ML2111CCP [MICRO-LINEAR]

Universal Dual High Frequency Filter; 通用双高频滤波器
ML2111CCP
型号: ML2111CCP
厂家: MICRO LINEAR CORPORATION    MICRO LINEAR CORPORATION
描述:

Universal Dual High Frequency Filter
通用双高频滤波器

有源滤波器 光电二极管 LTE
文件: 总26页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
May 1997  
ML2111*  
Universal Dual High Frequency Filter  
GENERAL DESCRIPTION  
FEATURES  
The ML2111 consists of two independent switched  
capacitor filters that operate at up to 150kHz and perform  
second order filter functions such as lowpass, bandpass,  
highpass, notch and allpass. All filter configurations,  
including Butterworth, Bessel, Cauer, and Chebyshev can  
be formed.  
Specified for operation up to 150kHz  
Center frequency x Q product £ 5MHz  
Separate highpass, notch, allpass, bandpass, and  
lowpass outputs  
The center frequency of these filters is tuned by an  
external clock or the external clock and resistor ratio.  
Center frequency accuracy of ±0.4% or ±0.8% max.  
Q accuracy of ±4% or ±8% max.  
The ML2111 frequency range is specified up to 150kHz  
with ±5.0V ±10% power supplies. Using a single 5.0V  
±10% power supply the frequency range is up to 100kHz.  
These filters are ideal where center frequency accuracy  
and high Qs are needed.  
Clock inputs are TTL or CMOS compatible  
Single 5V (±2.25V) or ±5V supply operation  
The ML2111 is a pin compatible superior replacement for  
MF10, LMF100, and LTC1060 filters.  
* Some Packages Are End Of Life and Obsolete  
BLOCK DIAGRAM  
7
8
3
5
2
1
S1  
V
BP  
A
LP  
V
N/AP/HP  
A
A+  
A
D+  
A
-
INV  
A
-
4
+
Σ
+
-
S2  
A
AGND  
15  
10  
CLK  
A
LEVEL NON-OVERLAP  
SHIFT  
CLOCK  
S
A/B  
50/100HOLD  
LEVEL SHIFT  
6
12  
9
CONTROL  
CLK  
B
LEVEL NON-OVERLAP  
11  
SHIFT  
CLOCK  
S2  
S1  
B
-
-
+
INV  
B
Σ
+
17  
-
N/AP/HP  
BP  
LP  
B
V
V
D-  
B
B
B
A-  
19  
20  
18  
16  
14  
13  
1
ML2111  
PIN CONFIGURATION  
ML2111  
20-Pin PDIP (P20)  
20-Pin SOIC (S20)  
LP  
BP  
1
2
3
4
5
6
7
8
9
20 LP  
B
A
A
19 BP  
B
N/AP/HP  
INV  
18 N/AP/HP  
B
A
17 INV  
A
B
S1  
16 S1  
B
A
S
15 AGND  
A/B  
V
14  
13  
V
V
A+  
D+  
A-  
V
D-  
LSh  
12 50/100/HOLD  
11 CLK  
CLK 10  
A
B
TOP VIEW  
PIN DESCRIPTION  
PIN NAME  
FUNCTION  
PIN NAME  
FUNCTION  
1
2
3
LP  
Lowpass output for biquad A.  
11  
12  
CLK  
Clock input for biquad B.  
A
B
BP  
Bandpass output for biquad A.  
50/100/HOLDInput pin to control the clock-to-  
center-frequency ratio of 50:1 or  
100:1, or to stop the clock to hold the  
last sample of the bandpass or lowpass  
outputs.  
A
N/AP/HP  
Notch/allpass/highpass output for  
biquad A.  
A
4
5
INV  
Inverting input of the summing op amp  
for biquad A.  
A
13  
14  
15  
16  
V
V
Negative digital supply.  
Negative analog supply.  
Analog ground.  
D-  
S1  
Auxiliary signal input pin used in  
modes 1a, 1d, 4, 5, and 6b.  
A
A-  
AGND  
S1  
6
7
8
9
S
Controls S2 input function.  
Positive analog supply.  
Positive digital supply.  
A/B  
Auxiliary signal input pin used in  
modes 1a, 1d, 4, 5, and 6b.  
B
V
V
A+  
17  
18  
INV  
Inverting input of the summing op amp  
for biquad B.  
D+  
B
LSh  
Reference point for clock input levels.  
Logic threshold typically 1.4V above  
LSh voltage.  
N/AP/HP  
Notch/allpass/highpass output for  
biquad B.  
B
10  
CLK  
Clock input for biquad A.  
19  
20  
BP  
Bandpass output for biquad B.  
Lowpass output for biquad B.  
A
B
LP  
B
2
ML2111  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings are those values beyond which  
the device could be permanently damaged. Absolute  
maximum ratings are stress ratings only and functional  
device operation is not implied.  
Lead Temperature (Soldering, 10 sec) ..................... 300ºC  
Thermal Resistance (q )  
JA  
20-Pin PDIP ...................................................... 67ºC/W  
20-Pin SOIC ..................................................... 95ºC/W  
Supply Voltage  
OPERATING CONDITIONS  
|V |, |V | - |V |, |V | ...................................... 13V  
A+  
D+  
D+  
A-  
D-  
V
, V to LSh ..................................................... 13V  
A+  
Inputs ......................|V , V | +0.3V to |V , V | -0.3V  
Temperature Range  
A+ D+  
A- D-  
Outputs ...................|V , V | +0.3V to |V , V | -0.3V  
|V | to |V | ........................................................±0.3V  
ML2111CCX .............................................. 0ºC to 70ºC  
ML2111CIP ............................................. -40ºC to 85ºC  
Supply Range ........................................ ±2.25V to ±6.0V  
A+ D+  
A- D-  
A+  
D+  
Junction Temperature .............................................. 150ºC  
Storage Temperature Range ...................... –65ºC to 150ºC  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, V = V = 5V ± 10%, V = V = -5V ± 10%, C = 25pF, V = 1.41V (1.000V ),  
RMS  
A+  
D+  
A-  
D-  
L
IN  
PK  
Clock Duty Cycle = 50%, T = Operating Temperature Range (Note 1)  
A
SYMBOL  
FILTER  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f0(MAX) Maximum Center Frequency (Note 2)  
VIN=1VPK (0.707VRMS  
Figure 15 (Mode 1),  
Q £ 50, Q Accuracy £ ± 25%  
100  
150  
kHz  
kHz  
)
Figure 15 (Mode 1),  
Q £ 20, Q Accuracy £ ± 15%  
f0(MIN)  
Minimum Center Frequency (Note 2)  
VIN=1VPK (0.707VRMS  
Figure 15 (Mode 1),  
Q £ 50, Q Accuracy £ ± 30%  
25  
25  
Hz  
)
Figure 15 (Mode 1),  
Hz  
Q £ 20, Q Accuracy £ ± 15%  
f0 Temperature Coefficient  
Clock to Center Frequency Ratio  
Q = 10, Figure 15 (Mode 1)  
fCLK < 5MHz  
-10  
ppm/ºC  
50:1, fCLK = 5MHz  
100:1, fCLK = 5MHz  
BSuffix  
C Suffix  
BSuffix  
C Suffix  
49.65  
49.45  
99.6  
99.2  
2.5  
49.85  
49.85  
100.0  
100.0  
50.05  
50.25  
100.4  
100.8  
7500  
20  
fCLK  
Clock Frequency  
Clock Feedthrough  
Q Accuracy  
Q £ 20, Q Accuracy £ ±15%  
fCLK £ 5MHz  
kHz  
mV(P-P)  
%
10  
fCLK = 5MHz, Q = 10,  
BSuffix  
±3  
50:1, Figure 15 (Mode 1) C Suffix  
±5  
%
fCLK = 5MHz, Q = 10,  
BSuffix  
±4  
%
100:1, Figure 15 (Mode 1) C Suffix  
fCLK < 5MHz, Q = 10  
±8  
%
Q Temperature Coefficient  
DCOffset  
20  
7
ppm/ºC  
mV  
VOS2,3  
50:1, fCLK = 5MHz  
SA/B = High or Low  
100:1, fCLK = 5MHz  
SA/B =High or Low  
BSuffix  
C Suffix  
BSuffix  
C Suffix  
40  
60  
7
mV  
14  
14  
60  
mV  
100  
mV  
3
ML2111  
ELECTRICAL CHARACTERISTICS (Continued)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER (Continued)  
