MIC2013-0.5YM5 [MICREL]

Current Limiting Circuit Protector; 限流电路保护器
MIC2013-0.5YM5
型号: MIC2013-0.5YM5
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Current Limiting Circuit Protector
限流电路保护器

电路保护 光电二极管
文件: 总16页 (文件大小:753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2003/2013  
Current Limiting Circuit Protector  
General Description  
Features  
MIC2003 and MIC2013 are high-side current limiting  
devices, designed for power distribution applications in  
PCs, PDAs, printers and peripheral devices.  
70mtypical on-resistance  
2.5V - 5.5V operating range  
Pre-set current limit values of 0.5A, 0.8A and 1.2A  
MIC2003 and MIC2013 are thermally protected and will  
shutdown should their internal temperature reach unsafe  
levels, protecting both the device and the load, under  
high current or fault conditions. Both devices are fully  
self-contained, with the current limit value being factory  
set to one of several convenient levels.  
Kickstart™  
Thermal Protection  
Under voltage lock-out  
Low quiescent current  
MIC2013 offers a unique new feature: Kickstart  
which allows momentary high current surges to pass  
unrestricted without sacrificing overall system safety.  
,
Applications  
USB / IEEE 1394 Power Distribution  
Desktop and Laptop PCs  
Set top boxes  
Game consoles  
PDAs  
Printers  
Docking stations  
Chargers  
MIC2003 and MIC2013 are excellent choices for USB  
and IEEE 1394 (FireWire) applications or for any system  
where current limiting and power control are desired.  
The MIC2003 and MIC2013 are offered in space saving  
6 pin SOT-23 and 2mm x 2mm MLF packages.  
Data sheets and support documentation can be found  
on Micrel’s web site at www.micrel.com.  
_________________________________________________________________________________________________________  
Typical Application  
Figure 1. Typical Application Circuit  
Kickstart is a trademark of Micrel, Inc  
MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-xxxx04  
(408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
MIC2000 Family Members  
Part Number  
Pin Function  
Load  
Discharge  
Normal Limiting  
Kickstart  
I Limit  
I Adj.  
Enable  
CSLEW  
FAULT/  
DLM*  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Fixed  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Adj.  
--  
--  
--  
--  
* Dynamic Load Management Adj = Adjustable current limit  
Fixed = Factory programmed current limit  
Ordering Information  
Part Number  
MIC2003-0.5YM5  
MIC2003-0.8YM5  
MIC2003-1.2YM5  
MIC2003-0.5YML  
MIC2003-0.8YML  
MIC2003-1.2YML  
MIC2013-0.5YM5  
MIC2013-0.8YM5  
MIC2013-1.2YM5  
MIC2013-0.5YML  
MIC2013-0.8YML  
MIC2013-1.2YML  
Note:  
Marking(1)  
FD05  
FD08  
FD12  
D05  
Current Limit  
0.5A  
Kickstart  
Pb-Free  
Package  
SOT-23-5  
0.8A  
No  
1.2A  
0.5A  
2mmX2mm MLF  
SOT-23-5  
D08  
0.8A  
Yes  
D12  
1.2A  
FL05  
FL08  
FL12  
L05  
0.5A  
0.8A  
Yes  
1.2A  
0.5A  
2mmX2mm MLF  
L09  
0.8A  
L12  
1.2A  
1. Under-bar symbol ( _ ) may not be to scale  
2
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Pin Configuration  
GND  
2
NIC  
3
VIN  
1
VOUT  
1
VIN  
6
5
4
PAD ON  
BACKSIDE  
IS GROUND  
NIC  
NIC  
GND  
NIC  
2
3
4
5
NIC  
VOUT  
SOT 23-5 (M5)  
Top View  
6-Lead 2mmX2mm MLF (ML)  
Top View  
Pin Description  
Pin  
Number  
SOT-23  
Pin  
Number  
MLF  
Pin  
Name  
Type  
Description  
1
6
VIN  
Input  
Supply input. This pin provides power to both the output switch and the  
MIC2003/2013’s internal control circuitry.  
2
3
5
4
GND  
NIC  
--  
--  
Ground.  
No internal connection. An electrical signal to this pin will have no effect on  
device operation.  
4
3
2
1
NIC  
NIC  
--  
--  
No internal connection. An electrical signal to this pin will have no effect on  
device operation.  
No internal connection. An electrical signal to this pin will have no effect on  
device operation.  
5
VOUT  
Output  
Switch output. The load being driven by MIC2003/2013 is connected to this  
pin.  
3
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
VIN, VOUT............................................................0.3 to 6V Supply Voltage............................................. 2.5V to 5.5V  
All other pins..................................................0.3 to 5.5V Continuous Output Current Range .................... 0 to 2.1A  
Power Dissipation.................................. Internally Limited  
Continuous Output Current..................................... 2.25A  
Maximum Junction Temperature........................... 150°C  
