24FC64FT-I/OT [MICROCHIP]

24FC64FT-I/OT;
24FC64FT-I/OT
型号: 24FC64FT-I/OT
厂家: MICROCHIP    MICROCHIP
描述:

24FC64FT-I/OT

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 双倍数据速率 光电二极管 内存集成电路
文件: 总36页 (文件大小:702K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24AA64F/24LC64F/24FC64F  
2
64K I C™ Serial EEPROM with Quarter-Array Write-Protect  
Temperature Ranges:  
Device Selection Table  
- Industrial (I): -40°C to +85°C  
Part  
Number  
VCC  
Range  
Max. Clock  
Frequency  
Temp.  
Ranges  
- Automotive (E): -40°C to +125°C  
400 kHz(1)  
400 kHz  
1 MHz(2)  
I
I, E  
I
Description:  
24AA64F  
24LC64F  
24FC64F  
1.7-5.5  
2.5-5.5  
1.7-5.5  
The Microchip Technology Inc. 24AA64F/24LC64F/  
24FC64F (24XX64F*) is a 64 Kbit Electrically Erasable  
PROM. The device is organized as a single block of  
8K x 8-bit memory with a 2-wire serial interface. Low-  
voltage design permits operation down to 1.7V, with  
standby and read currents of only 1 A and 400 A,  
respectively. It has been developed for advanced, low-  
power applications such as personal communications  
or data acquisition. The 24XX64F also has a page  
write capability for up to 32 bytes of data. Functional  
address lines allow up to eight devices on the same  
bus, for up to 512 Kbits address space. The 24XX64F  
is available in the standard 8-pin PDIP, surface mount  
SOIC, TSSOP, TDFN and MSOP packages. The  
24XX64F is also available in the 5-lead SOT-23  
package.  
Note 1: 100 kHz for VCC <2.5V.  
2: 400 kHz for VCC <2.5V.  
Features:  
• Single-Supply with Operation down to 1.7V for  
24AA64F/24FC64F Devices, 2.5V for 24LC64F  
Devices  
• Low-Power CMOS Technology:  
- Read current 400 A, max.  
- Standby current 1 A, max. (I-temp)  
• 2-Wire Serial Interface, I2C™ Compatible  
• Packages with Three Address Pins are  
Cascadable up to Eight Devices  
Block Diagram  
• Schmitt Trigger Inputs for Noise Suppression  
• Output Slope Control to Eliminate Ground Bounce  
• 100 kHz and 400 kHz Clock Compatibility  
• 1 MHz Clock for FC Versions  
HV  
A0 A1 A2WP  
Generator  
• Page Write Time 5 ms, typical  
I/O  
Control  
Logic  
Memory  
Control  
Logic  
EEPROM  
Array  
XDEC  
• Self-timed Erase/Write Cycle  
• 32-Byte Page Write Buffer  
Page  
Latches  
• Hardware Write-Protect for 1/4 Array  
(1800h-1FFFh)  
I/O  
SCL  
• ESD Protection > 4,000V  
YDEC  
• More than One Million Erase/Write Cycles  
• Data Retention > 200 Years  
SDA  
VCC  
VSS  
• Factory Programming Available  
Sense Amp.  
R/W Control  
• Packages include 8-Lead PDIP, SOIC, TSSOP,  
MSOP, TDFN, 5-Lead SOT-23  
• Pb-Free and RoHS Compliant  
Package Types  
PDIP/MSOP/SOIC/TSSOP  
TDFN  
SOT-23  
A0  
1
8
VCC  
SCL  
VSS  
WP  
5
4
1
2
1
A0  
A1  
VCC  
WP  
8
7
6
5
A1  
A2  
2
3
7
6
WP  
2
3
4
SCL  
SDA  
A2  
VSS  
SCL  
VCC  
3
SDA  
VSS  
4
5
SDA  
*24XX64F is used in this document as a generic part number for the 24AA64F/24LC64F/24FC64F devices.  
2009-2012 Microchip Technology Inc.  
DS22154B-page 1  
24AA64F/24LC64F/24FC64F  
1.0  
ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
VCC.............................................................................................................................................................................6.5V  
All inputs and outputs w.r.t. VSS ......................................................................................................... -0.3V to VCC +1.0V  
Storage temperature ...............................................................................................................................-65°C to +150°C  
Ambient temperature with power applied................................................................................................-40°C to +125°C  
ESD protection on all pins  4 kV  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 1-1:  
DC CHARACTERISTICS  
Industrial (I):  
TA = -40°C to +85°C, VCC = +1.7V to +5.5V  
DC CHARACTERISTICS  
Automotive (E): TA = -40°C to +125°C, VCC = +2.5V to +5.5V  
Param.  
Sym.  
No.  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
A0, A1, A2, WP, SCL  
and SDA pins  
D1  
D2  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.7 VCC  
V
0.3 VCC  
0.2 VCC  
V
V
VCC 2.5V  
VCC 2.5V  
D3  
D4  
VHYS  
VOL  
Hysteresis of Schmitt  
Trigger inputs (SDA,  
SCL pins)  
0.05 VCC  
V
VCC 2.5V (Note 1)  
Low-level output voltage  
0.40  
V
IOL = 3.0 mA @ VCC = 4.5V  
IOL = 2.1 mA @ VCC = 2.5V  
D5  
D6  
D7  
ILI  
Input leakage current  
Output leakage current  
±1  
±1  
10  
A  
A  
pF  
VIN = VSS or VCC  
ILO  
VOUT = VSS or VCC  
CIN,  
Pin capacitance  
VCC = 5.0V (Note 1)  
COUT  
(all inputs/outputs)  
TA = 25°C, FCLK = 1 MHz  
D8  
ICC write Operating current  
0.1  
3
mA  
VCC = 5.5V, SCL = 400 kHz  
D9  
ICC read  
0.05  
400  
A  
D10  
ICCS  
Standby current  
.01  
1
5
A  
A  
Industrial  
Automotive  
SDA = SCL = VCC  
A0, A1, A2, WP = VSS  
Note 1: This parameter is periodically sampled and not 100% tested.  
2: Typical measurements taken at room temperature.  
DS22154B-page 2  
2009-2012 Microchip Technology Inc.  
 
