24AA32AT-ESM [MICROCHIP]

32K I2C™ Serial EEPROM; 32K I2C ™串行EEPROM
24AA32AT-ESM
型号: 24AA32AT-ESM
厂家: MICROCHIP    MICROCHIP
描述:

32K I2C™ Serial EEPROM
32K I2C ™串行EEPROM

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总36页 (文件大小:628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24AA32A/24LC32A  
32K I2CSerial EEPROM  
Description:  
Device Selection Table  
Part  
Number  
VCC  
Range  
Max. Clock  
Frequency  
Temp.  
Ranges  
The Microchip Technology Inc. 24AA32A/24LC32A  
(24XX32A*) is a 32 Kbit Electrically Erasable PROM.  
The device is organized as a single block of 4K x 8-bit  
memory with a 2-wire serial interface. Low-voltage  
design permits operation down to 1.7V, with standby  
and active currents of only 1 A and 1 mA,  
respectively. It has been developed for advanced, low-  
power applications such as personal communications  
or data acquisition. The 24XX32A also has a page write  
capability for up to 32 bytes of data. Functional address  
lines allow up to eight devices on the same bus, for up  
to 256 Kbits address space. The 24XX32A is available  
in the standard 8-pin PDIP, surface mount SOIC, SOIJ,  
TSSOP, DFN, TDFN and MSOP packages. The  
24XX32A is also available in the 5-lead SOT-23 and  
Chip Scale packages.  
24AA32A  
24LC32A  
1.7-5.5  
2.5-5.5  
400 kHz(1)  
400 kHz  
I
I, E  
Note 1: 100 kHz for VCC <2.5V.  
Features:  
• Single Supply with Operation down to 1.7V for  
24AA32A devices, 2.5V for 24LC32A devices  
• Low-Power CMOS Technology:  
- Active current 1 mA, typical  
- Standby current 1 A, typical  
• 2-Wire Serial Interface, I2C™ Compatible  
• Schmitt Trigger Inputs for Noise Suppression  
• Output Slope Control to Eliminate Ground Bounce  
• 100 kHz and 400 kHz Clock Compatibility  
• Page Write Time 5 ms max.  
Block Diagram  
WP  
A0 A1 A2  
HV Generator  
• Self-Timed Erase/Write Cycle  
• 32-Byte Page Write Buffer  
I/O  
Control  
Logic  
Memory  
Control  
Logic  
EEPROM  
Array  
XDEC  
• Hardware Write-Protect  
• ESD Protection > 4,000V  
Page Latches  
• More than 1 Million Erase/Write Cycles  
• Data Retention > 200 Years  
I/O SCL  
• Factory Programming Available  
YDEC  
• Packages Include 8-lead PDIP, SOIC, SOIJ,  
TSSOP, MSOP, DFN, TDFN, 5-lead SOT-23 and  
Chip Scale  
SDA  
Vcc  
Sense Amp.  
R/W Control  
• Pb-Free and RoHS Compliant  
Temperature Ranges:  
VSS  
- Industrial (I):  
-40°C to +85°C  
- Automotive (E): -40°C to +125°C  
Package Types  
CS (Chip Scale)(2)  
PDIP/MSOP/SOIC/SOIJ/TSSOP  
DFN/TDFN  
SOT-23  
A0  
1
8
VCC  
SCL  
VSS  
WP  
5
4
1
2
VCC  
1
A0  
A1  
VCC  
8
7
6
5
1
4
VSS  
2
5
WP  
3
WP  
SCL  
2
3
4
A1  
A2  
2
3
7
6
WP  
SDA  
SCL  
SDA  
A2  
SCL  
VSS  
VCC  
3
(Top Down View,  
Balls Not Visible)  
SDA  
VSS  
4
5
SDA  
Note 1: Pins A0, A1 and A2 are not used by the 24XX32A (no internal connections).  
2: Available in I-temp, “AA” only.  
*24XX32A is used in this document as a generic part number for the 24AA32A/24LC32A devices.  
2009 Microchip Technology Inc.  
DS21713K-page 1  
24AA32A/24LC32A  
1.0  
ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
VCC.............................................................................................................................................................................6.5V  
All inputs and outputs w.r.t. VSS ......................................................................................................... -0.3V to VCC +1.0V  
Storage temperature ...............................................................................................................................-65°C to +150°C  
Ambient temperature with power applied................................................................................................-40°C to +125°C  
ESD protection on all pins  4 kV  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional operation of the device at those or any other conditions  
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
TABLE 1-1:  
DC CHARACTERISTICS  
Industrial (I):  
TA = -40°C to +85°C, VCC = +1.7V to +5.5V  
DC CHARACTERISTICS  
Automotive (E): TA = -40°C to +125°C, VCC = +2.5V to +5.5V  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
D1  
A0, A1, A2, WP, SCL  
and SDA pins  
D2  
D3  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.7 VCC  
V
0.3 VCC  
0.2 VCC  
V
V
VCC 2.5V  
VCC < 2.5V  
D4  
D5  
VHYS  
VOL  
Hysteresis of Schmitt  
Trigger inputs (SDA,  
SCL pins)  
0.05 VCC  
V
VCC 2.5V (Note 1)  
Low-level output voltage  
0.40  
V
IOL = 3.0 mA, VCC = 4.5V  
IOL = 2.1 mA, Vcc = 2.5V  
D6  
D7  