Storage Temperature .............................. –65°C to 150°C  
Ambient Temperature Range ....................40°C to 85°C  
Package Thermal Resistance (θJA)  
SOT-23-5 .............................................  
MLF 2x2 mm(5).........................................  
230°C/W  
90°C/W  
Electrical Characteristics  
VIN = 5V, TAMBIENT = 25°C unless specified otherwise. Bold indicates –40°C to +85°C limits.  
Symbol  
VIN  
Parameter  
Conditions  
Min  
2.5  
Typ  
1
Max  
Units  
Switch Input Voltage  
Internal Supply Current  
5.5  
5
V
IIN  
Switch = OFF,  
µA  
ENABLE = 0V  
IIN  
Internal Supply Current  
Switch = ON, IOUT = 0  
ENABLE = 1.5V  
80  
300  
100  
µA  
µA  
ILEAK  
Output Leakage Current  
Power Switch Resistance  
V
IN = 5V, VOUT = 0 V, ENABLE  
12  
70  
= 0  
RDS(ON)  
VIN = 5V, IOUT = 100 mA  
100  
125  
0.9  
m  
mΩ  
A
ILIMIT  
Current Limit: –0.5  
Current Limit: –0.8  
Current Limit: –1.2  
VOUT = 0.8VIN to VOUT = 1V  
VOUT = 0.8VIN to VOUT = 1V  
VOUT = 0.8VIN, to VOUT = 1V  
MIC2013, VIN = 2.7V  
0.5  
0.8  
1.2  
2.2  
0.7  
ILIMIT  
1.1  
1.6  
1.5  
2.1  
6
A
A
A
ILIMIT  
ILIMIT_2nd  
OTTHRESHOLD  
Secondary current limit  
(Kickstart)  
4
Over-temperature Threshold  
TJ increasing  
TJ decreasing  
145  
135  
°C  
4
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
AC Characteristics  
Symbol  
Parameter  
Condition  
Min  
77  
Typ  
Max  
192  
Units  
tLIMIT  
Delay before current limiting  
Secondary current limit  
(MIC2013)  
128  
ms  
tRESET  
Delay before resetting  
Kickstart current limit delay,  
tLIMIT  
Out of current limit following a  
current limit.  
77  
128  
192  
ms  
(MIC2013)  
ESD  
Symbol  
VESD_HB  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
kV  
Electro Static Discharge  
Voltage: Human Body Model  
VOUT and GND  
All other pins  
All pins  
± 4  
± 2  
kV  
VESD_MCHN  
Electro Static Discharge  
Voltage; Machine Model  
± 200  
V
Machine Model  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
4. Specification for packaged product only.  
5. Requires proper thermal mounting to achieve this performance.  
5
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Timing Diagrams  
ENABLE  
50%  
50%  
tON_DLY  
tOFF_DLY  
90%  
VOUT  
10%  
Switching Delay Times  
tRISE  
tFALL  
90%  
90%  
10%  
10%  
Rise and Fall Times  
tRISE  
90%  
VOUT  
10%  
Output Rise Time  
6
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Typical Characteristics  
Supply Current  
Output Disabled  
Switch Leakage Current - OFF  
Supply Current  
Output Enabled  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
100  
1.00  
25°C  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
-40°C  
80  
85°C  
60  
40  
20  
0
-40°C  
85°C  
25°C  
2
3
4
5
6
7
2
3
4
5
6
-50 -30 -10 10 30 50 70 90  
V
(V)  
V
(V)  
TEMPERATURE (°C)  
IN  
IN  
ILIMIT vs.  
ILIMIT vs. Temperature  
(MIC20xx-1.2)  
UVSD Threshold  
vs. Temperature  
Temperature  
248.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
VIN = 2.5V  
247.5  
247.0  
246.5  
246.0  
245.5  
245.0  
0.8A  
VIN = 3V  
0.5A  
1.2A  
VIN = 5V  
-50 -30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
-50 -30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
-50 -30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
ILIMIT vs. Temperature  
(MIC20xx - 0.5)  
ILIMIT vs. Temperature  
(MIC20xx - 0.8)  
RON vs.  
Supply Voltage  
100  
1.40  
0.75  
0.73  
0.71  
0.69  
0.67  
0.65  
0.63  
0.61  
0.59  
0.57  
0.55  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
80  
60  
40  
20  
0
Note:  
5V  
5V  
Please note that the 3  
plots overlay each  
3V  
3V  
2.5V  
2.5V  
2
2.5  
3
3.5  
V
4
(V)  
4.5  
5
5.5  
-50 -30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
-50 -30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
IN  
RON vs.  
Temperature  
120  
2.5V  
5V  
100  
80  
60  
40  
20  
0
3.3V  
-50 -30 -10 10 30 50 70 90  
TEMPERATURE (°C)  
7
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Functional Characteristics  
Kickstart Response  
Current Limit Response Thermal Shutdown  
Normal Load with Temporary High Load  
VIN = 5.0V  
RLOAD  
CLOAD = 47µF  
VOUT  
(1V/div)  
VOUT  
(1V/div)  
IOUT  
(250mA/div)  
IOUT  
(0.5A/div)  
0
50 100 150 200 250 300 350 400 450 500 550  
Time (ms)  
0
50 100 150 200 250 300 350 400 450 500 550  
Time (ms)  
Kickstart Response  
Kickstart Response  
Normal Load with Temporary Short Circuit  
No Load to Short Circuit  
VOUT  
VOUT  
(1V/div)  
(1V/div)  
IOUT  
(0.5A/div)  
IOUT  
(0.5A/div)  
0
50 100 150 200 250 300 350 400 450 500 550  