24AA64F/24LC64F/24FC64F  
TABLE 1-2:  
AC CHARACTERISTICS  
Electrical Characteristics:  
AC CHARACTERISTICS  
Industrial (I):  
VCC = +1.7V to 5.5V TA = -40°C to +85°C  
Automotive (E): VCC = +2.5V to 5.5V TA = -40°C to 125°C  
Param.  
Sym.  
No.  
Characteristic  
Clock frequency  
Min.  
Max.  
Units  
Conditions  
1
2
3
4
FCLK  
100  
400  
400  
kHz 1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5V VCC 5.5V 24FC64F  
1000  
THIGH  
TLOW  
Clock high time  
Clock low time  
4000  
600  
600  
500  
ns  
ns  
ns  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5V VCC 5.5V 24FC64F  
4700  
1300  
1300  
500  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5V VCC 5.5V 24FC64F  
TR  
TF  
SDA and SCL rise time  
(Note 1)  
1000  
300  
300  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 5.5V 24FC64F  
5
6
SDA and SCL fall time  
(Note 1)  
300  
100  
ns  
ns  
All except, 24FC64F  
1.7V VCC 5.5V 24FC64F  
THD:STA Start condition hold time  
4000  
600  
600  
250  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5V VCC 5.5V 24FC64F  
7
TSU:STA Start condition setup time  
4700  
600  
600  
250  
ns  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5V VCC 5.5V 24FC64F  
8
9
THD:DAT Data input hold time  
TSU:DAT Data input setup time  
0
ns  
ns  
(Note 2)  
250  
100  
100  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 5.5V 24FC64F  
10  
TSU:STO Stop condition setup time  
4000  
600  
600  
250  
ns  
1.7 V VCC 2.5V  
2.5 V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5 V VCC 5.5V 24FC64F  
11  
12  
TSU:WP WP setup time  
THD:WP WP hold time  
4000  
600  
600  
ns  
ns  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 5.5V 24FC64F  
4700  
1300  
1300  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 5.5V 24FC64F  
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.  
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region  
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs, which provide improved  
noise spike suppression. This eliminates the need for a TI specification for standard operation.  
4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific  
application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site  
at www.microchip.com.  
2009-2012 Microchip Technology Inc.  
DS22154B-page 3  
 
 
 
