ATSAM3S8BA-MU [MICROCHIP]

IC MCU 32BIT 512KB FLASH 64QFN;
ATSAM3S8BA-MU
型号: ATSAM3S8BA-MU
厂家: MICROCHIP    MICROCHIP
描述:

IC MCU 32BIT 512KB FLASH 64QFN

时钟 微控制器 外围集成电路
文件: 总57页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Core  
– ARM® Cortex®-M3 revision 2.0 running at up to 64 MHz  
– Memory Protection Unit (MPU)  
– Thumb®-2 instruction set  
Pin-to-pin compatible with AT91SAM7S legacy products (64-pin versions), SAM3S4/2/1  
products  
Memories  
– 512 Kbytes Single Plane (SAM3S8) embedded Flash, 128-bit wide access, memory  
accelerator  
– 512 Kbytes Dual Plane (SAM3SD8) embedded Flash, 128-bit wide access, memory  
accelerator  
– 64 Kbytes embedded SRAM  
– 16 Kbytes ROM with embedded boot loader routines (UART, USB) and IAP routines  
– 8-bit Static Memory Controller (SMC): SRAM, PSRAM, NOR and NAND Flash  
support  
AT91SAM  
ARM-based  
Flash MCU  
System  
– Embedded voltage regulator for single supply operation  
– Power-on-Reset (POR), Brown-out Detector (BOD) and Watchdog for safe operation  
– Quartz or ceramic resonator oscillators: 3 to 20 MHz main power with Failure  
Detection and optional low-power 32.768 kHz for RTC or device clock  
– RTC with Gregorian and Persian Calendar mode, waveform generation in low-  
power modes  
– RTC clock calibration circuitry for 32.768 kHz crystal frequency compensation  
– High precision 8/12 MHz factory trimmed internal RC oscillator with 4 MHz default  
frequency for device startup. In-application trimming access for frequency  
adjustment  
SAM3S8/SD8  
Series  
– Slow Clock Internal RC oscillator as permanent low-power mode device clock  
– Two PLLs up to 130 MHz for device clock and for USB  
– Temperature Sensor  
Summary  
– Up to 24 peripheral DMA (PDC) channels  
Low Power Modes  
– Sleep and Backup modes, down to 1 µA in Backup mode  
– Ultra low-power RTC  
Peripherals  
– USB 2.0 Device: 12 Mbps, 2668 byte FIFO, up to 8 bidirectional Endpoints. On-Chip  
Transceiver  
– Up to 3 USARTs with ISO7816, IrDA®, RS-485, SPI, Manchester and Modem Mode  
– Two 2-wire UARTs  
– Up to 2 Two Wire Interface (I2C compatible), 1 SPI, 1 Serial Synchronous Controller  
(I2S), 1 High Speed Multimedia Card Interface (SDIO/SD Card/MMC)  
– 6 Three-Channel 16-bit Timer/Counter with capture, waveform, compare and PWM  
mode. Quadrature Decoder Logic and 2-bit Gray Up/Down Counter for Stepper  
Motor  
– 4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time  
Generator Counter for Motor Control  
– 32-bit Real-time Timer and RTC with calendar and alarm features  
– Up to 15-channel, 1Msps ADC with differential input mode and programmable gain  
stage and auto calibration  
– One 2-channel 12-bit 1Msps DAC  
– One Analog Comparator with flexible input selection, Selectable input hysteresis  
– 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)  
I/O  
– Up to 79 I/O lines with external interrupt capability (edge or level sensitivity),  
debouncing, glitch filtering and on-die Series Resistor Termination  
– Three 32-bit Parallel Input/Output Controllers, Peripheral DMA assisted Parallel  
Capture Mode  
Packages  
– 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball TFBGA, 9 x 9 mm, pitch 0.8 mm  
– 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-pad QFN 9x9 mm, pitch 0.5 mm  
11090BS–ATARM–22-Oct-13  
1. Description  
The Atmel SAM3S8/SD8 series is a member of a family of Flash microcontrollers based on the  
high performance 32-bit ARM Cortex-M3 RISC processor. It operates at a maximum speed of  
64 MHz and features up to 512 Kbytes of Flash (dual plane on SAM3SD8) and up to 64 Kbytes  
of SRAM. The peripheral set includes a Full Speed USB Device port with embedded transceiver,  
a High Speed MCI for SDIO/SD/MMC, an External Bus Interface featuring a Static Memory Con-  
troller providing connection to SRAM, PSRAM, NOR Flash, LCD Module and NAND Flash, 2(3)x  
USARTs, (3 on SAM3SD8C) 2x UARTs, 2x TWIs, 3x SPI, an I2S, as well as 1 PWM timer, 6x  
general-purpose 16-bit timers (with stepper motor and quadrature decoder logic support), an  
RTC, a 12-bit ADC, a 12-bit DAC and an analog comparator.  
The SAM3S8/SD8 series is ready for capacitive touch thanks to the QTouch® library, offering an  
easy way to implement buttons, wheels and sliders.  
The SAM3S8/SD8 device is a medium range general purpose microcontroller with the best ratio  
in terms of reduced power consumption, processing power and peripheral set. This enables the  
SAM3S8/SD8 to sustain a wide range of applications including consumer, industrial control, and  
PC peripherals.  
It operates from 1.62V to 3.6V and is available in 64- and 100-pin QFP, 64-pin QFN, and 100-pin  
BGA packages.  
The SAM3S8/SD8 series is the ideal migration path from the SAM7S series for applications that  
require more performance. The SAM3S8/SD8 series is pin-to-pin compatible with the SAM7S  
series.  
1.1  
Configuration Summary  
The SAM3S8/SD8 series devices differ in memory size, package and features. Table 1-1 sum-  
marizes the configurations of the device family.  
Table 1-1.  
Configuration Summary  
SAM3S8B  
Feature  
SAM3S8C  
512 Kbytes  
64 Kbytes  
SAM3SD8B  
512 Kbytes  
64 Kbytes  
SAM3SD8C  
512 Kbytes  
64 Kbytes  
Flash  
512 Kbytes  
SRAM  
64 Kbytes  
LQFP64  
QFN64  
LQFP100  
BGA100  
LQFP64  
QFN64  
LQFP100  
BGA100  
Package  
Number of PIOs  
12-bit ADC  
47  
79  
47  
79  
11 channels(2)  
16 channels(2)  
11 channels(2)  
16 channels(2)  
12-bit DAC  
2 channels  
2 channels  
2 channels  
2 channels  
Timer Counter  
Channels  
6
6
6
6
PDC Channels  
USART/UART  
HSMCI  
22  
2/2(1)  
22  
2/2(1)  
24  
2/2(1)  
24  
3/2(1)  
1 port/4 bits  
1 port/4 bits  
1 port/4 bits  
1 port/4 bits  
8-bit data,  
4 chip selects,  
24-bit address  
8-bit data,  
4 chip selects,  
24-bit address  
External Bus  
Interface  
-
-
Notes: 1. Full Modem support on USART1.  
2. One channel is reserved for internal temperature sensor.  
2
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
 