Time (ms)  
0
50 100 150 200 250 300 350 400 450 500 550  
Time (ms)  
Inrush Current Response  
MIC20xx-0.5  
Turn-On/Turn-Off  
VIN = 5.0V  
RLOAD  
CLOAD = 100nF  
VOUT  
(1V/div)  
0µF  
VOUT  
(1V/div)  
10µF  
22µF  
220µF  
47µF 100µF  
470µF  
IOUT  
IOUT  
(200mA/div)  
(200mA/div)  
0
16  
20  
Time (ms)  
0
8
10  
4
8
12  
24  
28  
32  
36  
40  
2
4
6
12  
14  
Time (ms)  
8
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
UVLO Decreasing  
UVLO Increasing  
VOUT  
VOUT  
(1V/div)  
(1V/div)  
VIN  
VIN  
(1/div)  
(1/div)  
0
4
8
12 16  
20 24 28 32  
Time (µs)  
36 40 44 48  
0
4
8
12 16  
20 24 28 32  
Time (µs)  
36 40 44 48  
UVSD  
VOUT  
(1V/div)  
VIN  
(1/div)  
0
20  
40  
60  
80  
100 120 140 160 180  
Time (µs)  
200  
9
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Functional Diagram  
Under  
Voltage  
Detector  
VIN  
Current  
Mirror FET  
Power  
FET  
Control Logic  
and Delay Timer  
Gate Control  
VOUT  
GND  
Thermal  
Sensor  
VREF  
Slew Rate  
Control  
Current Limit  
control Loop  
Factory  
adjusted  
Figure 2 MIC2003/2013 Block Diagram  
10  
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
duration of the Kickstart period. After this time the  
MIC2013 reverts to its normal current limit. An example  
of Kickstart operation is shown below.  
Functional Description  
Input and Output  
VIN is both the power supply connection for the internal  
circuitry driving the switch and the input (Source  
connection) of the power MOSFET switch. VOUT is the  
Drain connection of the power MOSFET and supplies  
power to the load. In a typical circuit, current flows from  
VIN to VOUT toward the load. Since the switch is bi-  
directional when enabled, if VOUT is greater than VIN,  
current will flow from VOUT to VIN.  
When the switch is disabled, current will not flow to the  
load, except for a small unavoidable leakage current of  
a few microamps. However, should VOUT exceed VIN by  
more than a diode drop (~0.6V), while the switch is  
disabled, current will flow from output to input via the  
power MOSFET’s body diode. This effect can be used  
to advantage when large bypass capacitors are placed  
on MIC2003/2013’s’s output. When power to the switch  
is removed, the output capacitor will be automatically  
discharged.  
If discharging CLOAD is required by your application,  
consider using MIC2003/2013 or MIC2007/2017 in place  
of MIC2003/2013. These MIC2000 family members are  
equipped with a discharge FET to insure complete  
Figure 3. Kickstart Operation  
Picture Key:  
A) MIC2013 is enabled into an excessive load (slew  
rate limiting not visible at this time scale) The initial  
current surge is limited by either the overall circuit  
resistance and power supply compliance, or the  
secondary current limit, whichever is less.  
discharge of CLOAD  
.
Current Sensing and Limiting  
MIC2003/2013 protects the system power supply and  
load from damage by continuously monitoring current  
through the on-chip power MOSFET. Load current is  
monitored by means of a current mirror in parallel with  
the power MOSFET switch. Current limiting is invoked  
when the load exceeds an internally set over-current  
threshold. When current limiting is activated the output  
current is constrained to the limit value, and remains at  
this level until either the load/fault is removed, the load’s  
current requirement drops below the limiting value, or  
the MIC2003/2013 goes into thermal shutdown.  
B) RON of the power FET increases due to internal  
heating (effect exaggerated for emphasis).  
C) Kickstart period.  
D) Current limiting initiated. FAULT/ goes LOW.  
E) VOUT is non-zero (load is heavy, but not a dead short  
where VOUT = 0. Limiting response will be the same  
for dead shorts).  
F) Thermal shutdown followed by thermal cycling.  
G) Excessive load released, normal load remains.  
MIC2013 drops out of current limiting.  
Kickstart (MIC2013 only)  
H) FAULT/ delay period followed by FAULT/ going  
HIGH.  
The MIC2013 is designed to allow momentary current  
surges (Kickstart) before the onset of current limiting,  
which permits dynamic loads, such as small disk drives  
or portable printers to draw the energy needed to  
overcome inertial loads without sacrificing system  
safety. In this respect, the MIC2013 differs markedly  
from MIC2003 and its peers, which immediately limit  
load current, potentially starving the motor and causing  
the appliance to stall or stutter.  
Slew Rate Control  
Large capacitive loads can create significant current  
