MX7575KCWN [MAXIM]

CMOS, uP-Compatible, 5レs/10レs, 8-Bit ADCs; CMOS ,最高兼容,レ5秒/ 10レS, 8位ADC
MX7575KCWN
型号: MX7575KCWN
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

CMOS, uP-Compatible, 5レs/10レs, 8-Bit ADCs
CMOS ,最高兼容,レ5秒/ 10レS, 8位ADC

文件: 总12页 (文件大小:106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0876; Rev 1; 5/96  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
/MX576  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Maxims MX7575/MX7576 are high-speed (5µs/10µs),  
microprocessor (µP) compatible, 8-bit analog-to-digital  
converters (ADCs). The MX7575 provides an on-chip  
track/hold function that allows full-scale signals up to  
50kHz (386mV/µs slew rate) to be acquired and digi-  
tized accurately. Both ADCs use a successive-approxi-  
mation technique to achieve their fast conversions and  
low power dissipation. The MX7575/MX7576 operate  
with a +5V supply and a 1.23V external reference. They  
Fast Conversion Time: 5µs (MX7575)  
10µs (MX7576)  
Built-In Track/Hold Function (MX7575)  
Low Total Unadjusted Error (±1LSB max)  
50kHz Full-Power Signal Bandwidth (MX7575)  
Single +5V Supply Operation  
8-Bit µP Interface  
accept input voltages ranging from 0V to 2V  
.
REF  
100ns Data-Access Time  
The MX7575/MX7576 are easily interfaced to all popu-  
lar 8-bit µPs through standard CS and RD control sig-  
nals. These signals control conversion start and data  
access. A BUSY signal indicates the beginning and  
end of a conversion. Since all the data outputs are  
latched and three-state buffered, the MX7575/MX7576  
can be directly tied to a µP data bus or system l/O port.  
Low Power: 15mW  
Small-Footprint Packages  
______________Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
Maxim also makes the MAX165, a plug-in replacement  
for the MX7575 with an internal 1.23V reference. For  
applications that require a differential analog input and  
an internal reference, the MAX166 is recommended.  
MX7575JN  
MX7575KN  
MX7575JCWN  
MX7575KCWN  
MX7575JP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-25°C to +85°C  
-25°C to +85°C  
18 Plastic DIP  
18 Plastic DIP  
18 Wide SO  
18 Wide SO  
20 PLCC  
±1  
±1/2  
±1  
±1/2  
±1  
________________________Ap p lic a t io n s  
Digital Signal Processing  
High-Speed Data Acquisition  
Telecommunications  
MX7575KP  
MX7575J/D  
MX7575AQ  
MX7575BQ  
20 PLCC  
±1/2  
±1  
Dice*  
18 CERDIP**  
18 CERDIP**  
±1  
±1/2  
Audio Systems  
Ordering Information continued at end of data sheet.  
Contact factory for dice specifications.  
** Contact factory for availability.  
High-Speed Servo Loops  
Low-Power Data Loggers  
*
_________________P in Co n fig u ra t io n s  
_______________Fu n c t io n a l Dia g ra m s  
V
DD  
TOP VIEW  
18  
1
2
3
4
5
6
7
8
9
CS  
RD  
V
DD  
18  
MX7575  
16  
TRACK/  
HOLD  
17 REF  
16 AIN  
AIN  
COMP  
MX7575  
MX7576  
TP (MODE)  
BUSY  
CLK  
15  
17  
AGND  
REF  
15  
14  
13  
12  
11  
10  
AGND  
D0 (LSB)  
D1  
DAC  
SAR  
CLOCK  
OSCILLATOR  
5
CLK  
D7 (MSB)  
D6  
D2  
6
1
2
3
CS  
RD  
TP  
D7  
.
LATCH AND  
THREE-STATE  
OUTPUT DRIVERS  
D5  
D3  
CONTROL  
LOGIC  
.