 
24AA64F/24LC64F/24FC64F  
TABLE 1-2:  
AC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics:  
Industrial (I): VCC = +1.7V to 5.5V TA = -40°C to +85°C  
Automotive (E): VCC = +2.5V to 5.5V TA = -40°C to 125°C  
AC CHARACTERISTICS  
Param.  
Sym.  
No.  
Characteristic  
Min.  
Max.  
Units  
Conditions  
13  
14  
15  
TAA  
Output valid from clock  
(Note 2)  
3500  
900  
900  
400  
ns  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5V VCC 5.5V 24FC64F  
TBUF  
TOF  
Bus free time: Time the bus  
must be free before a new  
transmission can start  
4700  
1300  
1300  
500  
ns  
ns  
1.7V VCC 2.5V  
2.5V VCC 5.5V  
1.7V VCC 2.5V 24FC64F  
2.5V VCC 5.5V 24FC64F  
Output fall time from VIH  
minimum to VIL maximum  
CB 100 pF  
10 + 0.1CB  
250  
250  
All except, 24FC64F (Note 1)  
24FC64F (Note 1)  
16  
17  
18  
TSP  
TWC  
Input filter spike suppression  
(SDA and SCL pins)  
50  
5
ns  
All except, 24FC64F (Notes 1  
and 3)  
Write cycle time (byte or  
page)  
ms  
Endurance  
1,000,000  
cycles Page Mode 25°C, 5.5V (Note 4)  
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.  
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region  
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs, which provide improved  
noise spike suppression. This eliminates the need for a TI specification for standard operation.  
4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific  
application, please consult the Total Endurance™ Model, which can be obtained from Microchip’s web site  
at www.microchip.com.  
FIGURE 1-3:  
BUS TIMING DATA  
5
4
D3  
2
SCL  
7
3
10  
8
9
SDA  
IN  
6
16  
14  
12  
13  
SDA  
OUT  
(protected)  
WP  
11  
(unprotected)  
DS22154B-page 4  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
The descriptions of the pins are listed in Table 2-1.  
2.0  
PIN DESCRIPTIONS  
TABLE 2-1:  
Name  
PIN FUNCTION TABLE  
PDIP  
SOIC  
TSSOP  
TDFN  
MSOP  
SOT-23  
Description  
Chip Address Input  
A0  
A1  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
2
Chip Address Input  
Chip Address Input  
Ground  
A2  
VSS  
SDA  
SCL  
WP  
VCC  
3
Serial Address/Data I/O  
Serial Clock  
1
5
Write-Protect Input  
+1.7V to 5.5V Power Supply  
4
2.1  
A0, A1, A2 Chip Address Inputs  
2.3  
Serial Clock (SCL)  
The A0, A1 and A2 inputs are used by the 24XX64F for  
multiple device operation. The levels on these inputs  
are compared with the corresponding bits in the slave  
address. The chip is selected if the compare is true.  
The SCL input is used to synchronize the data transfer  
from and to the device.  
2.4  
Write-Protect (WP)  
Up to eight devices may be connected to the same bus  
by using different Chip Select bit combinations. These  
inputs must be connected to either VCC or VSS.  
This pin must be connected to either VSS or VCC. If tied  
to VSS, write operations are enabled. If tied to VCC,  
write operations are inhibited for upper 1/4 of the array  
(1800h-1FFFh), but read operations are not affected.  
In most applications, the chip address inputs A0, A1  
and A2 are hard-wired to logic ‘0’ or logic ‘1’. For  
applications in which these pins are controlled by a  
microcontroller or other programmable device, the chip  
address pins must be driven to logic ‘0’ or logic ‘1’  
before normal device operation can proceed. Address  
pins are not available in the SOT-23 package.  
3.0  
FUNCTIONAL DESCRIPTION  
The 24XX64F supports a bidirectional, 2-wire bus and  
data transmission protocol. A device that sends data  
onto the bus is defined as transmitter, while a device  
receiving data is defined as a receiver. The bus has to  
be controlled by a master device which generates the  
Serial Clock (SCL), controls the bus access and  
generates the Start and Stop conditions, while the  
24XX64F works as slave. Both master and slave can  
operate as transmitter or receiver, but the master  
device determines which mode is activated.  
2.2  
Serial Data (SDA)  
SDA is a bidirectional pin used to transfer addresses  
and data into and out of the device. Since it is an open-  
drain terminal, the SDA bus requires a pull-up resistor  
to VCC (typical 10 kfor 100 kHz, 2 kfor 400 kHz).  
For normal data transfer, SDA is allowed to change  
only during SCL low. Changes during SCL high are  
reserved for indicating the Start and Stop conditions.  
2009-2012 Microchip Technology Inc.  
DS22154B-page 5  
 
24AA64F/24LC64F/24FC64F  
The data on the line must be changed during the low  
period of the clock signal. There is one clock pulse per  
bit of data.  
4.0  
BUS CHARACTERISTICS  
The following bus protocol has been defined:  
• Data transfer may be initiated only when the bus  
is not busy  
Each data transfer is initiated with a Start condition and  
terminated with a Stop condition. The number of data  
bytes transferred between Start and Stop conditions is  
determined by the master device and is, theoretically,  
unlimited (although only the last thirty two will be stored  
when doing a write operation). When an overwrite does  
occur, it will replace data in a first-in first-out (FIFO)  
fashion.  
• During data transfer, the data line must remain  
stable whenever the clock line is high. Changes in  
the data line while the clock line is high will be  
interpreted as a Start or Stop condition  
Accordingly, the following bus conditions have been  
defined (Figure 4-1).  
4.5  
Acknowledge  
4.1  
Bus Not Busy (A)  
Each receiving device, when addressed, is obliged to  
generate an acknowledge after the reception of each  
byte. The master device must generate an extra clock  
pulse which is associated with this Acknowledge bit.  
Both data and clock lines remain high.  
4.2  
Start Data Transfer (B)  
A high-to-low transition of the SDA line while the clock  
(SCL) is high determines a Start condition. All  
commands must be preceded by a Start condition.  
Note:  
The 24XX64F does not generate any  
Acknowledge bits if an internal  
programming cycle is in progress.  
The device that acknowledges has to pull down the  
SDA line during the Acknowledge clock pulse in such a  
way that the SDA line is stable low during the high  
period of the acknowledge related clock pulse. Of  
course, setup and hold times must be taken into  
account. During reads, a master must signal an end of  
data to the slave by not generating an Acknowledge bit  
on the last byte that has been clocked out of the slave.  
In this case, the slave (24XX64F) will leave the data  
line high to enable the master to generate the Stop  
condition.  
4.3  
Stop Data Transfer (C)  
A low-to-high transition of the SDA line while the clock  
(SCL) is high determines a Stop condition. All  
operations must be ended with a Stop condition.  
4.4  
Data Valid (D)  
The state of the data line represents valid data when,  
after a Start condition, the data line is stable for the  
duration of the high period of the clock signal.  
FIGURE 4-1:  
DATA TRANSFER SEQUENCE ON THE SERIAL BUS  
(A)  
(B)  
(D)  
(D)  
(C) (A)  
SCL  
SDA  
Start  
Condition  
Stop  
Condition  
Address or  
Acknowledge  
Valid  
Data  
Allowed  
to Change  
DS22154B-page 6  
2009-2012 Microchip Technology Inc.  
 
