AMCP9801A5-M/SNG [MICROCHIP]

2-Wire High-Accuracy Temperature Sensor; 2线高精度温度传感器
AMCP9801A5-M/SNG
型号: AMCP9801A5-M/SNG
厂家: MICROCHIP    MICROCHIP
描述:

2-Wire High-Accuracy Temperature Sensor
2线高精度温度传感器

传感器 温度传感器
文件: 总30页 (文件大小:318K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP9800/1/2/3  
2-Wire High-Accuracy Temperature Sensor  
Features  
Description  
Temperature-to-Digital Converter  
• Accuracy with 12-bit Resolution:  
- ±0.5°C (typ.) at +25°C  
Microchip Technology Inc.’s MCP9800/1/2/3 family of  
digital temperature sensors converts temperatures  
between -55°C and +125°C to a digital word. They  
provide an accuracy of ±1°C (max.) from -10°C to  
+85°C.  
- ±1°C (max.) from -10°C to +85°C  
- ±2°C (max.) from -10°C to +125°C  
- ±3°C (max.) from -55°C to +125°C  
• User-selectable Resolution: 9 – 12 bit  
• Operating Voltage Range: 2.7V to 5.5V  
• 2-wire Interface: I2C™/SMBus Compatible  
• Operating Current: 200 µA (typ.)  
• Shutdown Current: 1 µA (max.)  
The MCP9800/1/2/3 family comes with user-program-  
mable registers that provide flexibility for temperature  
sensing applications. The register settings allow user-  
selectable 9-bit to 12-bit temperature measurement  
resolution, configuration of the power-saving Shutdown  
and One-shot (single conversion on command while in  
the Shutdown) modes and the specification of both  
temperature alert output and hysteresis limits. When  
the temperature changes beyond the specified limits,  
the MCP9800/1/2/3 outputs an alert signal. The user  
has the option of setting the alert output signal polarity  
as an active-low or active-high comparator output for  
thermostat operation, or as temperature event interrupt  
output for microprocessor-based systems.  
• Power-saving One-shot Temperature  
Measurement  
• Available Packages: SOT-23-5, MSOP-8, SOIC-8  
Typical Applications  
• Personal Computers and Servers  
• Hard Disk Drives and Other PC Peripherals  
• Entertainment Systems  
This sensor has an industry standard 2-wire, I2C™/  
SMBus compatible serial interface, allowing up to eight  
devices to be controlled in a single serial bus. These fea-  
tures make the MCP9800/1/2/3 ideal for sophisticated  
multi-zone temperature-monitoring applications.  
• Office Equipment  
• Data Communication Equipment  
• Mobile Phones  
Package Types  
• General-purpose Temperature Monitoring  
MCP9800  
MCP9802  
MCP9801  
MCP9803  
Typical Application  
SOT-23-5  
SOIC, MSOP  
VDD  
PICmicro®  
Microcontroller  
V
V
SDA  
SDA  
1
2
3
4
8
7
6
5
DD 1  
5
4
DD  
SCLK  
A0  
GND  
2
MCP9800/02  
R
PIC16F737  
A1  
A2  
SCLK  
ALERT  
3
ALERT  
GND  
VDD  
1
2
3
5
SDA  
GND  
SCLK  
MCP9800/02A0: A2, A1, A0 are internally set to (0, 0, 0)  
MCP9800/02A5: A2, A1, A0 are internally set to (1, 0, 1)  
MCP9802/03: Serial Bus time-out 35 ms (typ.)  
ALERT  
4
I/O Port  
RPULL-UP  
2004 Microchip Technology Inc.  
DS21909B-page 1  
MCP9800/1/2/3  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
NAME  
FUNCTION  
SDA  
Bidirectional Serial Data (open-drain  
output)  
Absolute Maximum Ratings †  
VDD....................................................................... 6.0V  
Voltage at all Input/Output pins .... GND – 0.3V to 5.5V  
Storage temperature ..........................-65°C to +150°C  
Ambient temp. with power applied .....-55°C to +125°C  
Junction Temperature (TJ).................................. 150°C  
ESD protection on all pins (HBM:MM)....... (4 kV:400V)  
Latch-Up Current at each pin........................ ±200 mA  
SCLK  
Serial Clock Input  
ALERT Temperature Alert Output (open-drain)  
A2  
A1  
Address Select Pin (bit 2)  
Address Select Pin (bit 1)  
Address Select Pin (bit 0)  
Power Supply Input  
Ground  
A0  
VDD  
GND  
†Notice: Stresses above those listed under “Maximum  
ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground, and  
TA = -55°C to +125°C.  
Parameters  
Power Supply  
Sym  
Min  
Typ  
Max  
Unit  
Conditions  
Operating Voltage Range  
Operating Current  
VDD  
IDD  
2.7  
200  
0.1  
5.5  
400  
1
V
µA  
µA  
Continuous Operation  
Shutdown Mode  
Shutdown Current  
ISHDN  
Power On Reset Threshold (POR)  
VPOR  
1.7  
V
VDD falling edge  
Temperature Sensor Accuracy  
Accuracy with 12-bit Resolution:  
TA = +25°C  
TACY  
TACY  
TACY  
TACY  
±0.5  
°C  
°C  
°C  
°C  
VDD = 3.3V  
VDD = 3.3V  
VDD = 3.3V  
VDD = 3.3V  
-10°C < TA +85°C  
-10°C < TA +125°C  
-55°C < TA +125°C  
Internal Σ∆ ADC  
-1.0  
-2.0  
-3.0  
+1.0  
+2.0  
+3.0  
Conversion Time:  
9-bit Resolution  
tCONV  
tCONV  
tCONV  
tCONV  
30  
60  
75  
ms  
ms  
ms  
ms  
33 samples/sec (typ.)  
17 samples/sec (typ.)  
8 samples/sec (typ.)  
4 samples/sec (typ.)  
10-bit Resolution  
150  
300  
600  
11-bit Resolution  
120  
240  
12-bit Resolution  
Alert Output (Open-drain)  
High-level Current  
IOH  
1
µA  
V
VOH = 5V  
IOL= 3 mA  
Low-level Voltage  
VOL  
0.4  
Thermal Response  
Response Time  
tRES  
1.4  
s
Time to 63% (88°C)  
27°C (Air) to 125°C (oil bath)  
DS21909B-page 2  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
DIGITAL INPUT/OUTPUT PIN CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground and  
TA = -55°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Serial Input/Output (SCLK, SDA, A0, A1, A2)  
Input  
High-level Voltage  
Low-level Voltage  
Input Current  
VIH  
VIL  
IIN  
0.7 VDD  
0.3 VDD  
+1  
V
V
-1  
µA  
Output (SDA)  
Low-level Voltage  
High-level Current  
Low-level Current  
VOL  
IOH  
IOL  
6
10  
0.4  
1
V
IOL= 3 mA  
µA VOH = 5V  
mA VOL = 0.6V  
pF  
Capacitance  
CIN  
SDA and SCLK Inputs  
Hysteresis  
VHYST 0.05 VDD  
V
Graphical Symbol Description  
INPUT  
OUTPUT  
Voltage  
Voltage  
VDD  
VDD  
VIH  
VOL  
VIL  
time  
time  
time  
Current  
Current  
IOL  
IIN  
IOH  
time  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, GND = Ground.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT23  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
TA  
TA  
TA  
-55  
-55  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
θJA  
θJA  
θJA  
256  
163  
206  
°C/W  
°C/W  
°C/W  
Note 1: Operation in this range must not cause TJ to exceed Maximum Junction Temperature (+150°C).  
2004 Microchip Technology Inc.  
DS21909B-page 3  
 