SAM3S8/SD8 Summary  
2. Block Diagram  
Figure 2-1. SAM3S8/SD8 100-pin version Block Diagram  
SystemController  
TST  
Voltage  
Regulator  
PCK0-PCK2  
PLLA  
PMC  
JTAG & Serial Wire  
PLLB  
Flash  
Unique  
Identifier  
RC Osc  
12/8/4 MHz  
In-Circuit Emulator  
24-Bit  
SysTick Counter  
N
V
I
XIN  
XOUT  
3-20 MHz  
Osc  
Cortex M-3 Processor  
Fmax 64 MHz  
512 KBytes FLASH  
SRAM  
64 KBytes 16 KBytes  
ROM  
C
SAM3S8 Single Bank  
SAM3SD8 Dual Bank  
SUPC  
MPU  
I/D  
XIN32  
XOUT32  
Osc 32 kHz  
RC 32 kHz  
S
ERASE  
3-layer AHB Bus Matrix Fmax 64 MHz  
8 GPBREG  
VDDIO  
VDDCORE  
VDDPLL  
RTT  
POR  
RTCOUT0  
RTCOUT1  
RTC  
RSTC  
SM  
NRST  
2668 USB 2.0  
Bytes Full  
FIFO Speed  
Peripheral  
Bridge  
DDP  
DDM  
WDT  
PIOA / PIOB / PIOC  
D[7:0]  
A[0:23]  
A21/NANDALE  
A22/NANDCLE  
NCS0  
NCS1  
NCS2  
NCS3  
NRD  
TWCK0  
TWD0  
External Bus  
Interface  
TWI0  
TWI1  
PDC  
PDC  
PDC  
TWCK1  
TWD1  
NAND Flash  
Logic  
URXD0  
UTXD0  
URXD1  
UTXD1  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
UART0  
UART1  
PDC  
Static Memory  
Controller  
NWE  
USART0  
NANDOE  
NANDWE  
NWAIT  
PDC  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
DSR1  
DTR1  
RI1  
PDC  
PIODC[7:0]  
USART1  
USART2  
PIODCEN1  
PIODCEN2  
PIODCCLK  
PIO  
PDC  
DCD1  
RXD2  
TXD2  
SCK2  
RTS2  
CTS2  
NPCS0  
NPCS1  
NPCS2  
NPCS3  
MISO  
PDC  
(SAM3SD8 Only)  
PDC  
SPI  
TCLK[0:2]  
Timer Counter B  
TC[0..2]  
MOSI  
SPCK  
TIOA[0:2]  
TIOB[0:2]  
PDC  
PDC  
TF  
TK  
TD  
RD  
RK  
RF  
SSC  
TCLK[3:5]  
Timer Counter B  
TC[3..5]  
TIOA[3:5]  
TIOB[3:5]  
MCCK  
MCCDA  
MCDA[0..3]  
High Speed MCI  
PWMH[0:3]  
PWML[0:3]  
PWMFI0  
ADTRG  
PWM  
Analog  
Comparator  
ADVREF  
PDC  
ADC Ch.  
Temp. Sensor  
CRC Unit  
AD[0..14]  
12-bit ADC  
12-bit DAC  
PDC  
PDC  
ADVREF  
DAC0  
DAC1  
DATRG  
3
11090BS–ATARM–22-Oct-13  
Figure 2-2. SAM3S8/SD8 64-pin version Block Diagram  
SystemController  
TST  
Voltage  
Regulator  
PCK0-PCK2  
PLLA  
PMC  
JTAG & Serial Wire  
PLLB  
Flash  
Unique  
Identifier  
RC Osc  
12/8/4 MHz  
In-Circuit Emulator  
24-Bit  
SysTick Counter  
N
V
I
XIN  
XOUT  
3-20 MHz  
Osc  
Cortex M-3 Processor  
Fmax 64 MHz  
512 KBytes FLASH  
SRAM  
64 KBytes 16 KBytes  
ROM  
C
SAM3S8 Single Bank  
SAM3SD8 Dual Bank  
SUPC  
MPU  
I/D  
XIN32  
XOUT32  
Osc 32 kHz  
RC 32 kHz  
S
ERASE  
3-layer AHB Bus Matrix Fmax 64 MHz  
8 GPBREG  
VDDIO  
VDDCORE  
VDDPLL  
RTT  
POR  
RTCOUT0  
RTCOUT1  
RTC  
RSTC  
SM  
NRST  
2668 USB 2.0  
Bytes Full  
FIFO Speed  
Peripheral  
Bridge  
DDP  
DDM  
WDT  
PIOA / PIOB  
TWCK0  
TWD0  
TWI0  
TWI1  
PDC  
PDC  
PDC  
TWCK1  
TWD1  
URXD0  
UTXD0  
UART0  
UART1  
PDC  
PIODC[7:0]  
PIODCEN1  
PIODCEN2  
PIODCCLK  
URXD1  
UTXD1  
PIO  
PDC  
PDC  
RXD0  
TXD0  
SCK0  
RTS0  
CTS0  
USART0  
USART1  
NPCS0  
NPCS1  
NPCS2  
NPCS3  
MISO  
PDC  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
DSR1  
DTR1  
RI1  
SPI  
MOSI  
SPCK  
PDC  
DCD1  
PDC  
PDC  
TF  
TK  
TD  
RD  
RK  
RF  
TCLK[0:2]  
TIOA[0:2]  
Timer Counter A  
TC[0..2]  
SSC  
TIOB[0:2]  
PWMH[0:3]  
MCCK  
PWM  
PWML[0:3]  
PWMFI0  
MCCDA  
MCDA[0..3]  
High Speed MCI  
PDC  
ADTRG  
Temp. Sensor  
AD[0..14]  
Analog  
Comparator  
ADVREF  
12-bit ADC  
PDC  
PDC  
ADC Ch.  
ADVREF  
DAC0  
DAC1  
DATRG  
12-bit DAC  
CRC Unit  
4
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
3. Signal Description  
Table 3-1 gives details on signal names classified by peripheral.  
Table 3-1.  
Signal Description List  
Active  
Level  
Voltage  
reference Comments  
Signal Name  
Function  
Type  
Power Supplies  
Peripherals I/O Lines and USB transceiver  
Power Supply  
VDDIO  
VDDIN  
Power  
Power  
1.62V to 3.6V  
1.8V to 3.6V(4)  
Voltage Regulator Input, ADC, DAC and  
Analog Comparator Power Supply  
VDDOUT  
VDDPLL  
Voltage Regulator Output  
Power  
Power  
1.8V Output  
Oscillator and PLL Power Supply  
1.62 V to 1.95V  
1.62V to 1.95V  
Power the core, the embedded memories  
and the peripherals  
VDDCORE  
GND  
Power  
Ground  
Ground  
Clocks, Oscillators and PLLs  
XIN  
Main Oscillator Input  
Input  
Output  
Input  
Reset State:  
- PIO Input  
XOUT  
XIN32  
XOUT32  
Main Oscillator Output  
- Internal Pull-up disabled  
- Schmitt Trigger enabled(1)  
Slow Clock Oscillator Input  
Slow Clock Oscillator Output  
Output  
VDDIO  
Reset State:  
- PIO Input  
PCK0 - PCK2  
Programmable Clock Output  
Output  
- Internal Pull-up enabled  
- Schmitt Trigger enabled(1)  
Real Time Clock  
RTCOUT0  
RTCOUT1  
Programmable RTC waveform output  
Output  
Reset State:  
- PIO Input  
VDDIO  
- Internal Pull-up disabled  
- Schmitt Trigger enabled(1)  
Programmable RTC waveform output  
Output  
Serial Wire/JTAG Debug Port - SWJ-DP  
TCK/SWCLK  
TDI  
Test Clock/Serial Wire Clock  
Input  
Input  
Reset State:  
Test Data In  
- SWJ-DP Mode  
- Internal pull-up disabled(5)  
- Schmitt Trigger enabled(1)  
Test Data Out / Trace Asynchronous Data  
Out  
TDO/TRACESWO  
TMS/SWDIO  
JTAGSEL  
Output  
VDDIO  
Test Mode Select /Serial Wire Input/Output Input / I/O  
JTAG Selection Input  
Permanent Internal  
pull-down  
High  
5
11090BS–ATARM–22-Oct-13  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
reference Comments  
Signal Name  
Function  
Type  
Flash Memory  
Reset State:  
- Erase Input  
VDDIO  
Flash and NVM Configuration Bits Erase  
Command  
ERASE  
Input  
High  
Low  
- Internal pull-down enabled  
- Schmitt Trigger enabled(1)  
Reset/Test  
Permanent Internal  
pull-up  
NRST  
TST  
Synchronous Microcontroller Reset  
Test Select  
I/O  
VDDIO  
Permanent Internal  
pull-down  
Input  
Universal Asynchronous Receiver Transceiver - UARTx  
URXDx  
UTXDx  
UART Receive Data  
Input  
UART Transmit Data  
Output  
PIO Controller - PIOA - PIOB - PIOC  
PA0 - PA31  
PB0 - PB14  
Parallel IO Controller A  
Parallel IO Controller B  
I/O  
I/O  
Reset State:  
- PIO or System IOs(2)  
- Internal pull-up enabled  
- Schmitt Trigger enabled(1)  
VDDIO  
VDDIO  
PC0 - PC31  
Parallel IO Controller C  
I/O  
PIO Controller - Parallel Capture Mode  
PIODC0-PIODC7  
PIODCCLK  
Parallel Capture Mode Data  
Parallel Capture Mode Clock  
Parallel Capture Mode Enable  
Input  
Input  
PIODCEN1-2  
Input  
External Bus Interface  
D0 - D7  
A0 - A23  
NWAIT  
Data Bus  
I/O  
Address Bus  
Output  
Input  
External Wait Signal  
Low  
Static Memory Controller - SMC  
NCS0 - NCS3  
NRD  
Chip Select Lines  
Read Signal  
Output  
Output  
Low  
Low  
Low  
NWE  
Write Enable  
Output  
NAND Flash Logic  
Output  
NANDOE  
NANDWE  
NAND Flash Output Enable  
NAND Flash Write Enable  
Low  
Low  
Output  
High Speed Multimedia Card Interface - HSMCI  
MCCK  
Multimedia Card Clock  
I/O  
I/O  
I/O  
MCCDA  
Multimedia Card Slot A Command  
Multimedia Card Slot A Data  
MCDA0 - MCDA3  
6
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
reference Comments  
Signal Name  
Function  
Type  
Universal Synchronous Asynchronous Receiver Transmitter USARTx  
SCKx  
TXDx  
RXDx  
RTSx  
CTSx  
DTR1  
DSR1  
DCD1  
RI1  
USARTx Serial Clock  
I/O  
I/O  
USARTx Transmit Data  
USARTx Receive Data  
Input  
Output  
Input  
I/O  
USARTx Request To Send  
USARTx Clear To Send  
USART1 Data Terminal Ready  
USART1 Data Set Ready  
USART1 Data Carrier Detect  
USART1 Ring Indicator  
Input  
Output  
Input  
Synchronous Serial Controller - SSC  
TD  
RD  
TK  
RK  
TF  
RF  
SSC Transmit Data  
SSC Receive Data  
SSC Transmit Clock  
SSC Receive Clock  
Output  
Input  
I/O  
I/O  
SSC Transmit Frame Sync  
SSC Receive Frame Sync  
I/O  
I/O  
Timer/Counter - TC  
TCLKx  
TIOAx  
TIOBx  
TC Channel x External Clock Input  
TC Channel x I/O Line A  
Input  
I/O  
TC Channel x I/O Line B  
I/O  
Pulse Width Modulation Controller- PWMC  
PWMHx  
PWMLx  
PWMFI0  
PWM Waveform Output High for channel x  
Output  
Output  
Input  
only output in  
complementary mode  
when dead time insertion  
is enabled.  
PWM Waveform Output Low for channel x  
PWM Fault Input  
Serial Peripheral Interface - SPI  
MISO  
Master In Slave Out  
Master Out Slave In  
SPI Serial Clock  
I/O  
I/O  
I/O  
MOSI  
SPCK  
SPI_NPCS0  
SPI Peripheral Chip Select 0  
SPI Peripheral Chip Select  
I/O  
Low  
Low  
SPI_NPCS1 -  
SPI_NPCS3  
Output  
7
11090BS–ATARM–22-Oct-13  
Table 3-1.  
Signal Description List (Continued)  
Active  
Level  
Voltage  
reference Comments  
Signal Name  
Function  
Type  
Two-Wire Interface- TWI  
TWDx  
TWIx Two-wire Serial Data  
TWIx Two-wire Serial Clock  
I/O  
I/O  
TWCKx  
Analog  
ADC, DAC and Analog Comparator  
Reference  
ADVREF  
Analog  
12-bit Analog-to-Digital Converter - ADC  
Analog,  
Digital  
AD0-AD14  
ADTRG  
Analog Inputs  
ADC Trigger  
Input  
VDDIO  
12-bit Digital-to-Analog Converter - DAC  
Analog,  
Digital  
DAC0 - DAC1  
DACTRG  
Analog output  
DAC Trigger  
Input  
VDDIO  
VDDIO  
Fast Flash Programming Interface - FFPI  
PGMEN0-  
PGMEN2  
Programming Enabling  
Input  
PGMM0-PGMM3  
PGMD0-PGMD15  
PGMRDY  
Programming Mode  
Programming Data  
Programming Ready  
Data Direction  
Input  
I/O  
Output  
High  
Low  
Low  
PGMNVALID  
PGMNOE  
Output  
VDDIO  
Programming Read  
Programming Clock  
Programming Command  
Input  
Input  
PGMCK  
PGMNCMD  
Input  
Low  
USB Full Speed Device  
DDM  
DDP  
USB Full Speed Data -  
USB Full Speed Data +  
Reset State:  
Analog,  
Digital  
VDDIO  
- USB Mode  
- Internal Pull-down(3)  
Note:  
1. Schmitt Triggers can be disabled through PIO registers.  
2. Some PIO lines are shared with System I/Os.  
3. Refer to USB Section of the product Electrical Characteristics for information on Pull-down value in USB Mode.  
4. See “Typical Powering Schematics” Section for restrictions on voltage range of Analog Cells.  
5. TDO pin is set in input mode when the Cortex-M3 Core is not in debug mode. Thus the internal pull-up corresponding to this  
PIO line must be enabled to avoid current consumption due to floating input.  
8
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
4. Package and Pinout  
SAM3S8/SD8 devices are pin-to-pin compatible with AT91SAM7S legacy products for 64-pin  
version. Furthermore, SAM3S8/SD8 products have new functionalities referenced in italic in  
Table 4-1, Table 4-3.  
4.1  
SAM3S8C/8DC Package and Pinout  
4.1.1  
100-Lead LQFP Package Outline  
Figure 4-1. Orientation of the 100-lead LQFP Package  
75  
51  
76  
50  
100  
26  
1
25  
4.1.2  
100-ball TFBGA Package Outline  
The 100-Ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Its  
dimensions are 9 x 9 x 1.1 mm. Figure 4-2 shows the orientation of the 100-ball TFBGA  
Package.  
Figure 4-2. Orientation of the 100-ball TFBGA Package  
TOP VIEW  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
BALL A1  
9
11090BS–ATARM–22-Oct-13  
4.1.3  
100-Lead LQFP Pinout  
Table 4-1.  
SAM3S8C/SD8C 100-lead LQFP pinout  
TDO/TRACESWO/  
PB5  
1
ADVREF  
26  
GND  
51  
TDI/PB4  
76  
2
3
GND  
PB0/AD4  
PC29/AD13  
PB1/AD5  
PC30/AD14  
PB2/AD6  
PC31  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VDDIO  
PA16/PGMD4  
PC7  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
PA6/PGMNOE  
PA5/PGMRDY  
PC28  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
JTAGSEL  
PC18  
4
TMS/SWDIO/PB6  
PC19  
5
PA15/PGMD3  
PA14/PGMD2  
PC6  
PA4/PGMNCMD  
VDDCORE  
PA27/PGMD15  
PC8  
6
PA31  
7
PC20  
8
PA13/PGMD1  
PA24/PGMD12  
PC5  
TCK/SWCLK/PB7  
PC21  
9
PB3/AD7  
VDDIN  
PA28  
10  
11  
NRST  
VDDCORE  
PC22  
VDDOUT  
VDDCORE  
PC4  
TST  
12  
13  
14  
15  
16  
17  
18  
19  
PA17/PGMD5/AD0  
PC26  
PC9  
ERASE/PB12  
DDM/PB10  
DDP/PB11  
PC23  
PA25/PGMD13  
PA26/PGMD14  
PC3  
PA29  
PA18/PGMD6/AD1  
PA21/PGMD9/AD8  
VDDCORE  
PA30  
PC10  
PA12/PGMD0  
PA11/PGMM3  
PC2  
PA3  
VDDIO  
PC27  
PA2/PGMEN2  
PC11  
PC24  
PA19/PGMD7/AD2  
PC15/AD11  
PB13/DAC0  
PC25  
PA10/PGMM2  
VDDIO  
PA22/PGMD10/AD  
9
20  
45  
GND  
70  
GND  
95  
GND  
21  
22  
PC13/AD10  
46  
47  
PA9/PGMM1  
PC1  
71  
72  
PC14  
96  
97  
PB8/XOUT  
PA23/PGMD11  
PA1/PGMEN1  
PB9/PGMCK/XIN  
PA8/XOUT32/  
PGMM0  
23  
PC12/AD12  
48  
73  
PC16  
98  
VDDIO  
PA7/XIN32/  
24  
25  
PA20/PGMD8/AD3  
PC0  
49  
50  
74  
75  
PA0/PGMEN0  
PC17  
99  
PB14/DAC1  
VDDPLL  
PGMNVALID  
VDDIO  
100  