24AA64F/24LC64F/24FC64F  
FIGURE 5-1:  
CONTROL BYTE FORMAT  
5.0  
DEVICE ADDRESSING  
Read/Write Bit  
A control byte is the first byte received following the  
Start condition from the master device (Figure 5-1).  
The control byte consists of a four-bit control code. For  
the 24XX64F, this is set as ‘1010’ binary for read and  
write operations. The next three bits of the control byte  
are the Chip Select bits (A2, A1, A0). The Chip Select  
bits allow the use of up to eight 24XX64F devices on  
the same bus and are used to select which device is  
accessed. The Chip Select bits in the control byte must  
correspond to the logic levels on the corresponding A2,  
A1 and A0 pins for the device to respond. These bits  
are, in effect, the three Most Significant bits of the word  
address.  
Chip Select  
Control Code  
Bits  
S
1
0
1
0
A2 A1 A0 R/W ACK  
Slave Address  
Acknowledge Bit  
Start Bit  
5.1  
Contiguous Addressing Across  
Multiple Devices  
For the SOT-23 package, the address pins are not  
available. During device addressing, the A2, A1 and A0  
Chip Select bits (Figure 5-2) should be set to ‘0’.  
The Chip Select bits A2, A1 and A0 can be used to  
expand the contiguous address space for up to 512K  
bits by adding up to eight 24XX64F devices on the  
same bus. In this case, software can use A0 of the con-  
trol byte as address bit A13; A1 as address bit A14; and  
A2 as address bit A15. It is not possible to sequentially  
read across device boundaries.  
The last bit of the control byte defines the operation to  
be performed. When set to a ‘1’, a read operation is  
selected. When set to a ‘0’, a write operation is  
selected. The next two bytes received define the  
address of the first data byte (Figure 5-2). Because  
only A12...A0 are used, the upper-three address bits  
are “don’t care” bits. The upper-address bits are  
transferred first, followed by the Less Significant bits.  
The SOT-23 package does not support multiple device  
addressing on the same bus.  
Following the Start condition, the 24XX64F monitors  
the SDA bus, checking the device-type identifier being  
transmitted. Upon receiving a ‘1010’ code and appro-  
priate device-select bits, the slave device outputs an  
Acknowledge signal on the SDA line. Depending on the  
state of the R/W bit, the 24XX64F will select a read or  
write operation.  
FIGURE 5-2:  
ADDRESS SEQUENCE BIT ASSIGNMENTS  
Control Byte  
Address High Byte  
Address Low Byte  
A
A
2
A
1
A
0
A
A
A
9
A
8
A
7
A
0
1
0
1
0
R/W  
x
x
x
12 11 10  
Control  
Code  
Chip  
Select  
bits  
x= “don’t care” bit  
2009-2012 Microchip Technology Inc.  
DS22154B-page 7  
 
