MIC3172YM [MICREL]

100kHz 1.25A Switching Regulators; 100kHz的1.25A开关稳压器
MIC3172YM
型号: MIC3172YM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

100kHz 1.25A Switching Regulators
100kHz的1.25A开关稳压器

稳压器 开关
文件: 总17页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2172/3172  
Micrel, Inc.  
MIC2172/3172  
100kHz 1.25A Switching Regulators  
slave’s. The master MIC2172’s oscillator frequency is in-  
creased up to 135kHz by connecting a resistor from SYNC to  
ground (see applications information).  
General Description  
The MIC2172 and MIC3172 are complete 100kHz SMPS  
current-mode controllers with internal 65V 1.25A power  
switches. The MIC2172 features external frequency syn-  
chronization or frequency adjustment, while the MIC3172  
features an enable/shutdown control input.  
The MIC2172/3172 is available in an 8-pin plastic DIP or  
SOIC for –40°C to +85°C operation.  
Features  
Although primarily intended for voltage step-up applications,  
the floating switch architecture of the MIC2172/3172 makes  
it practical for step-down, inverting, and Cuk configurations  
as well as isolated topologies.  
Operating from 3V to 40V, the MIC2172/3172 draws only  
7mA of quiescent current making it attractive for battery  
operated supplies.  
• 1.25A, 65V internal switch rating  
• 3V to 40V input voltage range  
• Current-mode operation  
• Internal cycle-by-cycle current limit  
• Thermal shutdown  
• Low external parts count  
• Operates in most switching topologies  
• 7mA quiescent current (operating)  
• <1µA quiescent current, shutdown mode (MIC3172)  
• TTL shutdown compatibility (MIC3172)  
• External frequency synchronization (MIC2172)  
• External frequency trim (MIC2172)  
• Fits most LT1172 sockets (see applications info)  
The MIC3172 is for applications that require on/off control of  
the regulator. The MIC3172 is externally shutdown by  
applyingaTTLlowsignaltoEN(enable). Whendisabled, the  
MIC3172 draws only leakage current (typically less than  
1µA). ENmustbehighfornormaloperation. Forapplications  
not requiring control, EN must be tied to V or TTL high.  
IN  
Applications  
The MIC2172 is for applications requiring two or more SMPS  
regulators that operate from the same input supply. The  
MIC2172 features a SYNC input which allows locking of its  
internal oscillator to an external reference. This makes it  
possibletoavoidtheaudiblebeatfrequenciesthatresultfrom  
the unequal oscillator frequencies of independent SMPS  
regulators.  
A reference signal can be supplied by one MIC2172 desig-  
natedasamaster. Toinsurelockingoftheslave’soscillators,  
the reference oscillator frequency must be higher than the  
• Laptop/palmtop computers  
• Toys  
• Hand-held instruments  
• Off-line converter up to 50W  
(requires external power switch)  
• Predriver for higher power capability  
• Master/slave configurations (MIC2172)  
Typical Applications  
VOUT  
VIN  
4V to 6V  
+5V  
5V, 0.25A  
T1  
(4.75V min.)  
D2  
C1  
R4*  
C3*  
D1*  
C1*  
L1  
1N5818  
22µF  
22µF  
R1  
27µH  
C4  
3.74k  
1%  
VOUT  
470µF  
VIN  
D1  
VIN  
+12V, 0.14A  
Enable  
VSW  
N/C  
SYNC  
MIC2172  
VSW  
EN  
Shutdown  
R1  
1:1.25  
PRI = 100µH  
1N5822  
10.7k  
1%  
L
MIC3172  
COMP  
FB  
COMP  
FB  
GND  
R2  
GND  
R3  
1k  
R2  
C2  
P1 P2  
S
R3  
1k  
1.24k  
P1 P2  
S
1.24k  
1%  
470µF  
1%  
C3  
C2  
1µF  
1µF  
* Locate near MIC2172 when supply leads > 2"  
* Optional voltage clipper (may be req’d if T1 leakage inductance too high)  
Figure 1.  
Figure 2.  
MIC2172 5V to 12V Boost Converter  
MIC3172 5V Flyback Converter  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-042205  
April 2005  
1
MIC2172/3172  
Micrel, Inc.  
Ordering Information  
Part Number  
Temperature  
Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Standard  
MIC2172BN  
MIC2172BM  
MIC3172BN  
MIC3172BM  
Pb-Free  
Package  
8-pin plastic DIP  
8-lead SOIC  
8-pin plastic DIP  
8-lead SOIC  
MIC2172YN  
MIC2172YM  
MIC3172YN  
MIC3172YM  
Pin Configuration  
MIC2172*/3172  
MIC2172*/3172  
S GND  
1
8
P GND 1  
S GND  
1
2
3
4
8
P GND 1  
VSW  
COMP  
7
6
5
COMP  
FB  
2
3
4
7
6
5
VSW  
P GND 2  
VI N  
FB  
P GND 2  
VI N  
*SYNC/ EN  
*SYNC/ EN  
8-pin DIP (N)  
8-lead SOIC (M)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
S GND  
Signal Ground: Internal analog circuit ground. Connect directly to the input  
filter capacitor for proper operation (see applications info). Keep separate  
from power grounds.  
2
COMP  
Frequency Compensation: Output of transconductance type error amplifier.  
Primary function is for loop stabilization. Can also be used for output voltage  
soft-start and current limit tailoring.  
3
FB  
Feedback: Inverting input of error amplifier. Connect to external resistive  
divider to set power supply output voltage.  
4 (MIC2172)  
SYNC  
Synchronization/Frequency Adjust: Capacitively coupled input signal greater  
than device’s free running frequency (up to 135kHz) will lock device’s  
oscillator on falling edge. Oscillator frequency can be trimmed up to 135kHz  
by adding a resistor to ground. If unused, pin must float (no connection).  
4 (MIC3172)  
EN  
Enable: Apply TTL high or connect to VIN to enable the regulator. Apply  
