MIC2026 [MICREL]

Dual-Channel Power Distribution Switch Preliminary Information; 双通道配电开关的初步信息
MIC2026
型号: MIC2026
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual-Channel Power Distribution Switch Preliminary Information
双通道配电开关的初步信息

开关
文件: 总16页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2026/2076  
Dual-Channel Power Distribution Switch  
Preliminary Information  
General Description  
Features  
TheMIC2026andMIC2076arehigh-sideMOSFETswitches  
optimized for general-purpose power distribution requiring  
circuit protection.  
140mmaximum on-resistance per channel  
2.7V to 5.5V operating range  
500mA minimum continuous current per channel  
Short-circuit protection with thermal shutdown  
Thermally isolated channels  
Fault status flag with 3ms filter  
eliminates false assertions  
Undervoltage lockout  
Reverse current flow blocking (no body diode)  
Circuit breaker mode (MIC2076)  
Logic-compatible inputs  
Soft-start circuit  
Low quiescent current  
The MIC2026/76 are internally current limited and have  
thermal shutdown that protects the device and load.  
The MIC2076 offers “smart” thermal shutdown that reduces  
current consumption in fault modes. When a thermal shut-  
down fault occurs, the output is latched off until the faulty load  
is removed. Removing the load or toggling the enable input  
will reset the device output.  
Both devices employ soft-start circuitry that minimizes inrush  
current in applications where highly capacitive loads are  
employed.  
Pin-compatible with MIC2526  
A fault status output flag is asserted during overcurrent and  
thermal shutdown conditions. Transient faults are internally  
filtered.  
Applications  
USB peripherals  
General purpose power switching  
ACPI power distribution  
Notebook PCs  
The MIC2026/76 are available in 8-pin DIP or 8-lead SOP.  
PDAs  
PC card hot swap  
Typical Application  
VCC  
2.7V to 5.5V  
VCONT.  
10k  
10k  
Logic Controller  
MIC2026-2  
VIN  
ON/OFF  
Load  
0.1µF  
Load  
ENA  
OUTA  
IN  
OVERCURRENT  
OVERCURRENT  
ON/OFF  
FLGA  
FLGB  
ENB  
GND  
OUTB  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
March 2000  
1
MIC2026/2076  
MIC2026/2076  
Micrel  
Ordering Information  
Part Number  
Enable  
Temperature Range  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
Package  
8-lead SOP  
8-lead SOP  
8-pin DIP  
MIC2026-1BM  
MIC2026-2BM  
MIC2026-1BN  
MIC2026-2BN  
MIC2076-1BM  
MIC2076-2BM  
MIC2076-1BN  
MIC2076-2BN  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
8-pin DIP  
8-lead SOP  
8-lead SOP  
8-pin DIP  
8-pin DIP  
Pin Configuration  
MIC2026/76  
ENA  
FLGA  
FLGB  
ENB  
OUTA  
IN  
1
2
3
4
8
7
6
5
GND  
OUTB  
8-Lead SOP (BM)  
8-Pin DIP (BN)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
ENA  
Switch A Enable (Input): Logic-compatible enable input. Active high (-1) or  
active low (-2).  
2
3
4
FLGA  
Fault Flag A (Output): Active-low, open-drain output. Indicates overcurrent  
or thermal shutdown conditions. Overcurrent conditions must last longer  
than tD in order to assert FLGA.  
FLGB  
ENB  
Fault Flag B (Output): Active-low, open-drain output. Low indicates  
overcurrent or thermal shutdown conditions.Overcurrent conditions must last  
longer than tD in order to assert FLGB.  
Switch B Enable (Input): Logic-compatible enable input. Active-high (-1) or  
active-low (-2).  
5
6
7
8
OUTB  
GND  
IN  
Switch B (Output)  