D8  
ILI  
Input leakage current  
Output leakage current  
±1  
±1  
10  
A  
A  
pF  
VIN = VSS or VCC  
ILO  
VOUT = VSS or VCC  
CIN,  
Pin capacitance  
VCC = 5.0V (Note 1)  
COUT  
(all inputs/outputs)  
TA = 25°C, FCLK = 1 MHz  
D9  
ICC write Operating current  
0.1  
3
mA  
VCC = 5.5V, SCL = 400 kHz  
D10  
D11  
ICC read  
0.05  
400  
A  
ICCS  
Standby current  
0.01  
1
5
A  
A  
Industrial  
Automotive  
SDA = SCL = VCC = 5.5V  
A0, A1, A2, WP = VSS  
Note 1: This parameter is periodically sampled and not 100% tested.  
2: Typical measurements taken at room temperature.  
DS21713K-page 2  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
TABLE 1-2:  
AC CHARACTERISTICS  
Industrial (I):  
Automotive (E):  
TA = -40°C to +85°C, VCC = +1.7V to +5.5V  
TA = -40°C to +125°C, VCC = +2.5V to +5.5V  
AC CHARACTERISTICS  
Param.  
Symbol  
No.  
Characteristic  
Clock Frequency  
Min.  
Max.  
Units  
Conditions  
1
2
3
4
FCLK  
THIGH  
TLOW  
TR  
400  
100  
kHz 2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
2.5V VCC 5.5V  
Clock High Time  
Clock Low Time  
600  
4000  
ns  
ns  
ns  
1.7V VCC 2.5V (24AA32A)  
1300  
4700  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
SDA and SCL Rise Time  
(Note 1)  
300  
1000  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
5
6
TF  
SDA and SCL Fall Time  
300  
ns  
ns  
(Note 1)  
THD:STA Start Condition Hold Time  
600  
4000  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
7
TSU:STA Start Condition Setup Time  
600  
4700  
ns  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
8
9
THD:DAT Data Input Hold Time  
TSU:DAT Data Input Setup Time  
0
ns  
ns  
(Note 2)  
100  
250  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
10  
11  
12  
13  
14  
TSU:STO Stop Condition Setup Time  
600  
4000  
ns  
ns  
ns  
ns  
ns  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
TSU:WP  
THD:WP  
TAA  
WP Setup Time  
WP Hold Time  
600  
4000  
2.5V VCC 5.5V  
1.7V VCC < 2.5V (24AA32A)  
1300  
4700  
2.5V VCC 5.5V  
1.7V VCC < 2.5V (24AA32A)  
Output Valid from Clock  
900  
3500  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
(Note 2)  
TBUF  
Bus free time: Time the bus  
must be free before a new  
transmission can start  
1300  
4700  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
15  
16  
17  
18  
TOF  
TSP  
TWC  
Output Fall Time from VIH  
Minimum to VIL Maximum  
20+0.1CB  
250  
250  
ns  
ns  
2.5V VCC 5.5V  
1.7V VCC 2.5V (24AA32A)  
Input Filter Spike Suppression  
(SDA and SCL pins)  
50  
(Notes 1 and 3)  
Write Cycle Time (byte or  
page)  
5
ms  
Endurance  
1M  
cycles Page mode, 25°C, VCC 5.5V  
(Note 4)  
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.  
2: As a transmitter the device must provide an internal minimum delay time to bridge the undefined region  
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
3: The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved  
noise spike suppression. This eliminates the need for a TI specification for standard operation.  
4: This parameter is not tested but ensured by characterization. For endurance estimates in a specific  
application, please consult the Total Endurance™ Model which can be obtained on Microchip’s web site at  
www.microchip.com.  
2009 Microchip Technology Inc.  
DS21713K-page 3  
24AA32A/24LC32A  
FIGURE 1-1:  
BUS TIMING DATA  
5
4
D4  
2
SCL  
7
3
10  
8
9
SDA  
IN  
6
16  
14  
12  
13  
SDA  
OUT  
(protected)  
WP  
11  
(unprotected)  
FIGURE 1-2:  
BUS TIMING START/STOP  
D4  
SCL  
SDA  
6
7
10  
Start  
Stop  
DS21713K-page 4  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Name PDIP SOIC SOIJ TSSOP DFN TDFN MSOP SOT-23  
CS  
Description  
A0  
A1  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
2
2
Chip Address Input  
Chip Address Input  
Chip Address Input  
Ground  
A2  
VSS  
SDA  
SCL  
WP  
VCC  
3
5
Serial Address/Data I/O  
Serial Clock  
1
4
5
3
Write-Protect Input  
+1.7V to 5.5V Power Supply  
4
1
2.1  
A0, A1, A2 Chip Address Inputs  
2.3  
Serial Clock (SCL)  
The A0, A1 and A2 inputs are used by the 24XX32A for  
multiple device operation. The levels on these inputs  
are compared with the corresponding bits in the slave  
address. The chip is selected if the comparison is true.  
The SCL input is used to synchronize the data transfer  
to and from the device.  
2.4  
Write-Protect (WP)  
Up to eight devices may be connected to the same bus  
by using different Chip Select bit combinations. These  
inputs must be connected to either VCC or VSS.  