 
24AA64F/24LC64F/24FC64F  
6.2  
Page Write  
6.0  
6.1  
WRITE OPERATIONS  
Byte Write  
The write control byte, word address and the first data  
byte are transmitted to the 24XX64F in the same way  
as in a byte write. However, instead of generating a  
Stop condition, the master transmits up to 31 additional  
bytes which are temporarily stored in the on-chip page  
buffer and will be written into memory once the master  
has transmitted a Stop condition. Upon receipt of each  
word, the five lower Address Pointer bits are internally  
incremented by one. If the master should transmit more  
than 32 bytes prior to generating the Stop condition, the  
address counter will roll over and the previously  
received data will be overwritten. As with the byte write  
operation, once the Stop condition is received, an inter-  
nal write cycle will begin (Figure 6-2). If an attempt is  
made to write to the array with the WP pin held high, the  
device will acknowledge the command, but no write  
cycle will occur, no data will be written, and the device  
will immediately accept a new command.  
Following the Start condition from the master, the  
control code (four bits), the Chip Select (three bits) and  
the R/W bit (which is a logic low) are clocked onto the  
bus by the master transmitter. This indicates to the  
addressed slave receiver that the address high byte will  
follow once it has generated an Acknowledge bit during  
the ninth clock cycle. Therefore, the next byte transmit-  
ted by the master is the high-order byte of the word  
address and will be written into the Address Pointer of  
the 24XX64F. The next byte is the Least Significant  
Address Byte. After receiving another Acknowledge  
signal from the 24XX64F, the master device will trans-  
mit the data word to be written into the addressed mem-  
ory location. The 24XX64F acknowledges again and  
the master generates a Stop condition. This initiates  
the internal write cycle and, during this time, the  
24XX64F will not generate Acknowledge signals  
(Figure 6-1). If an attempt is made to write to the array  
with the WP pin held high, the device will acknowledge  
the command, but no write cycle will occur, no data will  
be written and the device will immediately accept a new  
command. After a byte Write command, the internal  
address counter will point to the address location fol-  
lowing the one that was just written.  
Note:  
Page write operations are limited to writ-  
ing bytes within a single physical page,  
regardless of the number of bytes  
actually being written. Physical page  
boundaries start at addresses that are  
integer multiples of the page buffer size  
(or ‘page size’) and end at addresses that  
are integer multiples of [page size – 1]. If  
a Page Write command attempts to write  
across a physical page boundary, the  
result is that the data wraps around to the  
beginning of the current page (overwriting  
data previously stored there), instead of  
being written to the next page, as might be  
expected. It is therefore necessary for the  
application software to prevent page write  
operations that would attempt to cross a  
page boundary.  
6.3  
Write Protection  
The WP pin allows the user to write-protect 1/4 of the  
array (1800h-1FFFh) when the pin is tied to VCC. If tied  
to VSS the write protection is disabled. The WP pin is  
sampled at the Stop bit for every Write command  
(Figure 4-1). Toggling the WP pin after the Stop bit will  
have no effect on the execution of the write cycle.  
DS22154B-page 8  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
FIGURE 6-1:  
BYTE WRITE  
S
T
Bus Activity  
Master  
S
Control  
A
Address  
High Byte  
Address  
Low Byte  
T
O
P
Byte  
R
T
Data  
A A A  
S 1 0 1 0  
2 1 0  
SDA Line  
x x x  
0
P
A
C
K
A
C
K
A
C
K
A
C
K
Bus Activity  
x= “don’t care” bit  
FIGURE 6-2:  
PAGE WRITE  
S
T
A
R
T
S
T
O
P
Control  
Byte  
Address  
High Byte  
Address  
Low Byte  
Bus Activity  
Master  
Data Byte 0  
Data Byte 31  
A A A  
SDA Line  
x x x  
P
S
10 1 0  
0
2 1 0  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Bus Activity  
x= “don’t care” bit  
2009-2012 Microchip Technology Inc.  
DS22154B-page 9  
24AA64F/24LC64F/24FC64F  
FIGURE 7-1:  
ACKNOWLEDGE POLLING  
FLOW  
7.0  
ACKNOWLEDGE POLLING  
Since the device will not acknowledge during a write  
cycle, this can be used to determine when the cycle is  
complete (this feature can be used to maximize bus  
throughput). Once the Stop condition for a Write  
command has been issued from the master, the device  
initiates the internally-timed write cycle and ACK polling  
can then be initiated immediately. This involves the  
master sending a Start condition followed by the control  
byte for a Write command (R/W = 0). If the device is still  
busy with the write cycle, then no ACK will be returned.  
If no ACK is returned, the Start bit and control byte must  
be re-sent. If the cycle is complete, the device will  
return the ACK and the master can then proceed with  
the next Read or Write command. See Figure 7-1 for a  
flow diagram of this operation.  
Send  
Write Command  
Send Stop  
Condition to  
Initiate Write Cycle  
Send Start  
Send Control Byte  
with R/W = 0  
Did Device  
Acknowledge  
(ACK = 0)?  
No  
Yes  
Next  
Operation  
DS22154B-page 10  
2009-2012 Microchip Technology Inc.  
 
24AA64F/24LC64F/24FC64F  
This terminates the write operation, but not before  
the internal Address Pointer is set. The master then  
8.0  
READ OPERATION  
Read operations are initiated in the same way as write  
operations, with the exception that the R/W bit of the  
control byte is set to one. There are three basic types  
of read operations: current address read, random read  
and sequential read.  
issues the control byte again, but with the R/W bit set  
to a one. The 24XX64F will then issue an acknowl-  
edge and transmit the 8-bit data word. The master  
will not acknowledge the transfer, but does generate  
a Stop condition, which causes the 24XX64F to  
discontinue transmission (Figure 8-2). After  
a
random Read command, the internal address coun-  
ter will point to the address location following the one  
that was just read.  
8.1  
Current Address Read  
The 24XX64F contains an address counter that main-  
tains the address of the last word accessed, internally  
incremented by one. Therefore, if the previous read  
access was to address ‘n’ (n is any legal address), the  
next current address read operation would access data  
from address n + 1.  
8.3  
Sequential Read  
Sequential reads are initiated in the same way as  
random reads, except that once the 24XX64F transmits  
the first data byte, the master issues an acknowledge as  
opposed to the Stop condition used in a random read.  
This acknowledge directs the 24XX64F to transmit the  
next sequentially-addressed 8-bit word (Figure 8-3).  
Following the final byte being transmitted to the master,  
the master will NOT generate an acknowledge, but will  
generate a Stop condition. To provide sequential reads,  
the 24XX64F contains an internal Address Pointer  
which is incremented by one at the completion of each  
operation. This Address Pointer allows the entire  
memory contents to be serially read during one opera-  
tion. The internal Address Pointer will automatically roll  
over from address 1FFF to address 0000 if the master  
acknowledges the byte received from the array address  
1FFF.  
Upon receipt of the control byte with R/W bit set to one,  
the 24XX64F issues an acknowledge and transmits the  
eight-bit data word. The master will not acknowledge  
the transfer, but does generate a Stop condition and the  
24XX64F discontinues transmission (Figure 8-1).  
8.2  
Random Read  
Random read operations allow the master to access  
any memory location in a random manner. To  
perform this type of read operation, the word address  
must first be set. This is accomplished by sending  
the word address to the 24XX64F as part of a write  
operation (R/W bit set to ‘0’). Once the word address  
is sent, the master generates a Start condition  
following the acknowledge.  
FIGURE 8-1:  
CURRENT ADDRESS READ  
S
Bus Activity  
Master  
T
A
R
Control  
Byte  
S
T
Data (n)  
O
P
T
SDA Line  
S
P
A
C
K
N
O
Bus Activity  
A
C
K
2009-2012 Microchip Technology Inc.  
DS22154B-page 11  
 