TTL low or connect to ground to disable the regulator. Device draws only  
leakage current (<1µA) when disabled.  
5
6
VIN  
P GND 2  
Supply Voltage: 3.0V to 40V  
Power Ground #2: One of two NPN power switch emitters with 0.3current  
sense resistor in series. Required. Connect to external inductor or input  
voltage ground depending on circuit topology.  
7
8
VSW  
Power Switch Collector: Collector of NPN switch. Connect to external  
inductor or input voltage depending on circuit topology.  
P GND 1  
Power Ground #1: One of two NPN power switch emitters with 0.3current  
sense resistor in series. Optional. For maximum power capability connect  
to P GND 2. Floating pin reduces current limit by a factor of two.  
M9999-042205  
2
April 2005  
MIC2172/3172  
Micrel, Inc.  
Absolute Maximum Ratings MIC2172  
Input Voltage .................................................................40V  
Switch Voltage ..............................................................65V  
Sync Current ..............................................................50mA  
Feedback Voltage (Transient, 1ms) ........................... ±15V  
Operating Temperature Range  
Junction Temperature .............................. –55°C to +150°C  
Thermal Resistance  
θ
θ
8-pin PDIP .................................................130°C/W  
8-pin SOIC .................................................120°C/W  
JA  
JA  
Storage Temperature ............................... –65°C to +150°C  
Soldering (10 sec.) .................................................. +300°C  
8-pin PDIP................................................. –40 to +85°C  
8-pin SOIC ................................................ –40 to +85°C  
Electrical Characteristics MIC2172 Note 1, 3. Unless otherwise specified, VIN = 5V.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Section  
Feedback Voltage (VFB  
Pin 2 tied to pin 3  
)
1.220 1.240 1.264  
V
V
%/V  
1.214  
1.274  
0.03  
Feedback Voltage  
Line Regulation  
3V VIN 40V  
Feedback Bias Current (IFB  
)
310  
3.9  
750  
nA  
nA  
1100  
Error Amplifier Section  
Transconductance (ICOMP/VFB  
)
ICOMP = ±25µA  
3.0  
6.0  
µA/mV  
µA/mV  
2.4  
7.0  
Voltage Gain (VCOMP/VFB  
Output Current  
)
0.9V VCOMP 1.4V  
500  
800  
175  
2000  
V/V  
µA  
µA  
V
COMP = 1.5V  
125  
350  
100  
400  
Output Swing  
High Clamp, VFB = 1V  
Low Clamp, VFB = 1.5V  
1.8  
2.1  
2.3  
V
V
0.25  
0.35  
0.52  
Compensation Pin  
Threshold  
Duty Cycle = 0  
0.8  
0.9  
1.08  
V
V
0.6  
1.25  
Output Switch Section  
ON Resistance  
ISW = 1A, VFB = 0.8V  
0.76  
1
1.1  
Current Limit  
Duty Cycle = 50%, TJ 25°C  
Duty Cycle = 50%, TJ < 25°C  
Duty Cycle = 80% Note 2  
1.25  
1.25  
1
3
A
A
A
3.5  
2.5  
Breakdown Voltage (BV)  
3V VIN 40V  
65  
75  
V
ISW = 5mA  
April 2005  
3
M9999-042205  
MIC2172/3172  
Micrel, Inc.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Oscillator Section  
Frequency (fO)  
88  
100  
89  
112  
kHz  
kHz  
%
85  
115  
Duty Cycle [δ(max)]  
80  
95  
Sync Coupling Capacitor  
VPP = 3.0V  
VPP = 40V  
22  
51  
120  
10  
pF  
pF  
Required for Frequency Lock  
2.2  
4.7  
Peak-to-Peak Voltage  
CCOUPLING = 12pF  
2.2  
12  
30  
V
Required for Frequency Lock  
Input Supply Voltage Section  
Minimum Operating Voltage  
Quiescent Current (IQ)  
2.7  
7
9
3.0  
9
20  
V
mA  
mA  
3V VIN 40V, VCOMP = 0.6V, ISW = 0  
ISW = 1A, VCOMP = 1.5V  
Supply Current Increase (IIN)  
Bold type denotes specifications applicable to the full operating temperature range.  
Note 1 Devices are ESD sensitive. Handling precautions required.  
Note 2 For duty cycles (δ) between 50% and 95%, minimum guaranteed switch current is given by I = 0.833 (2-δ) for the MIC3172.  
CL  
Note 3 Specification for packaged product only.  
Absolute Maximum Ratings MIC3172  
Input Voltage .................................................................40V  
Switch Voltage ..............................................................65V  
Enable Voltage ..............................................................40V  
Feedback Voltage (Transient, 1ms) ........................... ±15V  
Operating Temperature Range  
Junction Temperature ................................ –55°C to 150°C  
Thermal Resistance  
θ
θ
θ
8-pin PDIP .................................................130°C/W  
8-pin SOIC .................................................120°C/W  
8-pin CerDIP ..............................................100°C/W  
JA  
JA  
JA  
8-pin PDIP................................................. –40 to +85°C  
8-pin SOIC ................................................ –40 to +85°C  
8-pin CerDIP ........................................... –55 to +125°C  
Storage Temperature ................................. –65°C to 150°C  
Soldering (10 sec.) .................................................... 300°C  
Electrical Characteristics MIC3172 Note 1, 3. Unless otherwise specified, VIN = 5V.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Section  
Feedback Voltage (VFB  
Pin 2 tied to pin 3  
)
1.224 1.240 1.264  
V
V
1.214  
1.274  
Feedback Voltage  
Line Regulation  
Feedback Bias Current (IFB  
3V VIN 40V  
0.07  
310  
%/V  
)
750  
nA  
nA  
1100  
M9999-042205  
4
April 2005  
MIC2172/3172  