Gain Accuracy, DC Lowpass  
R1,R3 = 20kW, R2 = 2kW,  
0.01  
2
%
100:1, f0 = 50kHz, Q = 10  
Gain Accuracy, Bandpass at f0  
R1,R3 = 20kW, R2 = 2kW, BSuffix  
1
1
4
6
2
%
%
%
100:1, f0 = 50kHz, Q = 10 C Suffix  
Gain Accuracy, DC Notch Output  
R1,R3 = 20kW, R2 = 2kW,  
0.02  
100:1, f0 = 50kHz, Q = 10  
Noise (Note 3)  
Bandpass  
Lowpass  
Notch  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
103  
121  
120  
150  
115  
135  
262  
333  
268  
342  
64  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
dB  
Figure 15 (Mode 1),  
Q = 1, R1 = R2 = R3 = 2kW  
Noise (Note 3)  
Bandpass,  
R1 = 20kW  
Lowpass,  
R1 = 2kW  
Notch,  
Figure 15 (Mode 1),  
Q = 10, R3 = 20kW, R2 = 2kW  
R1 = 2kW  
72  
Crosstalk  
fCLK = 5MHz, f0= 100kHz  
-50  
FILTER, VA+ = VD+ = 2.25V, VA- = VD- = -2.25V, VIN = 0.707 x VPK (0.5 x VRMS  
)
f0(MAX) Maximum Center Frequency Figure 15 (Mode 1),  
75  
kHz  
kHz  
Hz  
Q £ 50, Q Accuracy £ ± 30%  
Figure 15 (Mode 1),  
Q £ 20, Q Accuracy £ ± 15%  
100  
f0(MIN)  
Minimum Center Frequency  
Figure 15 (Mode 1),  
25  
25  
Q £ 50, Q Accuracy £ ± 30%  
Figure 15 (Mode 1),  
Hz  
Q £ 20, Q Accuracy £ ± 15%  
Clock to Center Frequency Ratio  
Q = 10, Figure 15 (Mode 1)  
50:1, fCLK = 2.5MHz  
100:1, fCLK = 2.5MHz  
BSuffix  
49.65  
49.45  
99.60  
99.20  
2.5  
49.85  
49.85  
100.0  
100.0  
50.05  
50.25  
100.4  
100.8  
5000  
±4  
C Suffix  
BSuffix  
C Suffix  
fCLK  
Clock Frequency  
Q Accuracy  
Q £ 20, Q Accuracy £ ±15%  
kHz  
%
fCLK = 2.5MHz, Q = 10,  
BSuffix  
50:1, Figure 15 (Mode 1) C Suffix  
±8  
%
fCLK = 2.5MHz, Q = 10,  
BSuffix  
±3  
±6  
%
100:1, Figure 15 (Mode 1) C Suffix  
%
4
ML2111  
ELECTRICAL CHARACTERISTICS (Continued)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FILTER, VA+ = VD+ = 2.25V, VA- = VD- = -2.25V, VIN = 0.707 x VPK (0.5 x VRMS) (Continued)  
Noise (Note 3)  
Bandpass  
Lowpass  
Notch  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
100kHz, 50:1  
50kHz, 100:1  
105  
123  
122  
152  
117  
138  
265  
335  
270  
245  
65  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
Figure 15 (Mode 1),  
Q = 1, R1 = R2 = R3 = 2kW  
Noise (Note 3)  
Bandpass,  
R1 = 20kW  
Lowpass,  
R1 = 2kW  
Notch,  
Figure 15 (Mode 1), Q = 10,  
R3 = 20kW, R2 = 2kW  
R1 = 2kW  
73  
OPERATIONAL AMPLIFIERS  
VOS1  
AVOL  
DC Offset Voltage  
2
15  
1.2  
0.6  
mV  
dB  
DC Open Loop Gain  
RL = 1kW  
95  
2.4  
2.0  
0.5  
50  
25  
Gain Bandwidth Product  
SlewRate  
MHz  
V/µs  
V
Output Voltage Swing (Clipping Level)  
Output Short Circuit Current  
RL = 2kW, |V| from VA+ or VA-  
Source  
Sink  
mA  
mA  
CLOCK  
SUPPLY  
VCLK Input Low Voltage  
VCLK Input High Voltage  
CLKA, CLKB Pulse Width  
CLKA, CLKB Pulse Width  
V
V
3.0  
100  
66  
|VD+| - |VD-| ³ 4.5V  
|VD+| - |VD-| ³ .90V  
ns  
ns  
(IA+)+(ID+) Supply Current, (VA+) + (VD+  
(IA-)+(ID-) Supply Current, (VA-) + (VD-  
ILSh Supply Current, LSh  
)
fCLK = 5MHz  
fCLK = 5MHz  
fCLK = 5MHz  
13  
12  
22  
21  
1
mA  
mA  
mA  
)
0.5  
Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions.  
Note 2: The center frequency is defined as the peak of the bandpass output.  
Note 3: The noise is meassured with an HP8903A audio analyzer with a bandwidth of 700kHz, which is 7.5 times the f0 at 50:1 and 15 times the f0 at 100:1.  
5
ML2111  
TYPICAL PERFORMANCE CURVES  
0.4  
5
4
Q = 50  
0.0  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–2.8  
Q = 20  
3
Mode 1  
Q = 10  
IN = 0.707VRMS  
V
2
TA = 85ºC  
Q = 10  
1
0
Mode 1  
T
A = 25ºC  
Q = 5  
–1  
–2  
–3  
V
IN = 0.707VRMS  
TA = 25ºC  
0
2
4
6
8
10  
0
2
4
6
8
10  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 1A. f /f vs. f  
(50:1, V = ±5V)  
CLK  
0
CLK  
S
0.4  
0.0  
0.5  
0.0  
Q = 50  
Q = 20  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–2.4  
–2.8  
–3.2  
TA = 25ºC  
–0.5  
–1.0  
Q = 10  
Mode 1  
Q = 10  
TA = 85ºC  
Mode 1  
A = 25ºC  
IN = 0.707VRMS  
T
VIN = 0.707VRMS  
V
Q = 5  
–1.5  
–2.0  
0
2
4
6
8
10  
0
2
4
6
8
10  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 1B. f /f vs. f  
(100:1, V = ±5V)  
CLK  
0
CLK  
S
16  
10  
8
14  
12  
10  
8
Q = 10  
TA = 85ºC  
Mode 1  
6
T
A = 25ºC  
V
IN = 0.5VRMS  
Mode 1  
Q = 10  
IN = 0.5VRMS  
4
2
V
6
Q = 20  
4
TA = 25ºC  
2
Q = 50  
0
Q = 5  
0
–2  
–2  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 1C. f /f vs. f  
(50:1, V = ±2.5V)  
S
CLK  
0
CLK  
6
ML2111  
TYPICAL PERFORMANCE CURVES (Continued)  
5
12  
10  
8
4
3
Mode 1  
T
A = 25ºC  
V
IN = 0.5VRMS  
Mode 1  
Q = 10  
VIN = 0.5VRMS  
2
6
TA = 85ºC  
Q = 50  
Q = 10  
1
4
Q = 20  
0
2
–1  
–2  
0
Q = 5  
7
TA = 25ºC  
–2  
0
1
2
3
4
5
6
8
9
0
1
2
3
4
5
6
7
8
9
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 1D. f /f vs. f  
(100:1, V = ±2.5V)  
CLK  
0
CLK  
S
0.08  
0.06  
0.04  
0.03  
Mode 1  
Q = 10  
f0 = 50kHz  
CLK = 5MHz  
Mode 1  
Q = 10  
f0 = 100kHz  
CLK = 5MHz  
f
f
0.04  
V
IN = 0.707VRMS  
V
IN = 0.707VRMS  
0.02  
0.02  
0.00  
0.01  
0
–0.02  
–0.04  
–0.06  
–0.01  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
Temperature (ºC)  
Figure 2A. f /f Deviation vs. Temperature  
Figure 2B. f /f Deviation vs. Temperature  
CLK 0  
CLK  
0
(50:1, V = ±5V)  
(100:1, V = ±5V)  
S
S
0.10  
0.08  
0.06  
0.04  
Mode 1  
0.06  
Q = 10  
f0 = 50kHz  
CLK = 2.5MHz  
0.02  
f
0.04  
V
IN = 0.5VRMS  
0.02  
0.00  
0.00  
Mode 1  
Q = 10  
fo = 25kHz  
CLK = 2.5MHz  
IN = 0.5VRMS  
–0.02  
–0.04  
–0.06  
–0.02  
–0.04  
–0.06  
f
V
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
Temperature (ºC)  
Figure 2C. f /f Deviation vs. Temperature  
Figure 2D. f /f Deviation vs. Temperature  
CLK 0  
CLK  
0
(50:1, V = ±2.5V)  
(100:1, V = ±2.5V)  
S
S
7
ML2111  
TYPICAL PERFORMANCE CURVES (Continued)  
20  
20  
16  
12  
8
16  
12  
8
Mode 1  
T
A = 25ºC  
TA = 25ºC  
V
IN = 0.707VRMS  
Mode 1  
Q = 10  
IN = 0.707VRMS  
Q = 10  
V
Q = 5  
4
4
0
Q = 20  
TA = 85ºC  
0
Q = 50  
–4  
–8  
–4  
0
2
4
6
8
10  
0
2
4
6
8
10  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 2E. Q Error vs. f  
(50:1, V = ±5V)  
CLK  
S
20  
15  
10  
5
20  
Mode 1  
Mode 1  
Q = 10  
T
A = 25ºC  
16  
12  
8
V
IN = 0.707VRMS  
Q = 10  
V
IN = 0.707VRMS  
TA = 85ºC  
Q = 5  
0
4
Q = 20  
Q = 50  
–5  
–10  
–15  
0
TA = 25ºC  
8
–4  
0
2
4
6
8
10  
0
2
4
6
