...................................... 27  
Overflow and Saturation............................................. 25  
Round Logic ............................................................... 26  
Write Back .................................................................. 26  
Data Address Space........................................................... 32  
Alignment.................................................................... 32  
Memory Map for dsPIC33F Devices with  
16 KBs RAM....................................................... 34  
Memory Map for dsPIC33F Devices with  
30 KBs RAM....................................................... 35  
Memory Map for dsPIC33F Devices with  
B
Barrel Shifter ....................................................................... 27  
Bit-Reversed Addressing .................................................... 60  
Example...................................................................... 61  
Implementation ........................................................... 60  
Sequence Table (16-Entry)......................................... 61  
Block Diagrams  
8 KBs RAM......................................................... 33  
Near Data Space........................................................ 32  
Software Stack ........................................................... 57  
Width .......................................................................... 32  
DC Characteristics............................................................ 284  
I/O Pin Input Specifications ...................................... 288  
I/O Pin Output Specifications.................................... 289  
Idle Current (IDOZE) .................................................. 287  
Idle Current (IIDLE).................................................... 286  
Operating Current (IDD) ............................................ 285  
Power-Down Current (IPD)........................................ 286  
Program Memory...................................................... 290  
Temperature and Voltage Specifications.................. 284  
Development Support....................................................... 279  
Differences Between "PS" and Final Production  
16-bit Timer1 Module................................................ 149  
A/D Module ....................................................... 250, 251  
Connections for On-Chip Voltage Regulator............. 267  
Device Clock..................................................... 137, 139  
DSP Engine ................................................................ 24  
dsPIC33F.................................................................... 14  
dsPIC33F CPU Core................................................... 18  
ECAN Module ........................................................... 220  
Input Capture ............................................................ 157  
Output Compare ....................................................... 161  
PLL............................................................................ 139  
PWM Module ............................................................ 164  
Quadrature Encoder Interface .................................. 185  
Reset System.............................................................. 73  
Shared Port Structure ............................................... 147  
SPI ............................................................................ 194  
Timer2 (16-bit) .......................................................... 153  
Timer2/3 (32-bit) ....................................................... 152  
UART ........................................................................ 211  
Watchdog Timer (WDT)............................................ 269  
Devices..................................................................... 329  
DMA Module  
DMA Register Map ..................................................... 47  
DMAC Registers............................................................... 128  
DMAxCNT ................................................................ 128  
DMAxCON................................................................ 128  
DMAxPAD ................................................................ 128  
DMAxREQ................................................................ 128  
DMAxSTA................................................................. 128  
DMAxSTB................................................................. 128  
DSP Engine ........................................................................ 23  
Multiplier ..................................................................... 25  
C
C Compilers  
MPLAB C18 .............................................................. 280  
MPLAB C30 .............................................................. 280  
Clock Switching................................................................. 144  
Enabling.................................................................... 144  
Sequence.................................................................. 144  
Code Examples  
Erasing a Program Memory Page............................... 70  
Initiating a Programming Sequence............................ 71  
Loading Write Buffers ................................................. 71  
Port Write/Read ........................................................ 148  
PWRSAV Instruction Syntax..................................... 145  
Code Protection ........................................................ 263, 269  
Configuration Bits.............................................................. 263  
Configuration Register Map .............................................. 263  
E
ECAN Module  
Baud Rate Setting .................................................... 224  
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)......... 49  
ECAN1 Register Map (C1CTRL1.WIN = 0)................ 49  
ECAN1 Register Map (C1CTRL1.WIN = 1)................ 50  
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)......... 52  
ECAN2 Register Map (C2CTRL1.WIN = 0).......... 52, 53  
Frame Types ............................................................ 219  
Message Reception.................................................. 221  
Message Transmission............................................. 223  
Modes of Operation.................................................. 221  
Overview................................................................... 219  
© 2007 Microchip Technology Inc.  