MCP9800/1/2/3  
SERIAL INTERFACE TIMING SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, VDD = 2.7V to 5.5V, GND = Ground, -55°C < TA < +125°C,  
CL = 80 pF, and all limits measured to 50% point.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
2-Wire I2C/SMBus Compatible Interface  
Serial Port Frequency  
fSC  
fSC  
0
35  
400  
400  
kHz I2C MCP9800/01  
10  
2.5  
1.3  
0.6  
20  
20  
0.1  
0
kHz SMBus MCP9802/03  
Clock Period  
tSC  
µs  
µs  
µs  
Low Clock  
tLOW  
High Clock  
tHIGH  
tR  
Rise Time  
300  
300  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
10% to 90% of VDD (SCLK, SDA)  
90% to 10% of VDD (SCLK, SDA)  
Fall Time  
tF  
Data Setup Before SCLK High  
Data Hold After SCLK Low  
Start Condition Setup Time  
Start Condition Hold Time  
Stop Condition Setup Time  
Bus Idle  
tSU-DATA  
tH-DATA  
tSU-START  
tH-START  
tSU-STOP  
tIDLE  
0.9  
0.6  
0.6  
0.6  
1.3  
25  
Time Out  
tOUT  
50  
ms MCP9802/03 only  
Timing Diagram  
START Condition  
tSU-START  
tH-START  
SCLK  
SDA  
tOUT  
Data Transmission  
tHIGH  
tLOW  
SCLK  
SDA  
tR,tF  
tSC  
tH-DATA  
tSU-DATA  
STOP Condition  
SCLK  
SDA  
tSU-STOP  
tIDLE  
DS21909B-page 4  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: Unless otherwise noted: VDD = 2.7V to 5.5V.  
3.0  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
TA = +25°C  
VDD = 3.3V  
5 lots  
32 Samples/lot  
160 Samples  
VDD= 3.3V  
12-Bit Resolution  
160 Samples  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
Spec. Limits  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
Temperature Accuracy (°C)  
FIGURE 2-1:  
Average Temperature  
FIGURE 2-4:  
Temperature Accuracy  
Accuracy vs. Ambient Temperature, VDD = 3.3V.  
Histogram, TA = +25°C.  
3.0  
400  
12-Bit Resolution  
160 Samples  
VDD = 2.7V  
VDD = 3.3V  
VDD = 5.0V  
VDD = 5.5V  
VDD = 2.7V  
VDD = 3.3V  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.0  
VDD = 5.0V  
VDD = 5.5V  
0.0  
-1.0  
-2.0  
-3.0  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
FIGURE 2-2:  
Average Temperature  
FIGURE 2-5:  
Supply Current vs. Ambient  
Accuracy vs. Ambient Temperature.  
Temperature.  
3.0  
1
0.8  
0.6  
0.4  
0.2  
0
Resolution  
VDD = 3.3V  
160 Samples  
2.0  
1.0  
11-Bit  
12-Bit  
0.0  
-1.0  
-2.0  
-3.0  
9-Bit  
10-Bit  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C )  
FIGURE 2-3:  
Average Temperature  
FIGURE 2-6:  
Shutdown Current vs.  
Accuracy vs. Ambient Temperature, VDD = 3.3V.  
Ambient Temperature.  
2004 Microchip Technology Inc.  
DS21909B-page 5  
 
MCP9800/1/2/3  
Note: Unless otherwise noted: VDD = 2.7V to 5.5V.  
145  
125  
105  
85  
48  
Average of 10 samples per package  
VOL = 0.6V  
42  
VDD = 5.5V  
VDD = 3.3V  
VDD = 2.7V  
36  
30  
24  
18  
12  
6
65  
SOIC  
MSOP  
45  
SOT-23  
25  
27°C (Air) to 125°C (Oil bath)  
5
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
-2  
0
2
4
6
8
10 12 14 16 18 20  
Time (s)  
FIGURE 2-7:  
Ambient Temperature.  
ALERT and SDA IOL vs.  
FIGURE 2-9:  
Response vs Time.  
MCP980X Thermal  
0.4  
IOL = 3mA  
0.3  
0.2  
0.1  
0
VDD = 5.5V  
VDD = 3.3V  
VDD = 2.7V  
-55 -35 -15  
5
25 45 65 85 105 125  
TA (°C)  
FIGURE 2-8:  
ALERT and SDA Output  
VOL vs. Ambient Temperature.  
DS21909B-page 6  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP9800  
MCP9802  
SOT-23-5  
MCP9801  
MCP9803  
MSOP, SOIC  
Symbol  
Function  
5
4
1
2
3
4
5
6
7
8
SDA  
SCLK  
ALERT  
GND  
A2  
Bidirectional Serial Data  
Serial Clock Input  
3
Temperature Alert Output  
Ground  
2
1
Address Select Pin (bit 2)  
Address Select Pin (bit 1)  
Address Select Pin (bit 0)  
Power Supply Input  
A1  
A0  
VDD  
3.1  
Serial Data Pin (SDA)  
3.5  
ALERT Output  
The SDA is a bidirectional input/output pin, used to  
serially transmit data to and from the host controller.  
This pin requires a pull-up resistor to output data.  
The MCP9800/1/2/3’s ALERT pin is an open-drain  
output pin. The device outputs an alert signal when the  
ambient temperature goes beyond the user-  
programmed temperature limit.  
3.2  
Serial Clock Pin (SCLK)  
3.6  
Address Pins (A2, A1, A0)  
The SCLK is a clock input pin. All communication and  
timing is relative to the signal on this pin. The clock is  
generated by the host controller on the bus.  
These pins are device or slave address input pins and  
are available only with the MCP9801/03. The device  
addresses for the MCP9800/02 are factory-set.  
3.3  
Power Supply Input (V  
)
DD  
The address pins are the Least Significant bits (LSb) of  
the device address bits. The Most Significant bits  
(MSb) (A6, A5, A4, A3) are factory-set to <1001>. This  
is illustrated in Table 3-2.  
The VDD pin is the power pin. The operating voltage, as  
specified in the DC electrical specification table, is  
applied on this pin.  
TABLE 3-2:  
Device  
SLAVE ADDRESS  
3.4  
Ground (GND)  
A6 A5 A4 A3 A2 A1 A0  
The GND pin is the system ground pin.  
MCP9800/02A0  
MCP9800/02A5  
MCP9801/03  
1
1
1
0
0
0
0
0
0
1
1
1
0
1
X
0
0
X
0
1
X
Note:  
User-selectable address is shown by X.  
2004 Microchip Technology Inc.  
DS21909B-page 7  
 