10  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
4.1.4  
100-Ball TFBGA Pinout  
Table 4-2.  
SAM3S8C/SD8C 100-ball TFBGA pinout  
A1  
A2  
A3  
PB1/AD5  
PC29  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
TCK/SWCLK/PB7  
PC16  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
F10  
G1  
G2  
G3  
G4  
G5  
PA18/PGMD6/AD1  
PC26  
H6  
H7  
H8  
H9  
H10  
J1  
PC4  
PA11/PGMM3  
PC1  
VDDIO  
PA1/PGMEN1  
PC17  
VDDOUT  
GND  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
B2  
B3  
B4  
B5  
PB9/PGMCK/XIN  
PB8/XOUT  
PB13/DAC0  
DDP/PB11  
DDM/PB10  
TMS/SWDIO/PB6  
JTAGSEL  
PA6/PGMNOE  
TDI/PB4  
PA0/PGMEN0  
PB3/AD7  
PB0/AD4  
PC24  
VDDIO  
PA27/PGMD15  
PC8  
PC15/AD11  
PC0  
J2  
PA28  
J3  
PA16/PGMD4  
PC6  
PC22  
TST  
J4  
GND  
PC9  
J5  
PA24/PGMD12  
PA25/PGMD13  
PA10/PGMM2  
GND  
PC30  
GND  
PA21/PGMD9/AD8  
PC27  
J6  
ADVREF  
VDDCORE  
PA2/PGMEN2  
PC11  
J7  
GNDANA  
PA15/PGMD3  
VDDCORE  
VDDCORE  
J8  
PB14/DAC1  
PC21  
J9  
VDDCORE  
VDDIO  
PC14  
J10  
PA17/PGMD5/AD  
0
PA22/PGMD10/AD  
9
B6  
PC20  
E1  
G6  
PA26/PGMD14  
K1  
B7  
B8  
B9  
PA31  
PC19  
PC18  
E2  
E3  
E4  
PC31  
VDDIN  
GND  
G7  
G8  
G9  
PA12/PGMD0  
PC28  
K2  
K3  
K4  
PC13/AD10  
PC12/AD12  
PA4/PGMNCMD  
PA20/PGMD8/AD3  
TDO/TRACESWO/  
PB5  
B10  
E5  
GND  
G10  
PA5/PGMRDY  
K5  
PC5  
C1  
C2  
C3  
PB2/AD6  
VDDPLL  
PC25  
E6  
E7  
E8  
NRST  
H1  
H2  
H3  
PA19/PGMD7/AD2  
PA23/PGMD11  
PC7  
K6  
K7  
K8  
PC3  
PC2  
PA29/AD13  
PA30/AD14  
PA9/PGMM1  
PA8/XOUT32/PGM  
M0  
C4  
C5  
PC23  
E9  
PC10  
PA3  
H4  
H5  
PA14/PGMD2  
PA13/PGMD1  
K9  
PA7/XIN32/  
PGMNVALID  
ERASE/PB12  
E10  
K10  
11  
11090BS–ATARM–22-Oct-13  
4.2  
SAM3S8B/D8B Package and Pinout  
4.2.1  
64-Lead LQFP Package Outline  
Figure 4-3. Orientation of the 64-lead LQFP Package  
33  
48  
49  
32  
17  
64  
16  
1
4.2.2  
64-lead QFN Package Outline  
Figure 4-4. Orientation of the 64-lead QFN Package  
64  
1
49  
48  
16  
33  
32  
17  
TOP VIEW  
12  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
4.2.3  
64-Lead LQFP and QFN Pinout  
Table 4-3.  
64-pin SAM3S8B/D8B pinout  
TDO/TRACESWO/  
1
ADVREF  
17  
GND  
33  
TDI/PB4  
49  
PB5  
2
3
4
5
6
7
8
GND  
18  
19  
20  
21  
22  
23  
24  
VDDIO  
34  
35  
36  
37  
38  
39  
40  
PA6/PGMNOE  
PA5/PGMRDY  
PA4/PGMNCMD  
PA27/PGMD15  
PA28  
50  
51  
52  
53  
54  
55  
56  
JTAGSEL  
PB0/AD4  
PB1/AD5  
PB2/AD6  
PB3/AD7  
VDDIN  
PA16/PGMD4  
PA15/PGMD3  
PA14/PGMD2  
PA13/PGMD1  
PA24/PGMD12  
VDDCORE  
TMS/SWDIO/PB6  
PA31  
TCK/SWCLK/PB7  
VDDCORE  
ERASE/PB12  
DDM/PB10  
NRST  
VDDOUT  
TST  
PA17/PGMD5/  
9
25  
26  
PA25/PGMD13  
PA26/PGMD14  
41  
42  
PA29  
PA30  
57  
58  
DDP/PB11  
VDDIO  
AD0  
PA18/PGMD6/  
AD1  
10  
PA21/PGMD9/  
AD8  
11  
12  
13  
27  
28  
29  
PA12/PGMD0  
PA11/PGMM3  
PA10/PGMM2  
43  
44  
45  
PA3  
59  
60  
61  
PB13/DAC0  
GND  
VDDCORE  
PA2/PGMEN2  
VDDIO  
PA19/PGMD7/  
AD2  
XOUT/PB8  
PA22/PGMD10/  
AD9  
14  
15  
16  
30  
31  
32  
PA9/PGMM1  
46  
47  
48  
GND  
62  
63  
64  
XIN/PGMCK/PB9  
PB14/DAC1  
VDDPLL  
PA8/XOUT32/  
PA23/PGMD11  
PA1/PGMEN1  
PA0/PGMEN0  
PGMM0  
PA20/PGMD8/  
AD3  
PA7/XIN32/  
PGMNVALID  
Note:  
The bottom pad of the QFN package must be connected to ground.  
13  
11090BS–ATARM–22-Oct-13  
5. Power Considerations  
5.1  
Power Supplies  
The SAM3S8/SD8 has several types of power supply pins:  
• VDDCORE pins: Power the core, the embedded memories and the peripherals. Voltage  
ranges from 1.62V to 1.95V.  
• VDDIO pins: Power the Peripherals I/O lines (Input/Output Buffers), USB transceiver, Backup  
part, 32 kHz crystal oscillator and oscillator pads. Voltage ranges from 1.62V to 3.6V.  
• VDDIN pin: Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply.  
Voltage ranges from 1.8V to 3.6V.  
• VDDPLL pin: Powers the PLLA, PLLB, the Fast RC and the 3 to 20 MHz oscillator. Voltage  
ranges from 1.62V to 1.95V.  
5.2  
Voltage Regulator  
The SAM3S8/SD8 embeds a voltage regulator that is managed by the Supply Controller.  
This internal regulator is designed to supply the internal core of SAM3S8/SD8. It features two  
operating modes:  
• In Normal mode, the voltage regulator consumes less than 700 µA static current and draws  
80 mA of output current. Internal adaptive biasing adjusts the regulator quiescent current  
depending on the required load current. In Wait Mode quiescent current is only 7 µA.  
• In Backup mode, the voltage regulator consumes less than 1 µA while its output (VDDOUT)  
is driven internally to GND. The default output voltage is 1.80V and the start-up time to reach  
Normal mode is less than 100 µs.  
For adequate input and output power supply decoupling/bypassing, refer to the “Voltage Regula-  
tor” section in the “Electrical Characteristics” section of the datasheet.  
5.3  
Typical Powering Schematics  
The SAM3S8/SD8 supports a 1.62V-3.6V single supply mode. The internal regulator input con-  
nected to the source and its output feeds VDDCORE. Figure 5-1 below shows the power  
schematics.  
As VDDIN powers the voltage regulator, the ADC, DAC and the analog comparator, when the  
user does not want to use the embedded voltage regulator, it can be disabled by software via  
the SUPC (note that this is different from Backup mode).  
14  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
Figure 5-1. Single Supply  
VDDIO  
USB  
Transceivers.  
Main Supply  
(1.8V-3.6V)  
ADC, DAC  
Analog Comp.  
VDDIN  
VDDOUT  
Voltage  
Regulator  
VDDCORE  
VDDPLL  
Note:  
Restrictions  
With Main Supply < 2.0 V, USB and ADC/DAC and Analog comparator are not usable.  
With Main Supply 2.0V and < 3V, USB is not usable.  
With Main Supply 3V, all peripherals are usable.  
Figure 5-2. Core Externally Supplied  
Main Supply  
(1.62V-3.6V)  
VDDIO  
VDDIN  
USB  
Transceivers.  
Can be the  
same supply  
ADC, DAC  
Analog Comp.  
ADC, DAC, Analog  
Comparator Supply  
(2.0V-3.6V)  
VDDOUT  
Voltage  
Regulator  
VDDCORE  
VDDCORE Supply  
(1.62V-1.95V)  
VDDPLL  
Note:  
Restrictions  
With Main Supply < 2.0V, USB is not usable.  
With VDDIN < 2.0V, ADC, DAC and Analog comparator are not usable.  
With Main Supply 2.0V and < 3V, USB is not usable.  
With Main Supply and VDDIN 3V, all peripherals are usable.  
Figure 5-3 below provides an example of the powering scheme when using a backup battery.  
Since the PIO state is preserved when in backup mode, any free PIO line can be used to switch  
off the external regulator by driving the PIO line at low level (PIO is input, pull-up enabled after  
backup reset). External wake-up of the system can be from a push button or any signal. See  
Section 5.6 “Wake-up Sources” for further details.  
15  
11090BS–ATARM–22-Oct-13  
Figure 5-3. Backup Battery  
ADC, DAC, Analog  
Comparator Supply  
(2.0V-3.6V)  
VDDIO  
USB  
Transceivers.  
Backup  
Battery  
+
-
ADC, DAC  
Analog Comp.  
VDDIN  
Main Supply  
VDDOUT  
IN  
OUT  
Voltage  
Regulator  
3.3V  
LDO  
VDDCORE  
VDDPLL  
ON/OFF  
PIOx (Output)  
WAKEUPx  
External wakeup signal  
Note: The two diodes provide a “switchover circuit” (for illustration purpose)  
between the backup battery and the main supply when the system is put in  
backup mode.  
5.4  
Active Mode  
Active mode is the normal running mode with the core clock running from the fast RC oscillator,  
the main crystal oscillator or the PLLA. The power management controller can be used to adapt  
the frequency and to disable the peripheral clocks.  
5.5  
Low-power Modes  
The various low-power modes of the SAM3S8/SD8 are described below:  
5.5.1  
Backup Mode  
The purpose of backup mode is to achieve the lowest power consumption possible in a system  
which is performing periodic wake-ups to perform tasks but not requiring fast startup time  
(<0.1ms). Total current consumption is 1.5 µA typical.  
The Supply Controller, zero-power power-on reset, RTT, RTC, Backup registers and 32 kHz  
oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The  
regulator and the core supply are off.  
Backup mode is based on the Cortex-M3 deep sleep mode with the voltage regulator disabled.  
The SAM3S8/SD8 can be awakened from this mode through WUP0-15 pins, the supply monitor  
(SM), the RTT or RTC wake-up event.  
Backup mode is entered by using WFE instructions with the SLEEPDEEP bit in the Cortex-M3  
System Control Register set to 1. (See the Power management description in The ARM Cortex-  
M3 Processor section of the product datasheet).  
Exit from Backup mode happens if one of the following enable wake up events occurs:  
• WKUPEN0-15 pins (level transition, configurable debouncing)  
16  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
• Supply Monitor alarm  
• RTC alarm  
• RTT alarm  
5.5.2  
Wait Mode  
The purpose of the wait mode is to achieve very low power consumption while maintaining the  
whole device in a powered state for a startup time of less than 10 µs. Current Consumption in  
Wait mode is typically 15 µA (total current consumption) if the internal voltage regulator is used  
or 8 µA if an external regulator is used.  
In this mode, the clocks of the core, peripherals and memories are stopped. However, the core,  
peripherals and memories power supplies are still powered. From this mode, a fast start up is  
available.  
This mode is entered via Wait for Event (WFE) instructions with LPM = 1 (Low Power Mode bit in  
PMC_FSMR). The Cortex-M3 is able to handle external events or internal events in order to  
wake-up the core (WFE). This is done by configuring the external lines WUP0-15 as fast startup  
wake-up pins (refer to Section 5.7 “Fast Startup”). RTC or RTT Alarm and USB wake-up events  
can be used to wake up the CPU (exit from WFE).  
Entering Wait Mode:  
• Select the 4/8/12 MHz fast RC oscillator as Main Clock  
• Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)  
• Execute the Wait-For-Event (WFE) instruction of the processor  
Note:  
Internal Main clock resynchronization cycles are necessary between the writing of MOSCRCEN  
bit and the effective entry in Wait mode. Depending on the user application, waiting for  
MOSCRCEN bit to be cleared is recommended to ensure that the core will not execute undesired  
instructions.  
5.5.3  
Sleep Mode  
The purpose of sleep mode is to optimize power consumption of the device versus response  
time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The  
current consumption in this mode is application dependent.  
This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with  
LPM = 0 in PMC_FSMR.  
The processor can be awakened from an interrupt if WFI instruction of the Cortex M3 is used, or  
from an event if the WFE instruction is used to enter this mode.  
17  
11090BS–ATARM–22-Oct-13  
5.5.4  
Low Power Mode Summary Table  
The modes detailed above are the main low-power modes. Each part can be set to on or off sep-  
arately and wake up sources can be individually configured. Table 5-1 below shows a summary  
of the configurations of the low-power modes.  
Table 5-1.  
Low-power Mode Configuration Summary  
SUPC,  
32 kHz  
Oscillator,  
RTC, RTT  
Backup  
Registers,  
POR  
Core  
PIO State  
Memory  
(Backup  
Region)  
Potential Wake Up Core at while in Low PIO State Consumption Wake-up  
(2) (3)  
Mode  
Regulator Peripherals Mode Entry  
Sources  
Wake Up Power Mode at Wake Up  
Time(1)  
PIOA &  
PIOB &  
PIOC  
Inputs with  
pull ups  
WUP0-15 pins  
SM alarm  
RTC alarm  
RTT alarm  
WFE  
OFF  
Backup  
Mode  
Previous  
state saved  
ON  
ON  
OFF  
Reset  
1.5 µA typ(4) < 0.1 ms  
+SLEEPDEEP  
(Not powered)  
bit = 1  
Any Event from: Fast  
startup through  
WFE  
Powered  
Wait  
Mode  
+SLEEPDEEP WUP0-15 pins  
Clocked Previous  
back state saved  
ON  
Unchanged 5 µA/15 µA (5) < 10 µs  
bit = 0  
RTC alarm  
RTT alarm  
USB wake-up  
(Not clocked)  
+LPM bit = 1  
Entry mode =WFI  
Interrupt Only; Entry  
mode =WFE Any  
Enabled Interrupt  
and/or Any Event  
from: Fast start-up  
through WUP0-15  
pins  
WFE or WFI  
Powered(7)  
Sleep  
Mode  
+SLEEPDEEP  
bit = 0  
Clocked Previous  
back state saved  
(6)  
(6)  
ON  
ON  
Unchanged  
(Not clocked)  
+LPM bit = 0  
RTC alarm  
RTT alarm  
USB wake-up  
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works  