DS70287A-page 331  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
Electrical Characteristics...................................................283  
AC .............................................................................291  
Enhanced CAN Module.....................................................219  
Equations  
Instruction Addressing Modes ............................................ 57  
File Register Instructions ............................................ 57  
Fundamental Modes Supported ................................. 58  
MAC Instructions ........................................................ 58  
MCU Instructions ........................................................ 57  
Move and Accumulator Instructions............................ 58  
Other Instructions ....................................................... 58  
A/D Conversion Clock Period ...................................252  
Calculating the PWM Period .....................................160  
Calculation for Maximum PWM Resolution...............160  
Device Operating Frequency ....................................138  
PWM Period..............................................................166  
PWM Resolution .......................................................166  
Relationship Between Device and SPI  
Instruction Set  
Overview................................................................... 274  
Summary .................................................................. 271  
Instruction-Based Power-Saving Modes........................... 145  
Idle............................................................................ 146  
Sleep ........................................................................ 145  
Internal RC Oscillator  
Clock Speed......................................................196  
Serial Clock Rate ......................................................201  
Time Quantum for Clock Generation ........................225  
UART Baud Rate with BRGH = 0 .............................212  
UART Baud Rate with BRGH = 1 .............................212  
Errata ..................................................................................11  
Use with WDT........................................................... 268  
Internet Address ............................................................... 337  
Interrupt Control and Status Registers ............................... 83  
IECx............................................................................ 83  
IFSx ............................................................................ 83  
INTCON1.................................................................... 83  
INTCON2.................................................................... 83  
IPCx............................................................................ 83  
Interrupt Setup Procedures............................................... 125  
Initialization............................................................... 125  
Interrupt Disable ....................................................... 125  
Interrupt Service Routine.......................................... 125  
Trap Service Routine................................................ 125  
Interrupt Vector Table (IVT)................................................ 79  
Interrupts Coincident with Power Save Instructions ......... 146  
F
Flash Program Memory.......................................................67  
Control Registers ........................................................68  
Operations ..................................................................68  
Programming Algorithm ..............................................70  
RTSP Operation..........................................................68  
Table Instructions........................................................67  
Flexible Configuration .......................................................263  
FSCM  
Delay for Crystal and PLL Clock Sources...................77  
Device Resets.............................................................77  
I
J
I/O Ports............................................................................147  
Parallel I/O (PIO).......................................................147  
Write/Read Timing ....................................................148  
JTAG Boundary Scan Interface........................................ 263  
M
2
I C  
Memory Organization ......................................................... 29  
Microchip Internet Web Site.............................................. 337  
Modes of Operation  
Addresses.................................................................203  
Baud Rate Generator................................................201  
General Call Address Support ..................................203  
Interrupts...................................................................201  
IPMI Support.............................................................203  
Master Mode Operation  
Disable...................................................................... 221  
Initialization............................................................... 221  
Listen All Messages.................................................. 221  
Listen Only................................................................ 221  
Loopback .................................................................. 221  
Normal Operation ..................................................... 221  
Modulo Addressing............................................................. 58  
Applicability................................................................. 60  
Operation Example..................................................... 59  
Start and End Address ............................................... 59  
W Address Register Selection.................................... 59  
Motor Control PWM .......................................................... 163  
Motor Control PWM Module  
8-Output Register Map ............................................... 43  
MPLAB ASM30 Assembler, Linker, Librarian................... 280  
MPLAB ICD 2 In-Circuit Debugger ................................... 281  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator.................................................... 281  
MPLAB Integrated Development Environment  
Clock Arbitration................................................204  
Multi-Master Communication, Bus Collision  
and Bus Arbitration ...................................204  
Operating Modes ......................................................201  
Registers...................................................................201  
Slave Address Masking ............................................203  
Slope Control ............................................................204  
Software Controlled Clock Stretching  
(STREN = 1) .....................................................203  
I C Module  
2
I2C1 Register Map ......................................................44  
I2C2 Register Map ......................................................44  
In-Circuit Debugger...........................................................269  
In-Circuit Emulation...........................................................263  
In-Circuit Serial Programming (ICSP) ....................... 263, 269  
Infrared Support  
Built-in IrDA Encoder and Decoder...........................213  
External IrDA, IrDA Clock Output..............................213  
Input Capture  
Software ................................................................... 279  
MPLAB PM3 Device Programmer .................................... 281  
MPLAB REAL ICE In-Circuit Emulator System ................ 281  
MPLINK Object Linker/MPLIB Object Librarian................ 280  
Registers...................................................................158  
Input Change Notification Module.....................................148  
N
NVM Module  
Register Map .............................................................. 56  
DS70287A-page 332  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