Micrel, Inc.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Error Amplifier Section  
Transconductance (ICOMP/VFB  
)
ICOMP = ±25µA  
3.0  
3.9  
6.0  
µA/mV  
µA/mV  
2.4  
7.0  
Voltage Gain (VCOMP/VFB  
Output Current  
)
0.9V VCOMP 1.4V  
500  
800  
175  
2000  
V/V  
µA  
µA  
V
COMP = 1.5V  
125  
350  
100  
400  
Output Swing  
High Clamp, VFB = 1V  
Low Clamp, VFB = 1.5V  
1.8  
2.1  
2.3  
V
V
0.25  
0.35  
0.52  
Compensation Pin  
Threshold  
Duty Cycle = 0  
0.8  
0.9  
1.08  
V
V
0.6  
1.25  
Output Switch Section  
ON Resistance  
ISW = 1A, VFB = 0.8V  
0.76  
1
1.1  
Current Limit  
Duty Cycle = 50%, TJ 25°C  
Duty Cycle = 50%, TJ < 25°C  
Duty Cycle = 80% Note 2  
1.25  
1.25  
1
3
A
A
A
3.5  
2.5  
Breakdown Voltage (BV)  
3V VIN 40V  
65  
75  
V
ISW = 5mA  
Oscillator Section  
Frequency (fO)  
88  
100  
89  
112  
kHz  
kHz  
%
85  
115  
Duty Cycle [δ(max)]  
80  
95  
Input Supply Voltage Section and Enable Section  
Minimum Operating Voltage  
2.7  
3.0  
V
Quiescent Current (IQ)  
3V VIN 40V, VCOMP = 0.6V, ISW = 0  
Shutdown, VEN = 0V  
7
9
mA  
0.1  
5
µA  
Quiescent Current Increase (IIN) ISW = 1A, VCOMP = 1.5V  
9
20  
mA  
Enable Input Threshold  
0.4  
1.2  
2.4  
V
Enable Input Current  
V
EN = 0V  
–1  
0
2
1
µA  
µA  
VEN = 2.4V  
10  
Bold type denotes specifications applicable to the full operating temperature range.  
Note 1 Devices are ESD sensitive. Handling precautions required.  
Note 2 For duty cycles (δ) between 50% and 95%, minimum guaranteed switch current is given by I = 0.833 (2-δ) for the MIC3172.  
CL  
Note 3 Specification for packaged product only.  
April 2005  
5
M9999-042205  
MIC2172/3172  
Micrel, Inc.  
Typical Performance Characteristics  
Feedback Voltage  
Line Regulation  
MIC2172 Minimum  
Operating Voltage  
Feedback Bias Current  
5
4
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 125°C  
3
J
2
1
0
T
= 25°C  
J
Switch Current = 1A  
-1  
-2  
-3  
-4  
-5  
T
= -40°C  
J
0
10  
V
20  
30  
40  
-100 -50  
0
50  
100 150  
-100 -50  
0
50  
100 150  
Operating (V)  
Temperature (°C)  
Temperature (°C)  
IN  
Supply Current  
(Shutdown Mode)  
Supply Current  
Enable Thresholds  
MIC3172  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1.4  
1.3  
1.2  
1.1  
1
MIC3172  
I
= 0  
SW  
V
IN = 40V  
ON  
D.C. = 90%  
D.C. = 50%  
D.C. = 0%  
OFF  
8
7
0.9  
0.8  
6
5
0
10  
20  
30  
40  
-100 -50  
0
50  
100 150  
-100 -50  
0
50  
100 150  
Temperature (°C)  
V
Operating Voltage (V)  
Temperature (°C)  
IN  
Supply Current  
Current Limit  
Switch ON Voltage  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
4
3
2
1
0
T
= –40°C  
J
–40°C  
125°C  
T
= 25°C  
J
25°C  
δ = 90%  
T
= 125°C  
J
δ = 50%  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
0
20  
40  
60  
80  
100  
Switch Current (A)  
Switch Current (A)  
Duty Cycle (%)  
Supply Current  
Oscillator Frequency  
Oscillator Frequency  
MIC2172  
10  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
VCOMP = 0.6V  
9
8
7
6
5
4
3
2
1
0
80  
70  
60  
-100 -50  
0
50  
100 150  
-50  
0
50  
100  
150  
1
10  
100  
(k)  
1000  
Temperature (°C)  
Temperature (°C)  
R
ADJ  
M9999-042205  
6
April 2005  
MIC2172/3172  
Micrel, Inc.  
Typical Performance Characteristics  
Error Amplifier Gain  
Error Amplifier Gain  
Error Amplifier Phase  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
-30  
0
30  
60  
90  
120  
150  
180  
210  
-100 -50  
0
50  
100 150  
1
10  
100  
1000 10000  
1
10  
100  
1000 10000  
Temperature (°C)  
Frequency (kHz)  
Frequency (kHz)  
Block Diagram MIC2172  
VSW  
Pin 7  
D1  
2.3V  
VIN  
Reg.  
Anti-Sat.  
Driver  
Pin 5  
100kHz  
Osc.  
Logic  
SYNC  
Pin 4  
Q1  
Com-  
parator  
FB  
Pin 3  
Current  
Amp.  
Error  
Amp.  
1.24V  
Ref.  
S
COMP  
Pin 2  
P
P
GND  
Pin 1  
GND GND  
2
1
Pin 6 Pin 8  
April 2005  
7
M9999-042205  
MIC2172/3172  
Micrel, Inc.  
Block Diagram MIC3172  
VSW  
Pin 7  
D1  
2.3V  
VIN  
Reg.  
Anti-Sat.  
Driver  
Pin 5  
100kHz  
Osc.  
Logic  
EN  
Pin 4  
Q1  
Com-  
parator  
FB  
Pin 3  
Current  
Amp.  
Error  
Amp.  
1.24V  
Ref.  
S
COMP  
Pin 2  
P
P
GND  
Pin 1  
GND GND  
2
1
Pin 6 Pin 8  
technique. Feedbackloopcompensationisgreatlysimplified  
because inductor current sensing removes a pole from the  
closed loop response. Inherent cycle-by-cycle current limit-  
ing greatly improves the power switch reliability and provides  
automatic output current limiting. Finally, current-mode op-  
eration provides automatic input voltage feed forward which  
prevents instantaneous input voltage changes from disturb-  
ing the output voltage setting.  
Functional Description  
Refer to “Block Diagram MIC2172” and “Block Diagram  
MIC3172.”  
Internal Power  
The MIC2172/3172 operates when V is 2.6V (and V  
IN  
EN  
2.0V for the MIC3172). An internal 2.3V regulator supplies  
biasing to all internal circuitry including a precision 1.24V  
band gap reference.  
Anti-Saturation  
The anti-saturation diode (D1) increases the usable duty  
cycle range of the MIC2172/3172 by eliminating the base to  
collector stored charge which would delay Q1’s turnoff.  
The enable control (MIC3172 only) enables or disables the  
internal regulator which supplies power to all other internal  
circuitry.  
Compensation  
PWM Operation  