D0  
DGND  
D4  
14  
4
9
DIP/SO  
( ) ARE FOR MX7576 ONLY.  
BUSY  
DGND  
Pin Configurations continued at end of data sheet.  
Functional Diagrams continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to AGND...............................................................-0.3V, +7V  
Continuous Power Dissipation (T = +70°C)  
A
V
to DGND ..............................................................-0.3V, +7V  
Plastic DIP (derate 11.11mW/°C above +70°C) ...............889mW  
Wide SO (derate 9.52mW/°C above +70°C)..................762mW  
CERDIP (derate 10.53mW/°C above +70°C).................842mW  
PLCC (derate 10.00mW/°C above +70°C) ....................800mW  
Operating Temperature Ranges  
DD  
AGND to DGND...............................................-0.3V, V + 0.3V  
Digital Input Voltage to DGND  
(CS, RD, TP, MODE)......................................-0.3V, V + 0.3V  
Digital Output Voltage to DGND  
DD  
DD  
(BUSY, D0–D7) ..............................................-0.3V, V + 0.3V  
MX757_J/K............................................................0°C to +70°C  
MX757_A/B ........................................................-25°C to +85°C  
MX757_JE/KE ....................................................-40°C to +85°C  
MX757_S/T.......................................................-55°C to +125°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering,10sec) ..............................+300°C  
DD  
CLK Input Voltage to DGND............................-0.3V, V + 0.3V  
DD  
REF to AGND...................................................-0.3V, V + 0.3V  
DD  
AIN to AGND....................................................-0.3V, V + 0.3V  
DD  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
/MX576  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V; V  
= 1.23V; AGND = DGND = 0V; f  
= 4MHz e xte rna l for MX7575; f  
= 2MHz e xte rna l for MX7576;  
DD  
REF  
CLK  
CLK  
T
A
= T  
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
8
Bits  
MX757_K/B/T  
MX757_J/A/S  
MX757_K/B/T  
MX757_J/A/S  
±1  
±2  
Total Unadjusted Error  
Relative Accuracy  
TUE  
INL  
LSB  
±1/2  
±1  
LSB  
No-Missing-Codes Resolution  
Full-Scale Error  
8
Bits  
LSB  
±1  
Full-Scale Tempco  
Offset Error (Note 1)  
Offset Tempco  
±5  
±5  
ppm/°C  
LSB  
±1/2  
ppm/°C  
ANALOG INPUT  
Voltage Range  
1LSB = 2V /256  
REF  
0
2V  
V
M  
V/µs  
dB  
REF  
DC Input Impedance  
Slew Rate, Tracking  
Signal-to-Noise Ratio (Note 2)  
REFERENCE INPUT  
Reference Voltage  
10  
MX7575  
0.386  
SNR  
MX7575, V = 2.46V at 10kHz, Figure 13  
45  
IN  
p-p  
V
REF  
±5% variation for specified performance  
1.23  
V
Reference Current  
I
500  
0.8  
µA  
REF  
LOGIC INPUTS CS, RD, MODE  
Input Low Voltage  
V
V
V
INL  
Input High Voltage  
V
2.4  
INH  
T
= +25°C  
±1  
±10  
10  
A
Input Current  
I
V
IN  
= 0V or V  
DD  
µA  
pF  
IN  
T
A
= T to T  
MIN MAX  
Input Capacitance (Note 2)  
C
IN  
2
_______________________________________________________________________________________  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
/MX576  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V; V  
= 1.23V; AGND = DGND = 0V; f  
= 4MHz e xte rna l for MX7575; f  
= 2MHz e xte rna l for MX7576;  
DD  
REF  
CLK  
CLK  
T
A
= T  
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK  
Input Low Voltage  
Input High Voltage  