with the 4/8/12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up  
time is defined as the time taken for wake up until the first instruction is fetched.  
2. The external loads on PIOs are not taken into account in the calculation.  
3. Supply Monitor current consumption is not included.  
4. Total Current consumption.  
5. 5 µA on VDDCORE, 15 µA for total current consumption (using internal voltage regulator), 8 µA for total current consumption  
(without using internal voltage regulator).  
6. Depends on MCK frequency.  
7. In this mode the core is supplied and not clocked but some peripherals can be clocked.  
18  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
5.6  
Wake-up Sources  
The wake-up events allow the device to exit the backup mode. When a wake-up event is  
detected, the Supply Controller performs a sequence which automatically reenables the core  
power supply and the SRAM power supply, if they are not already enabled.  
Figure 5-4. Wake-up Source  
SMEN  
sm_out  
RTCEN  
RTTEN  
rtc_alarm  
Core  
Supply  
Restart  
rtt_alarm  
WKUPT0  
WKUPEN0  
WKUPEN1  
WKUPIS0  
WKUPIS1  
Falling/Rising  
Edge  
Detector  
WKUP0  
WKUP1  
WKUPDBC  
Debouncer  
SLCK  
WKUPS  
WKUPT1  
Falling/Rising  
Edge  
Detector  
WKUPT15  
WKUPEN15  
WKUPIS15  
Falling/Rising  
Edge  
WKUP15  
Detector  
19  
11090BS–ATARM–22-Oct-13  
5.7  
Fast Startup  
The SAM3S8/SD8 allows the processor to restart in a few microseconds while the processor is  
in wait mode or in sleep mode. A fast start up can occur upon detection of a low level on one of  
the 19 wake-up inputs (WKUP0 to 15 + SM + RTC + RTT).  
The fast restart circuitry, as shown in Figure 5-5, is fully asynchronous and provides a fast start-  
up signal to the Power Management Controller. As soon as the fast start-up signal is asserted,  
the PMC automatically restarts the embedded 4 MHz Fast RC oscillator, switches the master  
clock on this 4MHz clock and reenables the processor clock.  
Figure 5-5. Fast Start-Up Sources  
USBEN  
usb_wakeup  
RTCEN  
rtc_alarm  
RTTEN  
rtt_alarm  
FSTT0  
Falling/Rising  
Edge  
Detector  
WKUP0  
fast_restart  
FSTT1  
Falling/Rising  
Edge  
Detector  
WKUP1  
FSTT15  
Falling/Rising  
Edge  
WKUP15  
Detector  
20  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
6. Input/Output Lines  
The SAM3S8/SD8 has several kinds of input/output (I/O) lines such as general purpose I/Os  
(GPIO) and system I/Os. GPIOs can have alternate functionality due to multiplexing capabilities  
of the PIO controllers. The same PIO line can be used whether in I/O mode or by the multiplexed  
peripheral. System I/Os include pins such as test pins, oscillators, erase or analog inputs.  
6.1  
General Purpose I/O Lines  
GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such  
as pull-up or pull-down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing  
or input change interrupt. Programming of these modes is performed independently for each I/O  
line through the PIO controller user interface. For more details, refer to the product “PIO Control-  
ler” section.  
The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.  
The SAM3S8/SD8 embeds high speed pads able to handle up to 32 MHz for HSMCI (MCK/2),  
45 MHz for SPI clock lines and 35 MHz on other lines. See AC Characteristics Section of the  
datasheet for more details. Typical pull-up and pull-down value is 100 kΩ for all I/Os.  
Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). It consists of  
an internal series resistor termination scheme for impedance matching between the driver out-  
put (SAM3S8/SD8) and the PCB trace impedance preventing signal reflection. The series  
resistor helps to reduce IOs switching current (di/dt) thereby reducing in turn, EMI. It also  
decreases overshoot and undershoot (ringing) due to inductance of interconnect between  
devices or between boards. In conclusion ODT helps diminish signal integrity issues.  
Figure 6-1. On-Die Termination  
Z0 ~ Zout + Rodt  
ODT  
36 Ohms Typ.  
Rodt  
Receiver  
SAM3 Driver with  
PCB Trace  
Zout ~ 10 Ohms  
Z0 ~ 50 Ohms  
6.2  
System I/O Lines  
System I/O lines are pins used by oscillators, test mode, reset and JTAG to name but a few.  
Described below in Table 6-1are the SAM3S8/SD8 system I/O lines shared with PIO lines.  
These pins are software configurable as general purpose I/O or system pins. At startup the  
default function of these pins is always used.  
21  
11090BS–ATARM–22-Oct-13  
Table 6-1.  
System I/O Configuration Pin List.  
SYSTEM_IO  
bit number  
Default function  
after reset  
Constraints for  
normal start  
Other function  
PB12  
Configuration  
12  
10  
11  
7
ERASE  
DDM  
Low Level at startup(1)  
PB10  
-
-
-
-
-
-
-
-
-
-
In Matrix User Interface Registers  
DDP  
PB11  
(Refer to the System I/O  
Configuration Register in the “Bus  
Matrix” section of the datasheet.)  
TCK/SWCLK  
TMS/SWDIO  
TDO/TRACESWO  
TDI  
PB7  
6
PB6  
5
PB5  
4
PB4  
-
PA7  
XIN32  
XOUT32  
XIN  
See footnote (2) below  
See footnote (3) below  
-
PA8  
-
PB9  
-
PB8  
XOUT  
Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before the  
user application sets PB12 into PIO mode,  
2. In the product Datasheet Refer to: “Slow Clock Generator” of the “Supply Controller” section.  
3. In the product Datasheet Refer to: “3 to 20 MHZ Crystal Oscillator” information in the “PMC” section.  
6.2.1  
Serial Wire JTAG Debug Port (SWJ-DP) Pins  
The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on  
a standard 20-pin JTAG connector defined by ARM. For more details about voltage reference  
and reset state, refer to Table 3-1 on page 5.  
At startup, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging  
probe. Please refer to the “Debug and Test” Section of the product datasheet.  
SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins  
when the debug port is not needed in the end application. Mode selection between SWJ-DP  
mode (System IO mode) and general IO mode is performed through the AHB Matrix Special  
Function Registers (MATRIX_SFR). Configuration of the pad for pull-up, triggers, debouncing  
and glitch filters is possible regardless of the mode.  
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It  
integrates a permanent pull-down resistor of about 15 kΩ to GND, so that it can be left uncon-  
nected for normal operations.  
By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial  
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and  
TCK/SWCLK which disables the JTAG-DP and enables the SW-DP. When the Serial Wire  
Debug Port is active, TDO/TRACESWO can be used for trace.  
The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous  
trace can only be used with SW-DP, not JTAG-DP. For more information about SW-DP and  
JTAG-DP switching, please refer to the “Debug and Test” Section.  
22  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
6.3  
6.4  
Test Pin  
The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming  
mode of the SAM3S8/SD8 series. The TST pin integrates a permanent pull-down resistor of  
about 15 kΩ to GND, so that it can be left unconnected for normal operations. To enter fast pro-  
gramming mode, see the Fast Flash Programming Interface (FFPI) section. For more on the  
manufacturing and test mode, refer to the “Debug and Test” section of the product datasheet.  
NRST Pin  
The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low  
to provide a reset signal to the external components or asserted low externally to reset the  
microcontroller. It will reset the Core and the peripherals except the Backup region (RTC, RTT  
and Supply Controller). There is no constraint on the length of the reset pulse and the reset con-  
troller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up  
resistor to VDDIO of about 100 kΩ. By default, the NRST pin is configured as an input.  
6.5  
ERASE Pin  
The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased  
state (all bits read as logic level 1). It integrates a pull-down resistor of about 100 kΩ to GND, so  
that it can be left unconnected for normal operations.  
This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high  
during less than 100 ms, it is not taken into account. The pin must be tied high during more than  
220 ms to perform a Flash erase operation.  
The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE  
pin is not configured as a PIO pin. If the ERASE pin is used as a standard I/O, startup level of  
this pin must be low to prevent unwanted erasing. Refer to Section 10.17 “Peripheral Signal Mul-  
tiplexing on I/O Lines” on page 40. Also, if the ERASE pin is used as a standard I/O output,  
asserting the pin to low does not erase the Flash.  
23  
11090BS–ATARM–22-Oct-13  
7. Processor and Architecture  
7.1  
ARM Cortex-M3 Processor  
• Version 2.0  
• Thumb-2 (ISA) subset consisting of all base Thumb-2 instructions, 16-bit and 32-bit.  
• Harvard processor architecture enabling simultaneous instruction fetch with data load/store.  
• Three-stage pipeline.  
• Single cycle 32-bit multiply.  
• Hardware divide.  
• Thumb and Debug states.  
• Handler and Thread modes.  
• Low latency ISR entry and exit.  
7.2  
7.3  
APB/AHB bridge  
The SAM3S8/SD8 embeds One Peripheral bridge:  
The peripherals of the bridge are clocked by MCK.  
Matrix Masters  
The Bus Matrix of the SAM3S8/SD8 manages 4 masters, which means that each master can  
perform an access concurrently with others, to an available slave.  
Each master has its own decoder, which is defined specifically for each master. In order to sim-  
plify the addressing, all the masters have the same decodings.  
Table 7-1.  
List of Bus Matrix Masters  
Master 0  
Master 1  
Master 2  
Master 3  
Cortex-M3 Instruction/Data  
Cortex-M3 System  
Peripheral DMA Controller (PDC)  
CRC Calculation Unit  
7.4  
Matrix Slaves  
The Bus Matrix of the SAM3S8/SD8 manages 5 slaves. Each slave has its own arbiter, allowing  
a different arbitration per slave.  
Table 7-2.  
Slave 0  
Slave 1  
Slave 2  
Slave 3  
Slave 4  
List of Bus Matrix Slaves  
Internal SRAM  
Internal ROM  
Internal Flash  
External Bus Interface  
Peripheral Bridge  
24  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
7.5  
Master to Slave Access  
All the Masters can normally access all the Slaves. However, some paths do not make sense,  
for example allowing access from the Cortex-M3 S Bus to the Internal ROM. Thus, these paths  
are forbidden or simply not wired, and shown as “-” in the following table.  
Table 7-3.  
SAM3S8_SD8 Master to Slave Access  
Masters  
0
1
2
3
Cortex-M3 I/D  
Bus  
Cortex-M3 S  
Bus  
Slaves  
PDC  
CRCCU  
0
1
2
3
4
Internal SRAM  
Internal ROM  
Internal Flash  
-
X
X
-
X
-
X
X
-
X
X
X
X
-
-
External Bus Interface  
Peripheral Bridge  
X
X
X
X
-
7.6  
Peripheral DMA Controller  
• Handles data transfer between peripherals and memories  
• Low bus arbitration overhead  
– One Master Clock cycle needed for a transfer from memory to peripheral  
– Two Master Clock cycles needed for a transfer from peripheral to memory  
• Next Pointer management for reducing interrupt latency requirement  
The Peripheral DMA Controller handles transfer requests from the channel according to the fol-  
lowing priorities (Low to High priorities):  
Table 7-4.  
Peripheral DMA Controller  
Instance name  
USART2  
USART2  
PWM  
Channel T/R  
Transmit  
Receive  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
Transmit  
TWI1  
TWI0  
UART1  
UART0  
USART1  
USART0  
DACC  
SPI  
25  
11090BS–ATARM–22-Oct-13  
Table 7-4.  
Peripheral DMA Controller  
Instance name  
SSC  
Channel T/R  
Transmit  
Transmit  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
Receive  
HSMCI  
PIOA  
TWI1  
TWI0  
UART1  
UART0  
USART1  
USART0  
ADC  
SPI  
SSC  
HSMCI  
7.7  
Debug and Test Features  
• Debug access to all memory and registers in the system, including Cortex-M3 register bank  
when the core is running, halted, or held in reset.  
• Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access  
• Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches  
• Data Watchpoint and Trace (DWT) unit for implementing watch points, data tracing, and  
system profiling  
• Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