Loop stability compensation of the MIC2172/3172 can be  
accomplished by connecting an appropriate network from  
eitherCOMPtocircuitground(TypicalApplications)orCOMP  
to FB.  
The error amplifier output (COMP) is also useful for soft start  
and current limiting. Because the error amplifier output is a  
transconductance type, the output impedance is relatively  
high which means the output voltage can be easily clamped  
or adjusted externally.  
The 100kHz oscillator generates a signal with a duty cycle of  
approximately 90%. The current-mode comparator output is  
used to reduce the duty cycle when the current amplifier  
output voltage exceeds the error amplifier output voltage.  
The resulting PWM signal controls a driver which supplies  
base current to output transistor Q1.  
Current Mode Advantages  
The MIC2172/3172 operates in current mode rather than  
voltage mode. There are three distinct advantages to this  
M9999-042205  
8
April 2005  
MIC2172/3172  
Micrel, Inc.  
By using the MIC3172, U1 and Q1 shown in figure 5 can be  
Applications Information  
eliminated, reducing the total components count.  
Using the MIC3172 Enable Control (New Designs)  
Synchronizing the MIC2172  
For new designs requiring enable/shutdown control, connect  
EN to a TTL or CMOS control signal (figure 3). The very low  
driver current requirement ensures compatibility regardless  
of the driver or gate used.  
Using several unsynchronized switching regulators in the  
same circuit will cause beat frequencies to appear on the  
inputs and outputs. These beat frequencies can be very low  
making them difficult to filter.  
Micrel’s MIC2172 can be synchronized to a single master  
frequency avoiding the possibility of undesirable beat fre-  
quencies in multiple regulator circuits. The master frequency  
canbeanexternaloscillatororadesignatedmasterMIC2172.  
The master frequency should be 1.05 to 1.20 times the  
slave’s 100kHz nominal frequency to guarantee synchroni-  
zation.  
U1  
Enable  
4
EN  
Shutdown  
Logic  
Gate  
MIC3172  
Figure 3. MIC3172 TTL Enable/Shutdown  
Using the MIC3172 in LT1172 Applications  
The MIC3172 can be used in most original LT1172 applica-  
tions by adapting the MIC3172’s enable/shutdown feature to  
the existing LT1172 circuit.  
U2  
4
5
SYNC  
MIC2172  
VSW  
U1  
4
5
Unlike the LT1172 which can be shutdown by reducing the  
SYNC  
VSW  
voltage on pin 2 (V ) below 0.15V, the MIC3172 has a  
C
10k  
MIC2172  
dedicated enable/shutdown pin. To replace the LT1172 with  
the MIC3172, determine if the LT1172’s shutdown feature is  
used.  
Slave  
U3  
Master  
4
5
SYNC  
VSW  
Circuits without Shutdown  
MIC2172  
If the shutdown feature is not being used, connect EN to V  
IN  
Additional  
Slaves  
to continuously enable the MIC3172 or use an MIC2172 with  
SYNC open (figure 4).  
Slave  
Figure 6. Master/Slave Synchronization  
VIN  
VIN  
Figure6showsatypicalapplicationwhereseveralMIC2172s  
operate from the same supply voltage. U1’s oscillator fre-  
quency is increased above U2’s and U3’s by connecting a  
resistor from SYNC to ground. U2-SYNC and U3-SYNC are  
VIN  
VIN  
4
4
N/C  
SYNC  
MIC2172  
EN  
MIC3172  
capacitively coupled to the master’s output (V ). The  
SW  
slaves lock to the negative (falling edge) of U1’s output  
waveform.  
Figure 4. MIC2172/3172 Always Enabled  
Circuits with Shutdown  
U1  
4
5
If shutdown was used in the original LT1172 application,  
connect EN to a logic gate that produces a TTL logic-level  
outputsignalthatmatchestheshutdownsignal. TheMIC3172  
will be enabled by a logic-high input and shutdown with a  
logic-low input (figure 5). The actual components performing  
the functions of U1 and Q1 may vary according to the original  
application.  
SYNC  
MIC2172  
VSW  
External  
Signal  
Slave  
U2  
4
5
SYNC  
VSW  
4
EN  
MIC2172  
MIC3172  
Additional  
Slaves  
add  
connection  
Slave  
COMP  
Figure 7. External Synchronization  
U1  
Existing  
Enable  
R1  
C1  
Q1  
Shutdown  
Care must be exercised to insure that the master MIC2172 is  
VN2222  
Existing  
Logic  
or equiv.  
always operating in continuous mode.  
Gate  
Figure 5. Adapting to the LT1172 Socket  
April 2005  
9
M9999-042205  
MIC2172/3172  
Micrel, Inc.  
Figure 7 shows how one or more MIC2172s can be locked to  
an external reference frequency. The slaves lock to the  
negative (falling edge) of the external reference waveform.  
Soft Start  
the total power dissipation is the sum of the device operating  
losses and power switch losses.  
The device operating losses are the dc losses associated  
with biasing all of the internal functions plus the losses of the  
power switch driver circuitry. The dc losses are calculated  
A diode-coupled capacitor from COMP to circuit ground  
from the supply voltage (V ) and device supply current (I ).  
IN  
Q
slows the output voltage rise at turn on (figure 8).  
TheMIC2172/3172supplycurrentisalmostconstantregard-  
less of the supply voltage (see “Electrical Characteristics”).  
The driver section losses (not including the switch) are a  
function of supply voltage, power switch current, and duty  
cycle.  
VIN  
VIN  
MIC2172/3172  
0.004+δ   
COMP  
P
= V  
(
I
+ V I  
IN SW  
)
(bias+driver)  