This pin must be connected to either VSS or VCC. If tied  
to VSS, write operations are enabled. If tied to VCC,  
write operations are inhibited but read operations are  
not affected.  
In most applications, the chip address inputs A0, A1  
and A2 are hard-wired to logic ‘0’ or logic ‘1’. For  
applications in which these pins are controlled by a  
microcontroller or other programmable device, the chip  
address pins must be driven to logic ‘0’ or logic ‘1’  
before normal device operation can proceed. Address  
pins are not available in the SOT-23 and chip scale  
packages.  
2.2  
Serial Data (SDA)  
SDA is a bidirectional pin used to transfer addresses  
and data into and out of the device. It is an open-drain  
terminal, therefore, the SDA bus requires a pull-up  
resistor to VCC (typical 10 kfor 100 kHz, 2 k for  
400 kHz)  
For normal data transfer, SDA is allowed to change  
only during SCL low. Changes during SCL high are  
reserved for indicating Start and Stop conditions.  
2009 Microchip Technology Inc.  
DS21713K-page 5  
24AA32A/24LC32A  
4.4  
Data Valid (D)  
3.0  
FUNCTIONAL DESCRIPTION  
The state of the data line represents valid data when,  
after a Start condition, the data line is stable for the  
duration of the high period of the clock signal.  
The 24XX32A supports a bidirectional, 2-wire bus and  
data transmission protocol. A device that sends data  
onto the bus is defined as transmitter, while a device  
receiving data is defined as a receiver. The bus has to  
be controlled by a master device which generates the  
Serial Clock (SCL), controls the bus access and gener-  
ates the Start and Stop conditions, while the 24XX32A  
works as slave. Both master and slave can operate as  
transmitter or receiver, but the master device  
determines which mode is activated.  
The data on the line must be changed during the low  
period of the clock signal. There is one clock pulse per  
bit of data.  
Each data transfer is initiated with a Start condition and  
terminated with a Stop condition. The number of data  
bytes transferred between Start and Stop conditions is  
determined by the master device and is, theoretically,  
unlimited (although only the last thirty-two bytes will be  
stored when doing a write operation). When an over-  
write does occur, it will replace data in a first-in first-out  
(FIFO) fashion.  
4.0  
BUS CHARACTERISTICS  
The following bus protocol has been defined:  
• Data transfer may be initiated only when the bus  
is not busy.  
4.5  
Acknowledge  
• During data transfer, the data line must remain  
stable whenever the clock line is high. Changes in  
the data line while the clock line is high will be  
interpreted as a Start or Stop condition.  
Each receiving device, when addressed, is obliged to  
generate an Acknowledge after the reception of each  
byte. The master device must generate an extra clock  
pulse which is associated with this Acknowledge bit.  
Accordingly, the following bus conditions have been  
defined (Figure 4-1).  
Note: The 24XX32A does not generate any  
Acknowledge  
bits  
if  
an  
internal  
programming cycle is in progress.  
4.1  
Bus Not Busy (A)  
The device that acknowledges, has to pull down the  
SDA line during the Acknowledge clock pulse in such a  
way that the SDA line is stable low during the high  
period of the Acknowledge related clock pulse. Of  
course, setup and hold times must be taken into  
account. During reads, a master must signal an end of  
data to the slave by not generating an Acknowledge bit  
on the last byte that has been clocked out of the slave.  
In this case, the slave (24XX32A) will leave the data  
line high to enable the master to generate the Stop  
condition.  
Both data and clock lines remain high.  
4.2  
Start Data Transfer (B)  
A high-to-low transition of the SDA line while the clock  
(SCL) is high determines a Start condition. All  
commands must be preceded by a Start condition.  
4.3  
Stop Data Transfer (C)  
A low-to-high transition of the SDA line while the clock  
(SCL) is high determines a Stop condition. All  
operations must be ended with a Stop condition.  
FIGURE 4-1:  
DATA TRANSFER SEQUENCE ON THE SERIAL BUS  
(A)  
(B)  
(D)  
(D)  
(C) (A)  
SCL  
SDA  
Start  
Condition  
Stop  
Condition  
Address or  
Acknowledge  
Valid  
Data  
Allowed  
to Change  
DS21713K-page 6  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
an Acknowledge signal on the SDA line. Depending on  
the state of the R/W bit, the 24XX32A will select a read  
or write operation.  
5.0  
DEVICE ADDRESSING  
