LM4040DYM3-4.1 [MICREL]

Precision Micropower Shunt Voltage Reference;
LM4040DYM3-4.1
型号: LM4040DYM3-4.1
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Precision Micropower Shunt Voltage Reference

文件: 总17页 (文件大小:906K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM4040/LM4041  
Precision Micropower Shunt Voltage  
Reference  
Features  
General Description  
Small SOT-23 package  
No output capacitor required  
Tolerates capacitive loads  
Fixed reverse breakdown voltages of 1.225, 2.500V,  
4.096V, and 5.000V  
Ideal for space critical applications, the LM4040 and  
LM4041 precision voltage references are available in the  
subminiature (3mm × 1.3mm) SOT-23 surface-mount  
package.  
The LM4040 is available in fixed reverse breakdown  
voltages of 2.500V, 4.096V, and 5.000V. The LM4041 is  
available with a fixed 1.225V or an adjustable reverse  
breakdown voltage.  
Adjustable reverse breakdown version  
Contact Micrel for parts with extended temperature  
range.  
The minimum operating current ranges from 60μA for the  
LM4041-1.2 to 74μA for the LM4040-5.0. LM4040 versions  
have a maximum operating current of 15mA. LM4041  
versions have a maximum operating current of 12mA.  
Applications  
Battery-powered equipment  
Data acquisition systems  
Instrumentation  
Process control  
Energy management  
Product testing  
The LM4040 and LM4041 have bandgap reference  
temperature drift curvature correction and low dynamic  
impedance, ensuring stable reverse breakdown voltage  
accuracy over a wide range of operating temperatures and  
currents.  
Automotive electronics  
Precision audio components  
Datasheets and support documentation are available on  
Micrel’s web site at: www.micrel.com.  
Typical Application  
LM4040, LM4041 Fixed Shunt  
Regulator Application  
LM4041 Adjustable Shunt  
Regulator Application  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
Revision 3.0  
June 24, 2014  
Micrel, Inc.  
LM4040/LM4041  
Ordering Information  
Part Number  
Marking  
Y2C  
Voltage  
2.500V  
Accuracy, Temp. Coefficient  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
±0.5%, 100ppm/°C  
±1.0%, 150ppm/°C  
Package  
LM4040CYM3-2.5  
LM4040DYM3-2.5  
LM4040CYM3-4.1  
LM4040DYM3-4.1  
LM4040CYM3-5.0  
LM4040DYM3-5.0  
LM4041CYM3-1.2  
LM4041DYM3-1.2  
LM4041CYM3-ADJ  
LM4041DYM3-ADJ  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
3-Pin SOT-23  
Y2D  
2.500V  
Y4C  
4.096V  
Y4D  
4.096V  
Y5C  
5.000V  
Y5D  
5.000V  
Y1C  
1.225V  
Y1D  
1.225V  
YAC  
YAD  
1.24V to 10V  
1.24V to 10V  
Pin Configuration  
SOT-23 (M3)  
Fixed Version  
SOT-23 (M3)  
Adjustable Version  
Pin Description  
Pin Number  
Fixed  
Pin Number  
Adjustable  
Pin Name  
Pin Function  
Cathode, connect to positive voltage.  
1
-
2
1
3
-
+
FB  
-
Feedback, connect to a resistive divider network to set the output voltage.  
Anode, connect to negative voltage.  
2
3
NC  
Not internally connected. This pin must be left floating or connected to (Pin 2).  
Revision 3.0  
June 24, 2014  
2
Micrel, Inc.  
LM4040/LM4041  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Reverse Current..........................................................20mA  
Forward Current ..........................................................10mA  
Maximum Output Voltage (LM4041-ADJ)......................15V  
Lead Temperature  
Operating Temperature Range (TA)............40°C to +85°C  
Reverse Current  
LM4040-2.5............................................. 60µA to 15mA  
LM4040-4.1............................................. 68µA to 15mA  
LM4040-5.0............................................. 74µA to 15mA  
LM4041-1.2............................................. 60µA to 12mA  
LM4041-ADJ........................................... 60µA to 12mA  
Output Voltage Range  
Vapor phase (60s) ............................................... 215°C  
Infrared (15s) ....................................................... 220°C  
Power Dissipation (TA = 25°C)(3) ..............................306mW  
Storage Temperature (Ts).........................65°C to +150°C  
ESD Susceptibility  
LM4041-ADJ............................................. 1.24V to 10V  
Thermal Resistance  
Human Body Model(4) ..............................................2kV  
Machine Model(4)....................................................200V  
3-Pin SOT-23 (ΘJA)..........................................326°C/W  
LM4040-2.5 Electrical Characteristics(5)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4040C  
Reverse Breakdown Voltage  
2.500  
V
mV  
VR  
IR = 100µA  
±12  
±29  
60  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
45  
µA  
IRMIN  
Minimum Operating Current  
65  
µA  
IR = 10mA  
IR = 1mA  
±20  
±15  
±15  
0.3  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±100  
ΔVR/ΔT  
IR = 100µA  
0.8  
1.0  
6.0  
8.0  
0.9  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
2.5  
mV  
1mA IR 15mA  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.3  
35  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
Notes:  
1. Exceeding the absolute maximum ratings may damage the device.  
2. The device is not guaranteed to function outside its operating ratings.  
3. The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX (maximum junction temperature), ƟJA (junction  
to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDMAX = (TJMAX  
TA)/ ƟJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040 and LM4041, TJMAX = 125°C and the typical  
thermal resistance, when board-mounted, is 326°C/W for the SOT-23 package.  
4. Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5kin series with 100pF. The machine model is a  
200pF capacitor discharged directly into each pin.  
5. Specification for packaged product only.  
6. The boldface (overtemperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage  
Tolerance ±[(ΔVR/ΔT)(65°C)(VR)]. ΔVR/ΔT is the VR temperature coefficient, 65°C is the temperature range from 40°C to the reference point of  
25°C, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades follows:  
a. C-grade: ±1.15% = ±0.5% ±100ppm/°C × 65°C  
b. D-grade: ±1.98% = ±1.0% ±150ppm/°C × 65°C  
Example: The C-grade LM4040-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 × 1.15% = ±29mV.  
Revision 3.0  
June 24, 2014  
3
 