V
0.8  
V
V
INL  
V
INH  
2.4  
MX757_J/A/K/B  
MX757_S/T  
700  
800  
700  
800  
Input Low Current  
Input High Current  
I
V
= 0V  
µA  
µA  
INL  
IN  
MX757_J/A/K/B  
MX757_S/T  
I
V
= V  
INH  
IN DD  
LOGIC OUTPUTS (D0–D7, BUSY)  
Output Low Voltage  
V
I
= 1.6mA  
0.4  
V
V
OL  
SINK  
Output High Voltage  
V
OH  
I
= 40µA  
4.0  
SOURCE  
T
= +25°C  
±1  
A
Floating State Leakage Current  
V
= 0V to V , D0–D7  
µA  
pF  
OUT  
DD  
T
A
= T  
to T  
MAX  
±10  
MIN  
Floating State Output  
Capacitance (Note 2)  
D0–D7  
10  
CONVERSION TIME (Note 3)  
MX7575: f  
MX7576: f  
= 4MHz  
= 2MHz  
5
Conversion Time with  
External Clock  
CLK  
µs  
µs  
10  
CLK  
Using recommended  
clock components:  
MX7575  
MX7576  
5
15  
30  
Conversion Time with  
Internal Clock  
R
C
= 100k,  
= 100pF;  
CLK  
CLK  
10  
T
A
= +25°C  
POWER REQUIREMENTS (Note 4)  
Supply Voltage  
V
±5% for specified performance  
MX757_J/A/K/B  
5
3
V
DD  
6
7
Supply Current  
I
DD  
mA  
MX757_S/T  
Power Dissipation  
15  
mW  
LSB  
Power-Supply Rejection  
4.75V < V < 5.25V  
±1/4  
DD  
Note 1: Offset Error is measured with respect to an ideal first-code transition that occurs at 1/2LSB.  
Note 2: Sample tested at +25°C to ensure compliance.  
Note 3: Accuracy may degrade at conversion times other than those specified.  
Note 4: Power-supply current is measured when MX7575/MX7576 are inactive, i.e.:  
For MX7575 CS = RD = BUSY = high;  
For MX7576 CS = RD = BUSY = MODE = high.  
_______________________________________________________________________________________  
3
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
TIMING CHARACTERISTICS (Note 5)  
(V = +5V, V  
= 1.23V, AGND = DGND = 0V.)  
DD  
REF  
T
A
= +25°C  
ALL  
T
= T  
to T  
MIN MAX  
A
PARAMETER  
SYMBOL CONDITIONS  
J/K/A/B  
S/T  
UNITS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
t
t
t
t
t
t
t
t
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS to RD Setup Time  
RD to BUSY Propagation Time  
Data-Access Time after RD  
RD Pulse Width  
1
2
3
4
5
6
7
8
100  
100  
100  
100  
120  
120  
(Note 6)  
100  
0
100  
0
120  
0
CS to RD Hold Time  
(Note 6)  
(Note 7)  
80  
80  
80  
80  
100  
100  
Data-Access Time after BUSY  
Data-Hold Time  
10  
0
10  
0
10  
0
/MX576  
BUSY to CS Delay  
Note 5: Timing specifications are sample tested at +25°C to ensure compliance. All input control signals are specified with  
t = t = 20ns (10% to 90% of +5V) and timed from a voltage level of 1.6V.  
r
f
Note 6: t and t are measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8V or 2.4V.  
3
6
Note 7: t is defined as the time required for the data lines to change 0.5V when loaded with the circuits of Figure 2.  
7
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
DIP/SO  
PLCC  
1
2
CS  
RD  
Chip Select Input. CS must be low for the device to be selected or to recognize the RD input.  
Read Input. RD must be low to access data. RD is also used to start conversions. See the  
Microprocessor Interface section.  
2
3
4
3
4
5
TP  
(MX7575)  
Test Point. Connect to V  
.
DD  
MODE  
Mode Input. MODE = low puts the ADC into its asynchronous conversion mode. MODE has to be  
(MX7576) tied high for the synchronous conversion mode and the ROM interface mode.  
BUSY Output. BUSY going low indicates the start of a conversion. BUSY going high indicates the  
end of a conversion.  