 
MCP9800/1/2/3  
4.1  
Temperature Sensor  
4.0  
FUNCTIONAL DESCRIPTION  
The MCP9800/1/2/3 uses the difference in the base-  
emitter voltage of a transistor while its collector current  
is changed from IC1 to IC2. With this method, the VBE  
depends only on the ratio of the two currents and the  
ambient temperature, as shown in Equation 4-1.  
The MCP9800/1/2/3 family of temperature sensors  
consists of a band-gap type temperature sensor, a Σ∆  
Analog-to-Digital Converter (ADC), user-programmable  
registers and a 2-wire I2C/SMBus protocol compatible  
serial interface.  
EQUATION 4-1:  
Resolution  
One-Shot  
kT  
-----  
× ln(IC1 IC2)  
VBE  
=
q
Where:  
Shutdown  
9-Bit  
T = temperature in kelvin  
VBE = change in diode base-emitter  
voltage  
10-Bit  
11-Bit  
12-Bit  
Fault Queue  
Alert Polarity  
k = Boltzmann's constant  
q = electron charge  
Alert Comp/Int  
IC1 and IC2 = currents with n:1 ratio  
Configuration  
Register  
Σ∆ ADC  
Temperature  
4.2  
Σ∆ Analog-to-Digital Converter  
Register  
A sigma-delta analog-to-digital converter is used to  
convert VBE to a digital word that corresponds to the  
transistor temperature. The converter has an  
adjustable resolution from 9-bits (at 30 ms conversion  
time) to 12-bits (at 240 ms conversion time). Thus, it  
allows the user to make trade-offs between resolution  
and conversion time. Refer to Section 4.3.4 “Sensor  
THYST  
Band-Gap  
Register  
Temperature  
Sensor  
TSET  
Register  
Register  
Pointer  
I2C™/SMBus  
Interface  
Configuration  
Register  
(CONFIG)”  
and  
Section 4.3.4.7 “Σ∆ ADC Resolution” for details.  
FIGURE 4-1:  
Functional Block Diagram.  
DS21909B-page 8  
2004 Microchip Technology Inc.  
 