IN Q  
50  
D1  
D2  
C1  
R1  
C2  
where:  
P
V
= device operating losses  
(bias+driver)  
IN  
= supply voltage  
Figure 8. Soft Start  
I = quiescent supply current  
Q
SW  
Theadditionaltimeittakesfortheerroramplifiertochargethe  
I
= power switch current  
(see “ Design Hints: Switch Current  
Calculations”)  
capacitor corresponds to the time it takes the output to reach  
regulation. Diode D1 discharges C1 when V is removed.  
IN  
Current Limit  
δ = duty cycle  
FordesignsdemandinglessoutputcurrentthantheMIC2172/  
3172 is capable of delivering, P GND 1 can be left open  
reducing the current capability of Q1 by one-half.  
V
+ V  
OUT  
V
IN  
OUT  
V
F
δ =  
+ V  
F
V
= output voltage  
V = D1 forward voltage drop  
OUT  
VIN  
F
VIN  
VSW  
As a practical example refer to figure 1.  
MIC2172/3172  
V
= 5.0V  
IN  
VOUT  
FB  
GND  
I = 0.006A  
Q
SW  
P1 P2 S COMP  
I
= 0.625A  
δ = 60% (0.6)  
R1  
ICL 0.6V/R2  
R3  
C2  
Q1  
Then:  
P
C1  
R2  
Note: Input and output  
returns not common.  
0.004+0.6   
= 5 × 0.006 + 5 0.625  
(
)
(bias+driver)  
50  
Figure 9. Current Limit  
P
= 0.068W  
(bias+driver)  
Alternatively,themaximumcurrentlimitoftheMIC2172/3172  
can be reduced by adding a voltage clamp to the COMP  
output (figure 9). This feature can be useful in applications  
requiringeitheracompleteshutdownofQ1’sswitchingaction  
or a form of current fold-back limiting. This use of the COMP  
output does not disable the oscillator, amplifiers or other  
circuitry, therefore the supply current is never less than  
approximately 5mA.  
Thermal Management  
Although the MIC2172/3172 family contains thermal protec-  
tion circuitry, for best reliability, avoid prolonged operation  
with junction temperatures near the rated maximum.  
Power switch dissipation calculations are greatly simplified  
bymakingtwoassumptionswhichareusuallyfairlyaccurate.  
First, the majority of losses in the power switch are due to  
on-losses. To find these losses, assign a resistance value to  
the collector/emitter terminals of the device using the satura-  
tion voltage versus collector current curves (see Typical  
Performance Characteristics). Power switch losses are  
calculatedbymodelingtheswitchasaresistorwiththeswitch  
duty cycle modifying the average power dissipation.  
2
P
= (I ) R  
δ
SW  
SW  
SW  
From the Typical performance Characteristics:  
= 1Ω  
The junction temperature is determined by first calculating  
R
the power dissipation of the device. For the MIC2172/3172,  
SW  
M9999-042205  
10  
April 2005  
MIC2172/3172  
Micrel, Inc.  
Then:  
Applications and Design Hints  
2
P
P
P
P
= (0.625) × 1 × 0.6  
SW  
Access to both the collector and emitter(s) of the NPN power  
switch makes the MIC2172/3172 extremely versatile and  
suitable for use in most PWM power supply topologies.  
= 0.234W  
= 0.068 + 0.234  
= 0.302W  
(SW)  
(total)  
(total)  
Boost Conversion  
Refer to figure 11 for a typical boost conversion application  
where a +5V logic supply is available but +12V at 0.14A is  
required.  
Thejunctiontemperatureforanysemiconductoriscalculated  
using the following:  
T = T + P  
θ
J
A
(total) JA  
Where:  
T = junction temperature  
+5V  
(4.75V min.)  
C1*  
L1  
22µF  
27µH  
J
A
VOUT  
T = ambient temperature (maximum)  
VIN  
D1  
+12V, 0.14A  
VSW  
N/C  
SYNC  
MIC2172  
P
JA  
= total power dissipation  
(total)  
R1  
1N5822  
10.7k  
θ
= junction to ambient thermal resistance  
1%  
COMP  
FB  
For the practical example:  
T = 70°C  
GND  
R2  
R3  
1k  
C2  
P1 P2  
S
1.24k  
470µF  
1%  
C3  
A
JA  
1µF  
θ
= 130°C/W (for plastic DIP)  
* Locate near MIC2172 when supply leads > 2"  
Then:  
T = 70 + 0.30 × 130  
Figure 11. 5V to 12V Boost Converter  
J
T = 109°C  
J
The first step in designing a boost converter is determining  
whether inductor L1 will cause the converter to operate in  
either continuous or discontinuous mode. Discontinuous  
mode is preferred because the feedback control of the  
converter is simpler.  
When L1 discharges its current completely during the  
MIC2172/3172’s off-time, it is operating in discontinuous  
mode.  
L1 is operating in continuous mode if it does not discharge  
completely before the MIC2172/3172 power switch is turned  
on again.  
Discontinuous Mode Design  
This junction temperature is below the rated maximum of  
150°C.  
Grounding  
Refer to figure 10. Heavy lines indicate high current paths.  
VIN  
VIN  
*
VSW  
EN  
MIC2172/3172  
GND  
FB  
VC  
P1 P2 S  
Given the maximum output current, solve equation (1) to  
determine whether the device can operate in discontinuous  
mode without initiating the internal device current limit.  
Single point ground  
* MIC3172 only  
I
CL  
V
δ
IN  
Figure 10. Single Point Ground  
A single point ground is strongly recommended for proper  
2   
(1)  
I
OUT  
V
OUT  
operation.  
V
+ V  
OUT  
V
OUT  
V
F
IN  
The signal ground, compensation network ground, and feed-  
back network connections are sensitive to minor voltage  
variations. The input and output capacitor grounds and  
power ground conductors will exhibit voltage drop when  
carrying large currents. Keep the sensitive circuit ground  
traces separate from the power ground traces. Small voltage  