BUSY  
5
6
6
7
CLK  
D7  
External Clock Input/Internal Oscillator Pin for frequency setting RC components.  
Three-State Data Output, bit 7 (MSB)  
Three-State Data Outputs, bits 6 and 5  
Digital Ground  
7, 8  
9
8, 9  
10  
D6, D5  
DGND  
D4–D1  
D0  
10–13  
14  
12–15  
16  
Three-State Data Outputs, bits 4–1  
Three-State Data Output, bit 0 (LSB)  
Analog Ground  
15  
17  
AGND  
AIN  
16  
18  
Analog Input. 0V to 2V  
input range.  
REF  
17  
19  
REF  
Reference Input. +1.23V nominal.  
Power-Supply Voltage. +5V nominal.  
No Connect  
18  
20  
V
DD  
1, 11  
N.C.  
4
_______________________________________________________________________________________  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
/MX576  
+5V  
+5V  
3k  
3k  
D_  
D_  
D_  
D_  
3k  
100pF  
100pF  
3k  
10pF  
10pF  
DGND  
DGND  
b) HIGH-Z TO V  
DGND  
a) V TO HIGH-Z  
DGND  
b) V TO HIGH-Z  
a) HIGH-Z TO V  
OH  
OL  
OH  
OL  
NOTE: D_ REPRESENTS ANY OF THE DATA OUTPUTS  
NOTE: D_ REPRESENTS ANY OF THE DATA OUTPUTS  
Figure 2. Load Circuits for Data-Hold Time Test  
Figure 1. Load Circuits for Data-Access Time Test  
are performed. In the slow-memory interface mode, CS  
and RD are taken low to start a conversion and they  
remain low until the conversion ends, at which time the  
conversion result is latched. This mode is designed for  
µPs that can be forced into a wait state. In the ROM  
interface mode, however, the µP is not forced into a wait  
state. A conversion is started by taking CS and RD low,  
and data from the previous conversion is read. At the  
end of the most recent conversion, the µP executes a  
read instruction and starts another conversion.  
_______________De t a ile d De s c rip t io n  
Co n ve rt e r Op e ra t io n  
The MX7575 and MX7576 use the successive-approxi-  
mation technique to convert an unknown analog input  
voltage to an 8-bit digital output code (see Functional  
Diagrams). The MX7575 samples the input voltage on  
an internal capacitor once (at the beginning of the con-  
version), while the MX7576 samples the input signal  
e ig ht time s d uring the c onve rs ion (s e e MX7575  
Track/Hold and MX7576 Analog Input sections). The  
internal DAC is initially set to half scale, and the com-  
parator determines whether the input signal is larger  
than or smaller than half scale. If it is larger than half  
scale, the DAC MSB is kept. But if it is smaller, the MSB  
is dropped. At the end of each comparison phase, the  
SAR (successive-approximation register) stores the  
results of the previous decision and determines the  
next trial bit. This information is then loaded into the  
DAC after each decision. As the conversion proceeds,  
the analog input is approximated more closely by com-  
paring it to the combination of the previous DAC bits  
and a new DAC trial bit. After eight comparison cycles,  
the eight bits stored in the SAR are latched into the out-  
put latches. At the end of the conversion, the BUSY sig-  
nal goes high, and the data in the output latches is  
ready for microprocessor (µP) access. Furthermore, the  
DAC is reset to half scale in preparation for the next  
conversion.  
For the MX7575, TP should be hard-wired to V  
to  
DD  
ensure proper operation of the device. Spurious signals  
may occur on TP, or excessive currents may be drawn  
from V if TP is left open or tied to a voltage other than  
DD  
V
DD  
.