 
 
 
 
 
Micrel, Inc.  
LM4040/LM4041  
LM4040-2.5 Electrical Characteristics(5) (Continued)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4040D  
Reverse Breakdown Voltage  
2.500  
V
mV  
VR  
IR = 100µA  
±25  
±49  
65  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
45  
µA  
IRMIN  
Minimum Operating Current  
70  
µA  
IR = 10mA  
IR = 1mA  
±20  
±15  
±15  
0.3  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±150  
ΔVR/ΔT  
IR = 100µA  
1.0  
1.2  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
2.5  
8.0  
mV  
1mA IR 15mA  
10.0  
1.1  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.3  
35  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
LM4040-4.1 Electrical Characteristics(5)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4040C  
Reverse Breakdown Voltage  
4.096  
V
mV  
VR  
IR = 100µA  
±20  
±47  
68  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
50  
µA  
IRMIN  
Minimum Operating Current  
73  
µA  
IR = 10mA  
IR = 1mA  
±30  
±20  
±20  
0.5  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±100  
ΔVR/ΔT  
IR = 100µA  
0.9  
1.2  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
3.0  
7.0  
mV  
1mA IR 15mA  
10.0  
1.0  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.5  
80  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
Revision 3.0  
June 24, 2014  
4
Micrel, Inc.  
LM4040/LM4041  
LM4040-4.1 Electrical Characteristics(5) (Continued)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4040D  
Reverse Breakdown Voltage  
4.096  
V
mV  
VR  
IR = 100µA  
±41  
±81  
73  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
50  
µA  
IRMIN  
Minimum Operating Current  
78  
µA  
IR = 10mA  
IR = 1mA  
±30  
±20  
±20  
0.5  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±150  
ΔVR/ΔT  
IR = 100µA  
1.2  
1.5  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
3.0  
9.0  
mV  
1mA IR 15mA  
13.0  
1.3  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.5  
80  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
LM4040-5.0 Electrical Characteristics(5)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4040C  
Reverse Breakdown Voltage  
5.000  
V
mV  
VR  
IR = 100µA  
±25  
±58  
74  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
54  
µA  
IRMIN  
Minimum Operating Current  
80  
µA  
IR = 10mA  
IR = 1mA  
±30  
±20  
±20  
0.5  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±100  
ΔVR/ΔT  
IR = 100µA  
1.0  
1.4  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
3.5  
8.0  
mV  
1mA IR 15mA  
12.0  
1.1  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.5  
80  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
Revision 3.0  
June 24, 2014  
5
Micrel, Inc.  
LM4040/LM4041  
LM4040-5.0 Electrical Characteristics(5) (Continued)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4040D  
Reverse Breakdown Voltage  
5.000  
V
mV  
VR  
IR = 100µA  
±50  
±99  
79  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
54  
µA  
IRMIN  
Minimum Operating Current  
85  
µA  
IR = 10mA  
IR = 1mA  
±30  
±20  
±20  
0.5  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±150  
ΔVR/ΔT  
IR = 100µA  
1.3  
1.8  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
3.5  
10.0  
15.0  
1.5  
mV  
1mA IR 15mA  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.5  
80  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
LM4041-1.2 Electrical Characteristics(5)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4041C  
Reverse Breakdown Voltage  
1.225  
V
mV  
VR  
IR = 100µA  
±6  
±14  
60  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
45  
µA  
IRMIN  
Minimum Operating Current  
65  
µA  
IR = 10mA  
IR = 1mA  
±20  
±15  
±15  
0.7  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±100  
ΔVR/ΔT  
IR = 100µA  
1.5  
2.0  
6.0  
8.0  
1.5  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
4.0  
mV  
1mA IR 15mA  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.5  
20  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
Revision 3.0  
June 24, 2014  
6
Micrel, Inc.  
LM4040/LM4041  
LM4041-1.2 Electrical Characteristics(5) (Continued)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4041D  
Reverse Breakdown Voltage  
1.225  
V
mV  
VR  
IR = 100µA  
±12  
±24  
65  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
45  
µA  
IRMIN  
Minimum Operating Current  
70  
µA  
IR = 10mA  
IR = 1mA  
±20  
±15  
±15  
0.7  
ppm/°C  
ppm/°C  
ppm/°C  
mV  
Average Reverse Breakdown  
Voltage Temperature  
Coefficient  
±150  
ΔVR/ΔT  
IR = 100µA  
2.0  
2.5  
IRMIN IR 1mA  
Reverse Breakdown Voltage  
Change with Operating Current  
Change  
mV  
ΔVR/ΔIR  
2.5  
8.0  
mV  
1mA IR 15mA  
10.0  
2.0  
mV  
ZR  
eN  
Reverse Dynamic Impedance  
Wideband Noise  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
0.5  
20  
IR = 100µA, 10Hz f 10kHz  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs., T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
Revision 3.0  
June 24, 2014  
7
Micrel, Inc.  
LM4040/LM4041  
LM4041-ADJ Electrical Characteristics(5)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4041C  
Reverse Breakdown Voltage  
IR = 100µA, VOUT = 5V  
IR = 100µA  
1.233  
V
mV  
VR  
±6.2  
±14  
60  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
45  
0.7  
µA  
IRMIN  
Minimum Operating Current  
65  
µA  
1.5  
2.0  
4.0  
6.0  
-2.0  
-2.5  
100  
120  
mV  
IRMIN IR 1mA, VOUT 1.6V(7)  
1mA IR 15mA, VOUT 1.6V(7)  
IR = 1mA  
mV  
ΔVREF  
ΔIR  
/
/
Reference Voltage Change with  
Operating Current  
2.0  
mV  
mV  
-1.55  
60  
mV/V  
mV/V  
nA  
ΔVREF  
Reference Voltage Change with  
Output Voltage Change  
ΔVO  
IFB  
Feedback Current  
nA  
VOUT = 5V, IR = 10mA  
VOUT = 5V, IR = 1mA  
VOUT = 5V, IR = 100µA  
±20  
±15  
±15  
ppm/°C  
ppm/°C  
ppm/°C  
Average Reference Voltage  
Temperature Coefficient  
±100  
ΔVREF/ΔT  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
VOUT = VREF  
0.3  
ZOUT  
Dynamic Output Impedance  
Wideband Noise  
VOUT = 10V  
2.0  
eN  
IR = 100µA, 10Hz f 10kHz  
20  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs, T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
Note:  
7. When VOUT ≤ 1.6V, the LM4041-ADJ must operate at reduced IR. This is caused by the series resistance of the die attach between the die (-) output  
and the package (-) output pin. See the Output Saturation curve in the “Typical Performance Characteristics” section.  
Revision 3.0  
June 24, 2014  
8
 