PWM Duty Cycle  
O
Comparison Units..................................................... 167  
Open-Drain Configuration ................................................. 148  
Output Compare ............................................................... 159  
Registers................................................................... 162  
Immediate Updates .................................................. 167  
Register Buffers........................................................ 167  
PWM Fault Pins................................................................ 170  
Enable Bits ............................................................... 170  
Fault States .............................................................. 170  
Input Modes.............................................................. 171  
Cycle-by-Cycle ................................................. 171  
P
Packaging ......................................................................... 323  
Details....................................................................... 324  
Marking ..................................................................... 323  
Peripheral Module Disable (PMD) .................................... 146  
PICSTART Plus Development Programmer ..................... 282  
Pinout I/O Descriptions (table)............................................ 15  
POR and Long Oscillator Start-up Times............................ 77  
PORTA  
Register Map............................................................... 54  
PORTB  
Register Map............................................................... 54  
PORTC  
Register Map............................................................... 55  
PORTD  
Register Map............................................................... 55  
PORTE  
Register Map............................................................... 55  
PORTF  
Register Map............................................................... 55  
PORTG  
Latched............................................................. 171  
Priority ...................................................................... 170  
PWM Output and Polarity Control..................................... 170  
Output Pin Control.................................................... 170  
PWM Special Event Trigger.............................................. 171  
Postscaler................................................................. 171  
PWM Time Base............................................................... 165  
Continuous Up/Down Count Modes ......................... 165  
Double Update Mode................................................ 166  
Free-Running Mode.................................................. 165  
Postscaler................................................................. 166  
Prescaler .................................................................. 166  
Single-Shot Mode..................................................... 165  
PWM Update Lockout....................................................... 171  
Q
QEI  
16-bit Up/Down Position Counter Mode ................... 186  
Alternate 16-bit Timer/Counter ................................. 187  
Count Direction Status.............................................. 186  
Error Checking.......................................................... 186  
Interrupts .................................................................. 188  
Logic......................................................................... 186  
Operation During CPU Idle Mode............................. 187  
Operation During CPU Sleep Mode ......................... 187  
Position Measurement Mode.................................... 186  
Programmable Digital Noise Filters.......................... 187  
Timer Operation During CPU Idle Mode................... 188  
Timer Operation During CPU Sleep Mode ............... 187  
Quadrature Encoder Interface (QEI)................................. 185  
Quadrature Encoder Interface (QEI) Module  
Register Map............................................................... 56  
Power-Saving Features .................................................... 145  
Clock Frequency and Switching................................ 145  
Program Address Space..................................................... 29  
Construction................................................................ 62  
Data Access from Program Memory Using  
Program Space Visibility..................................... 65  
Data Access from Program Memory Using Table  
Instructions ......................................................... 64  
Data Access from, Address Generation...................... 63  
Memory Map............................................................... 30  
Table Read Instructions  
TBLRDH ............................................................. 64  
TBLRDL .............................................................. 64  
Visibility Operation ...................................................... 65  
Program Memory  
Interrupt Vector ........................................................... 31  
Organization................................................................ 31  
Reset Vector ............................................................... 31  
Pulse-Width Modulation Mode .......................................... 160  
PWM  
Center-Aligned.......................................................... 167  
Complementary Mode............................................... 168  
Complementary Output Mode................................... 169  
Duty Cycle................................................................. 160  
Edge-Aligned ............................................................ 166  
Independent Output Mode ........................................ 169  
Operation During CPU Idle Mode ............................. 171  
Operation During CPU Sleep Mode.......................... 171  
Output Override ........................................................ 169  
Output Override Synchronization.............................. 170  
Period................................................................ 160, 166  
Single Pulse Mode.................................................... 169  
PWM Dead-Time Generators ........................................... 168  
Assignment ............................................................... 169  
Ranges...................................................................... 169  
Selection Bits (table)................................................. 169  
Register Map .............................................................. 44  
R
Reader Response............................................................. 338  
Registers  
ADxCHS0 (ADCx Input Channel 0 Select ................ 259  
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select)... 258  
ADxCON1 (ADCx Control 1) .................................... 253  
ADxCON2 (ADCx Control 2) .................................... 255  
ADxCON3 (ADCx Control 3) .................................... 256  
ADxCON4 (ADCx Control 4) .................................... 257  
ADxCSSH (ADCx Input Scan Select High) .............. 260  
ADxCSSL (ADCx Input Scan Select Low)................ 260  
ADxPCFGH (ADCx Port Configuration High)........... 261  
ADxPCFGL (ADCx Port Configuration Low) ............ 261  
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer) .......... 236  
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer) .......... 237  
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) ........ 237  
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) ...... 238  
CiCFG1 (ECAN Baud Rate Configuration 1)............ 234  
CiCFG2 (ECAN Baud Rate Configuration 2)............ 235  
CiCTRL1 (ECAN Control 1)...................................... 226  
CiCTRL2 (ECAN Control 2)...................................... 227  
CiEC (ECAN Transmit/Receive Error Count) ........... 233  
CiFCTRL (ECAN FIFO Control) ............................... 229  
CiFEN1 (ECAN Acceptance Filter Enable)............... 236  
© 2007 Microchip Technology Inc.  