24AA64F/24LC64F/24FC64F  
FIGURE 8-2:  
RANDOM READ  
S
S
T
A
R
T
Bus Activity  
Master  
T
A
R
T
S
T
O
P
Control  
Byte  
Address  
High Byte  
Address  
Low Byte  
Control  
Byte  
Data  
Byte  
A A A  
2 1 0  
A A A  
2 1 0  
SDA Line  
x x x  
S 1 0 1 0  
0
S 1 01 0  
1
P
A
C
K
A
C
K
A
C
K
N
O
A
C
K
A
C
K
Bus Activity  
x= “don’t care” bit  
FIGURE 8-3:  
SEQUENTIAL READ  
S
T
O
P
Bus Activity  
Master  
Control  
Data n  
Byte  
Data n + 1  
Data n + 2  
Data n + x  
P
SDA Line  
A
C
K
A
C
K
A
C
K
A
C
K
N
O
A
C
K
Bus Activity  
DS22154B-page 12  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
9.0  
9.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example:  
24LC64F  
XXXXXXXX  
T/XXXNNN  
I/P  
13F  
e
3
YYWW  
0527  
8-Lead SOIC (3.90 mm)  
Example:  
24LC64FI  
XXXXXXXT  
e
3
XXXXYYWW  
SN  
0527  
13F  
NNN  
Example:  
8-Lead TSSOP  
4LBF  
I527  
13F  
XXXX  
TYWW  
NNN  
Example:  
8-Lead MSOP  
4L64FI  
XXXXXT  
52713F  
YWWNNN  
8-Lead 2x3 TDFN  
Example:  
XXX  
YWW  
NN  
AT4  
527  
I3  
2009-2012 Microchip Technology Inc.  
DS22154B-page 13  
24AA64F/24LC64F/24FC64F  
5-Lead SOT-23  
XXNN  
Example:  
7MNN  
1st Line Marking Codes  
TDFN  
Part Number  
TSSOP  
MSOP  
SOT-23  
I Temp.  
AT1  
E Temp.  
I Temp.  
7MNN  
7QNN  
7UNN  
E Temp.  
24AA64F  
24LC64F  
24FC64F  
4ABF  
4LBF  
4FBF  
4A64FT  
4L64FT  
4F64FT  
AT5  
AT4  
7RNN  
A7D  
Note:  
T = Temperature grade (I, E)  
Legend: XX...X Part number or part number code  
T
Temperature (I, E)  
Y
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code (2 characters for small packages)  
Pb-free JEDEC designator for Matte Tin (Sn)  
YY  
WW  
NNN  
e
3
Note: For very small packages with no room for the Pb-free JEDEC designator  
, the marking will only appear on the outer carton or reel label.  
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22154B-page 14  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢆꢓꢆꢔꢕꢕꢆꢖꢋꢈꢆꢗꢘꢅꢙꢆꢚꢇꢍꢏꢇꢛ  
ꢜꢘꢊꢃꢝ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
ꢯꢄꢃꢏꢇ  
ꢰꢱꢝꢲꢠꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢁꢀꢣꢣꢅꢩꢛꢝ  
ꢁꢀꢞꢣ  
ꢁꢞꢀꢣ  
ꢁꢙꢨꢣ  
ꢁꢞꢺꢨ  
ꢁꢀꢞꢣ  
ꢁꢣꢀꢣ  
ꢁꢣꢺꢣ  
ꢁꢣꢀꢶ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
ꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢩꢉꢇꢌꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢛꢘꢕꢈꢊꢋꢌꢐꢅꢏꢕꢅꢛꢘꢕꢈꢊꢋꢌꢐꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢳꢌꢄꢜꢏꢘ  
ꢦꢙ  
ꢦꢀ  
ꢠꢀ  
ꢔꢀ  
ꢌꢩ  
ꢁꢙꢀꢣ  
ꢁꢀꢸꢨ  
ꢁꢀꢀꢨ  
ꢁꢣꢀꢨ  
ꢁꢙꢸꢣ  
ꢁꢙꢥꢣ  
ꢁꢞꢥꢶ  
ꢁꢀꢀꢨ  
ꢁꢣꢣꢶ  
ꢁꢣꢥꢣ  
ꢁꢣꢀꢥ  
ꢁꢞꢙꢨ  
ꢁꢙꢶꢣ  
ꢁꢥꢣꢣ  
ꢁꢀꢨꢣ  
ꢁꢣꢀꢨ  
ꢁꢣꢻꢣ  
ꢁꢣꢙꢙ  
ꢁꢥꢞꢣ  
ꢫꢃꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢯꢡꢡꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢳꢕꢗꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢼꢕꢗꢅꢛꢡꢉꢖꢃꢄꢜꢅꢅꢚ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢚꢅꢛꢃꢜꢄꢃꢎꢃꢖꢉꢄꢏꢅꢝꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁꢣꢀꢣꢤꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢥꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪꢅꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢀꢶꢩ  
2009-2012 Microchip Technology Inc.  
DS22154B-page 15  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22154B-page 16  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2012 Microchip Technology Inc.  