variations applied to the sensitive circuits can prevent the  
MIC2172/3172 or any switching regulator from functioning  
properly.  
(1a) δ =  
+ V  
F
Where:  
I
= internal switch current limit  
CL  
I
I
= 1.25A when δ < 50%  
CL  
CL  
= 0.833 (2 – δ) when δ ≥ 50%  
(Refer to Electrical Characteristics.)  
= maximum output current  
I
V
OUT  
= minimum input voltage  
IN  
δ = duty cycle  
April 2005  
11  
M9999-042205  
MIC2172/3172  
Micrel, Inc.  
V
F
= required output voltage  
Switch Operation  
OUT  
V = D1 forward voltage drop  
During Q1’s on time (Q1 is the internal NPN transistor—see  
block diagrams), energy is stored in T1’s primary inductance.  
DuringQ1’sofftime,storedenergyispartiallydischargedinto  
C4 (output filter capacitor). Careful selection of a low ESR  
capacitor for C4 may provide satisfactory output ripple volt-  
age making additional filter stages unnecessary.  
For the example in figure 11.  
I
I
= 0.14A  
OUT  
= 1.147A  
CL  
V
= 4.75V (minimum)  
IN  
δ = 0.623  
C1 (input capacitor) may be reduced or eliminated if the  
V
= 12.0V  
MIC3172 is located near a low impedance voltage source.  
OUT  
F
V = 0.6V  
Output Diode  
Then:  
The output diode allows T1 to store energy in its primary  
inductance (D2 nonconducting) and release energy into C4  
(D2 conducting). The low forward voltage drop of a Schottky  
diode minimizes power loss in D2.  
1. 147  
2
× 4.75 × 0.623  
I
OUT  
12  
Frequency Compensation  
I
0.141A  
OUT  
A simple frequency compensation network consisting of R3  
This value is greater than the 0.14A output current require-  
and C2 prevents output oscillations.  
ment so we can proceed to find the inductance value of L1.  
High impedance output stages (transconductance type) in  
the MIC2172/3172 often permit simplified loop-stability solu-  
tions to be connected to circuit ground, although a more  
conventional technique of connecting the components from  
the error amplifier output to its inverting input is also possible.  
2
V
δ
(
)
IN  
(2)  
L1  
2 P  
fSW  
OUT  
Where:  
P
SW  
= 12 × 0.14 = 1.68W  
Voltage Clipper  
OUT  
5
f
= 1×10 Hz (100kHz)  
Care must be taken to minimize T1’s leakage inductance,  
otherwise it may be necessary to incorporate the voltage  
clipper consisting of D1, R4, and C3 to avoid second break-  
down (failure) of the MIC3172’s power NPN Q1.  
For our practical example:  
2
4.75 × 0.623  
(
)
L1 ≤  
5
2 × 1.68 × 1×10  
26.062µH (use 27µH)  
Enable/Shutdown  
I
L1  
The MIC3172 includes the enable/shutdown feature. When  
the device is shutdown, total supply current is less than 1µA.  
This is ideal for battery applications where portions of a  
system are powered only when needed. If this feature is not  
Equation (3) solves for L1’s maximum current value.  
V
T
IN ON  
(3)  
I
=
L1(peak)  
L1  
required, simply connect EN to V or to a TTL high voltage.  
IN  
Where:  
Discontinuous Mode Design  
-6  
T
= δ / f  
= 6.23×10 sec  
When designing a discontinuous flyback converter, first de-  
termine whether the device can safely handle the peak  
primary current demand placed on it by the output power.  
Equation (8) finds the maximum duty cycle required for a  
given input voltage and output power. If the duty cycle is  
greater than 0.8, discontinuous operation cannot be used.  
ON  
SW  
-6  
4.75 × 6.23 ×10  
I
=
L1(peak)  
-6  
27 ×10  
I
= 1.096A  
L1(peak)  
Use a 27µH inductor with a peak current rating of at least  
1.4A.  
2 P  
CL IN(min)  
OUT  
(8)  
Flyback Conversion  
δ ≥  
I
V
Flyback converter topology may be used in low power appli-  
cations where voltage isolation is required or whenever the  
input voltage can be less than or greater than the output  
voltage. As with the step-up converter the inductor (trans-  
former primary) current can be continuous or discontinuous.  
Discontinuous operation is recommended.  
For a practical example let:  
P
V
= 5.0V × 0.25A = 1.25W  
OUT  
IN  
CL  
= 4.0V to 6.0V  
I
= 1.25A when δ < 50%  
0.833 (2 – δ) when δ ≥ 50%  
Figure 12 shows a practical flyback converter design using  
the MIC3172.  
M9999-042205  
12  
April 2005  
MIC2172/3172  
Micrel, Inc.  
Then:  
2
2
0.5 f  
V
P
T
SW IN(min) ON  
(10)  
L
PRI  
2 × 1. 2 5  
OUT  
δ  
1. 2 5 × 4  
Where:  
δ ≥ 0.5 (50%) Use 0.55.  
L
= maximum primary inductance  
= device switching frequency (100kHz)  
= minimum input voltage  
= power switch on time  
PRI  
The slightly higher duty cycle value is used to overcome  
circuit inefficiencies. A few iterations of equation (8) may be  
required if the duty cycle is found to be greater than 50%.  
f
SW  
V
T
IN(min)  
Calculate the maximum transformer turns ratio a, or  
ON  
N
/N  
,thatwillguaranteesafeoperationoftheMIC2172/  
Then:  
PRI SEC  
3172 power switch.  
VCE FCE  
2
5
2
-6  
0.5 × 1×10 × 4.0 5.5 ×10  
(
)
VIN(max)  
VSEC  
L
PRI  
(9)  
1. 2 5  
a  
L
19.23µH  
PRI  
Where:  
Use an 18µH primary inductance to overcome circuit ineffi-  
a = transformer maximum turns ratio  
ciencies.  
V
= power switch collector to emitter  
CE  
To complete the design the inductance value of the second-  
ary is found which will guarantee that the energy stored in the  
transformer during the power switch on time will be com-  
pleted discharged into the output during the off-time. This is  