Ground  
Input: Switch and logic supply input.  
Switch A (Output)  
OUTA  
MIC2026/2076  
2
March 2000  
MIC2026/2076  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ) ...................................... 0.3V to +6V  
Supply Voltage (V ) ................................... +2.7V to +5.5V  
IN  
IN  
Fault Flag Voltage (V  
Fault Flag Current (I  
)..............................................+6V  
Ambient Temperature (T ) ......................... 40°C to +85°C  
FLG  
A
) ............................................25mA  
) ..................................................+6V  
Junction Temperature Range (T ) ........... Internally Limited  
FLG  
OUT  
J
Output Voltage (V  
Output Current (I  
Thermal Resistance  
SOP (θ ) ..........................................................160°C/W  
) ............................... Internally Limited  
JA  
OUT  
DIP(θ ).............................................................105°C/W  
JA  
Enable Input (I ).................................... 0.3V to V + 3V  
EN  
IN  
Storage Temperature (T ) ...................... 65°C to +150 °C  
S
ESD Rating, Note 3  
Electrical Characteristics  
VIN = +5V; TA = 25°C, bold values indicate 40°C TA +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
IDD  
Supply Current  
MIC20x6-1, VENA = VENB 0.8V  
(switch off), OUT = open  
0.75  
5
µA  
MIC20x6-2, VENA = VENB 2.4V  
(switch off), OUT = open  
0.75  
100  
100  
5
µA  
µA  
µA  
MIC20x6-1, VENA = VENB 2.4V  
(switch on), OUT = open  
160  
160  
2.4  
MIC20x6-2, VENA = VENB 0.8V  
(switch on), OUT = open  
VEN  
Enable Input Threshold  
low-to-high transition  
high-to-low transition  
1.7  
1.45  
250  
0.01  
1
V
0.8  
V
Enable Input Hysteresis  
Enable Input Current  
Enable Input Capacitance  
Switch Resistance  
mV  
µA  
pF  
mΩ  
mΩ  
µA  
IEN  
VEN = 0V to 5.5V  
1  
1
RDS(on)  
VIN = 5V, IOUT = 500mA  
VIN = 3.3V, IOUT = 500mA  
90  
140  
160  
10  
100  
Output Leakage Current  
MIC20x6-1, VENx 0.8V;  
MIC20x6-1, VENx 2.4V, (output off)  
OFF Current in  
MIC2076  
50  
µA  
Latched Thermal Shutdown  
(during thermal shutdown state)  
tON  
tR  
tOFF  
tF  
Output Turn-On Delay  
RL = 10, CL = 1µF, see Timing Diagrams”  
RL = 10, CL = 1µF, see Timing Diagrams”  
RL = 10, CL = 1µF, see Timing Diagrams”  
RL = 10, CL = 1µF, see Timing Diagrams”  
VOUT = 0V, enabled into short-circuit  
1.3  
1.15  
35  
5
ms  
ms  
µs  
µs  
A
Output Turn-On Rise Time  
Output Turnoff Delay  
4.9  
100  
100  
1.25  
1.25  
Output Turnoff Fall Time  
Short-Circuit Output Current  
Current-Limit Threshold  
Short-Circuit Response Time  
32  
ILIMIT  
0.5  
0.9  
1.0  
20  
ramped load applied to output  
A
VOUT = 0V to IOUT = ILIMIT  
µs  
(short applied to output)  
VIN = 5V, apply VOUT = 0V until FLG low  
VIN = 3.3V, apply VOUT = 0V until FLG low  
VIN rising  
tD  
Overcurrent Flag Response  
Delay  
1.5  
TBD  
2.2  
3
3
7
ms  
ms  
V
Undervoltage Lockout  
Threshold  
2.4  
2.15  
2.7  
2.5  
VIN falling  
2.0  
V
March 2000  
3
MIC2026/2076  
MIC2026/2076  
Micrel  
Symbol  
Parameter  
Condition  
Min  
Typ  
10  
Max  
25  
Units  
Error Flag Output  
Resistance  
IL = 10mA, VIN = 5V  
IL = 10mA, VIN = 3.3V  
VFLAG = 5V  
15  
40  
Error Flag Off Current  
10  
µA  
Overtemperature Threshold  
Note 4  
TJ increasing, each switch  
TJ decreasing, each switch  
140  
120  
°C  
°C  
TJ increasing, both switches  