Micrel, Inc.  
LM4040/LM4041  
LM4041-ADJ Electrical Characteristics(5)  
TA = Operating Temperature Range, bold values indicate TA = TJ = 40°C to +85°C, unless noted.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
LM4041D  
Reverse Breakdown Voltage  
IR = 100µA, VOUT = 5V  
IR = 100µA  
1.233  
V
mV  
VR  
±12  
±24  
65  
Reverse Breakdown Voltage  
Tolerance(6)  
mV  
45  
0.7  
µA  
IRMIN  
Minimum Operating Current  
70  
µA  
2.0  
2.5  
6.0  
8.0  
-2.5  
-3.0  
150  
200  
mV  
IRMIN IR 1mA, VOUT 1.6V(7)  
1mA IR 15mA, VOUT 1.6V(7)  
IR = 1mA  
mV  
ΔVREF  
ΔIR  
/
/
Reference Voltage Change with  
Operating Current  
2.0  
mV  
mV  
-1.55  
60  
mV/V  
mV/V  
nA  
ΔVREF  
Reference Voltage Change with  
Output Voltage Change  
ΔVO  
IFB  
Feedback Current  
nA  
VOUT = 5V, IR = 10mA  
VOUT = 5V, IR = 1mA  
VOUT = 5V, IR = 100µA  
±20  
±15  
±15  
ppm/°C  
ppm/°C  
ppm/°C  
Average Reference Voltage  
Temperature Coefficient  
±150  
ΔVREF/ΔT  
IR = 1mA, f = 120Hz, IAC = 0.1IR  
VOUT = VREF  
0.3  
ZOUT  
Dynamic Output Impedance  
Wideband Noise  
VOUT = 10V  
2.0  
eN  
IR = 100µA, 10Hz f 10kHz  
20  
µVRMS  
Reverse Breakdown Voltage  
Long Term Stability  
ΔVR  
t = 1000hrs, T = 25°C ±0.1°C, IR = 100µA  
120  
ppm  
Revision 3.0  
June 24, 2014  
9
Micrel, Inc.  
LM4040/LM4041  
Test Circuit  
LM4040  
LM4041  
Reverse Characteristics Test Circuit  
Output Impedance vs. Frequency Test Circuit  
Large Signal Response Test Circuit  
Revision 3.0  
June 24, 2014  
10  
Micrel, Inc.  
LM4040/LM4041  
LM4040 Typical Characteristics  
Revision 3.0  
June 24, 2014  
11  
Micrel, Inc.  
LM4040/LM4041  
LM4041 Typical Characteristics  
Revision 3.0  
June 24, 2014  
12  
Micrel, Inc.  
LM4040/LM4041  
Functional Diagrams  
LM4040, LM4041 Fixed  
LM4041 Adjustable  
Revision 3.0  
June 24, 2014  
13  
Micrel, Inc.  
LM4040/LM4041  
Adjustable Regulator  
Applications Information  
The LM4041-ADJ’s output voltage can be adjusted to any  
value in the range of 1.24V through 10V. It is a function of  
the internal reference voltage (VREF) and the ratio of the  
external feedback resistors as shown in Figure 2. The  
output is found using the following equation:  
The stable operation of the LM4040 and LM4041  
references requires an external capacitor greater than  
10nF connected between the (+) and () pins. Bypass  
capacitors with values between 100pF and 10nF have  
been found to cause the devices to exhibit instabilities.  
Schottky Diode  
VO = VREF [(R2/R1) + 1]  
Eq. 2  
LM4040-x.x and LM4041-1.2 in the SOT-23 package  
have a parasitic Schottky diode between pin 2 () and pin  
3 (die attach interface connect). Pin 3 of the SOT-23  
package must float or be connected to pin 2. The  
LM4041-ADJs use pin 3 as the () output.  
where VO is the desired output voltage. The actual value  
of the internal VREF is a function of VO. The corrected VREF  
is determined by:  
Conventional Shunt Regulator  