A control byte is the first byte received following the  
Start condition from the master device (Figure 5-1).  
The control byte consists of a four-bit control code. For  
the 24XX32A, this is set as ‘1010’ binary for read and  
write operations. The next three bits of the control byte  
are the Chip Select bits (A2, A1, A0). The Chip Select  
bits allow the use of up to eight 24XX32A devices on  
the same bus and are used to select which device is  
accessed. The Chip Select bits in the control byte must  
correspond to the logic levels on the corresponding A2,  
A1 and A0 pins for the device to respond. These bits  
are in effect the three Most Significant bits of the word  
address.  
FIGURE 5-1:  
CONTROL BYTE FORMAT  
Read/Write Bit  
Chip Select  
Control Code  
Bits  
S
1
0
1
0
A2 A1 A0 R/W ACK  
Slave Address  
Acknowledge Bit  
Start Bit  
For the SOT-23 and chip scale packages, the address  
pins are not available. During device addressing, the  
A1, A2, and A0 Chip Selects bits (Figure 5-2) should be  
set to ‘0’.  
5.1  
Contiguous Addressing Across  
Multiple Devices  
The last bit of the control byte defines the operation to  
be performed. When set to a ‘1’, a read operation is  
selected. When set to a zero, a write operation is  
selected. The next two bytes received define the  
address of the first data byte (Figure 5-2). Because  
only A11 to A0 are used, the upper four address bits are  
“don’t care” bits. The upper address bits are transferred  
first, followed by the Less Significant bits.  
The Chip Select bits A2, A1 and A0 can be used to  
expand the contiguous address space for up to 256K  
bits by adding up to eight 24XX32A devices on the  
same bus. In this case, software can use A0 of the con-  
trol byte as address bit A12; A1 as address bit A13; and  
A2 as address bit A14. It is not possible to sequentially  
read across device boundaries.  
Following the Start condition, the 24XX32A monitors  
the SDA bus checking the device type identifier being  
transmitted and, upon receiving a ‘1010’ code and  
appropriate device select bits, the slave device outputs  
The SOT-23 and chip scale packages do not support  
multiple device addressing on the same bus.  
FIGURE 5-2:  
ADDRESS SEQUENCE BIT ASSIGNMENTS  
Address High Byte  
Control Byte  
Address Low Byte  
A
2
A
1
A
0
A
11  
A
10  
A
9
A
8
A
7
A
0
1
0
1
0
R/W  
x
x
x
x
Control  
Code  
Chip  
Select  
Bits  
x= “don’t care” bit  
2009 Microchip Technology Inc.  
DS21713K-page 7  
24AA32A/24LC32A  
6.2  
Page Write  
6.0  
6.1  
WRITE OPERATIONS  
Byte Write  
The write control byte, word address and the first data  
byte are transmitted to the 24XX32A in the same way  
as in a byte write. However, instead of generating a  
Stop condition, the master transmits up to 31 additional  
bytes which are temporarily stored in the on-chip page  
buffer and will be written into memory once the master  
has transmitted a Stop condition. Upon receipt of each  
word, the five lower Address Pointer bits are internally  
incremented by ‘1’. If the master should transmit more  
than 32 bytes prior to generating the Stop condition, the  
address counter will roll over and the previously  
received data will be overwritten. As with the byte write  
operation, once the Stop condition is received, an  
internal write cycle will begin (Figure 6-2). If an attempt  
is made to write to the array with the WP pin held high,  
the device will acknowledge the command, but no write  
cycle will occur, no data will be written, and the device  
will immediately accept a new command.  
Following the Start condition from the master, the  
control code (4 bits), the Chip Select (3 bits), and the  
R/W bit (which is a logic low) are clocked onto the bus  
by the master transmitter. This indicates to the  
addressed slave receiver that the address high byte  
will follow once it has generated an Acknowledge bit  
during the ninth clock cycle. Therefore, the next byte  
transmitted by the master is the high-order byte of the  
word address and will be written into the Address  
Pointer of the 24XX32A. The next byte is the Least  
Significant Address Byte. After receiving another  
Acknowledge signal from the 24XX32A, the master  
device will transmit the data word to be written into the  
addressed memory location. The 24XX32A acknowl-  
edges again and the master generates a Stop  
condition. This initiates the internal write cycle and,  
during this time, the 24XX32A will not generate  
Acknowledge signals (Figure 6-1). If an attempt is  