MCP9800/1/2/3  
4.3  
Registers  
Resolution  
One-Shot  
The MCP9800/1/2/3 family has four registers that are  
user-accessible. These registers are specified as the  
ambient temperature register, the temperature limit-set  
register, the temperature hysteresis register and device  
configuration registers.  
Shutdown  
Fault Queue  
Alert Polarity  
Alert Comp/Int  
The ambient temperature register is a read-only  
register and is used to access the ambient temperature  
data. The data from the ADC is loaded in parallel in the  
register. The temperature limit-set and temperature  
hysteresis registers are read/write registers that  
provide user-programmable temperature limits. If the  
ambient temperature drifts beyond the programmed  
limits, the MCP9800/1/2/3 outputs an alert signal using  
the ALERT pin (refer to Section 4.3.4.3 “ALERT Out-  
put Configuration”). The device configuration register  
provides access for the user to configure the  
MCP9800/1/2/3’s various features. These registers are  
described in further detail in the following sections.  
Configuration  
Register  
ALERT  
Output  
Temperature  
Register  
THYST  
Register  
ALERT Output  
Control Logic  
TSET  
Register  
FIGURE 1:  
Register Block Diagram.  
The registers are accessed by sending register pointer  
to the MCP9800/1/2/3 using the serial interface. This is  
an 8-bit pointer. However, the two Least Significant bits  
(LSb) are used as pointers and all other bits need to be  
cleared <0>. This device has additional registers that  
are reserved for test and calibration. If these registers  
are accessed, the device may not perform according to  
the specification. The pointer description is shown  
below.  
REGISTER 4-1:  
REGISTER POINTER  
U-0  
0
U-0  
0
U-0  
0
U-0  
0
U-0  
0
U-0  
0
R/W-0  
P1  
R/W-0  
P0  
bit 7  
bit 0  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
Pointer bits  
00=  
01=  
10=  
11=  
Temperature Register  
Configuration Register  
Temperature Hysteresis Register  
Temperature Limit-set Register  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2004 Microchip Technology Inc.  
DS21909B-page 9  
MCP9800/1/2/3  
digital conversion in the background. The decimal code  
to ambient temperature conversion is shown in  
Equation 4-2:  
4.3.1  
AMBIENT TEMPERATURE  
REGISTER (TA)  
The MCP9800/1/2/3 has a 16-bit read-only ambient  
temperature register (TA) that contains 9-bit to 12-bit  
temperature data. This data is formatted in two’s  
complement. The bit assignments, as well as the  
corresponding resolution, is shown in the register  
assignment below.  
EQUATION 4-2:  
TA = Code × 2n  
Where:  
n
= -1, -2, -3 and -4 for 9-bit, 10-bit, 11-bit  
and 12-bit resolution, respectively  
The refresh rate of this register depends on the  
selected ADC resolution. It takes 30 ms (typ.) for 9-bit  
data and 240 ms (typ.) for 12-bit data. Since this  
register is double-buffered, the user can read the  
register while the MCP9800/1/2/3 performs analog-to-  
TA = Ambient Temperature (°C)  
Code= MCP980X output in decimal  
(Table 4-1)  
REGISTER 4-2:  
Upper Half:  
AMBIENT TEMPERATURE REGISTER (TA)  
R-0  
R-0  
26 °C/bit  
R-0  
25 °C/bit  
R-0  
24 °C/bit  
R-0  
R-0  
R-0  
R-0  
20 °C/bit  
Sign  
23 °C/bit 22 °C/bit 21 °C/bit  
bit 15  
bit 8  
Lower Half:  
R-0  
-1 °C/bit  
R-0  
2-2 °C/bit  
R-0  
2-3 °C/bit  
R-0  
2-4 °C/bit  
R-0  
0
R-0  
R-0  
R-0  
0
2
0
0
bit 7  
bit 0  
Note:  
When the 9-bit, 10-bit or 11-bit resolutions are selected, bit 6, bit 7 or bit 8 will remain clear <0>,  
respectively.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
TABLE 4-1:  
AMBIENT TEMPERATURE TO CODE CONVERSION  
Ambient Temperature  
Code  
T
A
(°C)  
9-Bit  
10-Bit  
11-Bit  
12-Bit  
Binary  
Hexadecimal Decimal  
(1)  
+125°C  
+25.4375°C  
+0.5°C  
0111 1101 0uuu uuuu  
0FA  
032  
001  
1F4  
065  
001  
3E8  
0CB  
001  
7D0  
197  
001  
000  
250  
50  
+125  
+25  
0001 1001 0uuu uuuu  
0000 0000 1uuu uuuu  
0111 1101 00uu uuuu  
0001 1001 01uu uuuu  
0000 0000 01uu uuuu  
0111 1101 000u uuuu  
0001 1001 011u uuuu  
0000 0000 001u uuuu  
0111 1101 0000 uuuu  
0001 1001 0111 uuuu  
0000 0000 0001 uuuu  
0000 0000 0000 uuuu  
1
+0.5  
+125°C  
+25.4375°C  
+0.25°C  
500  
101  
1
+125  
+25.25  
+0.25  
+125  
+125°C  
+25.4375°C  
+0.125°C  
1000  
203  
1
+25.375  
+0.125  
+125  
+125°C  
2000  
407  
1
+25.4375°C  
+0.0625°C  
+25.4375  
+0.0625  
0
0°C  
0
(2)  
(3)  
–0.0625°C 1111 1111 1111 uuuu  
001  
-1  
-0.0625  
-25.4375  
-55  
–25.4375°C  
–55°C  
1110 0110 1001 uuuu  
1100 1001 0000 uuuu  
197  
370  
-407  
-880  
Note 1: ‘u’ represents unused bits. The MCP9800/1/2/3 clears <0> the unused bits.  
2: This data is in two’s complement format, which indicates ambient temperature below 0°C.  
3: Negative temperature magnitude in Hexadecimal. This conversion is done by complimenting each binary bit and  
adding 1.  
DS21909B-page 10  
2004 Microchip Technology Inc.  
 