In a conventional shunt regulator application (see Figure  
1), an external series resistor (RS) is connected between  
the supply voltage and the LM4040-x.x or LM4041-1.2  
reference. RS determines the current that flows through  
the load (IL) and the reference (IQ). Because load current  
and supply voltage may vary, RS should be small enough  
to supply at least the minimum acceptable IQ to the  
reference even when the supply voltage is at its minimum  
and the load current is at its maximum value. When the  
supply voltage is at its maximum and IL is at its minimum,  
RS should be large enough so that the current flowing  
through the LM4040-x.x is less than 15mA, and the  
current flowing through the LM4041-1.2 or LM4041-ADJ  
is less than 12mA.  
VREF = VO (ΔVREF/ΔVO) + VY  
Eq. 3  
where VO is the desired output voltage. ΔVREF/ΔVO is  
found in the Electrical Characteristics section and is  
typically 1.3mV/V and VY is equal to 1.233V. Replace  
the value of VREF in Equation 2 with the value VREF found  
using Equation 3.  
Note that actual output voltage can deviate from that  
predicted using the typical ΔVREF/ΔVO in Equation 3; for  
C-grade parts, the worst-case ΔVREF/ΔVO is 2.5mV/V  
and VY = 1.248V.  
The following example shows the difference in output  
voltage resulting from the typical and worst case values  
of ΔVREF/ΔVO.  
RS is determined by the supply voltage (VS), the load and  
operating current, (IL and IQ), and the reference’s reverse  
breakdown voltage (VR):  
Let VO = +9V. Using the typical values of ΔVREF/ΔVO, VREF  
is 1.223V. Choosing a value of R1 = 10kΩ, R2 =  
63.272kΩ. Using the worst case ΔVREF/ΔVO for the C-  
grade and D-grade parts, the output voltage is actually  
8.965V and 8.946V respectively. This results in possible  
errors as large as 0.39% for the C-grade parts and 0.59%  
for the D-grade parts. Once again, resistor values found  
using the typical value of ΔVREF/ΔVO will work in most  
cases, requiring no further adjustment.  
RS = (VS VR) / (IL + IQ)  
Eq. 1  
Revision 3.0  
June 24, 2014  
14  
Micrel, Inc.  
LM4040/LM4041  
Typical Application Circuits  
Figure 1. Voltage Level Detector  
Figure 2. Voltage Level Detector  
Figure 3. Fast Positive Clamp  
Figure 4. Bidirectional Clamp  
±2.4V  
2.4V + ΔVD1  
Figure 5. Bidirectional Adjustable Clamp  
±18V to ±2.4V  
Figure 6. Bidirectional Adjustable Clamp  
±2.4V to ±6V  
Revision 3.0  
June 24, 2014  
15  
Micrel, Inc.  
LM4040/LM4041  
Typical Application Circuits (Continued)  
Figure 7. Floating Current Detector  
Figure 8. Current Source  
Figure 9. Precision Floating Current Detector  
Revision 3.0  
June 24, 2014  
16  
Micrel, Inc.  
LM4040/LM4041  
Package Information(8)  
3-Pin SOT-23 (M3)  
Note:  
8. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical  
implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2014 Micrel, Incorporated.  
Revision 3.0  
June 24, 2014  
17  
 