made to write to the array with the WP pin held high,  
the device will acknowledge the command, but no  
write cycle will occur. No data will be written and the  
device will immediately accept a new command. After  
a byte Write command, the internal address counter  
will point to the address location following the one that  
was just written.  
Note:  
Page write operations are limited to writing  
bytes within a single physical page,  
regardless of the number of bytes  
actually being written. Physical page  
boundaries start at addresses that are  
integer multiples of the page buffer size (or  
‘page size’) and end at addresses that are  
integer multiples of [page size – 1]. If a  
Page Write command attempts to write  
across a physical page boundary, the  
result is that the data wraps around to the  
beginning of the current page (overwriting  
data previously stored there), instead of  
being written to the next page as might be  
expected. It is therefore necessary for the  
application software to prevent page write  
operations that would attempt to cross a  
page boundary.  
Note:  
When doing a write of less than 32 bytes  
the data in the rest of the page is refreshed  
along with the data bytes being written.  
This will force the entire page to endure a  
write cycle, for this reason endurance is  
specified per page.  
6.3  
Write Protection  
The WP pin allows the user to write-protect the entire  
array (000-FFF) when the pin is tied to VCC. If tied to  
VSS the write protection is disabled. The WP pin is  
sampled at the Stop bit for every Write command  
(Figure 4-1). Toggling the WP pin after the Stop bit will  
have no effect on the execution of the write cycle.  
DS21713K-page 8  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
FIGURE 6-1:  
BYTE WRITE  
S
Bus Activity  
Master  
T
A
R
T
S
Control  
Byte  
Address  
High Byte  
Address  
T
Low Byte  
Data  
O
P
A AA  
SDA Line  
xxxx  
S 1010  
0
P
2 1 0  
A
C
K
A
C
K
A
C
K
A
C
K
Bus Activity  
x= “don’t care” bit  
FIGURE 6-2:  
PAGE WRITE  
S
T
A
R
T
S
T
O
P
Control  
Byte  
Address  
High Byte  
Address  
Low Byte  
Bus Activity  
Master  
Data Byte 0  
Data Byte 31  
A A A  
SDA Line  
xxxx  
P
S 1010  
0
2 1 0  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Bus Activity  
x= “don’t care” bit  
2009 Microchip Technology Inc.  
DS21713K-page 9  
24AA32A/24LC32A  
FIGURE 7-1:  
ACKNOWLEDGE POLLING  
FLOW  
7.0  
ACKNOWLEDGE POLLING  
Since the device will not acknowledge during a write  
cycle, this can be used to determine when the cycle is  
complete (this feature can be used to maximize bus  
throughput). Once the Stop condition for a Write  
command has been issued from the master, the device  
initiates the internally-timed write cycle. ACK polling  
can then be initiated immediately. This involves the  
master sending a Start condition followed by the control  
byte for a Write command (R/W = 0). If the device is still  
busy with the write cycle, then no ACK will be returned.  
If no ACK is returned, the Start bit and control byte must  
be re-sent. If the cycle is complete, the device will  
return the ACK and the master can then proceed with  
the next Read or Write command. See Figure 7-1 for  
flow diagram of this operation.  
Send  
Write Command  
Send Stop  
Condition to  
Initiate Write Cycle  
Send Start  
Send Control Byte  
with R/W = 0  
Did Device  
Acknowledge  
(ACK = 0)?  
No  
Yes  
Next  
Operation  
DS21713K-page 10  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
8.3  
Sequential Read  
8.0  
READ OPERATION  
Sequential reads are initiated in the same way as a  
random read, except that once the 24XX32A transmits  
the first data byte, the master issues an acknowledge  
as opposed to the Stop condition used in a random  
read. This acknowledge directs the 24XX32A to  
transmit the next sequentially addressed 8-bit word  
(Figure 8-3). Following the final byte transmitted to the  
master, the master will NOT generate an acknowledge,  
but will generate a Stop condition. To provide sequen-  
tial reads, the 24XX32A contains an internal Address  
Pointer which is incremented by ‘1’ upon completion of  
each operation. This Address Pointer allows the entire  
memory contents to be serially read during one  
operation. The internal Address Pointer will automati-  
cally roll over from address FFF to address 000 if the  
master acknowledges the byte received from the array  
address FFF.  
Read operations are initiated in the same way as write  
operations, with the exception that the R/W bit of the  