DS70287A-page 333  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
CiFIFO (ECAN FIFO Status).....................................230  
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection)......240  
CiINTE (ECAN Interrupt Enable) ..............................232  
CiINTF (ECAN Interrupt Flag)...................................231  
CiRXFnEID (ECAN Acceptance Filter n Extended  
Identifier)...........................................................239  
CiRXFnSID (ECAN Acceptance Filter n Standard  
Identifier)...........................................................239  
CiRXFUL1 (ECAN Receive Buffer Full 1) .................242  
CiRXFUL2 (ECAN Receive Buffer Full 2) .................242  
CiRXMnEID (ECAN Acceptance Filter Mask n  
IPC17 (Interrupt Priority Control 17) ......................... 123  
IPC2 (Interrupt Priority Control 2)............................. 108  
IPC3 (Interrupt Priority Control 3)............................. 109  
IPC4 (Interrupt Priority Control 4)............................. 110  
IPC5 (Interrupt Priority Control 5)............................. 111  
IPC6 (Interrupt Priority Control 6)............................. 112  
IPC7 (Interrupt Priority Control 7)............................. 113  
IPC8 (Interrupt Priority Control 8)............................. 114  
IPC9 (Interrupt Priority Control 9)............................. 115  
NVMCOM (Flash Memory Control)............................. 69  
OCxCON (Output Compare x Control)..................... 162  
OSCCON (Oscillator Control)................................... 140  
OSCTUN (FRC Oscillator Tuning)............................ 143  
OVDCON (Override Control) .................................... 181  
PDC1 (PWM Duty Cycle 1)....................................... 182  
PDC2 (PWM Duty Cycle 2)....................................... 182  
PDC3 (PWM Duty Cycle 3)....................................... 183  
PDC4 (PWM Duty Cycle 4)....................................... 183  
PLLFBD (PLL Feedback Divisor).............................. 142  
PTCON (PWM Time Base Control) .......................... 172  
PTMR (PWM Timer Count Value) ............................ 173  
PTPER (PWM Time Base Period)............................ 173  
PWMCON1 (PWM Control 1) ................................... 175  
PWMCON2 (PWM Control 2) ................................... 176  
QEICON (QEI Control) ............................................. 189  
RCON (Reset Control)................................................ 74  
SEVTCMP (Special Event Compare)....................... 174  
SPIxCON1 (SPIx Control 1)...................................... 198  
SPIxCON2 (SPIx Control 2)...................................... 200  
SPIxSTAT (SPIx Status and Control)....................... 197  
SR (CPU Status)................................................... 20, 84  
T1CON (Timer1 Control) .......................................... 150  
TxCON (T2CON, T4CON, T6CON or T8CON  
Extended Identifier)...........................................241  
CiRXMnSID (ECAN Acceptance Filter Mask n  
Standard Identifier) ...........................................241  
CiRXOVF1 (ECAN Receive Buffer Overflow 1)........243  
CiRXOVF2 (ECAN Receive Buffer Overflow 2)........243  
CiTRBnDLC (ECAN Buffer n Data Length Control) ..246  
CiTRBnDm (ECAN Buffer n Data Field Byte m) .......246  
CiTRBnEID (ECAN Buffer n Extended Identifier) .....245  
CiTRBnSID (ECAN Buffer n Standard Identifier) ......245  
CiTRBnSTAT (ECAN Receive Buffer n Status)........247  
CiTRmnCON (ECAN TX/RX Buffer m Control).........244  
CiVEC (ECAN Interrupt Code)..................................228  
CLKDIV (Clock Divisor).............................................141  
CORCON (Core Control) ...................................... 22, 84  
DFLTCON (QEI Control)...........................................191  
DMACS0 (DMA Controller Status 0).........................133  
DMACS1 (DMA Controller Status 1).........................135  
DMAxCNT (DMA Channel x Transfer Count) ...........132  
DMAxCON (DMA Channel x Control) .......................129  
DMAxPAD (DMA Channel x Peripheral Address).....132  
DMAxREQ (DMA Channel x IRQ Select) .................130  
DMAxSTA (DMA Channel x RAM Start Address A)..131  
DMAxSTB (DMA Channel x RAM Start Address B)..131  
DSADR (Most Recent DMA RAM Address)..............136  
DTCON1 (Dead-Time Control 1) ..............................177  
DTCON2 (Dead-Time Control 2) ..............................178  
FLTACON (Fault A Control)......................................179  
FLTBCON (Fault B Control)......................................180  
I2CxCON (I2Cx Control) ...........................................205  
I2CxMSK (I2Cx Slave Mode Address Mask) ............209  
I2CxSTAT (I2Cx Status) ...........................................207  
ICxCON (Input Capture x Control) ............................158  
IEC0 (Interrupt Enable Control 0) ...............................97  