10  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 2F. Q Error vs. f  
(100:1, V = ±5V)  
CLK  
S
10  
5
8
Q = 10  
Mode 1  
4
0
Q = 10  
IN = 0.5VRMS  
TA = 25ºC  
V
0
Q = 5  
Q = 20  
–5  
TA = 85ºC  
Q = 50  
–10  
–15  
–20  
–4  
–8  
Mode 1  
T
A = 25ºC  
V
IN = 0.5VRMS  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 2G. Q Error vs. f  
(50:1, V = ±2.5V)  
S
CLK  
8
ML2111  
TYPICAL PERFORMANCE CURVES (Continued)  
16  
16  
12  
8
12  
Mode 1  
T
A = 25ºC  
8
4
Mode 1  
Q = 10  
IN = 0.5VRMS  
V
IN = 0.5VRMS  
TA = 85ºC  
V
Q = 10  
Q = 5  
4
0
0
TA = 25ºC  
–4  
–8  
–12  
Q = 20  
–4  
–8  
–12  
Q = 50  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 2H. Q Error vs. f  
(100:1, V = ±2.5V)  
CLK  
S
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
Mode 1  
Q = 10  
f0 = 50kHz  
CLK = 5MHz  
IN = 0.707VRMS  
Mode 1  
Q = 10  
f0 = 100kHz  
CLK = 5MHz  
IN = 0.707VRMS  
f
f
V
V
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
Temperature (ºC)  
Figure 3A. Q Deviation vs. Temperature  
(50:1, V = ±5V)  
Figure 3B. Q Deviation vs. Temperature  
(100:1, V = ±5V)  
S
S
0.2  
0.2  
Mode 1  
Q = 10  
f0 = 25kHz  
fCLK = 2.5MHz  
V
IN = 0.5VRMS  
0.0  
0.0  
Mode 1  
Q = 10  
f0 = 50kHz  
CLK = 2.5MHz  
IN = 0.5VRMS  
–0.2  
–0.4  
–0.2  
–0.4  
f
V
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
Temperature (ºC)  
Figure 3C. Q Deviation vs. Temperature  
(50:1, V = ±2.5V)  
Figure 3D. Q Deviation vs. Temperature  
(100:1, V = ±2.5V)  
S
S
9
ML2111  
TYPICAL PERFORMANCE CURVES (Continued)  
4
0.05  
Mode 1  
T
A = 25ºC  
CLK = 5MHz  
IN = 1VRMS  
Mode 1  
f
T
A = 25ºC  
V
50:1 or 100:1  
f
V
CLK = 5MHz  
IN = 1VRMS  
0
–4  
–8  
0.0  
100:1  
50:1  
–0.05  
0.1  
1
10  
Ideal Q (R3/R2)  
100  
0.1  
1
10  
Ideal Q (R3/R2)  
100  
Figure 4A. f /f Deviation vs. Q (V = ±5V)  
Figure 4A. f /f  
Deviation vs. Q (V = ±5V)  
CLK  
0
S
CLK NOTCH S  
4
0
2
0
–4  
–2  
–4  
–6  
–8  
–8  
Mode 1  
Mode 1  
T
A = 25ºC  
f0 = 50kHz  
CLK = 5MHz  
VS = ±5V  
T
A = 25ºC  
–12  
f0 = 100kHz  
CLK = 5MHz  
VS = ±5V  
f
f
–16  
0.1  
1
10  
Ideal Q (R3/R2)  
100  
0.1  
1
10  
Ideal Q (R3/R2)  
100  
Figure 5A. Q Deviation vs. Q (50:1, V = ±5V)  
Figure 5B. Q Deviation vs. Q (100:1, V = ±5V)  
S
S
70  
70  
VOUT = 2V  
VOUT = 1.41V  
VOUT = 0.5V  
VOUT = 3V  
VOUT = 2V  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
VOUT = 4V  
VOUT = 1.41V  
VOUT = 3V  
VOUT = 0.5V  
Mode 1  
Q = 1  
f0 = 50kHz  
CLK = 5MHz  
VS = ±5V  
Mode 1  
Q = 1  
f0 = 100kHz  
CLK = 5MHz  
VS = ±5V  
f
f
VOUT = 4V  
T
A = 25ºC  
RL = 2k  
Low Pass Output  
T
A = 25ºC  
RL = 2k  
Low Pass Output  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100  
fIN (kHz)  
fIN (kHz)  
Figure 6A. Distortion vs. f (50:1, V = ±5V)  
Figure 6B. Distortion vs. f (100:1, V = ±5V)  
IN S  
IN  
S
10  
ML2111  
TYPICAL PERFORMANCE CURVES (Continued)  
2500  
2000  
1500  
1000  
500  
250  
Mode 1  
50:1  
R1 = R3 = 20kΩ,  
R2 = 2kΩ  
BANDPASS OUTPUT  
VS = ±5V  
Mode 1  
50:1  
R1 = R2 = R3 = 2kΩ  
BANDPASS OUTPUT  
VS = ±5V  
200  
150  
100  
50  
f0 = 100kHz  
CLK = 5MHz  
f0 = 100kHz  
CLK = 5MHz  
f
f
0
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Frequency (kHz)  
Frequency (kHz)  
Figure 7A. Noise Spectrum Density (Q = 1)  
Figure 7B. Noise Spectrum Density (Q = 10)  
100  
0.8  
0.4  
80  
100:1  
0.0  
100:1  
60  
50:1  
50:1  
–0.4  
40  
–0.8  
Mode 1  
Mode 1  
T
A = 25ºC  
Q = 10  
T
A = 25ºC  
Q = 10  
20  
0
–1.2  
–1.6  
VS = ±5V  
IN = 0.707VRMS  
VS = ±5V  
IN = 0.707VRMS  
V
V
0
2
4
6
8
10  
0
2
4
6
8
10  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
Figure 8. f /f  
vs. f  
Figure 9. Notch Depth vs. f  
CLK NOTCH  
CLK  
CLK  
15  
14  
13  
12  
11  
10  
16  
14  
12  
10  
8
Q = 10  
A = 25ºC  
T
Mode 1  
VS = ±5V  
CLK = 5MHz  
50:1  
fCLK = 10MHz  
L
Sh = VSS  
50:1  
f
fCLK = 5MHz  
fCLK = 3MHz  
fCLK = 250kHz  
2
3
4
5
6
–40  
–20  
20  
60  
100  
0
40  
80  
Supply Voltage (±V)  
Temperature (ºC)  
Figure 11. Supply Current vs. Temperature  
Figure 10. Supply Current vs. Supply Voltage  
11  
ML2111  
FUNCTIONAL DESCRIPTION  
POWER SUPPLIES  
f /f RATIO  
CLK 0  
The analog (V ) and digital (V ) supply pins, in most  
The ML2111 is a sampled data filter and approximates  
continuous time filters. The filter deviates from its ideal  
A+  
D+  
cases, are tied together and bypassed to AGND with  
100nF and 10nF disk ceramic capacitors. The supply pins  
can be bypassed separately if a high level of digital noise  
exists. These pins are internally connected by the IC  
substrate and should be biased from the same DC source.  
The ML2111 operates from either a single supply from 4V  
to 12V, or with dual supplies at ±2V to ±6V.  
continuous filter model when the (f /f ) ratio decreases  
CLK 0  
and when the Qs are low.  
f ´ Q PRODUCT RATIO  
0
The f ´ Q product of the ML2111 depends on the clock  
0
frequency and the mode of operation. The f ´ Q product  
0
CLOCK INPUT PINS AND LEVEL SHIFT  
is mainly limited by the desired f and Q accuracy for  
0
clock frequencies below 1MHz in mode 1 and its  
derivatives. If the clock to center frequency ratio is  
With dual supplies equal to or higher than ±4.0V, the LSh  
pin can be connected to the same potential as either the  
lowered below 50:1, the f ´ Q product can be further  
0
AGND or the V - pin. With single supply operation the  
increased for the same clock frequency and for the same  
Q value.  
A
negative supply pins and LSh pin should be tied to the  
system ground. The AGND pin should be biased half way  
between V and V . Under these conditions the clock  
Mode 3, (Figure 23) and the modes of operation where R4  
is finite, are "slower" than the basic mode 1. The resistor  
R4 places the input op amp inside the resonant loop. The  
finite GBW of this op amp creates an additional phase  
shift and enhances the Q value at high clock frequencies.  
A+  
A-  
levels are TTL or CMOS compatible. Both input clock  
pins share the same level shift pin.  
50/100/HOLD  
Tying the 50/100/HOLD pin to the V and V pins  
OUTPUTNOISE  
A+  
D+  
makes the filter operate in the 50:1 mode. Tying the pin  
half way between V and V makes the filter operate in  
The wideband RMS noise on the outputs of the ML2111 is  
nearly independent of the clock frequency, provided that  