control byte is set to ‘1’. There are three basic types of  
read operations: current address read, random read  
and sequential read.  
8.1  
Current Address Read  
The 24XX32A contains an address counter that main-  
tains the address of the last word accessed, internally  
incremented by ‘1’. Therefore, if the previous read  
access was to address ‘n’ (n is any legal address), the  
next current address read operation would access data  
from address n + 1.  
Upon receipt of the control byte with R/W bit set to ‘1’,  
the 24XX32A issues an acknowledge and transmits the  
8-bit data word. The master will not acknowledge the  
transfer, but does generate a Stop condition and the  
24XX32A discontinues transmission (Figure 8-1).  
8.2  
Random Read  
Random read operations allow the master to access  
any memory location in a random manner. To perform  
this type of read operation, the word address must  
first be set. This is accomplished by sending the word  
address to the 24XX32A as part of a write operation  
(R/W bit set to ‘0’). Once the word address is sent, the  
master generates a Start condition following the  
acknowledge. This terminates the write operation, but  
not before the internal Address Pointer is set. The  
master issues the control byte again, but with the R/W  
bit set to a ‘1’. The 24XX32A will then issue an  
acknowledge and transmit the 8-bit data word. The  
master will not acknowledge the transfer, but does  
generate a Stop condition which causes the 24XX32A  
to discontinue transmission (Figure 8-2). After a  
random Read command, the internal address counter  
will point to the address location following the one that  
was just read.  
FIGURE 8-1:  
CURRENT ADDRESS READ  
S
T
A
R
Bus Activity  
Master  
Control  
Byte  
S
T
Data (n)  
O
P
T
SDA Line  
S
P
A
C
K
N
O
Bus Activity  
A
C
K
2009 Microchip Technology Inc.  
DS21713K-page 11  
24AA32A/24LC32A  
FIGURE 8-2:  
RANDOM READ  
S
T
A
R
T
S
T
A
R
T
Bus Activity  
Master  
S
T
Control  
Byte  
Address  
High Byte  
Address  
Low Byte  
Control  
Byte  
Data  
Byte  
O
P
A A A  
2 1 0  
A A A  
2 1 0  
SDA Line  
xxxx  
0
S 1010  
S 1010  
1
P
A
C
K
A
C
K
A
C
K
A
C
K
N
O
A
C
K
Bus Activity  
x= “don’t care” bit  
FIGURE 8-3:  
SEQUENTIAL READ  
S
Bus Activity  
Master  
T
Control  
Data n  
Byte  
Data n + 1  
Data n + 2  
Data n + x  
O
P
P
SDA Line  
A
C
K
A
C
K
A
C
K
A
C
K
N
O
Bus Activity  
A
C
K
DS21713K-page 12  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
9.0  
9.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
8-Lead PDIP (300 mil)  
24LC32A  
XXXXXXXX  
T/XXXNNN  
I/P  
13F  
3
e
YYWW  
0527  
Example:  
24LC32AI  
8-Lead SOIC (3.90 mm)  
XXXXXXXT  
SN  
0527  
XXXXYYWW  
e
3
NNN  
13F  
Example:  
24LC32A  
8-Lead SOIC (5.28 mm)  
XXXXXXXX  
T/XXXXXX  
YYWWNNN  
I/SM  
052713F  
e3  
Example:  
8-Lead TSSOP  
4LA  
I527  
13F  
XXXX  
TYWW  
NNN  
Example:  
8-Lead 2x3 DFN  
264  
527  
13  
XXX  
YWW  
NN  
8-Lead MSOP  
Example:  
XXXXXT  
YWWNNN  
4L32AI  
52713F  
2009 Microchip Technology Inc.  
DS21713K-page 13  
24AA32A/24LC32A  
Example:  
8-Lead 2x3 TDFN  
A64  
527  
I3  
XXX  
YWW  
NN  
Example:  
M6NN  
5-Lead SOT-23  
XXNN  
5-Lead Chip Scale  
XW  
Example:  
67  
1st Line Marking Codes  
DFN TDFN  
E Temp.  
Part Number  
TSSOP  
MSOP  
SOT-23  
I Temp.  
261  
I Temp.  
A61  
E Temp.  
I Temp.  
E Temp.  
24AA32A  
24LC32A  
4AA  
4LA  
4A32AT  
4L32AT  
B6NN  
M6NN  
264  
265  
A64  
A65  
N6NN  
Note:  
T = Temperature grade (I, E).  
Legend: XX...X Part number or part number code  
T
Temperature (I, E)  
Y
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
YY  
WW  
NNN  
Alphanumeric traceability code (2 characters for small packages)  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
Note: For very small packages with no room for the Pb-free JEDEC designator  
, the marking will only appear on the outer carton or reel label.  
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
Note:  
Please visit www.microchip.com/Pbfree for the latest information on Pb-free conversion.  
*Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.  
DS21713K-page 14  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢐꢁꢂꢋꢐꢃꢆꢑꢇꢒꢆMꢆꢓꢔꢔꢆꢕꢋꢈꢆꢖꢗꢅꢘꢆꢙꢇꢍꢏꢇꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢁꢀ-ꢕ  
M
ꢁ-ꢀꢕ  
ꢁꢎꢘꢕ  
ꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕ?ꢕ  
ꢁꢕꢀ<  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
M
ꢁꢎꢀꢕ  
ꢁꢀꢛꢘ  
M
ꢁꢀꢀꢘ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢁ-ꢖ<  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁ-ꢎꢘ  
ꢁꢎ<ꢕ  
ꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2ꢅ1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ<1  
2009 Microchip Technology Inc.  
DS21713K-page 15  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ ꢛꢒꢆMꢆꢛꢄ""ꢗ#$ꢆꢓ%&ꢔꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ !ꢏ'ꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
M
ꢀꢁꢎꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢀꢁꢜꢘ  
M
ꢕꢁꢎꢘ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
?ꢁꢕꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅ@ꢋꢓ&ꢃꢋꢄꢆꢇA  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
-ꢁꢛꢕꢅ1ꢐ,  
ꢖꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢘꢕ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
9ꢀ  
ꢀꢁꢕꢖꢅꢝ.3  
ꢕꢟ  
ꢕꢁꢀꢜ  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁꢎꢘ  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢜ1  
DS21713K-page 16  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ ꢛꢒꢆMꢆꢛꢄ""ꢗ#$ꢆꢓ%&ꢔꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ !ꢏ'ꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
2009 Microchip Technology Inc.  
DS21713K-page 17  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ (ꢒꢆMꢆ(ꢃꢅꢋꢎꢕ$ꢆ)%*ꢀꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ !ꢏ+ꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
1
2
e
b
α
c
φ
A2  
A
β
A1  
L
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅꢏ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢀꢁꢜꢜ  
ꢀꢁꢜꢘ  
ꢕꢁꢕꢘ  
ꢜꢁ?ꢎ  
ꢘꢁꢀꢀ  
ꢘꢁꢀ-  
ꢕꢁꢘꢀ  
ꢕꢟ  
M
M
M
M
M
M
M
M
M
M
M
M
ꢎꢁꢕ-  
ꢀꢁꢛ<  
ꢕꢁꢎꢘ  
<ꢁꢎ?  
ꢘꢁ-<  
ꢘꢁ--  
ꢕꢁꢜ?  
<ꢟ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)
ꢕꢁꢀꢘ  
ꢕꢁ-?  
M
ꢕꢁꢎꢘ  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
M
ꢀꢘꢟ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢐ:ꢚC(ꢅC.ꢚꢙꢗ5.ꢚꢗCꢅꢐ&ꢆꢄ#ꢆꢉ#(ꢅ%ꢋꢉ'ꢈꢉꢇꢊꢅꢌꢆꢇꢇꢈ#ꢅꢐ:ꢚ,ꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘ?1  
DS21713K-page 18  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009 Microchip Technology Inc.  
DS21713K-page 19  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ,-ꢋꢐꢆ -"ꢋꢐ.ꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢑ ,ꢒꢆMꢆ/%/ꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ,  !ꢇꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
φ
A
A2  
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
M
ꢕꢁ<ꢕ  
ꢕꢁꢕꢘ  
M
ꢀꢁꢕꢕ  
M
ꢀꢁꢎꢕ  
ꢀꢁꢕꢘ  
ꢕꢁꢀꢘ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
?ꢁꢖꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
9
ꢖꢁ-ꢕ  
ꢎꢁꢛꢕ  
ꢕꢁꢖꢘ  
ꢖꢁꢖꢕ  
-ꢁꢕꢕ  
ꢕꢁ?ꢕ  
ꢖꢁꢘꢕ  
-ꢁꢀꢕ  
ꢕꢁꢜꢘ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
9ꢀ  
ꢀꢁꢕꢕꢅꢝ.3  
ꢕꢟ  
ꢕꢁꢕꢛ  
ꢕꢁꢀꢛ  
M
M
M
<ꢟ  
)
ꢕꢁꢎꢕ  
ꢕꢁ-ꢕ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕ<?1  
DS21713K-page 20  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ0ꢈꢄꢊ$ꢆꢛꢗꢆꢂꢃꢄꢅꢆꢇꢄꢌ.ꢄ1ꢃꢆꢑ('ꢒꢆMꢆ*2ꢓ2ꢔ%&ꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙꢍ0ꢛꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
<
ꢕꢁꢘꢕꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
ꢎꢁꢕꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
M
M
ꢕꢁꢎꢘ  
.
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
ꢒꢎ  
.ꢎ  
)
9
D
ꢀꢁ-ꢕ  
ꢀꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
ꢀꢁꢘꢘ  
ꢀꢁꢜꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢘꢕ  
M
ꢕꢁꢖꢕ  
M
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅ'ꢆꢊꢅꢍꢆ ꢈꢅꢋꢄꢈꢅꢋꢉꢅ'ꢋꢉꢈꢅꢈ$ꢓꢋ!ꢈ#ꢅ&ꢃꢈꢅ)ꢆꢉ!ꢅꢆ&ꢅꢈꢄ#!ꢁ  
-ꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢎ-,  
2009 Microchip Technology Inc.  
DS21713K-page 21  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ0ꢈꢄꢊ$ꢆꢛꢗꢆꢂꢃꢄꢅꢆꢇꢄꢌ.ꢄ1ꢃꢆꢑ('ꢒꢆMꢆ*2ꢓ2ꢔ%&ꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙꢍ0ꢛꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS21713K-page 22  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ0ꢈꢄꢊ$ꢆꢛꢗꢆꢂꢃꢄꢅꢆꢇꢄꢌ.ꢄ1ꢃꢆꢑ(ꢛꢒꢆMꢆ*2ꢓ2ꢔ%3)ꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ,ꢍ0ꢛꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
2009 Microchip Technology Inc.  
DS21713K-page 23  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ0ꢈꢄꢊ$ꢆꢛꢗꢆꢂꢃꢄꢅꢆꢇꢄꢌ.ꢄ1ꢃꢆꢑ(ꢛꢒꢆMꢆ*2ꢓ2ꢔ%3)ꢆꢕꢕꢆꢖꢗꢅꢘꢆꢙ,ꢍ0ꢛꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS21713K-page 24  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ(ꢋꢌ"ꢗꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆꢇꢄꢌ.ꢄ1ꢃꢆꢑ( ꢒꢆꢙ( !ꢇꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
<
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
M
ꢕꢁꢜꢘ  
ꢕꢁꢕꢕ  
M
ꢕꢁ<ꢘ  
ꢀꢁꢀꢕ  
ꢕꢁꢛꢘ  
ꢕꢁꢀꢘ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
M
ꢖꢁꢛꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢕꢕꢅ1ꢐ,  
ꢕꢁ?ꢕ  
9
ꢕꢁꢖꢕ  
ꢕꢁ<ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢕꢁꢛꢘꢅꢝ.3  
M
ꢕꢟ  
<ꢟ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
)
ꢕꢁꢕ<  
ꢕꢁꢎꢎ  
M
M
ꢕꢁꢎ-  
ꢕꢁꢖꢕ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢀꢀ1  
2009 Microchip Technology Inc.  
DS21713K-page 25  
24AA32A/24LC32A  
)ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ ꢕꢄꢈꢈꢆ!ꢎꢊꢈꢋꢐꢃꢆ,"ꢄꢐꢉꢋꢉꢊꢗ"ꢆꢑ!,ꢒꢆꢙ !,ꢁ*ꢓꢚ  
ꢛꢗꢊꢃꢜ 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
9ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
7
ꢕꢁꢛꢘꢅ1ꢐ,  
:"&!ꢃ#ꢈꢅ9ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢈꢀ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
ꢀꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢕꢁ<ꢛ  
ꢕꢁꢕꢕ  
ꢎꢁꢎꢕ  
ꢀꢁ-ꢕ  
ꢎꢁꢜꢕ  
ꢕꢁꢀꢕ  
ꢕꢁ-ꢘ  
ꢕꢟ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖꢘ  
ꢀꢁ-ꢕ  
ꢕꢁꢀꢘ  
-ꢁꢎꢕ  
ꢀꢁ<ꢕ  
-ꢁꢀꢕ  
ꢕꢁ?ꢕ  
ꢕꢁ<ꢕ  
-ꢕꢟ  
9ꢀ  
)
ꢕꢁꢕ<  
ꢕꢁꢎꢕ  
ꢕꢁꢎ?  
ꢕꢁꢘꢀ  
ꢛꢗꢊꢃꢉꢜ  
ꢀꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢎꢜꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢛꢀ1  
DS21713K-page 26  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009 Microchip Technology Inc.  
DS21713K-page 27  
24AA32A/24LC32A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21713K-page 28  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2009 Microchip Technology Inc.  
DS21713K-page 29  
24AA32A/24LC32A  
APPENDIX A: REVISION HISTORY  
Revision D  
Corrections to Section 1.0, Electrical Characteristics.  
Revision E  
Added DFN package.  
Revision F  
Revised Sections 4.3, 7.2 and 7.4.  
Revision G  
Replaced 2x3 DFN (MC) Package  
Revision H  
Changed 1.8V to 1.7V; Revised Features Section;  
Replaced Package Drawings; Deleted Rotated  
TSSOP; Revised Product ID Section.  
Revision J  
Added TDFN and SOT-23 packages; Updated  
Package Drawings; Moved Pin Descriptions to Section  
2.0; Renumbered Sections.  
Revision K (12/2009)  
Added Chip Scale Package.  
DS21713K-page 30  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2009 Microchip Technology Inc.  
DS21713K-page 31  
24AA32A/24LC32A  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
24AA32A/24LC32A  
DS21713K  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS21713K-page 32  
2009 Microchip Technology Inc.  
24AA32A/24LC32A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
X
/XX  
PART NO.  
Device  
a) 24AA32A-I/P: Industrial Temperature,1.7V,  
Temperature Package  
Range  
PDIP package  
b) 24AA32A-I/SN: Industrial Temperature,1.7V,  
SOIC package  
2
Device:  
24AA32A: 1.7V, 32 Kbit I C Serial EEPROM  
24AA32AT: 1.7V, 32 Kbit I C Serial EEPROM  
c) 24AA32A-I/SM: Industrial Temperature.,1.7V,  
SOIJ (5.28 mm) package  
2
(Tape and Reel)  
d) 24AA32A-I/ST: Industrial Temperature.,1.7V,  
TSSOP package  
2
24LC32A: 2.5V, 32 Kbit I C Serial EEPROM  
24LC32AT: 2.5V, 32 Kbit I C Serial EEPROM  
2
e) 24LC32A-I/P: Industrial Temperature, 2.5V,  
PDIP package  
(Tape and Reel)  
f)  
24LC32A-E/SN: Automotive Temperature,  
2.5V SOIC package  
TemperatureI  
=
=
-40°C to +85°C  
-40°C to +125°C  
Range:  
E
g) 24LC32A-E/SM: Automotive Temperature,  
2.5V SOIJ (5.28 mm) package  
Package:  
P
=
Plastic DIP (300 mil body), 8-lead  
Plastic SOIC (3.90 mm body), 8-lead  
Plastic SOIJ (5.28 mm body), 8-lead  
Plastic TSSOP (4.4 mm), 8-lead  
Plastic Micro Small Outline (MSOP), 8-lead  
2x3 DFN, 8-lead  
TDFN (2x3x0.75mm body), 8-lead  
SOT-23 (Tape and Reel only), 5-lead  
Chip Scale (CS), 5-lead (I-temp, “AA” Tape  
and Reel only)  
h) 24LC32AT-I/ST: Industrial Temperature, 2.5V,  
TSSOP package, Tape and Reel  
SN  
SM  
ST  
MS  
MC  
MNY  
OT  
=
=
=
=
=
=
=
=
(1)  
(2)  
CS16K  
Note 1: “Y” indicates a Nickel Palladium Gold (NiPdAu) finish.  
2: “16K” indicates 160K technology.  
2009 Microchip Technology Inc.  
DS21713K-page 33  
24AA32A/24LC32A  
NOTES:  
DS21713K-page 34  
2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2009 Microchip Technology Inc.  
DS21713K-page 35  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS21713K-page 36  
2009 Microchip Technology Inc.  

相关型号:

24AA32AT-ESN

32K I2C™ Serial EEPROM
MICROCHIP

24AA32AT-EST

32K I2C™ Serial EEPROM
MICROCHIP

24AA32AT-I/CS16K

32K I2C™ Serial EEPROM
MICROCHIP

24AA32AT-I/MC

32K I2C™ Serial EEPROM
MICROCHIP

24AA32AT-I/MCB27

32K, 4K X 8 1.8V SERIAL EE, -40C to +85C, 8-DFN, T/R
MICROCHIP

24AA32AT-I/MNY

32K I2C™ Serial EEPROM
MICROCHIP

24AA32AT-I/MS

32KIC Serial EEPROM
MICROCHIP

24AA32AT-I/MSG

32KIC Serial EEPROM
MICROCHIP

24AA32AT-I/OT

32K I2C™ Serial EEPROM
MICROCHIP

24AA32AT-I/P

32KIC Serial EEPROM
MICROCHIP

24AA32AT-I/PG

32KIC Serial EEPROM
MICROCHIP

24AA32AT-I/SM

32KIC Serial EEPROM
MICROCHIP