MCP9800/1/2/3  
4.3.2  
TEMPERATURE LIMIT-SET  
REGISTER (TSET  
)
The MCP9800/1/2/3 has a 16-bit read/write Tempera-  
ture Limit-Set register (TSET) which contains a 9-bit data  
in two’s compliment format. This data represents a  
maximum temperature limit. If the ambient temperature  
exceeds this specified limit, the MCP9800/1/2/3 asserts  
an alert output. (Refer to Section 4.3.4.3 “ALERT Out-  
put Configuration”).  
This register uses the nine Most Significant bits (MSb)  
and all other bits are don’t cares.  
The power-up default value of TSET register is 80°C  
<0 1010 0000>in binary.  
REGISTER 4-3:  
Upper Half:  
TEMPERATURE LIMIT-SET REGISTER (TSET)  
R/W-0  
Sign  
R/W-0  
26 °C/bit  
R/W-0  
25 °C/bit  
R/W-0  
24 °C/bit  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
20 °C/bit  
23 °C/bit 22 °C/bit 21 °C/bit  
bit 15  
bit 8  
Lower Half:  
R/W-0  
-1 °C/bit  
R-0  
0
R-0  
R-0  
0
R-0  
0
R-0  
R-0  
R-0  
0
2
0
0
0
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS21909B-page 11  
MCP9800/1/2/3  
4.3.3  
TEMPERATURE HYSTERESIS  
REGISTER (THYST  
)
The MCP9800/1/2/3 has a 16-bit read/write tempera-  
ture hysteresis register (THYST) that contains a 9-bit  
data in two’s compliment format. This register is used  
to set a hysteresis for the TSET limit. Therefore, the data  
represents a minimum temperature limit. If the ambient  
temperature drifts below the specified limit, the  
MCP9800/1/2/3 asserts an alert output (refer to  
Section 4.3.4.3 “ALERT Output Configuration”).  
This register uses the nine Most Significant bits (MSb)  
and all other bits are don’t cares.  
The power-up default value of THYST register is 75°C  
<0 1001 0110>in binary.  
REGISTER 4-4:  
Upper Half:  
TEMPERATURE HYSTERESIS REGISTER (THYST  
)
R/W-0  
Sign  
R/W-0  
26 °C/bit  
R/W-0  
25 °C/bit  
R/W-0  
24 °C/bit  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
20 °C/bit  
23 °C/bit 22 °C/bit 21 °C/bit  
bit 15  
bit 8  
Lower Half:  
R/W-0  
2-1 °C/bit  
bit 7  
R-0  
0
R-0  
R-0  
0
R-0  
0
R-0  
R-0  
R-0  
0
0
0
0
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS21909B-page 12  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
4.3.4  
SENSOR CONFIGURATION  
REGISTER (CONFIG)  
The MCP9800/1/2/3 has an 8-bit read/write configura-  
tion register (CONFIG) that allows the user to select the  
different features. These features include shutdown,  
ALERT output select as comparator or interrupt output,  
ALERT output polarity, fault queue cycle, temperature  
measurement resolution and One-shot mode (single  
conversion while in shutdown). These functions are  
described in detail in the following sections.  
REGISTER 4-5:  
CONFIGURATION REGISTER (CONFIG)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
One-Shot  
Resolution  
Fault Queue  
ALERT  
Polarity  
COMP/  
INT  
Shut-  
down  
bit 7  
bit 0  
bit 7  
ONE-SHOT bit  
1= Enabled  
0= Disabled (Power-up default)  
bit 5-6  
Σ∆ ADC RESOLUTION bit  
00= 9 bit (Power-up default)  
01= 10 bit  
10= 11 bit  
11= 12 bit  
bit 3-4  
FAULT QUEUE bit  
00= 1 (Power-up default)  
01= 2  
10= 4  
11= 6  
bit 2  
bit 1  
bit 0  
ALERT POLARITY bit  
1= Active-High  
0= Active-Low (Power-up default)  
COMP/INT bit  
1= Interrupt Mode  
0= Comparator Mode (Power-up default)  
SHUTDOWN bit  
1= Enable  
0= Disable (Power-up default)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS21909B-page 13  
MCP9800/1/2/3  
4.3.4.1  
Shutdown Mode  
4.3.4.3  
ALERT Output Configuration  
The Shutdown mode disables all power-consuming  
activities (including temperature sampling operations)  
while leaving the serial interface active. The device  
consumes 1 µA (max.) in this mode. It remains in this  
mode until the configuration register is updated to  
enable continuous conversion or until power is  
recycled.  
The ALERT output can be configured as either a  
comparator output or as Interrupt Output mode using  
bit 1 of CONFIG. The polarity can also be specified as  
an active-high or active-low, using bit 2 of CONFIG.  
The following sections describe each Output mode  
and Figure 4-2 shows graphical description.  
4.3.4.4  
Comparator Mode  
In Shutdown mode, the CONFIG, TA, TSET and THYST  
registers can be read or written. However, the serial  
bus activity will increase the shutdown current.  
In the Comparator mode, the ALERT output is asserted  
when TA is greater than TSET. The pin remains active  
until TA is lower than THYST. The Comparator mode is  
useful for thermostat-type applications such as turning  
on a cooling fan or triggering a system shutdown when  
the temperature exceeds a safe operating range.  
4.3.4.2  
One-Shot Mode  
The MCP9800/1/2/3 can also be used in a One-shot  
mode that can be selected using bit 7 of the CONFIG  
register. The One-shot mode performs a single temper-  
ature measurement and returns to Shutdown mode.  
This mode is especially useful for low-power applica-  
tions where temperature is measured upon command  
from a controller. For example, a 9-bit TA in One-shot  
mode consumes 200 µA (typ.) for 30 ms and 0.1 µA  
(typ.) during shutdown.  
In the Comparator mode, if the device enters the  
Shutdown mode with asserted ALERT output, the  
output remains active during shutdown. The device  
must be operating in continuous conversion, with TA  
below THYST, for the ALERT output to be deasserted.  
4.3.4.5  
Interrupt Mode  
In the Interrupt mode, the ALERT output is asserted  
when TA is greater than TSET. However, the output is  
deasserted when the user performs a read from any  
register. This mode is designed for interrupt driven micro-  
controller based systems. The microcontroller receiving  
the interrupt will have to acknowledge the interrupt by  
reading any register from the MCP9800/1/2/3. This will  
clear the interrupt and the ALERT pin will become  
deasserted. When TA drifts below THYST, the MCP9800/  
1/2/3 outputs another interrupt and the controller needs  
to read a register to deassert the ALERT output. Shutting  
down the device will also reset or deassert the ALERT  
output.  
To access this feature, the device needs to initially be  
in Shutdown mode. This is done by sending a byte to  
the CONFIG register with bit 0 set <1> and bit 7  
cleared <0>. Once the device is in Shutdown mode,  
CONFIG needs to be written again with bit 0 and bit 7  
set <1>. This begins the single conversion cycle of  
30 ms for 9-bit data. Once the conversion is  
completed, TA is updated and bit 7 of CONFIG  
becomes cleared <0> by the MCP9800/1/2/3.  
TABLE 4-6:  
SHUTDOWN AND ONE-SHOT  
MODE DESCRIPTION  
One-Shot Shutdown  
Operational Mode  
(Bit 7)  
(Bit 0)  
Continuous Conversion  
Shutdown  
0
0
1
0
1
0
TSET  
TA  
Continuous Conversion  
(One-shot is ignored)  
THYST  
One-Shot  
1
1
Note:  
The shutdown command <01> needs to  
be programmed before sending a one-  
shot command <11>.  
ALERT  
Comparator Mode  
Active-Low  
ALERT  
Interrupt Mode  
Active-Low  
FIGURE 4-2:  
Alert Output.  
DS21909B-page 14  
2004 Microchip Technology Inc.  
 
MCP9800/1/2/3  
4.3.4.6  
Fault Queue  
4.4  
Summary of Power-up Default  
The fault queue feature can be used as a filter to lessen  
the probability of spurious activation of the ALERT pin.  
TA must remain above TSET for the consecutive num-  
ber of conversion cycles selected using the Fault  
Queue bits. Bit 3 and bit 4 of CONFIG can be used to  
select up to six fault queue cycles. For example, if six  
fault queues are selected, TA must be greater than  
TSET for six consecutive conversions before ALERT is  
asserted as a comparator or an interrupt output.  
The MCP9800/1/2/3 has an internal Power-on Reset  
(POR) circuit. If the power supply voltage VDD glitches  
down to the 1.7V (typ.) threshold, the device resets the  
registers to the power-up default settings.  
Table 4-2 shows the power-up default summary.  
TABLE 4-2:  
Register  
POWER-UP DEFAULTS  
Data  
Power-up Defaults  
(Hex)  
This queue setting also applies for THYST. TA must  
remain below THYST for six consecutive conversions  
before ALERT is deasserted (comparator mode) or  
before another interrupt is asserted (interrupt mode).  
TA  
0000  
A000  
9600  
00  
0°C  
80°C  
TSET  
THYST  
Pointer  
75°C  
Temperature register  
4.3.4.7  
Σ∆ ADC Resolution  
Continuous Conversion  
Comparator mode  
Active-Low Output  
Fault Queue 1  
The MCP9800/1/2/3 provides access to select the ADC  
resolution from 9-bit to 12-bit using bit 6 and bit 5 of the  
CONFIG register. The user can gain better insight into  
the trends and characteristics of the ambient  
temperature by using a finer resolution. Increasing the  
resolution also reduces the quantization error.  
Figure 2-4 shows accuracy versus resolution.  
CONFIG  
00  
9-bit Resolution  
Table 4-1 shows the TA register conversion time for the  
corresponding resolution.  
TABLE 4-1:  
RESOLUTION AND  
CONVERSION TIME  
Resolution  
°C/Bit (typ.)  
Conversion time  
tCONV ms (typ.)  
Bits  
9
0.5  
0.25  
30  
60  
10  
11  
12  
0.125  
0.0625  
120  
240  
2004 Microchip Technology Inc.  
DS21909B-page 15  
 