the clock itself does not become part of the noise. Noise  
at the BP and LP outputs increases for high values of Q.  
A+  
A-  
the 100:1 mode. The input range for 50/100/HOLD is  
either 2.5V ±0.5V with a total power supply range of 5V,  
or 5V ±0.5V with a total power supply range of 10V.  
When 50/100/HOLD is tied to the negative power supply  
input, the filter operation is stopped and the bandpass and  
lowpass outputs act as a sample/hold circuit which holds  
the last sample.  
FILTER FUNCTION DEFINITIONS  
Each filter of the ML2111, along with external resistors  
and a clock, approximates second order filter functions.  
These are tabulated below in the frequency domain.  
S1 & S1  
A
B
These voltage signal input pins should be driven by a  
source impedance of less than 5kW. The S and S pins  
can be used to feedforward the input signal for allpass  
filter configurations (see modes 4 & 5) or to alter the  
clock-to-center-frequency ratio (f /f ) of the filter (see  
modes 1b, 1c, 2a, & 2b). When these pins are not used  
they should be tied to the AGND pin.  
1. Bandpass function: available at the bandpass output  
1A  
1B  
pins (BP , BP ), Figure 12.  
A
B
s ™ w0  
CLK 0  
Q
G(s) = HOBP  
™
s ™ w  
ꢀ ꢃ  
0
(1)  
s2 +  
+ w  
0
2
ꢂ ꢅ  
Q
S
A/B  
where:  
When S  
is high, the S2 negative input of the voltage  
A/B  
summing device is tied to the lowpass output. When the  
H
= Gain at w = w  
OBP 0  
S
pin is connected to the negative supply, the S2 input  
A/B  
switches to ground.  
f = w /2p. The center frequency of the complex pole  
0 0  
pair is f . It is measured as the peak frequency of the  
0
AGND  
bandpass output.  
AGND is connected to the system ground for dual supply  
operation. When operating with a single positive supply  
the analog ground pin should be biased half way between  
Q = the Quality factor of the complex pole pair. It is  
the ratio of f to the -3dB bandwidth of the 2nd order  
0
bandpass function. The Q is always measured at the  
filter BP output.  
V
and V , and bypassed with a 100nF capacitor. The  
A+  
A-  
positive inputs of the internal op amps and the reference  
point of the internal switches are connected to the AGND  
pin.  
12  
ML2111  
FILTER FUNCTION DEFINITIONS (Continued)  
2. Lowpass function: available at the LP output pins,  
BANDPASS OUTPUT  
Figure 13.  
2
w0  
G(s) = HOLP  
™
s ™ w  
ꢀ ꢃ  
0
s2 +  
+ w  
0
2
(2)  
HOBP  
ꢂ ꢅ  
Q
0.707 HOBP  
where:  
H
= DC gain of the LP output  
OLP  
3. Highpass function: available only in mode 3 at  
fL  
f0  
fH  
N/AP/HP and N/AP/HP , Figure 14.  
A
B
s2  
f (LOG SCALE)  
G(s) = HOHP  
™
s ™ w  
ꢀ ꢃ  
0
s2 +  
+ w  
0
2
(3)  
f0  
ꢂ ꢅ  
Q =  
;f0 = fL ™ fH  
Q
fH - fL  
H
= Gain of the HP output for f ® f /2.  
OHP  
CLK  
2
ꢀ ꢃ  
1
-1  
+ 1ꢅ  
fL = f0 ™  
fH = f0 ™  
+
2Qꢅ  
ꢂ ꢁ ꢄ ꢅ  
2Q  
2
ꢀ ꢃ  
1
1
+ 1ꢅ  
+
2Qꢅ  
ꢂ ꢁ ꢄ ꢅ  
2Q  
Figure 12.  
LOWPASS OUTPUT  
HIGHPASS OUTPUT  
HOP  
HOLP  
0.707 HOLP  
HOP  
HOHP  
0.707 HOHP  
fP  
fC  
f (LOG SCALE)  
fC  
fP  
2
ꢀ ꢃ ꢀ ꢃ  
1
1
f (LOG SCALE)  
1
fC = f0 ™ 1-  
+
1-  
+ 1  
ꢂ ꢅ ꢂ ꢅ  
!
"
2
2Q2 ꢄ ꢁ 2Q2  
ꢀ ꢃ ꢀ ꢃ  
1
1
#
#
fC = f0 ™  
1-  
+
1-  
+ 1  
ꢂ ꢅ ꢂ ꢅ  
2Q2 ꢄ ꢁ 2Q2  
#
$
1
2Q2  
fP = f0 ™ 1-  
1
!
"
1
fP = f0 ™ 1-  
#
2Q2  
#
$
1
HOP = HOLP  
™
1
HOP = HOHP  
™
1
Q
1
4Q2  
™ 1-  
1
1
™ 1-  
4Q2  
Q
Figure 13.  
Figure 14.  
13  
ML2111  
FILTER FUNCTION DEFINITIONS  
OPERATION MODES  
4. Notch function: available at N/AP/HP and N/AP/HP  
There are three basic modes of operation — Modes 1, 2,  
and 3 , each of which has derivatives; and four secondary  
modes of operation — Modes 4, 5, 6, and 7, each of  
which also has derivatives.  
A
B
for several modes of operation.  
s2 + w  
2
4
9
n
G(s) = HON2  
™
s ™ w  
ꢀ ꢃ  
0
2
(4)  
s2 +  
+ w  
ꢂ ꢅ  
0
In Figure 15, the input amplifier is outside the resonant  
loop. Because of this, mode 1 and its derivatives (modes  
1a, 1b, 1c, and 1d) are faster than modes 2 and 3.  
Q
H
H
= Gain of the notch output for f ® f /2.  
ON2  
ON1  
CLK  
= Gain of the HP output for f ® 0  
Mode 1 provides a clock tunable notch. It is a practical  
configuration for second order clock tunable bandpass/  
notch filters. In mode 1, a band pass output with a very  
high Q, together with unity gain can be obtained with the  
dynamics of the remaining notch and lowpass outputs.  
f = w /2p. The frequency of the notch occurrence is  
n
n
f .  
n
5. Allpass function: available at N/AP/HP and N/AP/  
A
HP for modes 4 and 4a.  
Mode 1a (Figure 16) represents the simplest hookup of the  
ML2111. It is useful when voltage gain at the bandpass  
output is required. However, the bandpass voltage gain is  
equal to the value of Q, and second order, clock tunable,  
BP resonator can be achieved with only 2 resistors. The  
filter center frequency directly depends on the external  
clock frequency. Mode 1a is not practical for high order  
filters as it requires several clock frequencies to tune the  
overall filter response.  
B
s ™ w0  
Q
s ™ w0  
Q
s2 -  
s2 +  
+ w0  
+ w0  
2
2
G(s) = HOAP  
™
(5)  
H
= Gain of the allpass output for 0 < f < f /2  
CLK  
OAP  
For allpass functions, the center frequency and the Q of  
the numerator complex zero pair is the same as the  
denominator. Under these conditions the magnitude  
response is a straight line. In mode 5, the center  
Modes 1b and 1c, Figures 17 and 18, are similar. They  
both produce a notch with a frequency which is always  
equal to the filter center frequency. The notch and the  
center frequency can be adjusted with an external resistor  
ratio.  
frequency f of the numerator complex zero pair is  
Z
different than f . For high numerator Q's, the  
0
magnitude response will have a notch at f .  
Z
½ ML2111  
½ ML2111  
R3  
R2  
VIN  
R3  
N
BP  
2 (19)  
S1A  
LP  
R2  
BP2  
BP1  
S1A  
LP  
5 (16)  
1 (20)  
3 (18)  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
R1  
VIN  
+
4 (17)  
Σ
+
+
4 (17)  
Σ
+
SA/B  
15  
6
SA/B  
V+  
15  
6
V+  
fCLK  
fCLK  
R2  
R1  
R3  
R1  
R3  
R2  
R3  
R2  
f0 =  
;fn = f0 ;HOLP = -  
;HOBP = -  
;
f0 =  
;Q =  
;HOBP1 = -  
;
100(50)  
100(50)  
HOBP2 = 1(non - inverting);HOLP = -1  
R2  
R1  
R3  
R2  
HON1 = -  
;Q =  
Figure 15. Mode 1: 2nd Order Filter Providing Notch,  
Bandpass, Lowpass  
Figure 16. Mode 1a: 2nd Order Filter Providing  
Bandpass, Lowpass  
14  
ML2111  