• IEEE®1149.1 JTAG Boundary scan on All Digital Pins  
26  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
8. Product Mapping  
Figure 8-1. SAM3S8/SD8 Product Mapping  
Address memory space  
Code  
Peripherals  
Code  
0x40000000  
0x00000000  
0x00000000  
0x00400000  
0x00800000  
0x00C00000  
0x1FFFFFFF  
HSMCI  
SSC  
Boot Memory  
18  
22  
21  
0x40004000  
0x40008000  
0x4000C000  
0x40010000  
+0x40  
1 MByte  
bit band  
regiion  
Internal Flash  
Internal ROM  
Reserved  
0x20000000  
0x20100000  
SRAM  
SPI  
0x22000000  
Reserved  
TC0  
Undefined  
TC0  
TC0  
TC0  
TC1  
TC1  
TC1  
0x24000000  
0x40000000  
32 MBytes  
bit band alias  
23  
24  
25  
26  
27  
28  
19  
20  
31  
14  
15  
16  
TC1  
+0x80  
Peripherals  
TC2  
External RAM  
0x60000000  
0x61000000  
0x60000000  
0xA0000000  
0x40014000  
+0x40  
TC3  
SMC Chip Select 0  
SMC Chip Select 1  
SMC Chip Select 2  
External SRAM  
TC4  
0x62000000  
0x63000000  
0x64000000  
+0x80  
Reserved  
System  
TC5  
0x40018000  
0x4001C000  
0x40020000  
0x40024000  
0x40028000  
0x4002C000  
0x40030000  
0x40034000  
0x40038000  
0x4003C000  
0x40040000  
0x40044000  
0x40048000  
0x400E0000  
0xE0000000  
0xFFFFFFFF  
SMC Chip Select 3  
Reserved  
TWI0  
0x9FFFFFFF  
TWI1  
1 MByte  
bit band  
regiion  
System Controller  
PWM  
0x400E0000  
0x400E0200  
0x400E0400  
0x400E0600  
0x400E0740  
0x400E0800  
0x400E0A00  
0x400E0C00  
0x400E0E00  
0x400E1000  
0x400E1200  
0x400E1400  
SMC  
USART0  
USART1  
USART2  
Reserved  
UDP  
10  
MATRIX  
offset  
block  
peripheral  
ID  
PMC  
5
UART0  
8
CHIPID  
33  
29  
30  
34  
35  
UART1  
ADC  
9
EFC  
DACC  
ACC  
6
Reserved  
PIOA  
CRCCU  
Reserved  
11  
PIOB  
12  
PIOC  
System Controller  
Reserved  
13  
0x400E2600  
0x40100000  
RSTC  
1
+0x10  
+0x30  
+0x50  
+0x60  
+0x90  
SUPC  
Reserved  
0x40200000  
0x40400000  
RTT  
32 MBytes  
bit band alias  
3
WDT  
Reserved  
4
0x60000000  
RTC  
2
GPBR  
0x400E1600  
0x4007FFFF  
Reserved  
27  
11090BS–ATARM–22-Oct-13  
9. Memories  
9.1  
Embedded Memories  
9.1.1  
Internal SRAM  
The SAM3S8 device (512-Kbytes, single bank flash) embeds a total of 64-Kbytes high-speed  
SRAM.  
The SAM3SD8 device (512-Kbytes, dual bank flash) embeds a total of 64-Kbytes high-speed  
SRAM.  
The SRAM is accessible over System Cortex-M3 bus at address 0x2000 0000.  
The SRAM is in the bit band region. The bit band alias region is from 0x2200 0000 and  
0x23FF FFFF.  
9.1.2  
Internal ROM  
The SAM3S8/SD8 embeds an Internal ROM, which contains the SAM Boot Assistant  
(SAM-BA®), In Application Programming routines (IAP) and Fast Flash Programming Interface  
(FFPI).  
At any time, the ROM is mapped at address 0x0080 0000.  
9.1.3  
Embedded Flash  
9.1.3.1  
Flash Overview  
The Flash of the SAM3S8 (512-Kbytes single bank flash) is organized in one bank of 2048  
pages of 256 bytes.  
The Flash of the SAM3SD8 (512-Kbytes, dual bank flash) is organized in two banks of 1024  
pages of 256 bytes each.  
The Flash contains a 128-byte write buffer, accessible through a 32-bit interface.  
9.1.3.2  
9.1.3.3  
Flash Power Supply  
The Flash is supplied by VDDCORE.  
Enhanced Embedded Flash Controller  
The Enhanced Embedded Flash Controller (EEFC) manages accesses performed by the mas-  
ters of the system. It enables reading the Flash and writing the write buffer. It also contains a  
User Interface, mapped on the APB.  
The Enhanced Embedded Flash Controller ensures the interface of the Flash block with the 32-  
bit internal bus. Its 128-bit wide memory interface increases performance.  
The user can choose between high performance or lower current consumption by selecting  
either 128-bit or 64-bit access. It also manages the programming, erasing, locking and unlocking  
sequences of the Flash using a full set of commands.  
One of the commands returns the embedded Flash descriptor definition that informs the system  
about the Flash organization, thus making the software generic.  
28  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
9.1.3.4  
9.1.3.5  
Flash Speed  
Lock Regions  
The user needs to set the number of wait states depending on the frequency used:  
For more details, refer to the “AC Characteristics” sub-section of the product “Electrical  
Characteristics”.  
Several lock bits are used to protect write and erase operations on lock regions. A lock region is  
composed of several consecutive pages, and each lock region has its associated lock bit.  
Table 9-1.  
Lock bit number  
Product  
SAM3S8/SD8  
Number of lock bits  
Lock region size  
16  
32 kbytes (128 pages)  
If a locked-region’s erase or program command occurs, the command is aborted and the EEFC  
triggers an interrupt.  
The lock bits are software programmable through the EEFC User Interface. The command “Set  
Lock Bit” enables the protection. The command “Clear Lock Bit” unlocks the lock region.  
Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.  
9.1.3.6  
Security Bit Feature  
The SAM3S8/SD8 features a security bit, based on a specific General Purpose NVM bit  
(GPNVM bit 0). When the security is enabled, any access to the Flash, SRAM, Core Registers  
and Internal Peripherals either through the ICE interface or through the Fast Flash Programming  
Interface, is forbidden. This ensures the confidentiality of the code programmed in the Flash.  
This security bit can only be enabled, through the command “Set General Purpose NVM Bit 0” of  
the EEFC User Interface. Disabling the security bit can only be achieved by asserting the  
ERASE pin at 1, and after a full Flash erase is performed. When the security bit is deactivated,  
all accesses to the Flash, SRAM, Core registers, Internal Peripherals are permitted.  
It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.  
As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal  
operation. However, it is safer to connect it directly to GND for the final application.  
9.1.3.7  
Calibration Bits  
NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are  
factory configured and cannot be changed by the user. The ERASE pin has no effect on the cal-  
ibration bits.  
9.1.3.8  
9.1.3.9  
Unique Identifier  
Each device integrates its own 128-bit unique identifier. These bits are factory configured and  
cannot be changed by the user. The ERASE pin has no effect on the unique identifier.  
Fast Flash Programming Interface  
The Fast Flash Programming Interface allows programming the device through either a serial  
JTAG interface or through a multiplexed fully-handshaked parallel port. It allows gang program-  
ming with market-standard industrial programmers.  
29  
11090BS–ATARM–22-Oct-13  
The FFPI supports read, page program, page erase, full erase, lock, unlock and protect  
commands.  
9.1.3.10  
SAM-BA Boot  
The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the  
on-chip Flash memory.  
The SAM-BA Boot Assistant supports serial communication via the UART and USB.  
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).  
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is  
set to 0.  
9.1.3.11  
GPNVM Bits  
The SAM3S8 features two GPNVM bits, whereas SAM3SD8 features three GPNVM bits. These  
bits can be cleared or set respectively through the commands “Clear GPNVM Bit” and “Set  
GPNVM Bit” of the EEFC User Interface.  
The Flash of the SAM3S8 is composed of 512 Kbytes in a single bank, while the SAM3SD8  
Flash is composed of dual banks, each containing 256 Kbytes. The dual-bank function enables  
programming one bank while the other one is read (typically while the application code is run-  
ning). Only one EEFC (Flash controller) controls the two banks. Note that it is not possible to  
program simultaneously, or read simultaneously, the dual banks of the Flash.  
The first bank of 256 Kbytes is called Bank 0 and the second bank of 256 Kbytes, Bank 1.  
The SAM3SD8 embeds an additional GPNVM bit: GPNVM2.  
Table 9-2.  
General-purpose Non volatile Memory Bits  
GPNVMBit[#]  
Function  
0
1
2
Security bit  
Boot mode selection  
Bank selection (Bank 0 or Bank 1) Only on SAM3SD8  
9.1.4  
Boot Strategies  
The system always boots at address 0x0. To ensure maximum boot possibilities, the memory  
layout can be changed via GPNVM.  
A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the  
Flash.  
The GPNVM bit can be cleared or set respectively through the commands “Clear General-pur-  
pose NVM Bit” and “Set General-purpose NVM Bit” of the EEFC User Interface.  
Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM.  
Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.  
Setting the GPNVM Bit 2 selects bank 1, clearing it selects the boot from bank 0. Asserting  
ERASE clears the GPNVM Bit 2 and thus selects the boot from bank 0 by default.  
30  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
9.2  
External Memories  
The SAM3S8/SD8 features one External Bus Interface to provide an interface to a wide range of  
external memories and to any parallel peripheral.  
9.2.1  
Static Memory Controller  
• 16-Mbyte Address Space per Chip Select  
• 8- bit Data Bus  
• Word, Halfword, Byte Transfers  
• Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select  
• Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select  
• Programmable Data Float Time per Chip Select  
• External Wait Request  
• Automatic Switch to Slow Clock Mode  
• Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes  
• NAND Flash additional logic supporting NAND Flash with Multiplexed Data/Address buses  
• Hardware Configurable number of chip selects from 1 to 4  
• Programmable timing on a per chip select basis  
10. System Controller  
The System Controller is a set of peripherals, which allow handling of key elements of the sys-  
tem, such as power, resets, clocks, time, interrupts, watchdog, etc...  
See the system controller block diagram in Figure 10-1 on page 32.  
31  
11090BS–ATARM–22-Oct-13  
Figure 10-1. System Controller Block Diagram  
VDDIO  
VDDOUT  
vr_on  
vr_mode  
Software Controlled  
Voltage Regulator  
VDDIN  
VDDIO  
Supply  
Zero-Power  
Power-on Reset  
Controller  
PIOA/B/C  
Input/Output Buffers  
PIOx  
ON  
Supply  
Monitor  
(Backup)  
out  
Analog  
Comparator  
WKUP0 - WKUP15  
ADx  
General Purpose  
Backup Registers  
ADC Analog  
Circuitry  
ADVREF  
DACx  
rtc_nreset  
DAC Analog  
Circuitry  
SLCK  
SLCK  
RTC  
rtc_alarm  
VDDIO  
rtt_nreset  
rtt_alarm  
RTT  
DDP  
DDM  
USB  
Transeivers  
osc32k_xtal_en  
XTALSEL  
vddcore_nreset  
XIN32  
Xtal 32 kHz  
Slow Clock  
SLCK  
bod_core_on  
Brownout  
Detector  
(Core)  
Oscillator  
XOUT32  
lcore_brown_out  
VDDCORE  
Embedded  
32 kHz RC  
Oscillator  
osc32k_rc_en  
SRAM  
vddcore_nreset  
Backup Power Supply  
Peripherals  
proc_nreset  
periph_nreset  
ice_nreset  
Reset  
Controller  
Matrix  
Peripheral  
Bridge  
NRST  
Cortex-M3  
Flash  
FSTT0 - FSTT15  
SLCK  
Main Clock  
Embedded  
12 / 8 / 4 MHz  
RC  
Oscillator  
MAINCK  
Power  
Management  
Controller  
Master Clock  
MCK  
XIN  
3 - 20 MHz  
XTAL Oscillator  
XOUT  
PLLACK  
PLLBCK  
MAINCK  
MAINCK  
PLLA  
PLLB  
Watchdog  
Timer  
SLCK  
VDDIO  
Core Power Supply  
FSTT0 - FSTT15 are possible Fast Startup sources, generated by WKUP0 - WKUP15 pins,  
but are not physical pins.  
32  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
10.1 System Controller and Peripherals Mapping  
Please refer to Section 8-1 “SAM3S8/SD8 Product Mapping” on page 27.  
All the peripherals are in the bit band region and are mapped in the bit band alias region.  
10.2 Power-on-Reset, Brownout and Supply Monitor  
The SAM3S8/SD8 embeds three features to monitor, warn and/or reset the chip:  
• Power-on-Reset on VDDIO  
• Brownout Detector on VDDCORE  
• Supply Monitor on VDDIO  
10.2.1  
10.2.2  
Power-on-Reset  
The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but  
also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For  
more information, refer to the Electrical Characteristics section of the datasheet.  
Brownout Detector on VDDCORE  
The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by soft-  
ware through the Supply Controller (SUPC_MR). It is especially recommended to disable it  
during low-power modes such as wait or sleep modes.  