TJ decreasing, both switches  
160  
150  
°C  
°C  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
Note 4. If there is a fault on one channel, that channel will shut down when the die reaches approximately 140°C. If the die reaches approximately  
160°C, both channels will shut down, even if neither channel is in current limit.  
Test Circuit  
VOUT  
Device  
Under  
Test  
OUT  
RL  
CL  
Timing Diagrams  
tR  
tF  
90%  
10%  
90%  
VOUT  
10%  
Output Rise and Fall Times  
50%  
VEN  
tOFF  
tON  
90%  
VOUT  
10%  
Active-Low Switch Delay Times (MIC20x6-2)  
VEN  
50%  
tOFF  
tON  
90%  
VOUT  
10%  
Active-High Switch Delay Times (MIC20x6-1)  
MIC2026/2076  
4
March 2000  
MIC2026/2076  
Micrel  
Supply On-Current  
vs. Temperature  
On-Resistance  
vs. Temperature  
Turn-On Rise Time  
vs. Temperature  
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
5
4
3
2
1
0
3.3V  
5V  
5V  
RL=10  
CL=1µF  
3.3V  
VIN = 3.3V  
60  
60  
IOUT = 500mA  
40  
40  
20  
20  
VIN = 5V  
0
0
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Supply On-Current  
vs. Input Voltage  
On-Resistance  
vs. Input Voltage  
Turn-On Rise Time  
vs. Input Voltage  
200  
150  
100  
50  
200  
150  
100  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-40°C  
+85°C  
+25°C  
+85°C  
+25°C  
-40°C  
+25°C  
+85°C  
-40°C  
RL=10Ω  
CL=1µF  
IOUT = 500mA  
0
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
Short-Circuit Current-Limit  
vs. Temperature  
Current-Limit Threshold  
vs. Temperature  
Fall Time  
vs. Temperature  
1000  
1200  
400  
VIN = 5V  
1000  
800  
600  
400  
200  
0
VIN = 3.3V  
VIN = 5V  
800  
600  
400  
200  
0
300  
200  
100  
0
VIN = 3.3V  
VIN = 3.3V  
RL=10Ω  
CL=1µF  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Short-Circuit Current-Limit  
vs. Input Voltage  
Current-Limit Threshold  
vs. Input Voltage  
Fall Time  
vs. Input Voltage  
1200  
1000  
800  
600  
400  
200  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
+25°C  
-40°C  
+85°C  
+25°C  
-40°C  
+85°C  
TA = 25°C  
L = 1µF  
L = 10Ω  
C
R
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
March 2000  
5
MIC2026/2076  
MIC2026/2076  
Micrel  
Enable Threshold  
vs. Temperature  
Flag Delay  
vs. Temperature  
Supply Off Current  
vs. Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
5
4
3
2
1
0.16  
0.14  
0.12  
0.1  
VIN = 3.3V  
5V  
VEN RISING  
VIN = 5V  
VEN FALLING  
0.08  
0.06  
0.04  
0.02  
0
3.3V  
VIN = 5V  
0
0
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Enable Threshold  
vs. Input Voltage  
Flag Delay  
vs. Input Voltage  
Supply Off Current  
vs. Input Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
+85°C  
+25°C  
VEN RISING  
+85°C  
VEN FALLING  
-40°C  
+25°C  
-40°C  
TA = 25°C  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VOLTAGE (V)  
UVLO Threshold  
vs. Temperature  
3.0  
VIN RISING  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VIN FALLING  
-40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
MIC2026/2076  
6
March 2000  
MIC2026/2076  
Micrel  
Functional Characteristics  
UVLOVIN Rising  
UVLOVIN Falling  
(MIC2026-1)  
(MIC2026-1)  
2.2V  
2.4V  
VEN = VIN  
CL = 57µF  
RL = 35Ω  
VEN = VIN  
CL = 57µF  
RL = 35Ω  
TIME (10ms/div.)  
TIME (100ms/div.)  
Turn-On  
(MIC2026-1)  
Turn-On/Turnoff  
(MIC2026-1)  
712mA  
(Inrush Current)  
VIN = 5V  
CL = 147µF  
RL = 35Ω  
VIN = 5V  