MODE  
BP , BP  
N/AP/HP ,N/AP/HP  
f
C
f
Z
A
B
A
B
fCLK  
100(50) R3  
fCLK  
100(50) R3  
fCLK  
100(50) R3  
R2  
™
6a  
LP  
LP  
LP  
HP  
LP  
R2  
™
6b  
7
fCLK  
100(50) R3  
R2  
R2  
™
™
AP  
Table 1. First Order Functions.  
MODE  
LP , LP  
BP , BP  
N/AP/HP  
f
0
f
N
A
B
A
B
A&B  
fCLK  
1
LP  
LP  
LP  
BP  
BP  
BP  
Notch  
BP  
f
0
100(50)  
fCLK  
1a  
1b  
100(50)  
fCLK  
fCLK  
R6  
R5 + R6  
R6  
R5 + R6  
™ 1+  
™ 1+  
Notch  
100(50)  
100(50)  
fCLK  
fCLK  
R6  
R5 + R6  
R6  
R5 + R6  
™
™
1c  
1d  
2
LP  
LP  
LP  
BP  
BP  
BP  
Notch  
100(50)  
100(50)  
fCLK  
100(50)  
fCLK  
fCLK  
R2  
R4  
™ 1+  
Notch  
Notch  
Notch  
HP  
100(50)  
100(50)  
fCLK  
fCLK  
R2  
R6  
R6  
R5 + R6  
™ 1+  
+
™ 1+  
2a  
2b  
3
LP  
LP  
LP  
BP  
BP  
BP  
100(50)  
R4 R5 + R6  
100(50)  
fCLK  
fCLK  
R2  
R6  
R6  
R5 + R6  
™
+
™
100(50)  
R4 R5 + R6  
100(50)  
fCLK  
R2  
R4  
™
100(50)  
Rh  
Rl  
fCLK  
fCLK  
R2  
R4  
™
™
3a  
LP  
BP  
Notch  
100(50)  
100(50)  
fCLK  
4
LP  
LP  
BP  
BP  
AP  
AP  
100(50)  
fCLK  
R2  
R4  
™
4a  
100(50)  
fCLK  
fCLK  
R2  
R4  
R2  
R4  
™ 1+  
™ 1-  
5
LP  
BP  
CZ  
100(50)  
100(50)  
Table 2. Second Order Functions  
15  
ML2111  
R5  
R6  
fCLK  
R6  
R5 + R6  
R3  
R2  
f0 =  
Q =  
™ 1+  
;fn = f0  
100(50)  
N
BP  
S1A  
5 (16)  
LP  
2 (19)  
1 (20)  
3 (18)  
R3  
R2  
R6  
R5 + R6  
™ 1+  
;R5 < 5kW  
R1  
VIN  
+
4 (17)  
Σ
fCLK  
2 ꢄ  
R2  
R1  
f “ = -  
+
HON1 f “ 0 = H  
1 6  
ON2ꢂ  
R3  
R1  
-R2 / R1  
SA/B  
6
HOBP = -  
;HOLP  
=
15  
1+ R6 /  
0
R5 + R6  
5
V+  
Figure 17. Mode 1b: 2nd Order Filter Providing Notch, Bandpass, Lowpass  
R5  
R6  
fCLK  
R6  
R5 + R6  
R3  
R2  
f0 =  
Q =  
™
;fn = f0  
100(50)  
N
BP  
S1A  
5 (16)  
LP  
2 (19)  
1 (20)  
3 (18)  
R3  
R2  
R6  
R5 + R6  
™
;
R1  
VIN  
+
4 (17)  
Σ
fCLK  
2 ꢄ  
R2  
R1  
f “ = -  
+
HON1 f “ 0 = H  
;
1 6  
ON2ꢂ  
R3  
R1  
-R2 / R1  
SA/B  
6
HOBP = -  
;HOLP  
=
;R5 < 5kW  
15  
R6 / R5 + R6  
0
5
V-  
Figure 18. Mode 1c: 2nd Order Filter Providing Notch, Bandpass, Lowpass  
R3B  
R3A  
R2  
N
BP  
S1A  
5 (16)  
LP  
2 (19)  
1 (20)  
3 (18)  
fCLK  
R3A  
R3B  
R2  
R1  
R1  
f0 =  
;Q = 1+  
;VN -  
;HOBP = -  
™ Q;  
VIN  
100(50)  
+
4 (17)  
Σ
+
R2  
R1  
R2  
HOLP = -  
™ V  
IN  
R1  
SA/B  
6
15  
V+  
Figure 19. Mode 1d: 2nd Order Filter Providing Bandpass and Lowpass for Qs Greater Than or Equal To 1.  
16  
ML2111  
R4  
R3  
R2  
fCLK  
fCLK  
R2  
R4  
f0 =  
Q =  
™ 1+  
;fn =  
;
100(50)  
100(50)  
N
BP  
S1A  
LP  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
R3  
R2  
R2  
R4  
1+-0RR22//RR14  
™ 1+  
;HOLP =  
5 ;  
R1  
VIN  
+
4 (17)  
Σ
-R3  
R1  
1+-0RR22//RR14  
+
HOBP  
=
;HON1 f “ 0 =  
5 ;  
1 6  
fCLK  
2 ꢄ  
-R2  
R1  
SA/B  
f “ =  
HON2  
15  
6
V+  
Figure 20. Mode 2: 2nd Order Filter Providing Notch, Bandpass, Lowpass  
R4  
fCLK  
R2  
R6  
R3  
R1  
f0 =  
fn =  
Q =  
™ 1+  
+
;HOBP = -  
;
R5  
R6  
100(50)  
R4 R5 + R6  
R3  
R2  
fCLK  
fCLK  
R6  
R2  
R1  
f “ = -  
™ 1+  
;HON2  
R5 + R6  
;
2
100(50)  
N
BP  
S1A  
5 (16)  
LP  
2 (19)  
1 (20)  
3 (18)  
R3  
R2  
R2  
R6  
;
R1  
™ 1+  
+
VIN  
R4 R5 + R6  
+
4 (17)  
Σ
+
%
(
;
R1 1+ 0R12+/ RR46 /  
5
0
R5 + R6  
+ R6 / R5 + R6  
5
R2  
HON1 f “ 0 = -  
1 6  
&
)
'
*
SA/B  
15  
6
0
R2 / R4-R+2R/ 6R1/ 0R5 + R6  
5
5
HOLP  
=
1+  
V+  
Figure 21. Mode 2a: 2nd Order Filter Providing Notch, Bandpass, Lowpass  
R4  
fCLK  
R2  
R6  
f0 =  
fn =  
™
™
+
;
R5  
R6  
100(50)  
R4 R5 + R6  
R3  
R2  
fCLK  
R6  
R5 + R6  
R3  
R2  
R2  
R6  
;Q =  
™
+
;
100(50)  
R4 R5 + R6  
N
BP  
S1A  
5 (16)  
LP  
2 (19)  
1 (20)  
3 (18)  
%
(
R6 / R5 + R6  
0 5  
R2  
HON1 f “ 0 = -  
;
1 6  
R1  
&
)
R1 R2 / R4 + R6 / R5 + R6  
0 5  
VIN  
'
*
+
4 (17)  
Σ
+
fCLK  
2 ꢄ  
R2  
R1  
R3  
R1  
f “ = -  
HON2  
;HOBP = -  
;
SA/B  
15  
-R2 / R1  
R2 / R4 + R6 / R5 + R6  
6
HOLP  
=
0 5 0 5  
V-  
Figure 22. Mode 2b: 2nd Order Filter Providing Notch, Bandpass, Lowpass  
17  
ML2111  
OPERATION MODES (Continued)  
The clock to center frequency ratio range is:  
Modes 2, 2a, and 2b (Figures 20, 21, and 22) have notch  
outputs whose frequency, f , can be tuned independently  
n
fCLK  
500  
1
100 50  
˜ or  
from the center frequency, f . However, for all cases f <  
0
n
˜
(mode 1c)  
(6)  
(7)  
f . These modes are useful when cascading second order  
f0  
1
1
0
functions to create an overall elliptic highpass, bandpass  
or notch response. The input amplifier and its feedback  
resistors R2 and R4 are now part of the resonant loop.  
Because of this, mode 2 and its derivatives are slower  
than mode 1 and its derivatives.  
fCLK  
100 50  
or  
100 50  
˜ or  
˜
(mode 1b)  
1
1
f0  
2
2
The input impedance of the S1 pin is clock dependent,  
and in general R5 should not be larger than 5kW for f  
<
CLK  
2.5MHz and 2kW for f  
> 2.5MHz. Mode 1c can be  
In Mode 3 (Figure 23) a single resistor ratio, R2/R4, can  
CLK  
used to increase the clock-to-center-frequency ratio  
tune the center frequency below or above the f /100 (or  
CLK  
beyond 100:1. The limit for the (f /f ) ratio is 500:1 for  
f
/50) ratio. Mode 3 is a state variable configuration  
CLK  
CLK 0  
this mode. The filter will exhibit large output offsets with  
larger ratios. Mode 1d (Figure 19) is the fastest mode of  
operation: center frequencies beyond 20kHz can easily  
be achieved at a 50:1 ratio.  
since it provides a highpass, bandpass, lowpass output  
through progressive integration. Notches are acquired by  
summing the highpass and lowpass outputs (mode 3a,  
Figure 24). The notch frequency can be tuned below or  
R4  
R3  
R2  
HP  
BP  
S1A  
LP  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
fCLK  
R2  
R4  
R3  
R2  
R2  
R4  
f0 =  
™
;Q =  
™
;
100(50)  
R1  
VIN  
+
4 (17)  
Σ
R2  
R1  
R4  
R1  
R3  
R1  
+
HOHP = -  
;HOLP = -  
;HOBP = -  
SA/B  
15  
6
V-  
Figure 23. Mode 3: 2nd Order Filter Providing Highpass, Bandpass, Lowpass — ½ ML2111  
R2 R3  
R4 R2  
Q =  
™
R4  
Rh  
fCLK  
fCLK  
R2  
R4  
f0 =  
™
;fn =  
™
;
100(50)  
100(50)  
Rl  
R3  
R2  
R2  
R1  
R3  
R1  
R4  
R1  
HOHP = -  
;HOBP = -  
;HOLP = -  
;
HP  
BP  
S1A  
LP  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
R
Rg  
R1  
;  
™ HOHP  
g
HON f = f = Q ™  
™ HOLP  
-
VIN  
1 6  
0
R  
Rh  
+
l
4 (17)  
Rg  
Σ
+
External  