 
MCP9800/1/2/3  
5.1.2  
MASTER/SLAVE  
5.0  
5.1  
SERIAL COMMUNICATION  
The bus is controlled by a master device (typically a  
microcontroller) that controls the bus access and gener-  
ates the start and stop conditions. The MCP9800/1/2/3  
is a slave device and does not control other devices in  
the bus. Both master and slave devices can operate as  
either transmitter or receiver. However, the master  
device determines which mode is activated.  
2
2-Wire I C/SMBus Compatible  
Interface  
The MCP9800/1/2/3 serial clock input (SCLK) and the  
bidirectional serial data line (SDA) form a 2-Wire  
bidirectional serial port for communication.  
The following bus protocol has been defined:  
5.1.3  
START/STOP CONDITION  
TABLE 5-1:  
MCP980X SERIAL BUS  
CONVENTIONS  
A high-to-low transition of the SDA line (while SCLK is  
high) is the start condition. All data transfers must be  
preceded by a start condition from the master. If a start  
condition is generated during data transfer, the  
MCP9800/1/2/3 resets and accepts the new start  
condition.  
Term  
Description  
Transmitter Device sending data to the bus  
Receiver  
Master  
Device receiving data from the bus  
The device that controls the serial bus,  
typically a microcontroller  
A low-to-high transition of the SDA line (while SCLK is  
high) is the stop condition. All data transfers must be  
ended by a stop condition from the master. If a stop  
condition is introduced during data transmission, the  
MCP9800/1/2/3 releases the bus.  
Slave  
The device addressed by the master,  
such as the MCP9800/1/2/3  
START  
STOP  
A unique signal from master to initiate  
serial interface with a slave  
5.1.4  
ADDRESS BYTE  
A unique signal from the master to  
terminate serial interface from a slave  
Following the start condition, the host must transmit the  
address byte to the MCP9800/1/2/3. The 7-bit address  
for the MCP9800/02A0 and MCP9800/02A5 is  
<1001000> and <1001101> in binary, respectively.  
Read/Write A read or write to the MCP9800/1/2/3  
registers  
ACK  
A receiver Acknowledges (ACK) the  
reception of each byte by polling the  
bus  
The  
address  
for  
the  
MCP9802/03  
is  
<1001,A2,A1,A0> in binary, where the A0, A1 and A2  
bits are set externally by connecting the corresponding  
pins to VDD <1> or GND <0>. The 7-bit address trans-  
mitted in the serial bit stream must match the selected  
address for the MCP9800/1/2/3 to respond with an  
ACK.  
NAK  
A receiver Not-Acknowledges (NAK) or  
releases the bus to show End-of-Data  
(EOD)  
Busy  
Communication is not possible  
because the bus is in use  
Bit 8 in the address byte is a read/write bit. Setting this  
bit to ‘1’ commands a read operation, while ‘0’  
commands a write operation.  
Not Busy  
The bus is in the idle state, both SDA  
and SCLK remain high  
Data Valid SDA must remain stable before SCLK  
becomes high in order for a data bit to  
be considered valid. During normal  
data transfers, SDA only changes state  
while SCLK is low  
Address Byte  
SCLK  
SDA  
1
1
2
0
3
0
4
1
5
6
7
8
9
A
C
K
A2 A1 A0  
5.1.1  
DATA TRANSFER  
Start  
Slave  
Data transfers are initiated by a start condition  
(START), followed by a 7-bit device address and a 1-bit  
read/write. Acknowledge (ACK) from slave confirms  
the reception of each byte. Each access must be  
terminated by a stop condition (STOP).  
Address  
Code  
R/W  
Address  
MCP9800/1/2/3 Response  
FIGURE 5-1:  
Device Addressing.  
Data transfer may be initiated when the bus is in IDLE.  
DS21909B-page 16  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
5.1.5  
DATA VALID  
5.1.7  
TIME OUT (MCP9802/03)  
After the start condition, each bit of data in transmission  
needs to be settled for time specified by tSU-DATA  
before SCLK toggles from low-to-high (refer to the  
Serial Interface Timing Specification).  
If the SCLK stays low for time specified by tOUT, the  
MCP9802/03 resets the serial interface. This dictates  
the minimum clock speed as specified in the SMBus  
specification. The I2C bus specification does not limit  
clock speed and, therefore, the master can hold the  
clock indefinitely to process data (MCP9800/01 only).  
5.1.6  
ACKNOWLEDGE (ACK)  
Each receiving device, when addressed, is obliged to  
generate an acknowledge bit after the reception of  
each byte. The master device must generate an extra  
clock pulse for ACK to be recognized.  
The acknowledging device has to pull down the SDA  
line for tSU-DATA before the low-to-high transition of  
SCLK from the Master and remains pulled down for  
t
H-DATA after high-to-low transition of SCLK.  
During read, the master must signal an End-of-Data  
(EOD) to the slave by not generating an ACK bit once  
the last bit has been clocked out of the slave. In this  
case, the slave will leave the data line released to  
enable the master to generate the stop condition.  
2004 Microchip Technology Inc.  
DS21909B-page 17  
MCP9800/1/2/3  
5.2  
Graphical Representation of the  
MCP9800/1/2/3 Serial Protocols  
Read 1-byte Data  
1
1
2
0
3
0
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
0
6
0
7
8
SCLK  
SDA  
A
C
K
A
C
K
P
1
P
0
A
2
A
1
A
0
S
W
Address Byte  
Pointer  
MCP980X  
MCP980X  
1
1
2
0
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
N
A
K
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
S
0
1
R
P
Address Byte  
Data  
Master  
MCP980X  
Read 2-byte Data  
1
2
3
0
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
6
0
7
8
SCLK  
SDA  
A
A
P
1
P
0
A
2
A
1
A
0
C
C
S
1
0
0
W
K
K
Address Byte  
Pointer  
MCP980X  
MCP980X  
1
1
2
0
3
0
4
1
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
N
A
K
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
D
D
D
D
D
D
D
9
D
8
S
P
R
SDA  
15 14 13 12 11 10  
MSB Data  
Address Byte  
LSB Data  
Master  
Master  
MCP980X  
S = START Condition  
P = STOP Condition  
FIGURE 5-2:  
Read 1-byte and 2-byte data from a Register.  
DS21909B-page 18  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
Write 1-byte Data  
1
2
0
3
0
4
1
5
6
7
8
1
0
2
0
3
0
4
0
5
0
6
0
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
A
C
K
A
C
K
A
2
A
1
A