CL = 147µF  
RL = 35Ω  
140mA  
140mA  
TIME (500µs/div.)  
TIME (10ms/div.)  
Enabled Into Short  
(MIC2026-1)  
Turnoff  
(MIC2026-1)  
3.1ms (tD)  
700mA  
VIN = 5V  
CL = 147µF  
RL = 35Ω  
VIN = 5V  
140mA  
TIME (500µs/div.)  
TIME (5ms/div.)  
March 2000  
7
MIC2026/2076  
MIC2026/2076  
Micrel  
Inrush Current Response  
(MIC2026-1)  
Current-Limit Response  
(Ramped LoadMIC2026-1)  
VIN = 5V  
CL = 47µF  
CL = 110µF  
CL = 210µF  
CL = 310µF  
VIN = 5V  
RL = 31Ω  
Short  
Removed  
Short-Circuit  
Current-Limit  
Threshold  
(1A)  
Current (800mA)  
Thermal Shutdown  
Thermal  
Shutdown  
Hysteresis  
CL = 10µF  
TIME (1ms/div.)  
TIME (100ms/div.)  
Current-Limit Response  
(Stepped ShortMIC2026-1)  
Current-Limit Response  
(MIC2026-1)  
VIN = 5V  
CL = 47µF  
RL = stepped short  
VIN = 5V  
CL = 0  
RL = stepped short  
Short-Circuit (800mA)  
800mA  
TIME (1ms/div.)  
TIME (50µs/div.)  
Independent Thermal Shutdown  
(MIC2026-1)  
Independent Thermal Shutdown  
(MIC2026-1)  
VOUTA = No Load  
(No Thermal Shutdown)  
VOUTB = No Load  
(No Thermal Shutdown)  
Thermal Shutdown  
Thermal Shutdown  
TIME (100ms/div.)  
TIME (100ms/div.)  
MIC2026/2076  
8
March 2000  
MIC2026/2076  
Micrel  
Thermal Shutdown  
Thermal Shutdown  
(MIC2076-2Output Latched Off)  
(Output Reset by Toggling EnableMIC2076-2)  
No Load  
Load Removed  
RL = 0  
Enable  
Reset  
Ramp Load  
to Short  
Output  
Reset  
Output  
Reset  
VIN = 5V  
CL = 47µF  
VENB = 0V  
Thermal  
Shutdown  
CL = 57µF  
RL = 35Ω  
Thermal  
Shutdown  
VIN = 5V  
TIME (2.5s/div.)  
TIME (100ms/div.)  
Thermal Shutdown  
(Output Reset by Removing LoadMIC2076-2)  
Independent Thermal Shutdown  
(MIC2076-2)  
RL = 0  
Load  
Removed  
No  
Load  
No Thermal Shutdown on Channel B  
Output Reset  
Output  
Load Removed  
(Output Reset)  
Latched Off  
Ramp Load  
to Short  
Thermal  
Shutdown  
VIN = 5V  
CL = 47µF  
VENB = 0V  
VENA = 0V  
Thermal  
Shutdown  
VIN = 5V  
CL = 47µF  
TIME (100ms/div.)  
TIME (2.5s/div.)  
Independent Thermal Shutdown  
(MIC2076-2)  
Load  
Removed  
No  
Load  
RL = 0  
Output Reset  
No Thermal Shutdown on Channel A  
VIN = 5V  
CL = 47µF  
VENB = 0V  
VENA = 0V  
Thermal  
Shutdown  
TIME (2.5s/div.)  
March 2000  
9
MIC2026/2076  
MIC2026/2076  
Micrel  
Block Diagram  
FLGA  
OUTA  
FLAG  
RESPONSE  
DELAY  
ENA  
CHARGE  
PUMP  
GATE  
CONTROL  
CURRENT  
LIMIT  
THERMAL  
SHUTDOWN  
1.2V  
REFERENCE  
IN  
OSC.  
UVLO  
CHARGE  
PUMP  
CURRENT  
LIMIT  
GATE  
CONTROL  
ENB  
FLAG  
RESPONSE  
DELAY  
OUTB  
FLGB  
MIC2026/2076  
GND  
The MIC2026 will automatically reset its output when the die  
temperature cools down to 120°C. The MIC2026 output and  
FLG signal will continue to cycle on and off until the device is  
disabled or the fault is removed. Figure 2 depicts typical  
timing.  
Functional Description  
Input and Output  
INisthepowersupplyconnectiontothelogiccircuitryandthe  
drain of the output MOSFET. OUT is the source of the output  
MOSFET. In a typical circuit, current flows from IN to OUT  
Depending on PCB layout, package, ambient temperature,  
etc., it may take several hundred milliseconds from the  
incidence of the fault to the output MOSFET being shut off.  
This time will be shortest in the case of a dead short on the  
output.  
toward the load. If V  
is greater than V , current will flow  
OUT  
IN  
from OUT to IN, since the switch is bidirectional when  