Op Amp  
Rg  
fCLK  
2 ꢄ  
R2  
f “ =  
HON2  
™
;
Rl  
Rh R1  
SA/B  
NOTCH  
15  
Rh  
6
+
Rg  
Rl  
R4  
HON1 f “ 0 =  
™
1 6  
R1  
V-  
Figure 24. Mode 3a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Notch — ½ ML2111  
18  
ML2111  
OPERATION MODES (Continued)  
above the center frequency through the resistor ratio R /  
l
frequency. Mode 4a (Figure 26) gives a non-inverting  
h
R . Because of this, modes 3 and 3a are the most versatile  
output, but requires an external op amp. Mode 5 is  
recommended if this response is unacceptable. Mode 5  
(Figure 27) gives a flatter response than mode 4 if R1 = R2  
= 0.02 ´ R4.  
and useful modes for cascading second order sections to  
obtain high order elliptic filters. For very selective  
bandpass/bandreject filters the mode 3a approach , as in  
Figure 24, yields better dynamic range since the external  
op amp helps to optimize the dynamics of the output  
nodes of the ML2111.  
Modes 6 and 7 are used to construct 1st order filters.  
Mode 6a (Figure 28) gives a lowpass and a highpass  
single pole response. Mode 6b (Figure 29) gives an  
inverting and non-inverting lowpass single pole filter  
response. Mode 7 (Figure 30) gives an allpass and lowpass  
single pole response.  
Modes 4 and 5 are useful for constructing allpass res-  
ponse filters. Mode 4, Figure 25, gives an allpass  
response, but due to the sampled nature of the filter, a  
slight 0.5 dB peaking can occur around the center  
R3  
R2  
AP  
BP  
S1A  
LP  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
R1 = R2  
VIN  
+
4 (17)  
Σ
+
SA/B  
15  
6
V+  
fCLK  
R3  
R3  
R2  
R2  
R1  
2ꢀ ꢃ  
ꢂ ꢅ  
R2ꢄ  
fo  
H
;
2
Q
H
OAP  
;
;
;
HOLP  
OBP  
100 50  
0 5  
Figure 25. Mode 4: 2nd Order Filter Providing Allpass, Bandpass, Lowpass — ½ ML2111  
R4  
R3  
fCLK  
R2  
R4  
R3  
R2  
R2  
R4  
f0 =  
™
;Q =  
™
;
R2  
100(50)  
HP  
BP  
S1A  
LP  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
R5  
2R  
R2  
R1  
R1  
HOAP  
=
;HOHP = -  
;
VIN  
+
4 (17)  
Σ
+
R4  
R1  
HOLP = -  
HOBP = -  
;
R5  
R3  
R1  
SA/B  
External  
Op Amp  
15  
6
R
+
2R  
V-  
Figure 26. Mode 4a: 2nd Order Filter Providing Highpass, Bandpass, Lowpass, Allpass — ½ ML2111  
19  
ML2111  
R3  
R2  
R4  
R3  
R2  
HP  
LP  
S1A  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
R1  
CZ  
BP  
S1A  
LP  
VIN  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
+
4 (17)  
Σ
+
R1  
VIN  
+
4 (17)  
Σ
+
SA/B  
15  
6
SA/B  
V+  
V-  
15  
6
fCLK  
fCLK  
R2  
R4  
R1  
R4  
fCLK  
100(50) R3  
R2  
R3  
R1  
R2  
R1  
f0 =  
™ 1+  
™ 1+  
;fZ =  
™ 1-  
;
fC =  
™
;HOLP = -  
;HOHP = -  
100(50)  
100(50)  
R3  
Q =  
R2  
R3  
R1  
R1  
Figure 28. Mode 6a: 1st Order Filter Providing  
Highpass, Lowpass — ½ ML2111  
;QZ  
=
™ 1-  
;
R2  
R4  
R4  
0
R4 / R1  
5
- 1  
R3  
R2  
R2  
R1  
™ 1+ ;H  
f “ 0 = 0R4 / R2 + 1  
5
HOBP  
=
;
OZ 1 6  
ꢂ ꢅ  
ꢁ ꢄ  
11++0RR22//RR41  
0 5  
fCLK  
2 ꢄ  
R2  
R1  
f “ =  
HOZ  
;HOLP =  
5
Figure 27. Mode 5: 2nd Order Filter Providing  
Numerator Complex Zeroes, Bandpass, Lowpass — ½  
ML2111  
VIN  
R3  
R3  
R2  
LP1  
LP2  
S1A  
R2 = R1  
AP  
LP  
S1A  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
5 (16)  
2 (19)  
1 (20)  
3 (18)  
R1 = R2  
VIN  
+
4 (17)  
Σ
+
4 (17)  
Σ
+
+
SA/B  
6
SA/B  
15  
15  
6
V-  
V-  
fCLK  
R2  
R2  
R3  
fP = fZ =  
™
;HOLP = 2™ -  
100(50) R3  
fCLK  
100(50) R3  
R2  
R3  
R2  
fC =  
™
;HOLP1 = 1;HOLP2 = -  
fCLK  
2
0 ˆ f ˆ  
|GAIN AT OUTPUT| = 1 FOR  
Figure 29. Mode 6b: 1st Order Filter Providing Lowpass  
— ½ ML2111  
Figure 30. Mode 7: 1st Order Filter Providing Allpass,  
Lowpass — ½ ML2111  
20  
ML2111  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VOUT  
LPA  
LPB  
BPB  
R31  
R21  
R32  
R22  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
BPA  
HPA  
INVA  
S1A  
3
101,777Hz  
–3.058dB  
HPB  
4
INVB  
S1B  
5
VIN  
1Vp-p  
6
5V  
SA/B  
VA+  
VD+  
LSh  
AGND  
VA-  
Q1 = 0.541  
Q2 = 1.302  
7
8
-5V  
5V  
VD-  
9
50/100  
CLKB  
10  
CLKA  
10k  
100k  
1M  
Clock 5MHz  
FREQUENCY (Hz)  
1% RESISTOR VALUES  
R22 = 1996Ω  
R32 = 2604Ω  
R21 = 3746Ω  
R31 = 2003Ω  
Figure 31. 4th Order, 100kHz Lowpass Butterworth Filter Obtained by Cascading Two Sections in Mode 1a.  
VOUT  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
R12  
R32  
LPA  
LPB  
BPB  
R31  
R21  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
BPA  
HPA  
INVA  
S1A  
R22  
3
HPB  
VIN  
2.82Vp-p  
(1VRMS  
R11  
4
149,871Hz  
–0.31dB  
INVB  
S1B  
)
5
Q1 = Q2 = 10  
6
5V  
SA/B  
VA+  
VD+  
LSh  
AGND  
VA-  
7
8
-5V  
5V  
VD-  
9
50/100  
CLKB  
10  
CLKA  
10k  
100k  
1M  
Clock 7.5MHz  
FREQUENCY (Hz)  
RESISTOR VALUES  
R12 = 20kΩ  
R22 = 2kΩ  
R32 = 20kΩ  
R11 = 20kΩ  
R21 = 2kΩ  
R31 = 20kΩ  
Figure 32. Cascasding 2 Sections Connected in Mode 1, each with Q = 10, to obtain a Bandpass Filter with Q = 15.5,  
and f = 150kHz (f = 7.5MHz).  
0
CLK  
21  
ML2111  
R12  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0
VOUT  
LPA  
LPB  
BPB  
BPA  
HPA  
INVA  
S1A  
R21  
R11  
R22  
3
166,224Hz  
–3.121dB  
HPB  
–10  
–20  
–30  
–40  
3–50  
–60  
–70  
4
INVB  
S1B  
5
6
VIN  
5V  
SA/B  
VA+  
VD+  
LSh  
AGND  
VA-  
1Vp-p  
7
8
-5V  
5V  
VD-  
9
50/100  
CLKB  
10  
CLKA  
10k  
100k  
1M  
FREQUENCY (Hz)  
Clock 7.51MHz  
RESISTOR VALUES  
R11 = R21 = R12 = R22 = 2.0kΩ  
Figure 33. Cascading Two Sections in Mode 1d, Each with Q =1, (Independent of Resistor Ratios) to Create a Sharper 4th  
Order Lowpass Filter.  
R23  
VIN  
2.82Vp-p  
VOUT  
R22  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
0
–5  
LPA  
LPB  
BPB  
BPA  
HPA  
INVA  
S1A  
R31  
R24  
R21  
3
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
HPB  
4
INVB  
S1B  
R32  
5
6
SA/B  
VA+  
VD+  
LSh  
AGND  
VA-  
R34  
7
8
5V  
-5V  
5V  
VD-  
129,070Hz  
9
50/100  
CLKB  
10  
CLKA  
130  
FREQUENCY (kHz)  
127  
133  
Clock 6.5MHz  
1% RESISTOR VALUES  
R21 = R22 = R23 = R24 = 2k  
R32 = 4.9kΩ  
R34 = 100Ω  
R31 = 80kΩ  
Figure 34. Notch Filter with Q = 50 and f = 130kHz. This Circuit Uses Side A in Mode 1d and the Side B Op Amp to  
0
Create a Notch Whose Depth is Controlled by R31. The Notch is Created by Subtracting the Bandpass from V . The  
IN  
Bandpass of Side A is Subtracted Using the Op Amp of Side B.  
22  
ML2111  
OPERATION MODES (Continued)  