necessary when operating in discontinuous-mode.  
maximum voltage  
F
= safety derating factor (0.8 for most  
commercial and industrial applications)  
CE  
V
= maximum input voltage  
IN(max)  
V
= transformer secondary voltage (V  
+ V )  
OUT F  
SEC  
2
2
0.5 f  
V
P
T
SW SEC OFF  
For the practical example:  
(11)  
L
SEC  
OUT  
V
= 65V max. for the MIC2172/3172  
= 0.8  
= 5.6V  
CE  
CE  
Where:  
F
V
L
T
= maximum secondary inductance  
= power switch off time  
SEC  
SEC  
OFF  
Then:  
Then:  
65 × 0.8  
6.0  
a  
5.6  
2
5
2
-6  
0.5 × 1×10 × 5.6 × 4.5 ×10  
(
)
a 8.2143  
L
L
SEC  
1. 2 5  
Next, calculate the maximum primary inductance required to  
store the needed output energy with a power switch duty  
cycle of 55%.  
25.4µH  
SEC  
VOUT  
VIN  
5V, 0.25A  
T1  
4V to 6V  
D2  
C1  
R4*  
C3*  
1N5818  
22µF  
R1  
C4  
3.74k  
1%  
470µF  
D1*  
1:1.25  
VIN  
Enable  
VSW  
EN  
Shutdown  
L
PRI = 100µH  
MIC3172  
COMP  
FB  
GND  
R2  
R3  
1k  
P1 P2  
S
1.24k  
1%  
C2  
1µF  
* Optional voltage clipper (may be req’d if T1 leakage inductance too high)  
Figure 12. MIC3172 5V 0.25A Flyback Converter  
April 2005  
13  
M9999-042205  
MIC2172/3172  
Micrel, Inc.  
= reverse voltage safety derating factor (0.8)  
Finally, recalculate the transformer turns ratio to insure that  
a = transformer turns ratio (0.8)  
BR  
it is less than the value earlier found in equation (9).  
F
Then:  
LPRI  
(12) a  
LSEC  
6.0 + 5.0  
×
0.8  
)
(
V
BR  
0.8  
×
0.8  
Then:  
V
15.625V  
BR  
-5  
-5  
A 1N5817 will safely handle voltage and current require-  
ments in this example.  
Forward Converters  
1. 8 ×10  
a ≤  
2.54 ×10  
a 0.84 Use 0.8 (same as 1:1.25).  
This ratio is less than the ratio calculated in equation (9).  
When specifying the transformer it is necessary to know the  
primary peak current which must be withstood without satu-  
rating the transformer core.  
Micrel’s MIC2172/3172 can be used in several circuit con-  
figurations to generate an output voltage which is less than  
the input voltage (buck or step-down topology). Figure 13  
shows the MIC3172 in a voltage step-down application.  
Because of the internal architecture of these devices, more  
external components are required to implement a step-down  
regulator than with other devices offered by Micrel (refer to  
the LM257x or LM457x family of buck switchers). However,  
for step-down conversion requiring a transformer (forward),  
the MIC2172/3172 is a good choice.  
A 12V to 5V step-down converter using transformer isolation  
(forward) is shown in figure 14. Unlike the isolated flyback  
converter which stores energy in the primary inductance  
during the controller’s on-time and releases it to the load  
during the off-time, the forward converter transfers energy to  
the output during the on-time, using the off-time to reset the  
transformer core. In the application shown, the transformer  
core is reset by the tertiary winding discharging T1’s peak  
magnetizing current through D2.  
V
IN(min) TON  
(13) IPEAK(pri)  
So:  
=
LPRI  
-6  
4.0 × 5.5 ×10  
18µH  
I
=
PEAK(pri)  
I
= 1.22A  
PEAK(pri)  
Now find the minimum reverse voltage requirement for the  
output rectifier. This rectifier must have an average current  
rating greater than the maximum output current of 0.25A.  
V
+ V  
a
OUT  
(
)
IN(max)  
(14)  
V
BR  
F
a
BR  
For most forward converters the duty cycle is limited to 50%,  
allowing the transformer flux to reset with only two times the  
input voltage appearing across the power switch. Although  
during normal operation this circuit’s duty cycle is well below  
Where:  
V
= output rectifier maximum peak  
reverse voltage rating  
BR  
VIN  
D1  
1N4148  
VIN  
VSW  
EN  
C2  
D3  
MIC3172  
COMP  
2.2µF  
1N4148  
R3  
FB  
GND  
P1 P2  
C1*  
3.7k  
R3  
S
100µF  
470  
R2  
C4  
R4  
1.2k  
1µF  
10  
C3  
1µF  
L1  
100µH  
C5  
330µF  
5V, 0.1A to 1A  
(ILOAD > 100mA)  
D2  
* Locate near MIC2172/3172 when supply leads > 2"  
R3/R2 sets output voltage  
Figure 13. Step-Down or Buck Converter  
M9999-042205  
14  
April 2005  
MIC2172/3172  
Micrel, Inc.  
50%,theMIC2172(andMIC3172)hasamaximumdutycycle  
capability of 90%. If 90% was required during operation  
(start-up and high load currents), a complete reset of the  
transformer during the off-time would require the voltage  
across the power switch to be ten times the input voltage.  
This would limit the input voltage to 6V or less for forward  
converter applications.  
To prevent core saturation, the application given here uses a  
duty cycle limiter consisting of Q1, C4 and R3. Whenever the  
MIC3172 exceeds a duty cycle of 50%, T1’s reset winding  
current turns Q1 on. This action reduces the duty cycle of the  
MIC3172 until T1 is able to reset during each cycle.  
Fluorescent Lamp Supply  
An extremely useful application of the MIC3172 is generating  
an ac voltage for fluorescent lamps used as liquid crystal  
display back lighting in portable computers.  
Figure 15 shows a complete power supply for lighting a  
fluorescent lamp. Transistors Q1 and Q2 together with ca-  
pacitor C2 form a Royer oscillator. The Royer oscillator  
generatesasinewavewhosefrequencyisdeterminedbythe  