If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more infor-  
mation, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the  
datasheet.  
10.2.3  
Supply Monitor on VDDIO  
The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software  
and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled  
by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply mon-  
itor power consumption by a factor of up to 2048. For more information, refer to the SUPC and  
Electrical Characteristics sections of the datasheet.  
10.3 Reset Controller  
The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.  
The Reset Controller is capable to return to the software the source of the last reset, either a  
general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.  
The Reset Controller controls the internal resets of the system and the NRST pin input/output. It  
is capable to shape a reset signal for the external devices, simplifying to a minimum connection  
of a push-button on the NRST pin to implement a manual reset.  
The configuration of the Reset Controller is saved as supplied on VDDIO.  
10.4 Supply Controller (SUPC)  
The Supply Controller controls the power supplies of each section of the processor and the  
peripherals (via Voltage regulator control)  
The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock  
generator.  
33  
11090BS–ATARM–22-Oct-13  
The reset circuitry is based on a zero-power power-on reset cell and a brownout detector cell.  
The zero-power power-on reset allows the Supply Controller to start properly, while the soft-  
ware-programmable brownout detector allows detection of either a battery discharge or main  
voltage loss.  
The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC  
oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal  
oscillator and select it as the Slow Clock source.  
The Supply Controller starts up the device by sequentially enabling the internal power switches  
and the Voltage Regulator, then it generates the proper reset signals to the core power supply.  
It also enables to set the system in different low-power modes and to wake it up from a wide  
range of events.  
10.5 Clock Generator  
The Clock Generator is made up of:  
• One Low-power 32768Hz Slow Clock Oscillator with bypass mode  
• One Low-power RC Oscillator  
• One 3-20 MHz Crystal Oscillator, which can be bypassed  
• One Fast RC Oscillator, factory programmed. Three output frequencies can be selected: 4, 8  
or 12 MHz. By default 4 MHz is selected.  
• One 60 to 130 MHz PLL (PLLB) providing a clock for the USB Full Speed Controller  
• One 60 to 130 MHz programmable PLL (PLLA), provides the clock, MCK to the processor  
and peripherals. The PLLA input frequency is from 3.5 MHz to 20 MHz.  
34  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
Figure 10-2. Clock Generator Block Diagram  
Clock Generator  
XTALSEL  
On Chip  
32k RC OSC  
Slow Clock  
SLCK  
XIN32  
Slow Clock  
Oscillator  
XOUT32  
XIN  
12M Main  
Oscillator  
Main Clock  
MAINCK  
XOUT  
On Chip  
12/8/4 MHz  
RC OSC  
MAINSEL  
PLLB Clock  
PLLBCK  
PLL and  
Divider B  
PLL and  
Divider A  
PLLA Clock  
PLLACK  
Status  
Power  
Control  
Management  
Controller  
10.6 Power Management Controller  
The Power Management Controller provides all the clock signals to the system. It provides:  
• the Processor Clock, HCLK  
• the Free running processor clock, FCLK  
• the Cortex SysTick external clock  
• the Master Clock, MCK, in particular to the Matrix and the memory interfaces  
• the USB Clock, UDPCK  
• independent peripheral clocks, typically at the frequency of MCK  
• three programmable clock outputs: PCK0, PCK1 and PCK2  
The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The  
unused oscillator is disabled automatically so that power consumption is optimized.  
By default, at startup the chip runs out of the Master Clock using the fast RC oscillator running at  
4 MHz.  
The user can trim the 8 and 12 MHz RC Oscillator frequency by software.  
35  
11090BS–ATARM–22-Oct-13  
Figure 10-3. Power Management Controller Block Diagram  
Processor  
Clock  
Controller  
HCK  
int  
Sleep Mode  
Divider  
/8  
SystTick  
FCLK  
Master Clock Controller  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
Prescaler  
/1,/2,/4,...,/64  
MCK  
Peripherals  
Clock Controller  
periph_clk[..]  
ON/OFF  
Programmable Clock Controller  
SLCK  
MAINCK  
PLLACK  
PLLBCK  
ON/OFF  
Prescaler  
/1,/2,/4,...,/64  
pck[..]  
USB Clock Controller  
ON/OFF  
PLLBCK  
UDPCK  
The SysTick calibration value is fixed at 8000, which allows the generation of a time base of 1  
ms with SysTick clock at 8 MHz (max HCLK/8 = 64 MHz/8)  
10.7 Watchdog Timer  
• 16-bit key-protected only-once Programmable Counter  
• Windowed, prevents the processor to be in a deadlock on the watchdog access  
10.8 SysTick Timer  
• 24-bit down counter  
• Self-reload capability  
• Flexible System timer  
36  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
10.9 Real-Time Timer  
10.10 Real Time Clock  
• Real-Time Timer, allowing backup of time with different accuracies  
– 32-bit Free-running backup Counter  
– Integrates a 16-bit programmable prescaler running on slow clock  
– Alarm Register capable to generate a wake-up of the system through the Shut Down  
Controller  
• Low power consumption  
• Full asynchronous design  
• Two hundred year Gregorian and Persian calendar  
• Programmable Periodic Interrupt  
• Trimmable 32.7682 kHz crystal oscillator clock source  
• Alarm and update parallel load  
• Control of alarm and update Time/Calendar Data In  
• Waveform output capability on GPIO pins in low power modes  
10.11 General-Purpose Backed-up Registers  
• Eight 32-bit backup general-purpose registers  
10.12 Nested Vectored Interrupt Controller  
• Thirty maskable external interrupts  
• Sixteen priority levels  
• Processor state automatically saved on interrupt entry, and restored on  
• Dynamic reprioritizing of interrupts  
• Priority grouping.  
– selection of pre-empting interrupt levels and non pre-empting interrupt levels.  
• Support for tail-chaining and late arrival of interrupts.  
– back-to-back interrupt processing without the overhead of state saving and  
restoration between interrupts.  
• Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no  
instruction overhead.  
37  
11090BS–ATARM–22-Oct-13  
10.13 Chip Identification  
• Chip Identifier (CHIPID) registers permit recognition of the device and its revision.  
Table 10-1. SAM3S8/SD8 Hip IDs Register  
Flash Size  
Chip Name  
(KBytes)  
Pin Count  
CHIPID_CIDR  
0x289B0A60  
0x28AB0A60  
0x299B0A60  
0x29AB0A60  
CHIPID_EXID  
SAM3S8B (Rev A)  
512  
64  
100  
64  
0x0  
0x0  
0x0  
0x0  
SAM3S8C (Rev A)  
512  
SAM3SD8B (Rev A)  
SAM3SD8C (Rev A)  
• JTAG ID: 0x05B2D03F  
512  
512  
100  
10.14 UART  
• Two-pin UART  
– Implemented features are 100% compatible with the standard Atmel USART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
10.15 PIO Controllers  
• 3 PIO Controllers, PIOA, PIOB and PIOC (100-pin version only) controlling a maximum of 79  
I/O Lines  
• Each PIO Controller controls up to 32 programmable I/O Lines  
• Fully programmable through Set/Clear Registers  
Table 10-2. PIO available according to pin count  
Version  
PIOA  
64 pin  
100 pin  
32  
32  
15  
-
PIOB  
15  
PIOC  
32  
• Multiplexing of four peripheral functions per I/O Line  
• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)  
– Input change interrupt  
– Programmable Glitch filter  
– Programmable debouncing filter  
– Multi-drive option enables driving in open drain  
– Programmable pull-up on each I/O line  
– Pin data status register, supplies visibility of the level on the pin at any time  
– Additional interrupt modes on a programmable event: rising edge, falling edge, low  
level or high level  
38  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
– Lock of the configuration by the connected peripheral  
• Synchronous output, provides set and clear of several I/O lines in a single write  
• Write Protect Registers  
• Programmable Schmitt trigger inputs  
• Parallel capture mode  
– Can be used to interface a CMOS digital image sensor, an ADC....  
– One clock, 8-bit parallel data and two data enable on I/O lines  
– Data can be sampled one time out of two (for chrominance sampling only)  
– Supports connection of one Peripheral DMA Controller channel (PDC) which offers  
buffer reception without processor intervention  
10.16 Peripheral Identifiers  
Table 10-3 defines the Peripheral Identifiers of the SAM3S8/SD8. A peripheral identifier is  
required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller  
and control of the peripheral clock with the Power Management Controller.  
Table 10-3. Peripheral Identifiers  
PMC  
Instance ID  
Instance Name  
SUPC  
RSTC  
RTC  
NVIC Interrupt  
Clock Control  
Instance Description  
Supply Controller  
0
1
X
X
X
X
X
X
X
-
Reset Controller  
2
Real Time Clock  
3
RTT  
Real Time Timer  
4
WDT  
Watchdog Timer  
5
PMC  
Power Management Controller  
Enhanced Embedded Flash Controller  
Reserved  
6
EEFC  
-
7
8
UART0  
UART1  
SMC  
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
-
UART 0  
9
UART 1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Static Memory Controller  
Parallel I/O Controller A  
Parallel I/O Controller B  
Parallel I/O Controller C  
USART 0  
PIOA  
PIOB  
PIOC  
USART0  
USART1  
USART2  
-
USART 1  
USART 2 (SAM3SD8 100 pins only)  
Reserved  
HSMCI  
TWI0  
X
X
X
X
X
X
X
X
Multimedia Card Interface  
Two Wire Interface 0  
Two Wire Interface 1  
Serial Peripheral Interface  
TWI1  
SPI  
39  
11090BS–ATARM–22-Oct-13  
Table 10-3. Peripheral Identifiers (Continued)  
PMC  
Instance ID  
Instance Name  
SSC  
NVIC Interrupt  
Clock Control  
Instance Description  
Synchronous Serial Controller  
Timer/Counter 0  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
TC0  
TC1  
Timer/Counter 1  
TC2  
Timer/Counter 2  
TC3  
Timer/Counter 3  
TC4  
Timer/Counter 4  
TC5  
Timer/Counter 5  
ADC  
Analog To Digital Converter  
Digital To Analog Converter  
Pulse Width Modulation  
CRC Calculation Unit  
Analog Comparator  
USB Device Port  
DACC  
PWM  
CRCCU  
ACC  
UDP  
10.17 Peripheral Signal Multiplexing on I/O Lines  
The SAM3S8/SD8 features 2 PIO controllers on 64-pin versions (PIOA and PIOB) or 3 PIO con-  
trollers on the 100-pin version (PIOA, PIOB and PIOC), that multiplex the I/O lines of the  
peripheral set.  
The SAM3S8/SD8 64-pin and 100-pin PIO Controllers control up to 32 lines. Each line can be  
assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following  
paragraphs define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO  
Controllers. The column “Comments” has been inserted in this table for the user’s own com-  
ments; it may be used to track how pins are defined in an application.  
Note that some peripheral functions which are output only, might be duplicated within the tables.  
40  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
10.17.1 PIO Controller A Multiplexing  
Table 10-4. Multiplexing on PIO Controller A (PIOA)  
I/O Line Peripheral A Peripheral B Peripheral C Peripheral D Extra Function System Function  
Comments  
PA0  
PA1  
PWMH0  
PWMH1  
PWMH2  
TWD0  
TWCK0  
RXD0  
TXD0  
RTS0  
CTS0  
URXD0  
UTXD0  
NPCS0  
MISO  
MOSI  
SPCK  
TF  
TIOA0  
TIOB0  
A17  
A18  
WKUP0  
WKUP1  
WKUP2  
PA2  
SCK0  
DATRG  
PA3  
NPCS3  
TCLK0  
NPCS3  
PCK0  
PA4  
WKUP3  
WKUP4  
PA5  
PA6  
PA7  
PWMH3  
ADTRG  
NPCS1  
NPCS2  
PWMH0  
PWMH1  
PWMH2  
PWMH3  
TIOA1  
XIN32  
PA8  
WKUP5  
WKUP6  
XOUT32  
PA9  
PWMFI0  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
PA16  
PA17  
PA18  
PA19  
PA20  
PA21  
PA22  
PA23  
PA24  
PA25  
PA26  
PA27  
PA28  
PA29  
PA30  
PA31  
WKUP7  
WKUP8  
WKUP14  
WKUP15  
AD0  
PWML3  
PWML2  
PWMH3  
A14  
PIODCEN1  
PIODCEN2  
TK  
TIOB1  
TD  
PCK1  
RD  
PCK2  
AD1  
RK  
PWML0  
PWML1  
PCK1  
A15  
AD2/WKUP9  
AD3/WKUP10  
AD8  
RF  
A16  
RXD1  
TXD1  
SCK1  
RTS1  
CTS1  
DCD1  
DTR1  
DSR1  
RI1  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
64/100 pins versions  
NPCS3  
PWMH0  
PWMH1  
PWMH2  
TIOA2  
NCS2  
A19  
AD9  
PIODCCLK  
PIODC0  