OFFSETS  
Mode 1a is a good choice when Butterworth filters are  
Switched capacitor integrators generally exhibit higher  
input offsets than discrete RC integrators.  
desired since they have poles in a circle with the same f .  
0
Figure 31 shows an example of a 4th order, 100kHz  
lowpass Butterworth filter clocked at 5MHz.  
These offsets are mainly the charge injection of the  
CMOS switchers into the integrating capacitors. The  
internal op amp offsets also add to the overall offset  
budget.Figure 35 shows half of the ML2111 filter with its  
A monotonic passband response with a smooth transition  
band results, showing the circuit's low sensitivity, even  
though 1% resistors are used which results in an  
approximate value of Q.  
equivalent input offsets V , V  
, & V  
.
OS1  
OS2  
OS3  
The DC offset at the filter bandpass output is always equal  
to V . The DC offsets at the remaining two outputs  
(Notch and LP) depend on the mode of operation and  
external resistor ratios. Table 3 illustrates this.  
Figure 32 gives an example of a 4th order bandpass filter  
implemented by cascading 2 sections, each with a Q of  
OS3  
10. This figure shows the amplitude response when f  
=
CLK  
7.5MHz, resulting in a center frequency of 150kHz and a  
Q of 15.5.  
It is important to know the value of the DC output offsets,  
especially when the filter handles input signals with large  
dynamic range. As a rule of thumb, the output DC offsets  
increase when:  
Figure 33 uses mode 1d of a 4th order flter where each  
section has a Q of 1, independent of resistor ratios. In this  
mode, the input amplifier is outside the damping (Q)  
loop. Therefore, its finite bandwidth does not degrade the  
response at high frequency. This allows the amplifier to be  
used as an anti-aliasing and continuous smoothing fliter  
by placing a capacitor across R2.  
1. The Qs decrease  
2. The ratio (f /f ) increases beyond 100:1. This is done  
CLK o  
by decreasing either the (R2/R4) or the R6/(R5 + R6)  
resistor ratios.  
(16)  
(18)  
(19)  
(20)  
1
5
2
3
VOS1  
4
VOS2  
+
VOS3  
+
+
(17)  
Σ
+
+
+
+
15  
Figure 35. Equivalent Input Offsets of ½ of an ML2111 Filter.  
23  
ML2111  
MODE  
VOSN  
VOSBP  
VOSLP  
N/AP/HPA, N/AP/HPB  
BPA, BPB  
LPA, LPB  
1, 4  
1a  
VOS1 [(1/Q) + 1 + ||HOLP||] – VOS3/Q  
VOS1 [1 + (1/Q)] – VOS3/Q  
VOS3  
VOS3  
VOS3  
VOSN – VOS2  
VOSN – VOS2  
1b  
VOS1 [(1/Q)] + 1 + R2/R1] – VOS3/Q  
~(VOSN – VOS2) (1 + R5/R6)  
6 R5 + R6  
R5 + 2R6  
1c  
VOS1 [(1/Q)] + 1 + R2/R1] – VOS3/Q  
VOS1 [1 + R2/R1]  
VOS3  
VOS3  
VOS3  
~ V  
- VOS2  
1
OSN  
1d  
VOSN – VOS2 – VOS3/Q  
2, 5  
[VOS1 (1 + R2/R1 + R2/R3 + R2/R4) – VOS3(R2/R3)] ´  
[R4/(R2 + R4)] + VOS2[R2/(R2 + R4)]  
VOSN – VOS2  
2a  
2b  
[VOS1 (1 + R2/R1 + R2/R3 + R2/R4) – VOS3(R2/R3)] ´  
!
" + V ꢆ  
"
;k =  
R4 1+ k  
1 6  
R2  
R6  
R5 + R6  
#
#
OS2  
$ !  
VOS3  
~ VOSN - VOS2  
1
6 R5+ R6  
R5+ 2R6  
R2+ R4 1+ k  
R2+ R4 1+ k  
1 6  
1 6  
#
#
$
[VOS1 (1 + R2/R1 + R2/R3 + R2/R4) – VOS3(R2/R3)] ´  
"
!
"
;k =  
R 4 k  
1 6  
R2  
R2 + R 4 k  
R6  
R5 + R6  
R5  
1+ ꢃ  
+ V  
#
#
O S2  
~ VOSN - VOS2  
1
VOS3  
6
ꢂ ꢅ  
R2 + R 4 k  
1 6  
1 6  
#
$
#
ꢁ ꢄ  
R6  
!
$
R4 R4 R4  
R1 R2 R3  
R4  
R4  
1  
"
ꢁ ꢄ  
ꢁ ꢄ  
3, 4a  
VOS2  
VOS3  
VOS1  
VOS2  
VOS3  
ꢃ ꢆ  
R2ꢅ  
ꢃ ꢆ  
R3ꢅ  
#
!
$
Table 3.  
24  
ML2111  
PHYSICAL DIMENSIONS inches (millimeters)  
Package: P20  
20-Pin PDIP  
1.010 - 1.035  
(25.65 - 26.29)  
20  
0.240 - 0.260 0.295 - 0.325  
(6.09 - 6.61) (7.49 - 8.26)  
PIN 1 ID  
1
0.060 MIN  
(1.52 MIN)  
(4 PLACES)  
0.055 - 0.065  
(1.40 - 1.65)  
0.100 BSC  
(2.54 BSC)  
0.015 MIN  
(0.38 MIN)  
0.170 MAX  
(4.32 MAX)  
SEATING PLANE  
0.008 - 0.012  
(0.20 - 0.31)  
0.016 - 0.022  
(0.40 - 0.56)  
0º - 15º  
0.125 MIN  
(3.18 MIN)  
Package: S20  
20-Pin SOIC  
0.498 - 0.512  
(12.65 - 13.00)  
20  
0.291 - 0.301 0.398 - 0.412  
(7.39 - 7.65) (10.11 - 10.47)  
PIN 1 ID  
1
0.024 - 0.034  
(0.61 - 0.86)  
(4 PLACES)  
0.050 BSC  
(1.27 BSC)  
0.095 - 0.107  
(2.41 - 2.72)  
0º - 8º  
0.012 - 0.020  
(0.30 - 0.51)  
0.022 - 0.042  
(0.56 - 1.07)  
0.007 - 0.015  
(0.18 - 0.38)  
0.090 - 0.094  
(2.28 - 2.39)  
0.005 - 0.013  
(0.13 - 0.33)  
SEATING PLANE  
25  
ML2111  
ORDERING INFORMATION  
PART NUMBER  
ML2111CCP (EOL)  
ML2111CCS  
TEMPERATURE RANGE  
0°C to 70°C  
PACKAGE  
20-Pin PDIP (P20)  
20-Pin SOIC (S20)  
20-Pin PDIP (P20)  
0°C to 70°C  
ML2111CIP (OBS)  
-40°C to 85°C  
Micro Linear Corporation  
2092 Concourse Drive  
San Jose, CA 95131  
Tel: (408) 433-5200  
Fax: (408) 432-0295  
© Micro Linear 1999.  
is a registered trademark of Micro Linear Corporation. All other  
trademarks are the property of their respective owners.  
Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026;  
5,027,116; 5,281,862; 5,283,483; 5,418,502; 5,508,570; 5,510,727; 5,523,940; 5,546,017; 5,559,470; 5,565,761;  
5,592,128; 5,594,376; 5,652,479; 5,661,427; 5,663,874; 5,672,959; 5,689,167; 5,714,897; 5,717,798; 5,742,151;  
5,747,977; 5,754,012; 5,757,174; 5,767,653; 5,777,514; 5,793,168; 5,798,635; 5,804,950; 5,808,455; 5,811,999;  
5,818,207; 5,818,669; 5,825,165; 5,825,223; 5,838,723; 5.844,378; 5,844,941. Japan: 2,598,946; 2,619,299;  
2,704,176; 2,821,714. Other patents are pending.  
Micro Linear makes no representations or warranties with respect to the accuracy, utility, or completeness of  
the contents of this publication and reserves the right to makes changes to specifications and product  
descriptions at any time without notice. No license, express or implied, by estoppel or otherwise, to any patents  
or other intellectual property rights is granted by this document. The circuits contained in this document are  
offered as possible applications only. Particular uses or applications may invalidate some of the specifications  
and/or product descriptions contained herein. The customer is urged to perform its own engineering review  
before deciding on a particular application. Micro Linear assumes no liability whatsoever, and disclaims any  
express or implied warranty, relating to sale and/or use of Micro Linear products including liability or warranties  
relating to merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
Micro Linear products are not designed for use in medical, life saving, or life sustaining applications.  
DS2111-01  
26  