0
P
1
P
0
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
S
1
W
SDA  
P
Address Byte  
Pointer  
Data  
MCP980X  
MCP980X  
MCP980X  
Write 2-byte Data  
1
1
2
0
3
0
4
5
6
7
8
1
0
2
0
3
4
5
0
6
0
7
8
SCLK  
SDA  
A
A
A
2
A
1
A
0
P
1
P
0
C
C
S
1
0
0
W
K
K
Address Byte  
Pointer  
MCP980X  
MCP980X  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
A
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
D
D
D
D
D
D
9
D
C
C
P
15 14 13 12 11 10  
8
K
K
MSB Data  
LSB Data  
MCP980X  
MCP980X  
S = START Condition  
P = STOP Condition  
FIGURE 5-3:  
Write 1-byte and 2-byte data from a Register.  
2004 Microchip Technology Inc.  
DS21909B-page 19  
MCP9800/1/2/3  
Register Pointer Setting for Continuous Reception  
1
2
3
4
5
6
7
8
1
2
0
3
0
4
0
5
0
6
0
7
8
SCLK  
SDA  
A
C
K
A
C
K
P
1
P
0
A
2
A
1
A
0
S
1
0
0
1
0
W
Address Byte  
Pointer  
MCP980X  
MCP980X  
Receive 1-byte Data  
1
1
2
0
3
4
1
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
SDA  
A
C
K
N
A
K
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
S
0
R
P
Address Byte  
Data  
Master  
MCP980X  
Receive Another 1-byte Data  
1
1
2
0
3
0
4
1
5
6
7
8
1
2
3
4
5
6
7
8
SCLK  
A
C
K
N
A
K
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
S
R
P
SDA  
Address Byte  
Data  
Master  
MCP980X  
Note:  
User can continue to receive 1-byte data indefinitely from a previously set register pointer.  
S = START Condition  
P = STOP Condition  
FIGURE 5-4:  
Receive 1-byte data from previously set pointer.  
DS21909B-page 20  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
Register Pointer Setting for Continuous Reception  
1
2
3
4
5
6
7
8
1
2
0
3
0
4
0
5
0
6
0
7
8
SCLK  
SDA  
A
C
K
A
P
0
P
1
A
2
A
1
A
0
C
S
1
0
0
1
0
W
K
Address Byte  
Pointer  
MCP980X  
MCP980X  
Receive 2-byte Data  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
N
A
K
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
D
D
D
D
D
D
D
9
D
8
C
S
1
0
0
1
R
P
15 14 13 12 11 10  
K
MSB Data  
Address Byte  
LSB Data  
Master  
Master  
MCP980X  
Receive Another 2-byte Data  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
C
K
A
C
K
N
A
K
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
2
A
1
A
0
D
D
D
D
D
D
D
9
D
8
S
1
0
0
1
P
R
15 14 13 12 11 10  
MSB Data  
Address Byte  
LSB Data  
Master  
Master  
MCP980X  
Note:  
User can continue to receive 2-byte data indefinitely from a previously set register pointer.  
S = START Condition  
P = STOP Condition  
FIGURE 5-5:  
Receive 2-byte data from previously set pointer.  
2004 Microchip Technology Inc.  
DS21909B-page 21  
MCP9800/1/2/3  
6.0  
6.1  
APPLICATIONS INFORMATION  
Connecting to the Serial Bus  
SDA  
SCLK  
PIC16F737  
Microcontroller  
The SDA and SCLK serial interface are open-drain pins  
that require pull-up resistors. This configuration is  
shown in Figure 6-1.  
24LC01  
EEPROM  
TC654  
Fan Speed  
Controller  
VDD  
MCP980X  
Temperature  
Sensor  
MCP980X  
R
R
SDA  
SCLK  
FIGURE 6-2:  
Multiple Devices on SMBus.  
The ALERT output can be wire-ORed with a number of  
other open-drain devices. In such applications, the  
output needs to be programmed as an active-low  
output. Most systems will require pull-up resistors for  
this configuration.  
FIGURE 6-1:  
Interface.  
Pull-up Resistors On Serial  
For the SMBus protocol, the number of devices con-  
nected to the bus are limited only by the maximum rise  
and fall times of the SDA and SCLK lines. Unlike the  
I2C specifications, SMBus does not specify a maximum  
bus capacitance value. Rather, it specifies 350 µA  
(max.) current through the pull-up resistor. Therefore,  
the value of the pull-up resistors will vary depending on  
the system’s supply voltage (VDD). The pull-up resistor  
values for a 5V system ranges 14.3 kto 50 k.  
Minimizing bus capacitance is still very important, as it  
directly affects the rise and fall times of the SDA and  
SCLK lines.  
6.3  
Layout Considerations  
The MCP9800/1/2/3 does not require any additional  
components besides the Master controller in order to  
measure temperature. However, it is recommended  
that a decoupling capacitor of 0.1 µF to 1 µF be used  
between the VDD and GND pins. A high-frequency  
ceramic capacitor is recommended. It is necessary for  
the capacitor to be located as close as possible to the  
power pins in order to provide effective noise  
protection.  
Although SMBus specifications only require the SDA  
and SCLK lines to pull down 350 µA (max.) with 0.4V  
(max.) voltage drop, the MCP9800/1/2/3 is designed to  
meet 0.4V (max.) voltage drop at 3 mA of current. This  
allows the MCP9800/1/2/3 to drive lower values of pull-  
up resistors and higher bus capacitance. In this  
application, all devices on the bus must meet the same  
pull-down current requirements.  
6.4  
Thermal Considerations  
The MCP9800/1/2/3 measures temperature by  
monitoring the voltage of a diode located in the die. A  
low impedance thermal path between the die and the  
Printed Circuit Board (PCB) is provided by the pins.  
Therefore, the MCP9800/1/2/3 effectively monitors the  
temperature of the PCB. However, the thermal path for  
the ambient air is not as efficient because the plastic  
device package functions as a thermal insulator.  
6.2  
Typical Application  
A potential for self-heating errors can exist if the  
MCP9800/1/2/3 SDA and SCLK communication lines  
are heavily loaded with pull-ups. Typically, the self-  
heating error is negligible because of the relatively  
small current consumption of the MCP9800/1/2/3.  
However, in order to maximize the temperature  
accuracy, the SDA and SCLK pins need to be lightly  
loaded.  
Microchip provides several microcontroller product  
lines with Master Synchronous Serial Port Modules  
(MSSP) that include I2C interface mode. This module  
implements all master and slave functions and simpli-  
fies the firmware development overhead. Figure 6-2  
shows a typical application using the PIC16F737 as a  
master to control other Microchip slave products, such  
as EEPROM, fan speed controllers and the MCP980X  
temperature sensor connected to the bus.  
DS21909B-page 22  
2004 Microchip Technology Inc.  
 