enabled. The output MOSFET and driver circuitry are also  
designedtoallowtheMOSFETsourcetobeexternallyforced  
to a higher voltage than the drain (V  
switch is disabled. In this situation, the MIC2026/76 prevents  
undesirable current flow from OUT to IN.  
> V ) when the  
OUT  
IN  
Power Dissipation  
The devices junction temperature depends on several fac-  
tors such as the load, PCB layout, ambient temperature and  
package type. Equations that can be used to calculate power  
dissipation of each channel and junction temperature are  
found below.  
Thermal Shutdown  
Thermal shutdown is employed to protect the device from  
damage should the die temperature exceed safe margins  
due mainly to short circuit faults. Each channel employs its  
own thermal sensor. Thermal shutdown shuts off the output  
MOSFET and asserts the FLG output if the die temperature  
reaches 140°C and the overheated channel is in current limit.  
The other channel is not effected. If however, the die tem-  
peratureexceeds160°C, bothchannelswillbeshutoff. Upon  
determining a thermal shutdown condition, the MIC2076 will  
latch the output off. In this case, a pull-up current source is  
activated. This allows the output latch to automatically reset  
whentheload(suchasaUSBdevice)isremoved. Theoutput  
can also be reset by toggling EN. Refer to Figure 1 for timing  
details.  
2
P = R  
× I  
OUT  
D
DS(on)  
Total power dissipation of the device will be the summation of  
P for both channels. To relate this to junction temperature,  
D
the following equation can be used:  
T = P × θ + T  
A
J
D
JA  
where:  
T = junction temperature  
J
T = ambient temperature  
A
θ
= is the thermal resistance of the package  
JA  
MIC2026/2076  
10  
March 2000  
MIC2026/2076  
Micrel  
Current Sensing and Limiting  
Fault Flag  
The current-limit threshold is preset internally. The preset  
levelpreventsdamagetothedeviceandexternalloadbutstill  
allows a minimum current of 500mA to be delivered to the  
load.  
The FLG signal is an N-channel open-drain MOSFET output.  
FLG is asserted (active-low) when either an overcurrent or  
thermalshutdownconditionoccurs.Inthecaseofanovercur-  
rent condition, FLG will be asserted only after the flag  
response delay time, t , has elapsed. This ensures that FLG  
The current-limit circuit senses a portion of the output MOS-  
FET switch current. The current-sense resistor shown in the  
blockdiagramisvirtualandhasnovoltagedrop. Thereaction  
to an overcurrent condition varies with three scenarios:  
D
is asserted only upon valid overcurrent conditions and that  
erroneous error reporting is eliminated. For example, false  
overcurrent conditions can occur during hot-plug events  
whenahighlycapacitiveloadisconnectedandcausesahigh  
transient inrush current that exceeds the current-limit thresh-  
Switch Enabled into Short-Circuit  
If a switch is enabled into a heavy load or short-circuit, the  
switch immediately enters into a constant-current mode,  
reducing the output voltage. The FLG signal is asserted  
indicating an overcurrent condition.  
old for up to 1ms. The FLG response delay time t is typically  
3ms.  
D
Undervoltage Lockout  
Undervoltage lockout (UVLO) prevents the output MOSFET  
Short-Circuit Applied to Enabled Output  
fromturningonuntilV exceedsapproximately2.5V. Under-  
IN  
When a heavy load or short-circuit is applied to an enabled  