surges when charged through a high-side switch such  
as the MIC2003/2013. For this reason, MIC2003/2013  
provides built-in slew rate control to limit the initial inrush  
currents upon enabling the power MOSFET switch.  
Slew rate control is active upon powering up, and upon  
re-enabling the load. At shutdown, the discharge slew  
rate is controlled by the external load and output  
capacitor.  
During this delay period, typically 128 ms, a secondary  
current limit is in effect. If the load demands a current in  
excess the secondary limit, MIC2013 acts immediately  
to restrict output current to the secondary limit for the  
11  
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Thermal Shutdown  
MIC2003/2013 will continue cycling between ON and  
OFF states until the offending load has been removed.  
Thermal  
shutdown  
is  
employed  
to  
protect  
MIC2003/2013 from damage should the die temperature  
exceed safe operating levels. Thermal shutdown shuts  
off the output MOSFET and asserts the FAULT/ output if  
the die temperature reaches 145°C.  
Depending on PCB layout, package type, ambient  
temperature, etc., hundreds of milliseconds may elapse  
from the incidence of a fault to the output MOSFET  
being shut off. This delay is due to thermal time  
constants within the system itself. In no event will the  
device be damaged due to thermal overload because  
die temperature is monitored continuously by on-chip  
circuitry.  
MIC2003/2013 will automatically resume operation  
when the die temperature cools down to 135°C. If  
resumed operation results in reheating of the die,  
another shutdown cycle will occur and the  
12  
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Application Information  
ILIMIT vs. IOUT measured  
MIC2003/2013’s’s current limiting circuitry is designed to  
act as a constant current source to the load. As the load  
tries to pull more than the allotted current, VOUT drops  
and the input to output voltage differential increases.  
When VIN -VOUT exceeds 1V, IOUT drops below ILIMIT to  
reduce the drain of fault current on the system’s power  
supply and to limit internal heating of MIC2003/2013.  
When measuring IOUT it is important to bear this voltage  
dependence in mind, otherwise the measurement data  
may appear to indicate a problem when none really  
exists. This voltage dependence is illustrated in Figures  
4 and 5.  
In Figure 4 output current is measured as VOUT is pulled  
below VIN, with the test terminating when VOUT is 1V  
below VIN. Observe that once ILIMIT is reached IOUT  
remains constant throughout the remainder of the test.  
In Figure 5 this test is repeated but with VIN - VOUT  
exceeding 1V.  
Figure 5. IOUT in Current Limiting for VOUT >1V  
This folding back of ILIMIT can be generalized by plotting  
ILIMIT as a function of VOUT, as shown below. The slope  
of VOUT between IOUT = 0 and IOUT = ILIMIT (where ILIMIT  
When VIN - VOUT > 1V, MIC2003/2013’s current limiting  
circuitry responds by decreasing IOUT, as can be seen in  
Figure 5. In this demonstration, VOUT is being controlled  
and IOUT is the measured quantity. In real life  
applications VOUT is determined in accordance with  
Ohm’s law by the load and the limiting current.  
=
1) is determined by RON of MIC2003/2013 and ILIMIT  
.
Normalized Output Current  
vs. Output Voltage (5V)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
1
2
3
4
5
6
OUTPUT VOLTAGE (V)  
Figure 6.  
Figure 4. IOUT in Current Limiting for VOUT 1V  
13  
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Normalized Output Current  
vs. Output Voltage (2.5V)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VOUT  
Kickstart  
0
0.5 1.0 1.5 2.0 2.5 3.0  
OUTPUT VOLTAGE (V)  
Current Limiting  
IOUT  
Figure 7.  
Load Removed  
0
400  
500  
100  
200  
300  
600  
Kickstart (MIC2013)  
Time (ms)  
Kickstart allows brief current surges to pass to the load  
before the onset of normal current limiting, which  
permits dynamic loads to draw bursts of energy without  
sacrificing system safety.  
Figure 9. Kickstart  
Supply Filtering  
Functionally, Kickstart is a forced override of the normal  
current limiting function provided by MIC2013. The  
Kickstart period is governed by an internal timer which  
allows current to pass unimpeded to the load for 128ms  
and then normal (primary) current limiting goes into  
action.  
A 0.1µF to 1µF bypass capacitor positioned close to the  
VIN and GND pins of MIC2003/2013 is both good design  
practice and required for proper operation of  
MIC2003/2013. This will control supply transients and  
ringing. Without a bypass capacitor, large current surges  
or an output short may cause sufficient ringing on VIN  
(from supply lead inductance) to cause erratic operation  
of MIC2003/2013’s control circuitry. Good quality, low  
ESR capacitors, such as Panasonic’s TE or ECJ series,  
are suggested.  
During Kickstart a secondary current limiting circuit is  
monitoring output current to prevent damage to the  
MIC2013, as a hard short combined with a robust power  
supply can result in currents of many tens of amperes.  
This secondary current limit is nominally set at 4 Amps  
and reacts immediately and independently of the  
Kickstart period. Once the Kickstart timer has finished its  
count the primary current limiting circuit takes over and  
holds IOUT to its programmed limit for as long as the  
excessive load persists.  
When bypassing with capacitors of 10µF and up, it is  
good practice to place a smaller value capacitor in  
parallel with the larger to handle the high frequency  
components of any line transients. Values in the range  
of 0.01µF to 0.1µF are recommended. Again, good  
quality, low ESR capacitors should be chosen.  
Once MIC2013 drops out of current limiting the Kickstart  
timer initiates a lock-out period of 128ms such that no  
further bursts of current above the primary current limit,  
will be allowed until the lock-out period has expired.  
Power Dissipation  
Power dissipation depends on several factors such as  
the load, PCB layout, ambient temperature, and supply  
voltage. Calculation of power dissipation can be  
accomplished by the following equation:  
Kickstart may be over-ridden by the thermal protection  
circuit and if sufficient internal heating occurs, Kickstart  
will be terminated and IOUT Æ 0. Upon cooling, if the  
2
load is still present IOUT Æ ILIMIT, not IKICKSTART  
.
PD = RDS(ON)  
×
(
IOUT  
)
To relate this to junction temperature, the following  
equation can be used:  
TJ = PD ×Rθ(J-A) + TA  
14  
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Where: TJ = junction temperature,  
TA = ambient temperature  
When operating at higher current levels or in higher  
temperature environments use of Micrel’s MLF  
packaging is recommended. MLF packages provide an  
exposed power paddle on the back side to which  
electrical and thermal contact can be made with the  
device. This significantly reduces the package’s thermal  
resistance and thus extends the MIC2005/2013’s  
operating range.  
Rθ(J-A) is the thermal resistance of the package  
In normal operation MIC2003/2013’s Ron is low enough  
that no significant I2R heating occurs. Device heating is  
most often caused by a short circuit, or very heavy load,  
when a significant portion of the input supply voltage  
appears across MIC2003/2013’s power MOSFET.  
Under these conditions the heat generated will exceed  
the package and PCB’s ability to cool the device and  
thermal limiting will be invoked.  
2 Vias  
0.3 mm diam.  
to Ground Plane  
In Figure 10 die temperature is plotted against IOUT  
assuming a constant case temperature of 85°C. The  
plots also assume a worst case RON of 140 mat a die  
temperature of 135°C. Under these conditions it is clear  
that an SOT-23 packaged device will be on the verge of  
thermal shutdown, typically 140°C die temperature,  
when operating at a load current of 1.25A. For this  
reason we recommend using MLF packaged  
MIC2003/2013s for any design intending to supply  
continuous currents of 1A or more.  
1.4 mm  
0.8 mm  
Figure 11. Pad for thermal mounting to PCB  
Die Temperature vs. Iout for Tcase = 85°C  
160  
140  
120  
100  
80  
60  
40  
SOT-23  
20  
MLF  
0
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00  
Iout - Amps  
Figure 10. Die Temperature vs. IOUT  
15  
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  
Micrel  
MIC2003/MIC20013  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069)3.00 (0.118)  
1.50 (0.059)2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.00)8  
0.09 (0.00)4  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
5-Pin SOT-23 (M5)  
6 Pin 2mmX2mm MLF (ML)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for  
its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for  
surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant  
injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk  
and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2005 Micrel, Incorporated.  
16  
M9999-102605  
hbwhelp@micrel.com or (408) 955-1690  
October 2005  

相关型号:

MIC2013-0.5YM5-TR

SPECIALTY ANALOG CIRCUIT, PDSO5
MICROCHIP

MIC2013-0.5YM5TR

暂无描述
MICREL

MIC2013-0.5YML

Current Limiting Circuit Protector
MICREL

MIC2013-0.5YMLTR

SPECIALTY ANALOG CIRCUIT, DSO6, 2 X 2 MM, LEAD FREE, MLF-6
MICROCHIP

MIC2013-0.5YMLTR

SPECIALTY ANALOG CIRCUIT, DSO6, 2 X 2 MM, LEAD FREE, MLF-6
MICREL

MIC2013-0.8YM5

Current Limiting Circuit Protector
MICREL

MIC2013-0.8YM5

SPECIALTY ANALOG CIRCUIT, PDSO5
MICROCHIP

MIC2013-0.8YM5-TR

SPECIALTY ANALOG CIRCUIT, PDSO5
MICROCHIP

MIC2013-0.8YM5TR

SPECIALTY ANALOG CIRCUIT, PDSO5, LEAD FREE, SOT-23, 5 PIN
MICREL

MIC2013-0.8YM5TX

IC,CURRENT LIMIT DIAGNOSTIC CIRCUIT,TSOP,5PIN,PLASTIC
MICROCHIP

MIC2013-0.8YML

Current Limiting Circuit Protector
MICREL

MIC2013-0.8YML-TR

SPECIALTY ANALOG CIRCUIT, DSO6
MICROCHIP