 
MCP9800/1/2/3  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23  
Example:  
MCP9800  
Part Number  
Part Number  
MCP9802  
XXNN  
MCP9800A0T-M/OTG  
MCP9800A5T-M/OTG  
LDNN  
LJNN  
MCP9802A0T-M/OTG  
MCP9802A5T-M/OTG  
JKNN  
JRNN  
Example:  
8-Lead MSOP  
G9803M  
XXXXX  
425256  
YWWNNN  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
GMCP9803  
M/SN0425  
NNN  
256  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.  
2004 Microchip Technology Inc.  
DS21909B-page 23  
MCP9800/1/2/3  
5-Lead Plastic Small Outline Transistor (OT) (SOT-23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
5
MILLIMETERS  
NOM  
5
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
.038  
0.95  
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
p1  
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
0
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
0
5
10  
0
5
10  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Drawing No. C04-091  
DS21909B-page 24  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
8
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
.037  
.006  
0.75  
0.00  
0.85  
0.95  
0.15  
-
-
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint (Reference)  
Foot Angle  
F
.037 REF  
0.95 REF  
φ
c
0°  
.003  
.009  
5°  
-
.006  
.012  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
5°  
-
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
2004 Microchip Technology Inc.  
DS21909B-page 25  
MCP9800/1/2/3  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil Body (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
A
.053  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21909B-page 26  
2004 Microchip Technology Inc.  
MCP9800/1/2/3  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XX  
X
–X  
/XX  
X
a)  
MCP9800A0T-M/OTG Slave address ‘000’,  
Slave Tape & Reel Temperature Package PB Free  
Address  
Tape and Reel,  
-55°C to +125°C, PB  
Free SOT-23 package.  
Range  
b)  
MCP9800A5T-M/OTG Slave address ‘101’,  
Tape and Reel,  
Device:  
MCP9800: Temperature Sensor  
MCP9801: Temperature Sensor  
MCP9802: Temperature Sensor  
MCP9803: Temperature Sensor  
-55°C to +125°C, PB  
Free SOT-23 package.  
a)  
b)  
c)  
d)  
MCP9801-M/MSG  
MCP9801T-M/MSG  
MCP9801-M/SNG  
MCP9801T-M/SNG  
-55°C to +125°C, PB  
Free 8LD MSOP  
package.  
Tape and Reel, -55°C  
to +125°C, PB Free  
8LD MSOP package.  
-55°C to +125°C, PB  
A0 = Slave address set to ‘000’  
A5 = Slave address set to ‘101’  
Tape and Reel:  
=
=
Blank  
Tape and Reel  
Free  
8LD  
SOIC  
T
package.  
Tape and Reel, -55°C  
to +125°C, PB Free  
8LD SOIC package.  
° °  
-55 C to +125 C  
Temperature  
Range:  
M
=
a)  
b)  
MCP9802A0T-M/OT Slave address ‘000’,  
Tape and Reel, -55°C  
to +125°C, SOT-23  
package.  
MCP9802A5T-M/OT Slave address ‘101’,  
Tape and Reel, -55°C  
to +125°C, SOT-23  
package.  
Package:  
PB Free:  
OT  
MS  
SN  
=
=
=
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic Micro Small Outline (MSOP), 8-lead  
Plastic SOIC, (150 mil Body), 8-lead  
G
=
Lead Free device  
a)  
b)  
c)  
d)  
MCP9803-M/MSG  
MCP9803T-M/MSG  
MCP9803-M/SNG  
MCP9803T-M/SNG  
-55°C to +125°C, PB  
Free 8LD MSOP  
package.  
Tape and Reel, -55°C  
to +125°C, PB Free  
8LD MSOP package.  
-55°C to +125°C, PB  
Free  
8LD  
SOIC  
package.  
Tape and Reel, -55°C  
to +125°C, PB Free  
8LD SOIC package.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21909B-page 27  
MCP9800/1/2/3  
NOTES:  
DS21909B-page 28  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,  
SmartSensor and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,  
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,  
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,  
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,  
SmartTel and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21909B-page 29  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http:\\support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Ballerup  
Tel: 45-4420-9895  
Fax: 45-4420-9910  
India - New Delhi  
Tel: 91-11-5160-8632  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Massy  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Japan - Kanagawa  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
China - Fuzhou  
Tel: 86-591-750-3506  
Fax: 86-591-750-3521  
Germany - Ismaning  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Korea - Seoul  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Boston  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Westford, MA  
Tel: 978-692-3848  
Fax: 978-692-3821  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
England - Berkshire  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Dallas  
Addison, TX  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Tel: 972-818-7423  
Fax: 972-818-2924  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Detroit  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
09/27/04  
DS21909B-page 30  
2004 Microchip Technology Inc.  

相关型号:

AMCP9801A5T-M/MSG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9801A5T-M/OTG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9801A5T-M/SNG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A0-M/MSG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A0-M/OTG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A0-M/SNG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A0T-M/MSG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A0T-M/OTG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A0T-M/SNG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A5-M/MSG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A5-M/OTG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP

AMCP9802A5-M/SNG

2-Wire High-Accuracy Temperature Sensor
MICROCHIP