相关型号:

LM4040DYM3-4.1-TR

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 4.096V, PDSO3
MICROCHIP

LM4040DYM3-4.1TR

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 4.096V, PDSO3, LEAD FREE, SOT-23, 3 PIN
MICROCHIP

LM4040DYM3-5.0

Precision Micropower Shunt Voltage Reference
MICREL

LM4040E

Precision Micro-Power Shunt Voltage References
ONSEMI

LM4040EE2.5MDA

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.5V, UUC, DIE
NSC

LM4040EEM3-2.0

Precision Micropower Shunt Voltage Reference
NSC

LM4040EEM3-2.0

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.048V, PDSO3, PLASTIC, TO-236AB, SOT-23, 3 PIN
TI

LM4040EEM3-2.0/NOPB

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.048V, PDSO3, PLASTIC, TO-236AB, SOT-23, 3 PIN
TI

LM4040EEM3-2.5

Precision Micropower Shunt Voltage Reference
NSC

LM4040EEM3-2.5/NOPB

LM4040-N/LM4040Q-N Precision Micropower Shunt Voltage Reference
TI

LM4040EEM3-2.5X

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.5V, PDSO3, PLASTIC, TO-236AB, SOT-23, 3 PIN
TI

LM4040EEM3-3.0

Precision Micropower Shunt Voltage Reference
NSC