IEC1 (Interrupt Enable Control 1) ...............................99  
IEC2 (Interrupt Enable Control 2) .............................101  
IEC3 (Interrupt Enable Control 3) .............................103  
IEC4 (Interrupt Enable Control 4) .............................105  
IFS0 (Interrupt Flag Status 0) .....................................88  
IFS1 (Interrupt Flag Status 1) .....................................90  
IFS2 (Interrupt Flag Status 2) .....................................92  
IFS3 (Interrupt Flag Status 3) .....................................94  
IFS4 (Interrupt Flag Status 4) .....................................96  
INTCON1 (Interrupt Control 1)....................................85  
INTCON2 (Interrupt Control 2)....................................87  
INTTREG Interrupt Control and Status Register.......124  
IPC0 (Interrupt Priority Control 0) .............................106  
IPC1 (Interrupt Priority Control 1) .............................107  
IPC10 (Interrupt Priority Control 10) .........................116  
IPC11 (Interrupt Priority Control 11) .........................117  
IPC12 (Interrupt Priority Control 12) .........................118  
IPC13 (Interrupt Priority Control 13) .........................119  
IPC14 (Interrupt Priority Control 14) .........................120  
IPC15 (Interrupt Priority Control 15) .........................121  
IPC16 (Interrupt Priority Control 16) .........................122  
Control)............................................................. 154  
TyCON (T3CON, T5CON, T7CON or T9CON  
Control)............................................................. 155  
UxMODE (UARTx Mode).......................................... 214  
UxSTA (UARTx Status and Control)......................... 216  
Reset  
Clock Source Selection............................................... 76  
Special Function Register Reset States..................... 78  
Times.......................................................................... 76  
Reset Sequence ................................................................. 79  
Resets................................................................................. 73  
S
Serial Peripheral Interface (SPI)....................................... 193  
Setup for Continuous Output Pulse Generation ............... 159  
Setup for Single Output Pulse Generation........................ 159  
Software Simulator (MPLAB SIM) .................................... 280  
Software Stack Pointer, Frame Pointer  
CALLL Stack Frame ................................................... 57  
Special Features of the CPU ............................................ 263  
SPI  
Master, Frame Master Connection ........................... 195  
Master/Slave Connection.......................................... 195  
Slave, Frame Master Connection ............................. 196  
Slave, Frame Slave Connection ............................... 196  
SPI Module  
SPI1 Register Map...................................................... 45  
SPI2 Register Map...................................................... 45  
Symbols Used in Opcode Descriptions ............................ 272  
System Control  
Register Map .............................................................. 56  
DS70287A-page 334  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
T
U
Temperature and Voltage Specifications  
UART  
Baud Rate  
Generator (BRG) .............................................. 212  
AC............................................................................. 291  
Timer1............................................................................... 149  
Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ..................... 151  
Timing Characteristics  
CLKO and I/O ........................................................... 294  
Timing Diagrams  
Break and Sync Transmit Sequence........................ 213  
Flow Control Using UxCTS and UxRTS Pins........... 213  
Receiving in 8-bit or 9-bit Data Mode ....................... 213  
Transmitting in 8-bit Data Mode ............................... 213  
Transmitting in 9-bit Data Mode ............................... 213  
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0,  
ASAM = 0, SSRC = 000) .................................. 320  
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0,  
ASAM = 1, SSRC = 111, SAMC = 00001)........ 321  
12-bit A/D Conversion (ASAM = 0, SSRC = 000)..... 318  
CAN I/O..................................................................... 314  
Center-Aligned PWM ................................................ 167  
Dead-Time ................................................................ 168  
ECAN Bit................................................................... 224  
Edge-Aligned PWM................................................... 166  
External Clock........................................................... 292  