series L/C circuit comprised of T1 and C2. Assuming that the  
MIC3172 and L1 are absent, and the transistors’ emitters are  
grounded, circuit operation is described in “Oscillator Opera-  
tion.”  
into saturation for a period determined by the Pri 1/C2 time  
constant. Once the voltage across C2 has reached its  
maximum circuit value, Q1’s collector current will no longer  
increase. Since T1 is in series with Q1, this drop in primary  
current causes the flux in T1 to change and because of the  
mutual coupling to the feedback winding further reduces  
primary current eventually turning Q1 off. The primary wind-  
ings now change state with the feedback winding forcing Q2  
on repeating the alternate half cycle exactly as with Q1. This  
action produces a sinusoidal voltage wave form; whose  
amplitude is proportional to the input voltage, across T1’s  
primarywindingwhichissteppedupandcapacitivelycoupled  
to the lamp.  
Lamp Current Regulation  
Initial ionization (lighting) of the fluorescent lamp requires  
several times the ac voltage across it than is required to  
sustain current through the device. The current through the  
lamp is sampled and regulated by the MIC3172 to achieve a  
given intensity. The MIC3172 uses L1 to maintain a constant  
average current through the transistor emitters. This current  
controls the voltage amplitude of the Royer oscillator and  
maintains the lamp current. During the negative half cycle,  
lamp current is rectified by D3. During the positive half cycle,  
lampcurrentisrectifiedbyD2throughR4andR5. R3andC5  
filter the voltage dropped across R4 and R5 to the MIC3172’s  
feedback pin. The MIC3172 maintains a constant lamp  
current by adjusting its duty cycle to keep the feedback  
voltage at 1.24V. The intensity of the lamp is adjusted using  
potentiometer R5. The MIC3172 adjusts its duty cycle  
accordingly to bring the average voltage across R4 and R5  
back to 1.24V.  
Oscillator Operation  
Resistor R2 provides initial base current that turns transistor  
Q1onandimpressestheinputvoltageacrossonehalfofT1’s  
primary winding (Pri 1). T1’s feedback winding provides  
additional base drive (positive feedback) to Q1 forcing it well  
T1  
D3  
1:1:1  
1N5819  
L1 100µH  
VOUT  
VIN  
5V, 1A  
12V  
R4  
1%  
D4  
C5  
3.74k  
1N5819  
470µF  
R1*  
C2*  
D1*  
VIN  
Enable  
EN  
VSW  
FB  
Shutdown  
MIC3172  
C1  
22µF  
GND  
D2  
P1 P2 S COMP  
1N5819  
R5  
1.24k  
1%  
R2  
1k  
Q1  
R3  
C3  
C4  
1µF  
* Voltage clipper  
Duty cycle limiter  
Figure 14. 12V to 5V Forward Converter  
April 2005  
15  
M9999-042205  
MIC2172/3172  
On/Off Control  
Micrel, Inc.  
Efficiency  
Especially important for battery powered applications, the  
lamp can be remotely or automatically turned off using the  
MIC3172’s EN pin. The entire circuit draws less than 1µA  
while shutdown.  
To obtain maximum circuit efficiency careful selection of Q1  
and Q2 for low collector to emitter saturation voltage is a  
must. Inductor L1 should be chosen for minimal core and  
copperlossesattheswitchingfrequencyoftheMIC3172,and  
T1 should be carefully constructed from magnetic materials  
optimizedfortheoutputpowerrequiredattheRoyeroscillator  
frequency. Suitable inductors may be obtained from  
Coiltronics, Inc., tel: (407) 241-7876.  
Cold Cathode  
Fluorescent  
Lamp  
T1  
C4  
R2  
D1  
VIN  
4.5V to 20V  
Q1  
Q2  
D2  
D3  
1N4148  
1N4148  
C2  
C3  
VIN  
L1  
Enable (On)  
EN  
VSW  
FB  
Shutdown (Off)  
MIC3172  
GND  
300µH  
R3  
C5  
R4  
R5  
P1 P2 S COMP  
Intensity  
Control  
R1  
C1  
L1: Coiltronics CTX300-4P  
T1: Coiltronics CTX110602  
C2: Polyfilm, WIMA FKP2 0.1µF to 0.68µF  
C4: 15pF to 30pF, 3kV min.  
Figure 15. LCD Backlight Fluorescent Lamp Supply  
M9999-042205  
16  
April 2005  
MIC2172/3172  
Micrel, Inc.  
Package Information  
PIN 1  
DIMENSIONS:  
INCH (MM)  
0.380 (9.65)  
0.370 (9.40)  
0.255 (6.48)  
0.245 (6.22)  
0.300 (7.62)  
0.135 (3.43)  
0.125 (3.18)  
0.013 (0.330)  
0.010 (0.254)  
0.380 (9.65)  
0.320 (8.13)  
0.018 (0.57)  
0.100 (2.54)  
0.130 (3.30)  
0.0375 (0.952)  
8-Pin Plastic DIP (N)  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°–8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
0.064 (1.63)  
0.045 (1.14)  
PLANE  
0.244 (6.20)  
0.228 (5.79)  
8-Pin SOP (M)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 1997 Micrel Incorporated  
April 2005  
17  
M9999-042205  

相关型号:

MIC3172YN

100kHz 1.25A Switching Regulators
MICREL

MIC3172YN

3.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PDIP8
MICROCHIP

MIC3201

High Brightness LED Driver with High-Side Current Sense
MICREL

MIC3201YME

High Brightness LED Driver with High-Side Current Sense
MICREL

MIC3201YME-TR

LED DISPLAY DRIVER
MICROCHIP

MIC3201YMETR

暂无描述
MICREL

MIC3201_11

High Brightness LED Driver with High-Side Current Sense
MICREL

MIC3202

High-Brightness LED Driver with Integrated MOSFET and High-Side Current Sense
MICREL

MIC3202-1

High-Brightness LED Driver with Integrated MOSFET and High-Side Current Sense
MICREL

MIC3202-1YME

High-Brightness LED Driver with Integrated MOSFET and High-Side Current Sense
MICREL

MIC3202-1YME

LED DISPLAY DRIVER, PDSO8
MICROCHIP

MIC3202-1YME-TR

IC LED DRIVER RGLTR DIM 1A 8SOIC
MICROCHIP