PIODC1  
PIODC2  
PIODC3  
PIODC4  
PIODC5  
PIODC6  
PIODC7  
A20  
A23  
MCDA2  
MCDA3  
MCCDA  
MCCK  
MCDA0  
MCDA1  
TIOB2  
TCLK1  
TCLK2  
NPCS2  
PCK2  
PWML2  
NPCS1  
WKUP11  
41  
11090BS–ATARM–22-Oct-13  
10.17.2 PIO Controller B Multiplexing  
Table 10-5. Multiplexing on PIO Controller B (PIOB)  
I/O  
Line  
Peripheral A  
PWMH0  
PWMH1  
URXD1  
Peripheral B  
Peripheral C  
Extra Function  
AD4/RTCOUT0  
AD5/RTCOUT1  
AD6/WKUP12  
AD7  
System Function  
Comments  
PB0  
PB1  
PB2  
NPCS2  
PCK2  
PB3  
UTXD1  
PB4  
TWD1  
PWMH2  
PWML0  
TDI  
TDO/TRACESWO  
TMS/SWDIO  
TCK/SWCLK  
XOUT  
PB5  
TWCK1  
WKUP13  
PB6  
PB7  
PB8  
PB9  
XIN  
PB10  
PB11  
PB12  
PB13  
PB14  
DDM  
DDP  
PWML1  
PWML2  
NPCS1  
ERASE  
PCK0  
DAC0  
DAC1  
64/00 pins versions  
64/100 pins versions  
PWMH3  
42  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
10.17.3 PIO Controller C Multiplexing  
Table 10-6. Multiplexing on PIO Controller C (PIOC)  
Extra  
System  
I/O Line  
PC0  
Peripheral A  
Peripheral B  
PWML0  
PWML1  
PWML2  
PWML3  
NPCS1  
Peripheral C  
Function  
Function  
Comments  
D0  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
100 pin version  
PC1  
D1  
PC2  
D2  
PC3  
D3  
PC4  
D4  
PC5  
D5  
PC6  
D6  
PC7  
D7  
PC8  
NWE  
PC9  
NANDOE  
RXD2(1)  
TXD2(1)  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PC16  
PC17  
PC18  
PC19  
PC20  
PC21  
PC22  
PC23  
PC24  
PC25  
PC26  
PC27  
PC28  
PC29  
PC30  
PC31  
NANDWE  
NRD  
NCS3  
AD12  
AD10  
NWAIT  
PWML0  
SCK2(1)  
PWML1  
RTS2(1)  
CTS2(1)  
PWMH0  
PWMH1  
PWMH2  
PWMH3  
PWML3  
TIOA3  
NCS0  
NCS1  
AD11  
A21/NANDALE  
A22/NANDCLE  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
TIOB3  
A7  
TCLK3  
TIOA4  
A8  
A9  
TIOB4  
A10  
A11  
A12  
A13  
TCLK4  
TIOA5  
AD13  
AD14  
TIOB5  
TCLK5  
Note:  
1. USART2 only on SAM3SD8 in 100 pin package.  
43  
11090BS–ATARM–22-Oct-13  
11. Embedded Peripherals Overview  
11.1 Serial Peripheral Interface (SPI)  
• Supports communication with serial external devices  
– Four chip selects with external decoder support allow communication with up to 15  
peripherals  
– Serial memories, such as DataFlash® and 3-wire EEPROMs  
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and  
Sensors  
– External co-processors  
• Master or slave serial peripheral bus interface  
– 8- to 16-bit programmable data length per chip select  
– Programmable phase and polarity per chip select  
– Programmable transfer delays between consecutive transfers and between clock  
and data per chip select  
– Programmable delay between consecutive transfers  
– Selectable mode fault detection  
• Connection to PDC channel capabilities optimizes data transfers  
– One channel for the receiver, one channel for the transmitter  
– Next buffer support  
11.2 Two Wire Interface (TWI)  
• Master, Multi-Master and Slave Mode Operation  
• Compatibility with Atmel two-wire interface, serial memory and I2C compatible devices  
• One, two or three bytes for slave address  
• Sequential read/write operations  
• Bit Rate: Up to 400 kbit/s  
• General Call Supported in Slave Mode  
• Connecting to PDC channel capabilities optimizes data transfers in Master Mode only  
– One channel for the receiver, one channel for the transmitter  
– Next buffer support  
11.3 Universal Asynchronous Receiver Transceiver (UART)  
• Two-pin UART  
– Independent receiver and transmitter with a common programmable Baud Rate  
Generator  
– Even, Odd, Mark or Space Parity Generation  
– Parity, Framing and Overrun Error Detection  
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes  
– Support for two PDC channels with connection to receiver and transmitter  
44  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
11.4 USART  
• Programmable Baud Rate Generator  
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications  
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode  
– Parity generation and error detection  
– Framing error detection, overrun error detection  
– MSB- or LSB-first  
– Optional break generation and detection  
– By 8 or by-16 over-sampling receiver frequency  
– Hardware handshaking RTS-CTS  
– Receiver time-out and transmitter timeguard  
– Optional Multi-drop Mode with address generation and detection  
– Optional Manchester Encoding  
– Full modem line support on USART1 (DCD-DSR-DTR-RI)  
• RS485 with driver control signal  
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards  
– NACK handling, error counter with repetition and iteration limit  
• SPI Mode  
– Master or Slave  
– Serial Clock programmable Phase and Polarity  
– SPI Serial Clock (SCK) Frequency up to MCK/4  
• IrDA modulation and demodulation  
– Communication at up to 115.2 Kbps  
• Test Modes  
– Remote Loopback, Local Loopback, Automatic Echo  
11.5 Synchronous Serial Controller (SSC)  
• Provides serial synchronous communication links used in audio and telecom applications  
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader)  
• Contains an independent receiver and transmitter and a common clock divider  
• Offers configurable frame sync and data length  
• Receiver and transmitter can be programmed to start automatically or on detection of  
different event on the frame sync signal  
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization  
signal  
11.6 Timer Counter (TC)  
• Six 16-bit Timer Counter Channels  
• Wide range of functions including:  
– Frequency Measurement  
– Event Counting  
45  
11090BS–ATARM–22-Oct-13  
– Interval Measurement  
– Pulse Generation  
– Delay Timing  
– Pulse Width Modulation  
– Up/down Capabilities  
• Each channel is user-configurable and contains:  
– Three external clock inputs  
– Five internal clock inputs  
– Two multi-purpose input/output signals  
• Two global registers that act on all three TC Channels  
• Quadrature decoder  
– Advanced line filtering  
– Position / revolution / speed  
• 2-bit Gray Up/Down Counter for Stepper Motor  
11.7 Pulse Width Modulation Controller (PWM)  
• One Four-channel 16-bit PWM Controller, 16-bit counter per channel  
• Common clock generator, providing Thirteen Different Clocks  
– A Modulo n counter providing eleven clocks  
– Two independent Linear Dividers working on modulo n counter outputs  
– High Frequency Asynchronous clocking mode  
• Independent channel programming  
– Independent Enable Disable Commands  
– Independent Clock Selection  
– Independent Period and Duty Cycle, with Double Buffering  
– Programmable selection of the output waveform polarity  
– Programmable center or left aligned output waveform  
– Independent Output Override for each channel  
– Independent complementary Outputs with 12-bit dead time generator for each  
channel  
– Independent Enable Disable Commands  
– Independent Clock Selection  
– Independent Period and Duty Cycle, with Double Buffering  
• Synchronous Channel mode  
– Synchronous Channels share the same counter  
– Mode to update the synchronous channels registers after a programmable number  
of periods  
• Connection to one PDC channel  
– Provides Buffer transfer without processor intervention, to update duty cycle of  
synchronous channels  
• Two independent event lines which can send up to 4 triggers on ADC within a period  
46  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
• One programmable Fault Input providing an asynchronous protection of outputs  
• Stepper motor control (2 Channels)  
11.8 High Speed Multimedia Card Interface (HSMCI)  
• 4-bit or 1-bit Interface  
• Compatibility with MultiMedia Card Specification Version 4.3  
• Compatibility with SD and SDHC Memory Card Specification Version 2.0  
• Compatibility with SDIO Specification Version V1.1.  
• Compatibility with CE-ATA Specification 1.1  
• Cards clock rate up to Master Clock divided by 2  
• Boot Operation Mode support  
• High Speed mode support  
• Embedded power management to slow down clock rate when not used  
• MCI has one slot supporting  
– One MultiMediaCard bus (up to 30 cards) or  
– One SD Memory Card  
– One SDIO Card  
• Support for stream, block and multi-block data read and write  
11.9 USB Device Port (UDP)  
• USB V2.0 full-speed compliant,12 Mbits per second.  
• Embedded USB V2.0 full-speed transceiver  
• Embedded 2688-byte dual-port RAM for endpoints  
• Eight endpoints  
– Endpoint 0: 64bytes  
– Endpoint 1 and 2: 64 bytes ping-pong  
– Endpoint 3: 64 bytes  
– Endpoint 4 and 5: 512 bytes ping-pong  
– Endpoint 6 and 7: 64 bytes ping-pong  
– Ping-pong Mode (two memory banks) for Isochronous and bulk endpoints  
• Suspend/resume logic  
• Integrated Pull-up on DDP  
• Pull-down resistor on DDM and DDP when disabled  
11.10 Analog-to-Digital Converter (ADC12B)  
• up to 16 Channels, 12-bit ADC  
• 10/12-bit resolution  
• up to 1 MSample/s  
• Programmable conversion sequence conversion on each channel  
• Integrated temperature sensor  
• Automatic calibration mode  
47  
11090BS–ATARM–22-Oct-13  
• Single ended/differential conversion  
• Programmable gain: 1, 2, 4  
11.11 Digital-to-Analog Converter (DAC)  
• Up to 2 channel 12-bit DAC  
• Up to 2 mega-samples conversion rate in single channel mode  
• Flexible conversion range  
• Multiple trigger sources for each channel  
• 2 Sample/Hold (S/H) outputs  
• Built-in offset and gain calibration  
• Possible to drive output to ground  
• Possible to use as input to analog comparator or ADC (as an internal wire and without S/H  
stage)  
• Two PDC channels  
• Power reduction mode  
11.12 Static Memory Controller  
• 16-Mbyte Address Space per Chip Select  
• 8- bit Data Bus  
• Word, Halfword, Byte Transfers  
• Byte Write or Byte Select Lines  
• Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select  
• Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select  
• Programmable Data Float Time per Chip Select  
• Compliant with LCD Module  
• External Wait Request  
• Automatic Switch to Slow Clock Mode  
• Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes  
• NAND Flash additional logic supporting NAND Flash with Multiplexed Data/Address buses  
• Hardware Configurable number of chip select from 1 to 4  
• Programmable timing on a per chip select basis  
11.13 Analog Comparator  
• One analog comparator  
• High speed option vs. low-power option  
– 170 µA/xx ns active current consumption/propagation delay  
– 20 µA/xx ns active current consumption/propagation delay  
• Selectable input hysteresis  
– 0, 20 mV, 50 mV  
• Minus input selection:  
– DAC outputs  
48  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
– Temperature Sensor  
– ADVREF  
– AD0 to AD3 ADC channels  
• Plus input selection:  
– All analog inputs  
• output selection:  
– Internal signal  
– external pin  
– selectable inverter  
• window function  
• Interrupt on:  
– Rising edge, Falling edge, toggle  
– Signal above/below window, signal inside/outside window  
11.14 Cyclic Redundancy Check Calculation Unit (CRCCU)  
• 32-bit cyclic redundancy check automatic calculation  
• CRC calculation between two addresses of the memory  
49  
11090BS–ATARM–22-Oct-13  
12. Package Drawings  
The SAM3S8/SD8 series devices are available in LQFP, QFN and TFBGA packages.  
Figure 12-1. 100-lead LQFP Package Mechanical Drawing  
Note : 1. This drawing is for general information only. Refer to JEDEC Drawing MS-026 for additional information.  
50  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
Figure 12-2. 100-ball TFBGA Package Mechanical Drawing  
51  
11090BS–ATARM–22-Oct-13  
Figure 12-3. 64-lead LQFP Package Mechanical Drawing  
Table 12-1. 64-lead LQFP Package Dimensions (in mm)  
Millimeter  
Inch  
Symbol  
Min  
Nom  
Max  
1.60  
0.15  
1.45  
Min  
Nom  
Max  
0.063  
0.006  
0.057  
A
A1  
A2  
D
0.05  
1.35  
0.002  
0.053  
1.40  
0.055  
12.00 BSC  
0.472 BSC  
D1  
E
10.00 BSC  
0.383 BSC  
12.00 BSC  
0.472 BSC  
E1  
R2  
R1  
q
10.00 BSC  
0.383 BSC  
0.08  
0.08  
0°  
0.20  
0.003  
0.003  
0°  
0.008  
3.5°  
3.5°  
7°  
7°  
θ1  
θ2  
θ3  
c
0°  
0°  
11°  
11°  
0.09  
0.45  
12°  
13°  
13°  
0.20  
0.75  
11°  
12°  
13°  
13°  
0.008  
0.030  
12°  
11°  
12°  
0.004  
0.018  
L
0.60  
1.00 REF  
0.024  
0.039 REF  
L1  
52  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
 