DS22154B-page 17  
24AA64F/24LC64F/24FC64F  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢑꢞꢜꢒꢆꢓꢆꢜꢄꢠꢠꢘꢡꢢꢆꢔꢣꢤꢕꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢞꢟꢏꢥꢛ  
ꢜꢘꢊꢃꢝ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
DS22154B-page 18  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
ꢦꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢧꢠꢄꢐꢉꢋꢉꢊꢘꢠꢆꢑꢟꢧꢒꢆꢚꢞꢟꢧꢁꢨꢔꢛ  
ꢜꢘꢊꢃꢝ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢯꢄꢃꢏꢇ  
ꢢꢰꢳꢳꢰꢢꢠꢫꢠꢼꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢳꢌꢉꢋꢅꢂꢃꢏꢖꢘ  
ꢣꢁꢸꢨꢅꢩꢛꢝ  
ꢴꢈꢏꢇꢃꢋꢌꢅꢳꢌꢉꢋꢅꢂꢃꢏꢖꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢲꢌꢃꢜꢘꢏ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢛꢏꢉꢄꢋꢕꢎꢎ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢳꢌꢄꢜꢏꢘ  
ꢬꢕꢕꢏꢅꢳꢌꢄꢜꢏꢘ  
ꢬꢕꢕꢏꢡꢐꢃꢄꢏ  
ꢬꢕꢕꢏꢅꢦꢄꢜꢊꢌ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢌꢀ  
ꢦꢙ  
ꢦꢀ  
ꢠꢀ  
ꢀꢁꢸꢣꢅꢩꢛꢝ  
ꢣꢁꢸꢣ  
ꢣꢁꢶꢸ  
ꢣꢁꢣꢣ  
ꢙꢁꢙꢣ  
ꢀꢁꢞꢣ  
ꢙꢁꢻꢣ  
ꢣꢁꢀꢣ  
ꢣꢁꢞꢨ  
ꢣꢾ  
ꢀꢁꢥꢨ  
ꢀꢁꢞꢣ  
ꢣꢁꢀꢨ  
ꢞꢁꢙꢣ  
ꢀꢁꢶꢣ  
ꢞꢁꢀꢣ  
ꢣꢁꢺꢣ  
ꢣꢁꢶꢣ  
ꢞꢣꢾ  
ꢳꢀ  
ꢣꢁꢣꢶ  
ꢣꢁꢙꢣ  
ꢣꢁꢙꢺ  
ꢣꢁꢨꢀ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢣꢁꢀꢙꢻꢅꢑꢑꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢙꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪ ꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢸꢀꢩ  
2009-2012 Microchip Technology Inc.  
DS22154B-page 19  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22154B-page 20  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢧꢩꢋꢐꢆꢞꢩꢠꢋꢐꢪꢆꢞꢖꢄꢈꢈꢆꢟꢎꢊꢈꢋꢐꢃꢆꢑꢞꢧꢒꢆꢓꢆꢫꢣꢫꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢧꢞꢞꢟꢇꢛ  
ꢜꢘꢊꢃꢝ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
ꢯꢄꢃꢏꢇ  
ꢢꢰꢳꢳꢰꢢꢠꢫꢠꢼꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
ꢣꢁꢺꢨꢅꢩꢛꢝ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢲꢌꢃꢜꢘꢏ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢛꢏꢉꢄꢋꢕꢎꢎꢅ  
ꢣꢁꢶꢣ  
ꢣꢁꢣꢨ  
ꢀꢁꢣꢣ  
ꢀꢁꢙꢣ  
ꢀꢁꢣꢨ  
ꢣꢁꢀꢨ  
ꢦꢙ  
ꢦꢀ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢹꢃꢋꢏꢘ  
ꢺꢁꢥꢣꢅꢩꢛꢝ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢳꢌꢄꢜꢏꢘ  
ꢬꢕꢕꢏꢅꢳꢌꢄꢜꢏꢘ  
ꢠꢀ  
ꢥꢁꢞꢣ  
ꢙꢁꢸꢣ  
ꢣꢁꢥꢨ  
ꢥꢁꢥꢣ  
ꢞꢁꢣꢣ  
ꢣꢁꢺꢣ  
ꢥꢁꢨꢣ  
ꢞꢁꢀꢣ  
ꢣꢁꢻꢨ  
ꢬꢕꢕꢏꢡꢐꢃꢄꢏ  
ꢬꢕꢕꢏꢅꢦꢄꢜꢊꢌ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢳꢀ  
ꢀꢁꢣꢣꢅꢼꢠꢬ  
ꢣꢾ  
ꢣꢁꢣꢸ  
ꢣꢁꢀꢸ  
ꢶꢾ  
ꢣꢁꢙꢣ  
ꢣꢁꢞꢣ  
ꢜꢘꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢣꢁꢀꢨꢅꢑꢑꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪ ꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢼꢠꢬꢪ ꢼꢌꢎꢌꢐꢌꢄꢖꢌꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢡꢈꢐꢡꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢶꢺꢩ  
2009-2012 Microchip Technology Inc.  
DS22154B-page 21  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22154B-page 22  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2012 Microchip Technology Inc.  
DS22154B-page 23  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22154B-page 24  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2012 Microchip Technology Inc.  
DS22154B-page 25  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22154B-page 26  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009-2012 Microchip Technology Inc.  
DS22154B-page 27  
24AA64F/24LC64F/24FC64F  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢬꢈꢄꢊꢢꢆꢜꢘꢆꢂꢃꢄꢅꢆꢇꢄꢌꢪꢄꢭꢃꢆꢑꢮꢜꢒꢆꢓꢆꢨꢯꢔꢯꢕꢣꢰꢦꢆꢖꢖꢆꢗꢘꢅꢙꢆꢚꢧꢍꢬꢜꢛ  