switch, a large transient current may flow until the current-  
limit circuitry responds. Once this occurs the device limits  
currenttolessthantheshort-circuitcurrentlimitspecification.  
voltage detection functions only when the switch is enabled.  
Current-Limit ResponseRamped Load  
TheMIC2026/76current-limitprofileexhibitsasmallfoldback  
effect of about 200mA. Once this current-limit threshold is  
exceeded the device switches into a constant current mode.  
It is important to note that the device will supply current up to  
the current-limit threshold.  
Load and Fault Removed  
(Output Reset)  
Short-Circuit Fault  
VEN  
VOUT  
ILIMIT  
ILOAD  
IOUT  
Thermal  
Shutdown  
Reached  
VFLG  
3ms typ.  
delay  
Figure 1. MIC2076-2 Fault Timing: Output Reset by Removing Load  
Short-Circuit Fault  
V
EN  
Load/Fault  
Removed  
V
OUT  
I
LIMIT  
I
LOAD  
Thermal  
Shutdown  
Reached  
I
OUT  
3ms typ.  
delay  
V
FLG  
Figure 2. MIC2026-2 Fault Timing  
March 2000  
11  
MIC2026/2076  
MIC2026/2076  
Micrel  
Universal Serial Bus (USB) Power Distribution  
Applications Information  
The MIC2026/76 is ideally suited for USB (Universal Serial  
Bus) power distribution applications. The USB specification  
definespowerdistributionforUSBhostsystemssuchasPCs  
and USB hubs. Hubs can either be self-powered or bus-  
powered (that is, powered from the bus). Figure 5 shows a  
typicalUSBHostapplicationthatmaybesuitedformobilePC  
applications employing USB. The requirement for USB host  
systems is that the port must supply a minimum of 500mA at  
an output voltage of 5V ±5%. In addition, the output power  
deliveredmustbelimitedtobelow 25VA.Uponanovercurrent  
condition, the host must also be notified. To support hot-plug  
events, the hub must have a minimum of 120µF of bulk  
capacitance, preferably low ESR electrolytic or tantulum.  
Please refer to Application Note 17 for more details on  
designing compliant USB hub and host systems.  
Supply Filtering  
A 0.1µF to 1µF bypass capacitor positioned close to V and  
IN  
GNDofthedeviceisstronglyrecommendedtocontrolsupply  
transients. Without a bypass capacitor, an output short may  
cause sufficient ringing on the input (from supply lead induc-  
tance) to damage internal control circuitry.  
Printed Circuit Board Hot-Plug  
The MIC2026/76 are ideal inrush current-limiters for hot-plug  
applications. Due to the integrated charge pump, the  
MIC2026/76 presents a high impedance when off and slowly  
becomes a low impedance as it turns on. This soft-start”  
feature effectively isolates power supplies from highly ca-  
pacitiveloadsbyreducinginrushcurrent.Figure3showshow  
the MIC2076 may be used in a card hot-plug application.  
For bus-powered hubs, USB requires that each downstream  
port be switched on or off under control by the host. Up to four  
downstream ports each capable of supplying 100mA at 4.4V  
minimum are allowed. In addition, to reduce voltage droop on  
In cases of extremely large capacitive loads (>400µF), the  
length of the transient due to inrush current may exceed the  
delay provided by the integrated filter. Since this inrush  
currentexceedsthecurrent-limitdelayspecification, FLGwill  
be asserted during this time. To prevent the logic controller  
from responding to FLG being asserted, an external RC filter,  
as shown in Figure 4, can be used to filter out transient FLG  