相关型号:

ML2111CCS

Universal Dual High Frequency Filter
MICRO-LINEAR

ML2111CCS

Switched Capacitor Filter, 2 Func, Resistor Programmable, Universal, CMOS, PDSO20, SOIC-20
FAIRCHILD

ML2111CIJ

Switched Capacitor Filter, 2 Func, Resistor Programmable, Universal, CDIP20, 0.300 INCH HERMETIC SEALED, CERDIP-20
FAIRCHILD

ML2111CIP

Universal Dual High Frequency Filter
MICRO-LINEAR

ML2111CIS

Switched Capacitor Filter, 2 Func, Resistor Programmable, Universal, PDSO20, SOIC-20
FAIRCHILD

ML2111CMJ

Switched Capacitor Filter, 2 Func, Resistor Programmable, Universal, CDIP20, 0.300 INCH HERMETIC SEALED, CERDIP-20
FAIRCHILD

ML212D-12

Ultra-Miniature, 2W Single & Dual SMT DC/DC Converters
MPD

ML212D-15

Ultra-Miniature, 2W Single & Dual SMT DC/DC Converters
MPD

ML212DMR-12RI4

Medical Approved Compact SMT, 2W DC/DC Converters
MPD

ML212DMR-15RI4

Medical Approved Compact SMT, 2W DC/DC Converters
MPD

ML212MD12HI

ML200MHI SERIES
MPD

ML212MD15HI

ML200MHI SERIES
MPD