ꢜꢘꢊꢃꢝ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
DS22154B-page 28  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
APPENDIX A: REVISION HISTORY  
Revision A (05/2009)  
Initial Release.  
Revision B (04/2012)  
Added 24FC64F part.  
2009-2012 Microchip Technology Inc.  
DS22154B-page 29  
24AA64F/24LC64F/24FC64F  
NOTES:  
DS22154B-page 30  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2009-2012 Microchip Technology Inc.  
DS22154B-page 31  
24AA64F/24LC64F/24FC64F  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS22154B  
Application (optional):  
Would you like a reply?  
Y
N
Device: 24AA64F/24LC64F/24FC64F  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS22154B-page 32  
2009-2012 Microchip Technology Inc.  
24AA64F/24LC64F/24FC64F  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
PART NO.  
Device  
Examples:  
Temperature  
Range  
Package  
a) 24AA64F-I/P: Industrial Temperature,  
1.7V, PDIP package  
b) 24AA64F-I/SN: Industrial Temperature,  
1.7V, SOIC package  
2
Device:  
24AA64F:  
1.7V, 64 Kbit I C™ Serial EEPROM  
c) 24AA64FT-I/ST: Industrial Temperature,  
1.7V, TSSOP package, tape and reel  
2
24AA64FT: 1.7V, 64 Kbit I C Serial EEPROM  
(Tape and Reel)  
2
d) 24LC64F-I/P: Industrial Temperature,  
2.5V, PDIP package  
24LC64F:  
2.5V, 64 Kbit I C Serial EEPROM  
2
24LC64FT: 2.5V, 64 Kbit I C Serial EEPROM  
e) 24LC64F-E/SN: Extended Temperature,  
2.5V, SOIC package  
(Tape and Reel)  
2
24FC64F:  
1.7V, 64 Kbit I C Serial EEPROM  
2
24FC64FT: 1.7V, 64 Kbit I C Serial EEPROM  
(Tape and Reel)  
f)  
24LC64F-I/ST: Industrial Temperature,  
2.5V, TSSOP package  
Temperature  
Range:  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
Package:  
P
SN  
ST  
=
=
=
Plastic DIP (300 mil body), 8-lead  
Plastic SOIC (3.90 mm body), 8-lead  
Plastic TSSOP (4.4 mm), 8-lead  
MS  
MNY  
=
Plastic MSOP (Micro Small Outline), 8-lead  
Plastic TDFN (2x3x0.75 mm body), 8-lead  
(Tape and Reel only)  
(1)  
=
OT  
=
Plastic SOT-23, 5-lead (Tape and Reel only)  
Note 1: "Y" indicates a Nickel Palladium Gold (NiPdAu) finish.  
2009-2012 Microchip Technology Inc.  
DS22154B-page 33  
24AA64F/24LC64F/24FC64F  
NOTES:  
DS22154B-page 34  
2009-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 9781620762561  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2009-2012 Microchip Technology Inc.  
DS22154B-page 35  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS22154B-page 36  
2009-2012 Microchip Technology Inc.  

相关型号:

24FC64T

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/CS16K

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/MC

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/MNY

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/MS

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/OT

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/P

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/SM

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/SN

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-E/ST

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-I/CS16K

64K I2C™ Serial EEPROM
MICROCHIP

24FC64T-I/MC

64K I2C™ Serial EEPROM
MICROCHIP