assertion. The value of the RC time constant should be  
the upstream V  
, soft-start is necessary. Although the hub  
BUS  
can consume up to 500mA from the upstream bus, the hub  
must consume only 100mA max at start-up, until it enumer-  
ates with the host prior to requesting more power. The same  
requirementsapplyforbus-poweredperipheralsthathaveno  
downstream ports. Figure 6 shows a bus-powered hub.  
selectedtomatchthelengthofthetransient, lesst  
MIC2026/76.  
ofthe  
D(min)  
USB  
Controller  
MIC2026-2BM  
USB  
Function  
1
8
ENA  
OUTA  
VBUS  
2
3
4
7
FLGA  
FLGB  
ENB  
IN  
GND  
4.7  
µF  
CBULK  
6
to "Hot"  
Receptacle  
USB  
Function  
5
OUTB  
CBULK  
GND  
USB Peripheral  
Cable  
Figure 3. Hot-Plug Application  
V+  
MIC2026  
10k  
R
Logic Controller  
1
2
3
4
8
EN  
OUTA  
7
6
OVERCURRENT  
FLGA  
FLGB  
ENB  
IN  
GND  
C
5
OUTB  
Figure 4. Transient Filter  
MIC2026/2076  
12  
March 2000  
MIC2026/2076  
Micrel  
VCC  
5.0V  
Ferrite  
Beads  
10k  
10k  
4.50V to 5.25V  
Upstream VBUS  
100mA max.  
VBUS  
D+  
3.3V USB Controller  
MIC2026-2  
MIC5207-3.3  
IN OUT  
USB  
Port 1  
D–  
VBUS  
D+  
47µF  
0.1µF  
VIN  
ON/OFF  
ENA  
OUTA  
IN  
GND  
OVERCURRENT  
OVERCURRENT  
ON/OFF  
FLGA  
FLGB  
ENB  
1µF  
1µF  
D–  
GND  
GND  
OUTB  
VBUS  
D+  
GND  
USB  
Port 2  
D–  
47µF  
GND  
Data  
Data  
(Two Pair)  
to USB  
Controller  
Figure 5. USB Two-Port Host Application  
Ferrite  
Beads  
1.5k 2%  
10k  
10k  
VBUS  
D+  
4.50V to 5.25V  
Upstream VBUS  
3.3V USB Controller  
VIN  
MIC2026-2  
MIC5207-3.3  
IN OUT  
USB  
Port 1  
D–  
VBUS  
D+  
47µF  
0.1µF  
ON/OFF  
ENA  
OUTA  
IN  
GND  
OVERCURRENT  
OVERCURRENT  
ON/OFF  
FLGA  
FLGB  
ENB  
1µF  
1µF  
D–  
GND  
GND  
OUTB  
VBUS  
D+  
GND  
USB  
Port 2  
D–  
47µF  
GND  
Data  
Data  
(Two Pair)  
to USB  
Controller  
Figure 6. USB Two-Port Bus-Powered Hub  
March 2000  
13  
MIC2026/2076  
MIC2026/2076  
Micrel  
Package Information  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-Lead SOP (M)  
PIN 1  
DIMENSIONS:  
INCH (MM)  
0.380 (9.65)  
0.370 (9.40)  
0.255 (6.48)  
0.245 (6.22)  
0.135 (3.43)  
0.125 (3.18)  
0.300 (7.62)  
0.013 (0.330)  
0.010 (0.254)  
0.380 (9.65)  
0.320 (8.13)  
0.018 (0.57)  
0.100 (2.54)  
0.130 (3.30)  
0.0375 (0.952)  
8-Pin DIP (N)  
MIC2026/2076  
14  
March 2000  
MIC2026/2076  
Micrel  
March 2000  
15  
MIC2026/2076  
MIC2026/2076  
Micrel  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
MIC2026/2076  
16  
March 2000  

相关型号:

MIC2026-1BM

Dual-Channel Power Distribution Switch Preliminary Information
MICREL

MIC2026-1BMTR

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, SOIC-8
ROCHESTER

MIC2026-1BN

Dual-Channel Power Distribution Switch Preliminary Information
MICREL

MIC2026-1BN

Buffer/Inverter Based Peripheral Driver, PDIP8, DIP-8
MICROCHIP

MIC2026-1BN

暂无描述
ROCHESTER

MIC2026-1YM

Dual-Channel Power Distribution Switch
MICREL

MIC2026-1YM

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
MICROCHIP

MIC2026-1YM-TR

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
MICROCHIP

MIC2026-2BM

Dual-Channel Power Distribution Switch Preliminary Information
MICREL

MIC2026-2BM

2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, SOIC-8
ROCHESTER

MIC2026-2BN

Dual-Channel Power Distribution Switch Preliminary Information
MICREL

MIC2026-2YM

Dual-Channel Power Distribution Switch
MICREL