 
SAM3S8/SD8 Summary  
Table 12-1. 64-lead LQFP Package Dimensions (in mm) (Continued)  
Millimeter  
Nom  
Inch  
Nom  
Symbol  
Min  
0.20  
0.17  
Max  
Min  
0.008  
0.007  
Max  
S
b
0.20  
0.27  
0.008  
0.011  
e
0.50 BSC.  
7.50  
0.020 BSC.  
0.285  
D2  
E2  
7.50  
0.285  
Tolerances of Form and Position  
0.20  
aaa  
bbb  
ccc  
ddd  
0.008  
0.008  
0.003  
0.003  
0.20  
0.08  
0.08  
53  
11090BS–ATARM–22-Oct-13  
Figure 12-4. 64-lead QFN Package Mechanical Drawing  
54  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
SAM3S8/SD8 Summary  
13. Ordering Information  
Table 13-1. Ordering Codes for SAM3S8/SD8 Devices  
Flash  
Temperature  
Ordering Code  
MRL  
(Kbytes)  
Package (Kbytes)  
Package Type  
Operating Range  
Industrial  
-40°C to 85°C  
ATSAM3S8CA-AU  
A
512  
QFP100  
Green  
Industrial  
-40°C to 85°C  
ATSAM3S8CA-CU  
ATSAM3S8BA-AU  
ATSAM3S8BA-MU  
ATSAM3SD8CA-AU  
ATSAM3SD8CA-CU  
ATSAM3SD8BA-AU  
ATSAM3SD8BA-MU  
A
A
A
A
A
A
A
512  
512  
512  
512  
512  
512  
512  
BGA100  
QFP64  
QFN64  
QFP100  
BGA100  
QFP64  
QFN64  
Green  
Green  
Green  
Green  
Green  
Green  
Green  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
Industrial  
-40°C to 85°C  
55  
11090BS–ATARM–22-Oct-13  
Revision History  
In the information that follows, the most recent version of the document is referenced first.  
Change  
Request  
Ref.  
Doc. Rev  
Comments  
Corrected Figure 12-3 “64-lead LQFP Package Mechanical Drawing” and inserted Table 12-1 “64-lead  
LQFP Package Dimensions (in mm)”.  
11090BS  
9389  
Change  
Request  
Ref.  
Doc. Rev  
Comments  
11090AS  
First issue  
56  
SAM3S8/SD8 Summary  
11090BS–ATARM–22-Oct-13  
Atmel Corporation  
Atmel Asia Limited  
Atmel Munich GmbH  
Atmel Japan G.K.  
1600 Technology Drive  
Unit 01-5 & 16, 19F  
Business Campus  
16F Shin-Osaki Kangyo Bldg  
San Jose, CA 95110  
USA  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
HONG KONG  
Parkring 4  
1-6-4 Osaki, Shinagawa-ku  
Tokyo 141-0032  
D-85748 Garching b. Munich  
GERMANY  
Tel: (+1) (408) 441-0311  
Fax: (+1) (408) 487-2600  
www.atmel.com  
JAPAN  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+81) (3) 6417-0300  
Fax: (+81) (3) 6417-0370  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this  
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES  
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,  
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF  
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time  
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,  
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.  
© 2013 Atmel Corporation. All rights reserved.  
Atmel®, Atmel logo and combinations thereof, QTouch®, DataFlash®, SAM-BA® and others are registered trademarks or trademarks of Atmel  
Corporation or its subsidiaries.Windows® and others, are registered trademarks or trademarks of Microsoft Corporation in the US and/or other  
countries. ARM®, Cortex®, Thumb®-2 and others are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be  
trademarks of others.  
11090BS–ATARM–22-Oct-13  

相关型号:

ATSAM3U

AT91 ARM Thumb-based Microcontrollers
ATMEL

ATSAM3U-EK

Atmel Evaluation Kits
ATMEL

ATSAM3U1CA-AU

AT91ARM M3 Cortex-based Processor
ATMEL

ATSAM3U1CA-CU

AT91ARM Cortex M3-based Microcontrollers
ATMEL

ATSAM3U1CB-AU

AT91SAM ARM-based Flash MCU
ATMEL

ATSAM3U1EA-AU

AT91ARM M3 Cortex-based Processor
ATMEL

ATSAM3U1EA-CU

AT91ARM Cortex M3-based Microcontrollers
ATMEL

ATSAM3U2CA-AU

AT91ARM M3 Cortex-based Processor
ATMEL

ATSAM3U2CA-CU

AT91ARM Cortex M3-based Microcontrollers
ATMEL

ATSAM3U2EA-AU

AT91ARM M3 Cortex-based Processor
ATMEL

ATSAM3U2EA-CU

AT91ARM Cortex M3-based Microcontrollers
ATMEL

ATSAM3U4CA-AU

AT91ARM M3 Cortex-based Processor
ATMEL