I2Cx Bus Data (Master Mode) .................................. 310  
I2Cx Bus Data (Slave Mode) .................................... 312  
I2Cx Bus Start/Stop Bits (Master Mode)................... 310  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 312  
Input Capture (CAPx)................................................ 300  
Motor Control PWM .................................................. 302  
Motor Control PWM Fault ......................................... 302  
OC/PWM................................................................... 301  
Output Compare (OCx)............................................. 300  
QEA/QEB Input......................................................... 303  
QEI Module Index Pulse ........................................... 304  
Reset, Watchdog Timer, Oscillator Start-up  
UART Module  
UART1 Register Map ................................................. 45  
UART2 Register Map ................................................. 45  
V
Voltage Regulator (On-Chip) ............................................ 267  
W
Watchdog Timer (WDT)............................................ 263, 268  
Programming Considerations................................... 268  
WWW Address ................................................................. 337  
WWW, On-Line Support ..................................................... 11  
Timer and Power-up Timer............................... 295  
SPIx Master Mode (CKE = 0) ................................... 305  
SPIx Master Mode (CKE = 1) ................................... 306  
SPIx Slave Mode (CKE = 0) ..................................... 307  
SPIx Slave Mode (CKE = 1) ..................................... 308  
Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock............... 297  
TimerQ (QEI Module) External Clock ....................... 299  
Timing Requirements  
CLKO and I/O ........................................................... 294  
External Clock........................................................... 292  
Input Capture ............................................................ 300  
Timing Specifications  
10-bit A/D Conversion Requirements ....................... 322  
12-bit A/D Conversion Requirements ....................... 319  
CAN I/O Requirements ............................................. 314  
I2Cx Bus Data Requirements (Master Mode)........... 311  
I2Cx Bus Data Requirements (Slave Mode)............. 313  
Motor Control PWM Requirements........................... 302  
Output Compare Requirements................................ 300  
PLL Clock.................................................................. 293  
QEI External Clock Requirements ............................ 299  
QEI Index Pulse Requirements................................. 304  
Quadrature Decoder Requirements.......................... 303  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset  
Requirements ................................................... 296  
Simple OC/PWM Mode Requirements ..................... 301  
SPIx Master Mode (CKE = 0) Requirements............ 305  
SPIx Master Mode (CKE = 1) Requirements............ 306  
SPIx Slave Mode (CKE = 0) Requirements.............. 307  
SPIx Slave Mode (CKE = 1) Requirements.............. 309  
Timer1 External Clock Requirements ....................... 297  
Timer2, Timer4, Timer6 and Timer8 External  
Clock Requirements ......................................... 298  
Timer3, Timer5, Timer7 and Timer9 External Clock  
Requirements ................................................... 298  
© 2007 Microchip Technology Inc.  
DS70287A-page 335  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
NOTES:  
DS70287A-page 336  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2007 Microchip Technology Inc.  
DS70287A-page 337  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC33FJXXXMCX06/X08/  
DS70287A  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70287A-page 338  
© 2007 Microchip Technology Inc.  
dsPIC33FJXXXMCX06/X08/X10 MOTOR CONTROL FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
a) dsPIC33FJ64MC706I/PT:  
dsPIC 33 FJ 256 MC7 10 T I / PT - XXX  
Motor Control dsPIC33, 64 KB program  
memory, 64-pin, Industrial temp.,  
TQFP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
16-bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory Family: FJ  
Product Group:  
Pin Count:  
MC5  
=
=
Motor Control family  
Motor Control family  
MC7  
06  
08  
10  
=
=
=
64-pin  
80-pin  
100-pin  
Temperature Range:  
Package:  
I
=
-40°C to +85°C (Industrial)  
PT  
PF  
=
=
10x10 or 12x12 mm TQFP (Thin Quad Flat-  
pack)  
14x14 mm TQFP (Thin Quad Flatpack)  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2007 Microchip Technology Inc.  
DS70287A-page 339  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
06/25/07  
DS70175F-page 284  
© 2007 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY