LM4041DIM-ADJT&R [MICREL]

Two Terminal Voltage Reference, 1 Output, 1.233V, Trim/Adjustable, PDSO8, SOIC-8;
LM4041DIM-ADJT&R
型号: LM4041DIM-ADJT&R
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Two Terminal Voltage Reference, 1 Output, 1.233V, Trim/Adjustable, PDSO8, SOIC-8

文件: 总16页 (文件大小:815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM4040/4041  
Precision Micropower Shunt Voltage Reference  
General Description  
Features  
Ideal for space critical applications, the LM4040 and LM4041  
precisionvoltagereferencesareavailableinthesubminiature  
(3mm × 1.3mm) SOT-23 surface-mount package.  
• Small SOT-23 package  
• No output capacitor required  
Tolerates capacitive loads  
• Fixed reverse breakdown voltages of 1.225, 2.500V,  
4.096V and 5.000V  
• Adjustable reverse breakdown version  
• Contact Micrel for parts with extended temperature  
range.  
The LM4040 is the available in fixed reverse breakdown  
voltages of 2.500V, 4.096V and 5.000V. The LM4041 is avail-  
able with a fixed 1.225V or an adjustable reverse breakdown  
voltage.  
The minimum operating current ranges from 60µA for the  
LM4041-1.2 to 74µA for the LM4040-5.0. LM4040 versions  
have a maximum operating current of 15mA. LM4041 ver-  
sions have a maximum operating current of 12mA.  
Key Specifications  
• Output voltage tolerance .............................±0.1% (max)  
• Low output noise (10Hz to 100Hz)  
The LM4040 and LM4041 have bandgap reference tempera-  
ture drift curvature correction and low dynamic impedance,  
ensuring stable reverse breakdown voltage accuracy over a  
wide range of operating temperatures and currents.  
LM4040................................................. 35µV  
LM4041................................................. 20µV  
• Wide operating current range  
LM4040..................................................60µA to 15mA  
LM4041..................................................60µA to 12mA  
• Industrial temperature range .................. –40°C to +85°C  
• Low temperature coefficient ................ 100ppm/°C (max)  
(typ)  
(typ)  
RMS  
RMS  
Data sheets and support documentation can be found on  
Micrel’s web site at www.micrel.com.  
Applications  
• Battery-powered equipment  
• Data acquisition systems  
• Instrumentation  
• Process control  
• Energy management  
• Product testing  
• Automotive electronics  
• Precision audio components  
Typical Applications  
VS  
VS  
RS  
VO  
R1  
IQ + IL  
RS  
IL  
VO  
VR  
LM4041  
VO = 1.233 (R2/R1 + 1)  
Adjustable  
R2  
LM4040  
LM4041  
IQ  
Figure 1. LM4040, LM4041 Fixed  
Shunt Regulator Application  
Figure 2. LM4041 Adjustable  
Shunt Regulator Application  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-031805  
March 2005  
1
LM4040/4041  
Micrel, Inc.  
Pin Configuration  
1
2
FB  
+
3 –  
3
Pin 3 must float or be  
connected to pin 2.  
Adjustable Version  
SOT-23 (M3) Package  
Fixed Version  
SOT-23 (M3) Package  
Ordering Information  
Part Number  
Accuracy,  
Standard  
Pb-Free  
Voltage  
Temp. Coefficient  
LM4040CIM3-2.5  
LM4040DIM3-2.5  
LM4040CIM3-4.1  
LM4040DIM3-4.1  
LM4040CIM3-5.0  
LM4040DIM3-5.0  
LM4041CIM3-1.2  
LM4041DIM3-1.2  
LM4041CIM3-ADJ  
LM4041DIM3-ADJ  
LM4040CYM3-2.5  
LM4040DYM3-2.5  
LM4040CYM3-4.1  
LM4040DYM3-4.1  
LM4040CYM3-5.0  
LM4040DYM3-5.0  
LM4041CYM3-1.2  
LM4041DYM3-1.2  
LM4041CYM3-ADJ  
LM4041DYM3-ADJ  
2.500V  
2.500V  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
4.096V  
4.096V  
5.000V  
5.000V  
1.225V  
1.225V  
1.24V to 10V  
1.24V to 10V  
SOT-23 Package Markings  
Example  
Field  
Code  
Example  
_ 2 _  
Field  
Code  
Example  
_ _ C  
Field  
Code  
R _ _  
1st Character R = Reference  
1st Character Y = Pb-Free  
2nd Character 1 = 1.225V  
2 = 2.500V  
3rd Character C = ±0.5%  
D = ±1.0%  
Y _ _  
4 = 4.096V  
5 = 5.000V  
A = Adjustable  
X = ±0.5% Pb-Free  
Y = ±1.0% Pb-Free  
Example: R2C represents Reference, 2.500V,  
±0.5% (LM4040CIM3-2.5)  
Note: If 3rd character is omitted, container will  
indicate tolerance.  
Example: Y1C represents Pb-Free, 1.225V,  
±0.5% (LM4040CYM3-1.2)  
M9999-031805  
2
March 2005  
LM4040/4041  
Micrel, Inc.  
+
+
VREF  
FB  
Functional Diagram  
LM4040, LM4041 Fixed  
Functional Diagram  
LM4041 Adjustable  
Absolute Maximum Ratings  
Operating Ratings (Notes 1 and 2)  
Reverse Current......................................................... 20mA  
Temperature Range  
(T  
≤ T ≤ T  
)............................–40°C ≤ T ≤ +85°C  
Forward Current ......................................................... 10mA  
MIN  
A
MAX A  
Reverse Current  
Maximum Output Voltage  
LM4040-2.5............................................60µA to 15mA  
LM4040-4.1............................................68µA to 15mA  
LM4040-5.0............................................74µA to 15mA  
LM4041-1.2............................................60µA to 12mA  
LM4041-ADJ..........................................60µA to 12mA  
LM4041-Adjustable....................................................15V  
Power Dissipation at T = 25°C (Note 2) ................306mW  
A
Storage Temperature................................ –65°C to +150°C  
Lead Temperature  
Vapor phase (60 seconds)............................... +215°C  
Infrared (15 seconds)....................................... +220°C  
ESD Susceptibility  
Output Voltage Range  
LM4041-ADJ............................................1.24V to 10V  
Human Body Model (Note 3) ............................... 2kV  
Machine Model (Note 3) ....................................200V  
Note 1. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which  
the device is functional, but do not guarantee specific performance limits. For guaranteed specification and test conditions, see the “Electrical  
Characteristics”. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when  
the device is not operated under the listed test conditions.  
Note 2. The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX (maximum junction temperature), θJA  
(junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PD-  
MAX = (TJMAX – TA)/θJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040 and LM4041,  
TJMAX = 125°C, and the typical thermal resistance (θJA), when board mounted, is 326°C/W for the SOT-23 package.  
Note 3. The human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. The machine model is a 200pF capacitor  
discharged directly into each pin.  
March 2005  
3
M9999-031805  
LM4040/4041  
Micrel, Inc.  
LM4040-2.5 Electrical Characteristics (Note 4)  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Break-  
down Voltage tolerance of ±0.5% and ±1.0 respectively.  
LM4040CIM3  
(Note 6)  
LM4040DIM3  
Symbol Parameter  
Conditions  
(Note 5)  
Typical  
Limits  
Units  
Limits  
(Limit)  
(Note 6)  
V
Reverse Breakdown Voltage  
I
I
= 100µA  
= 100µA  
2.500  
45  
V
R
R
Reverse Breakdown Voltage  
Tolerance (Note 7)  
±12  
±29  
±25  
±49  
mV (max)  
mV (max)  
R
I
Minimum Operating Current  
µA  
RMIN  
60  
65  
65  
70  
µA (max)  
µA (max)  
ΔV /ΔT  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
I
I
I
= 10mA  
= 1mA  
= 100µA  
±20  
±15  
±15  
ppm/°C  
ppm/°C (max)  
ppm/°C (max)  
R
R
R
R
±100  
±150  
ΔV /ΔI  
Reverse Breakdown Voltage  
Change with Operating  
Current Change  
I
≤ I 1mA  
0.3  
2.5  
0.3  
mV  
mV (max)  
mV (max)  
R
R
RMIN  
R
0.8  
1.0  
1.0  
1.2  
1mA ≤ I 15mA  
mV  
mV (max)  
mV (max)  
R
6.0  
8.0  
8.0  
10.0  
Z
e
Reverse Dynamic Impedance  
Wideband Noise  
I
I
= 1mA, f = 120Hz  
= 0.1 I  
Ω
R
R
0.9  
1.1  
Ω (max)  
AC  
R
I
= 100µA  
N
R
10Hz ≤ f ≤ 10kHz  
35  
µV  
RMS  
ΔV  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000hrs  
T = 25°C ±0.1°C  
R
120  
ppm  
I
= 100µA  
R
Note 4. Specification for packaged product only.  
Note 5. Typicals are at TJ = 25°C and represent most likely parametric norm.  
Note 6. Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)  
methods.  
Note 7. The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Volt-  
age Tolerance ±[(ΔVR/ΔT)(65°C)(VR)]. ΔVR/ΔT is the VR temperature coefficient, 65°C is the temperature range from –40°C to the reference  
point of 25°C, and VR is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:  
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C  
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C  
Example: The C-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 1.15% = ±29mV.  
M9999-031805  
4
March 2005  
LM4040/4041  
Micrel, Inc.  
LM4040-4.1 Electrical Characteristics (Note 4)  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Break-  
down Voltage tolerance of ±0.5% and ± 1.0% respectively.  
LM4040CIM3  
LM4040DIM3  
Limits  
Symbol Parameter  
Conditions  
Typical  
(Note 5)  
(Note 6)  
Units  
(Limits)  
Limits  
(Note 6)  
V
I
Reverse Breakdown Voltage  
I
I
= 100µA  
= 100µA  
4.096  
V
R
R
Reverse Breakdown Voltage  
Tolerance (Note 7)  
±20  
±47  
±41  
±81  
mV (max)  
mV (max)  
R
Minimum Operating Current  
50  
µA  
RMIN  
68  
73  
73  
78  
µA (max)  
µA (max)  
ΔV /ΔT  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
I
I
I
= 10mA  
= 1mA  
= 100µA  
±30  
±20  
±20  
ppm/°C  
ppm/°C (max)  
ppm/°C (max)  
R
R
R
R
±100  
±150  
ΔV /ΔI  
Reverse Breakdown Voltage  
Change with Operating  
Current Change  
I
≤ I 1mA  
0.5  
3.0  
0.5  
mV  
mV (max)  
mV (max)  
R
R
RMIN  
R
0.9  
1.2  
1.2  
1.5  
1mA ≤ I 15mA  
mV  
mV (max)  
mV (max)  
R
7.0  
10.0  
9.0  
13.0  
Z
e
Reverse Dynamic Impedance  
Wideband Noise  
I
I
= 1mA, f = 120Hz  
= 0.1 I  
Ω
R
R
1.0  
1.3  
Ω (max)  
AC  
R
I
= 100µA  
N
R
10Hz ≤ f ≤ 10kHz  
80  
µV  
RMS  
ΔV  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000hrs  
T = 25°C ±0.1°C  
R
120  
ppm  
I
= 100µA  
R
Note 4. Specification for packaged product only.  
Note 5. Typicals are at TJ = 25°C and represent most likely parametric norm.  
Note 6. Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)  
methods.  
Note 7. The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Volt-  
age Tolerance ±[(ΔVR/ΔT)(65°C)(VR)]. ΔVR/ΔT is the VR temperature coefficient, 65°C is the temperature range from –40°C to the reference  
point of 25°C, and VR is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:  
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C  
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C  
Example: The C-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 1.15% = ±29mV.  
March 2005  
5
M9999-031805  
LM4040/4041  
Micrel, Inc.  
LM4040-5.0 Electrical Characteristics (Note 4)  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Break-  
down Voltage tolerance of ±0.5% and ± 1.0% respectively.  
LM4040CIM3  
LM4040DIM3  
Limits  
Symbol Parameter  
Conditions  
Typical  
(Note 5)  
(Note 6)  
Units  
(Limits)  
Limits  
(Note 6)  
V
Reverse Breakdown Voltage  
I
I
= 100µA  
= 100µA  
5.000  
V
R
R
Reverse Breakdown Voltage  
Tolerance (Note 7)  
±25  
±58  
±50  
±99  
mV (max)  
mV (max)  
R
I
Minimum Operating Current  
54  
µA  
RMIN  
74  
80  
79  
85  
µA (max)  
µA (max)  
ΔV /ΔT  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
I
I
I
= 10mA  
= 1mA  
= 100µA  
±30  
±20  
±20  
ppm/°C  
ppm/°C (max)  
ppm/°C (max)  
R
R
R
R
±100  
±150  
ΔV /ΔI  
Reverse Breakdown Voltage  
Change with Operating  
Current Change  
I
≤ I 1mA  
0.5  
3.5  
0.5  
mV  
mV (max)  
mV (max)  
R
R
RMIN  
R
1.0  
1.4  
1.3  
1.8  
1mA ≤ I 15mA  
mV  
mV (max)  
mV (max)  
R
8.0  
12.0  
10.0  
15.0  
Z
e
Reverse Dynamic Impedance  
Wideband Noise  
I
I
= 1mA, f = 120Hz  
= 0.1 I  
Ω
R
R
1.1  
1.5  
Ω (max)  
AC  
R
I
= 100µA  
N
R
10Hz ≤ f ≤ 10kHz  
80  
µV  
RMS  
ΔV  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000hrs  
T = 25°C ±0.1°C  
R
120  
ppm  
I
= 100µA  
R
Note 4. Specification for packaged product only.  
Note 5. Typicals are at TJ = 25°C and represent most likely parametric norm.  
Note 6. Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)  
methods.  
Note 7. The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Volt-  
age Tolerance ±[(ΔVR/ΔT)(65°C)(VR)]. ΔVR/ΔT is the VR temperature coefficient, 65°C is the temperature range from –40°C to the reference  
point of 25°C, and VR is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:  
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C  
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C  
Example: The C-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 1.15% = ±29mV.  
M9999-031805  
6
March 2005  
LM4040/4041  
Micrel, Inc.  
LM4040 Typical Characteristics  
RS  
VIN  
VR  
LM4040  
1Hz rate  
Test Circuit  
March 2005  
7
M9999-031805  
LM4040/4041  
Micrel, Inc.  
LM4041-1.2 Electrical Characteristics (Note 4)  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Break-  
down Voltage tolerance of ±0.5% and ± 1.0%, respectively.  
LM4041CIM3  
Symbol Parameter  
Conditions  
(Note 5)  
Typical  
Units  
Limits  
(Limit)  
(Note 6)  
V
Reverse Breakdown Voltage  
I
I
= 100µA  
= 100µA  
1.225  
V
R
R
Reverse Breakdown Voltage  
Tolerance (Note 7)  
±6  
±14  
mV (max)  
mV (max)  
R
I
Minimum Operating Current  
45  
µA  
RMIN  
60  
65  
µA (max)  
µA (max)  
ΔV /ΔT  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
I
I
I
= 10mA  
= 1mA  
= 100µA  
±20  
±15  
±15  
ppm/°C  
ppm/°C (max)  
ppm/°C (max)  
R
R
R
R
±100  
ΔV /ΔI  
Reverse Breakdown Voltage  
Change with Operating  
Current Change  
I
≤ I 1mA  
0.7  
4.0  
0.5  
mV  
mV (max)  
mV (max)  
R
R
RMIN  
R
1.5  
2.0  
1mA ≤ I 15mA  
mV  
mV (max)  
mV (max)  
R
6.0  
8.0  
Z
e
Reverse Dynamic Impedance  
Wideband Noise  
I
I
= 1mA, f = 120Hz  
= 0.1 I  
Ω
R
R
1.5  
Ω (max)  
AC  
R
I
= 100µA  
N
R
10Hz ≤ f ≤ 10kHz  
20  
µV  
RMS  
ΔV  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000hrs  
T = 25°C ±0.1°C  
R
120  
ppm  
I
= 100µA  
R
Note 4. Specification for packaged product only.  
Note 5. Typicals are at TJ = 25°C and represent most likely parametric norm.  
Note 6. Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)  
methods.  
Note 7. The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Volt-  
age Tolerance ±[(ΔVR/ΔT)(65°C)(VR)]. ΔVR/ΔT is the VR temperature coefficient, 65°C is the temperature range from –40°C to the reference  
point of 25°C, and VR is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:  
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C  
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C  
Example: The C-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 1.15% = ±29mV.  
M9999-031805  
8
March 2005  
LM4040/4041  
Micrel, Inc.  
LM4041-1.2 Electrical Characteristics (Note 4)  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C. The grades C and D designate initial Reverse Break-  
down Voltage tolerance of ±0.5% and ± 1.0%, respectively.  
LM4041DIM3  
Typical  
Limits  
Units  
Symbol Parameter  
Conditions  
(Note 5)  
(Note 6)  
(Limit)  
V
Reverse Breakdown Voltage  
I
I
= 100µA  
= 100µA  
1.225  
V
R
R
Reverse Breakdown Voltage  
Tolerance (Note 7)  
±12  
±24  
mV (max)  
mV (max)  
R
I
Minimum Operating Current  
45  
µA  
RMIN  
65  
70  
µA (max)  
µA (max)  
ΔV /ΔT  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
I
I
I
= 10mA  
= 1mA  
= 100µA  
±20  
±15  
±15  
ppm/°C  
ppm/°C (max)  
ppm/°C (max)  
R
R
R
R
±150  
ΔV /ΔI  
Reverse Breakdown Voltage  
Change with Operating  
Current Change  
I
≤ I 1mA  
0.7  
2.5  
0.5  
mV  
mV (max)  
mV (max)  
R
R
RMIN  
R
2.0  
2.5  
1mA ≤ I 15mA  
mV  
mV (max)  
mV (max)  
R
8.0  
10.0  
Z
e
Reverse Dynamic Impedance  
Wideband Noise  
I
I
= 1mA, f = 120Hz  
= 0.1 I  
Ω
R
R
2.0  
Ω (max)  
AC  
R
I
= 100µA  
N
R
10Hz ≤ f ≤ 10kHz  
20  
µV  
RMS  
ΔV  
Reverse Breakdown Voltage  
Long Term Stability  
t = 1000hrs  
T = 25°C ±0.1°C  
R
120  
ppm  
I
= 100µA  
R
Note 4. Specification for packaged product only.  
Note 5. Typicals are at TJ = 25°C and represent most likely parametric norm.  
Note 6. Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)  
methods.  
Note 7. The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Volt-  
age Tolerance ±[(ΔVR/ΔT)(65°C)(VR)]. ΔVR/ΔT is the VR temperature coefficient, 65°C is the temperature range from –40°C to the reference  
point of 25°C, and VR is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:  
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C  
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C  
Example: The C-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 1.15% = ±29mV.  
March 2005  
9
M9999-031805  
LM4040/4041  
Micrel, Inc.  
LM4041-Adjustable Electrical Characteristics (Note 4)  
Boldface limits apply for TA = TJ = TMIN to TMAX; all other limits TJ = 25°C unless otherwise specified (SOT-23, see Note 8),  
IRMIN ≤ IR < 12mA, VREF ≤ VOUT ≤ 10V. The grades C and D designate initial Reverse Breakdown Voltage tolerance of ±0.5% and ±1%,  
respectively for VOUT = 5V.  
LM4041CIM3  
LM4041DIM3  
Symbol Parameter  
Conditions  
(Note 5)  
Typical  
Limits  
Units  
Limits  
(Limit)  
(Note 6)  
(Note 6)  
V
Reference Breakdown Voltage  
I
V
= 100µA  
= 5V  
1.233  
V
REF  
R
OUT  
Reference Breakdown Voltage  
Tolerance (Note 9)  
I
= 100µA  
±6.2  
±14  
±12  
±24  
mV (max)  
mV (max)  
R
I
Minimum Operating Current  
45  
µA  
RMIN  
60  
65  
65  
70  
µA (max)  
µA (max)  
ΔV  
Reference Voltage  
Change with Operating  
Current Change  
I
≤ I 1mA  
0.7  
mV  
mV (max)  
mV (max)  
REF  
RMIN  
R
/ΔI  
SOT-23:  
≥ 1.6V  
1.5  
2.0  
2.0  
2.5  
R
V
OUT  
(Note 8)  
1mA ≤ I 15mA  
2
mV  
R
SOT-23:  
4
6
6
8
mV (max)  
mV (max)  
V
≥ 1.6V  
OUT  
(Note 8)  
ΔV  
/ΔV  
Reference Voltage Change  
with Output Voltage Change  
I
= 1mA  
R
–1.55  
60  
mV/V  
mV/V (max)  
mV/V (max)  
REF  
–2.0  
–2.5  
–2.5  
–3.0  
O
I
Feedback Current  
nA  
FB  
100  
120  
150  
200  
nA (max)  
nA (max)  
ΔV  
/ΔT  
Average Reference  
Voltage Temperature  
Coefficient  
V
I
= 5V  
= 10mA  
= 1mA  
REF  
OUT  
±20  
±15  
±15  
ppm/°C  
ppm/°C (max)  
ppm/°C (max)  
R
I
±100  
±150  
R
(Note 9)  
I
= 100µA  
R
Z
Dynamic Output Impedance  
I
I
= 1mA, f = 120Hz  
= 0.1 I  
OUT  
R
AC  
R
V
V
= V  
= 10V  
0.3  
2
Ω
OUT  
OUT  
REF  
Ω (max)  
e
Wideband Noise  
I
= 100µA  
N
R
10Hz ≤ f ≤ 10kHz  
20  
µV  
RMS  
ΔV  
Reference Voltage  
Long Term Stability  
t = 1000hrs  
T = 25°C ±0.1°C  
REF  
120  
ppm  
I
= 100µA  
R
Note 4. Specification for packaged product only.  
Note 5. Typicals are at TJ = 25°C and represent most likely parametric norm.  
Note 6. Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQL)  
methods.  
Note 7. The boldface (over temperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Volt-  
age Tolerance ±[(ΔVR/ΔT)(65°C)(VR)]. ΔVR/ΔT is the VR temperature coefficient, 65°C is the temperature range from –40°C to the reference  
point of 25°C, and VR is the reverse breakdown voltage. The total over temperature tolerance for the different grades follows:  
C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C  
D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C  
Example: The C-grade LM4040-2.5 has an over temperature Reverse Breakdown Voltage tolerance of ±2.5 × 1.15% = ±29mV.  
Note 8. When VOUT ≤ 1.6V, the LM4041-ADJ must operate at reduced IR. This is caused by the series resistance of the die attach between the die (–)  
output and the package (–) output pin. See the Output Saturation curve in the “Typical Performance Characteristics” section.  
Note 9. Reference voltage and temperature coefficient will change with output voltage. See “Typical Performance Characteristics” curves.  
M9999-031805  
10  
March 2005  
LM4040/4041  
Micrel, Inc.  
LM4041 Typical Characteristics  
RS 30k  
VIN  
1Hz rate  
V
R
LM4041-1.2  
Test Circuit  
March 2005  
11  
M9999-031805  
LM4040/4041  
Micrel, Inc.  
LM4041 Typical Characteristics  
IR  
( + )  
FB  
VOUT  
LM4041-ADJ  
( – )  
2V / step  
V
Reverse Characteristics  
Test Circuit  
IR  
+
120k  
FB  
CL  
* Output Impedance vs. Freq.  
Test Circuit  
+ 15V  
5.1k  
( + )  
LM4041-ADJ  
( – )  
INPUT  
100k  
FB  
* Output impedance measurement..  
VOUT  
Reverse characteristics measurement.  
Large signal response measurement.  
Large Signal Response  
Test Circuit  
M9999-031805  
12  
March 2005  
LM4040/4041  
Micrel, Inc.  
Adjustable Regulator  
Applications Information  
The LM4041-ADJ’s output voltage can be adjusted to any  
value in the range of 1.24V through 10V. It is a function of  
The stable operation of the LM4040 and LM4041 references  
requires an external capacitor greater than 10nF connected  
between the (+) and (–) pins. Bypass capacitors with values  
between 100pF and 10nF have been found to cause the  
devices to exhibit instabilities.  
the internal reference voltage (V  
) and the ratio of the ex-  
REF  
ternal feedback resistors as shown in Figure 2. The output  
is found using the equation:  
(1)  
V = V  
[ (R2/R1) + 1 ]  
Schottky Diode  
O
REF  
where V is the desired output voltage. The actual value of  
LM4040-x.x and LM4041-1.2 in the SOT-23 package have  
a parasitic Schottky diode between pin 2 (–) and pin 3 (die  
attach interface connect). Pin 3 of the SOT-23 package must  
float or be connected to pin 2. LM4041-ADJs use pin 3 as  
the (–) output.  
O
the internal V  
is a function of V . The “corrected” V  
O REF  
REF  
is determined by:  
(2)  
where V is the desired output voltage. ΔV  
V
´ = V (ΔV  
/ ΔV ) + V  
REF  
O
REF O Y  
/ΔV is found  
O
REF  
O
Conventional Shunt Regulator  
inthe“ElectricalCharacteristicsandistypically1.3mV/Vand  
V is equal to 1.233V. Replace the value of V in equation  
In a conventional shunt regulator application (see Figure 1),  
Y
REF  
(1) with the value V  
found using equation (2).  
an external series resistor (R ) is connected between the  
REF  
S
supplyvoltageandtheLM4040-x.xorLM4041-1.2reference.  
R determines the current that flows through the load (I )  
Note that actual output voltage can deviate from that pre-  
dicted using the typical ΔV  
/ ΔV in equation (2); for C-  
S
L
REF  
O
and the reference (I ). Since load current and supply volt-  
grade parts, the worst-case ΔV  
/ ΔV is –2.5mV/V and  
Q
REF  
O
age may vary, R should be small enough to supply at least  
V = 1.248V.  
S
Y
the minimum acceptable I to the reference even when the  
Q
The following example shows the difference in output volt-  
age resulting from the typical and worst case values of  
supply voltage is at its minimum and the load current is at  
its maximum value. When the supply voltage is at its maxi-  
mum and I is at its minimum, R should be large enough so  
ΔV  
/ ΔV .  
REF  
O
L
S
Let V = +9V. Using the typical values ofΔV  
/ΔV , V  
O REF  
O
REF  
that the current flowing through the LM4040-x.x is less than  
15mA, and the current flowing through the LM4041-1.2 or  
LM4041-ADJ is less than 12mA.  
is 1.223V. Choosing a value of R1 = 10kΩ, R2 = 63.272kΩ.  
Using the worst case ΔV / ΔV for the C-grade and D-  
REF  
O
grade parts, the output voltage is actually 8.965V and 8.946V  
respectively. This results in possible errors as large as  
0.39% for the C-grade parts and 0.59% for the D-grade parts.  
Once again, resistor values found using the typical value of  
R is determined by the supply voltage (V ), the load and  
S
S
operating current, (I and I ), and the reference’s reverse  
L
Q
breakdown voltage (V ):  
R
R = (V – V ) / (I + I )  
ΔV  
/ ΔV will work in most cases, requiring no further  
s
s
R
L
Q
REF  
O
adjustment.  
Typical Application Circuits  
R1  
R1  
120k  
+
+
λ
FB 120k  
FB  
D1  
LM4041-ADJ  
D1  
LM4041-  
ADJ  
R2  
1M  
R2  
1M  
λ
> –12V  
LED ON  
< –12V  
LED ON  
R3  
200  
R3  
330  
–5V  
–5V  
Figure 3. Voltage Level Detector  
Figure 4. Voltage Level Detector  
March 2005  
13  
M9999-031805  
LM4040/4041  
Micrel, Inc.  
VIN  
R1  
I
VOUT  
D1  
1N914  
R2  
VIN  
R1  
50A  
I
D2  
1N914  
VOUT  
R2  
510k  
D2  
1N457  
LM4041-ADJ  
R3  
240k  
+
+
+
FB  
FB  
FB  
LM4041-ADJ  
LM4041-ADJ  
R4  
240k  
R3  
510k  
D1  
1N457  
Figure 5. Fast Positive Clamp  
Figure 6. Bidirectional Clamp  
±2.4V  
2.4V + V  
D1  
VIN  
VIN  
I
R1  
I
R1  
VOUT  
D2  
1N457  
VOUT  
D2  
R2  
330k  
R2  
390k  
1N457  
+
+
FB  
FB  
LM4041-ADJ  
LM4041-ADJ  
R3  
R3  
1M  
500k  
+
+
FB  
FB  
LM4041-ADJ  
LM4041-ADJ  
R4  
390k  
D1  
1N457  
R4  
330k  
D1  
1N457  
Figure 7. Bidirectional Adjustable Clamp  
±18V to ±2.4V  
Figure 8. Bidirectional Adjustable Clamp  
±2.4 to ±6V  
0 to 20mA  
+ 5V  
R1  
390  
± 2%  
+
1N4002  
D2  
LM4041-ADJ  
FB  
R2  
470k  
D1*  
1
2
3
6
λ
N.C.  
5
4
CMOS  
N.C.  
5A  
4N28  
1.24V  
R1 4N28 GAIN  
ITHRESHOLD  
=
+
= 3.2mA  
* D1 can be any LED, VF = 1.5V to 2.2V at 3mA. D1 may act as an indicator.  
D1 will be on if ITHRESHOLD falls below the threshold current, except with I = O.  
Figure 9. Floating Current Detector  
M9999-031805  
14  
March 2005  
LM4040/4041  
Micrel, Inc.  
+15V  
R1  
+
FB  
LM4041-ADJ  
2N2905  
2N  
3964  
R2  
120k  
1A < IOUT = 100mA  
1.24V  
IOUT  
=
R1  
Figure 10. Current Source  
0 to 20 mA  
+5V  
R1  
332  
±1%  
+
LM4041-ADJ  
FB  
1N914  
D2  
1N4002  
R3  
100k  
2N2222  
R2  
22k  
1
2
3
6
D1*  
5
4
λ
CMOS  
R4  
10M  
N.C.  
= 3.7mA ± 2%  
4N28  
1.24V  
R1  
ITHRESHOLD  
=
* D1 can be any LED, VF = 1.5V to 2.2V at 3mA. D1 may act as an indicator.  
D1 will be on if ITHRESHOLD falls below the threshold current, except with I = O.  
Figure 11. Precision Floating Current Detector  
March 2005  
15  
M9999-031805  
LM4040/4041  
Micrel, Inc.  
Package Information  
SOT-23 (M3)  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2004 Micrel Incorporated  
M9999-031805  
16  
March 2005  

相关型号:

LM4041DIM-ADJX

1-OUTPUT TWO TERM VOLTAGE REFERENCE, PDSO8, PLASTIC, SO-8
TI

LM4041DIM3-1.2

Precision Micropower Shunt Voltage Reference
MICREL

LM4041DIM3-1.2

Precision Micropower Shunt Voltage Reference
NSC

LM4041DIM3-1.2

LM4041-N/LM4041-N-Q1 Precision Micropower Shunt Voltage Reference
TI

LM4041DIM3-1.2

Two Terminal Voltage Reference, 1 Output, 1.225V, BIPolar, PDSO3, SOT-23, 3 PIN
MICROCHIP

LM4041DIM3-1.2+

Two Terminal Voltage Reference, 1 Output, 1.225V, BICMOS, PDSO3, SOT-23, 3 PIN
MAXIM

LM4041DIM3-1.2+T

Improved Precision Micropower Shunt Voltage Reference
MAXIM

LM4041DIM3-1.2-T

Improved Precision Micropower Shunt Voltage Reference
MAXIM

LM4041DIM3-1.2/NOPB

LM4041-N/LM4041-N-Q1 Precision Micropower Shunt Voltage Reference
TI

LM4041DIM3-1.2/T/R

Voltage Reference
ETC

LM4041DIM3-1.2NOPB

LM4041-N/LM4041-N-Q1 Precision Micropower Shunt Voltage Reference
TI

LM4041DIM3-1.2T&R

Two Terminal Voltage Reference, 1 Output, 1.225V, BIPolar, PDSO3, SOT-23, 3 PIN
MICREL