Slow-Memory Mode  
Figure 3 shows the timing diagram for slow-memory  
interface mode. This is used with µPs that have a wait-  
state capability of at least 10µs (such as the 8085A),  
where a read instruction is extended to accommodate  
slow-memory devices. A conversion is started by exe-  
cuting a memory read to the device (taking CS and RD  
low). The BUSY signal (which is connected to the µP  
READY input) then goes low and forces the µP into a  
wait state. The MX7575 track/hold, which had been  
tracking the analog input signal, holds the signal on the  
third falling clock edge after RD goes low (Figure 12).  
The MX7576, however, samples the analog input eight  
times during a conversion (once before each compara-  
tor d e c is ion). At the e nd of the c onve rs ion, BUSY  
returns high, the output latches and buffers are updat-  
ed with the new conversion result, and the µP com-  
pletes the memory read by acquiring this new data.  
Mic ro p ro c e s s o r In t e rfa c e  
The CS and RD logic inputs are used to initiate conver-  
sions and to access data from the devices. The MX7575  
and MX7576 have two common interface modes: slow-  
memory interface mode and ROM interface mode. In  
addition, the MX7576 has an asynchronous conversion  
mode (MODE pin = low) where continuous conversions  
The fa s t c onve rs ion time of the MX7575/MX7576  
ensures that the µP is not forced into a wait state for an  
excessive amount of time. Faster versions of many µPs,  
_______________________________________________________________________________________  
5
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
CS  
RD  
CS  
t
5
t
1
t
1
t
5
RD  
t
4
t
2
t
8
t
2
t
CONV  
BUSY  
DATA  
BUSY  
DATA  
t
t
6
t
7
t
3
t
3
t
t
7
7
3
HIGH-  
HIGH-  
IMPEDANCE  
BUS  
HIGH-  
IMPEDANCE  
BUS  
HIGH-  
IMPEDANCE  
BUS  
NEW  
DATA  
OLD  
DATA  
NEW  
DATA  
OLD DATA  
IMPEDANCE  
BUS  
HIGH-IMPEDANCE BUS  
Figure 5. ROM Interface Timing Diagram  
Figure 3. Slow-Memory Interface Timing Diagram  
A8A15  
8085A-2  
ADDRESS BUS  
A0A15  
ADDRESS BUS  
ADDRESS  
+5V  
+5V  
TP/MODE  
CS  
TP/MODE  
6502-6809  
R/W  
/MX576  
ADDRESS  
DECODE  
MX7575*  
CS  
EN  
MX7575*  
MX7576  
DECODE  
MX7576  
S0  
RD  
BUSY  
RD  
Φ2 OR E  
ADDRESS  
LATCH  
ALE  
D0D7  
D0D7  
AD0AD7  
READY  
DATA BUS  
D0D7  
DATA BUS  
* SOME CIRCUITRY OMITTED FOR CLARITY  
S0 IS LOW FOR READ CYCLES  
* SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 4. MX7575/MX7576 to 8085A-2 Slow-Memory Interface  
Figure 6. MX7575/MX7576 to 6502/6809 ROM Interface  
including the 8085A-2, test the status of the READY  
input immediately after the start of an instruction cycle.  
Therefore, if the MX7575/MX7576 are to be effective in  
placing the µP in a wait state, their BUSY output should  
go low very early in the cycle. When using the 8085A-2,  
the earliest possible indication of an upcoming read  
operation is provided by the S0 status signal. Thus, S0,  
which is low for a read cycle, should be connected to  
the RD input of the MX7575/MX7576. Figure 4 shows  
the c onne c tion d ia g ra m for the 8085A-2 to the  
MX7575/MX7576 in slow-memory interface mode.  
external clock period of BUSY going high, then the sec-  
ond conversion is not started. Furthermore, for correct  
operation in this mode, RD and CS should not go low  
before BUSY returns high.  
Figures 6 and 7 show the connection diagrams for  
interfacing the MX7575/MX7576 in the ROM interface  
mode. Figure 6 shows the connection diagram for the  
6502/6809 µPs, and Figure 7 shows the connections for  
the Z-80.  
Due to their fast interface timing, the MX7575/MX7576  
will interface to the TMS32010 running at up to 18MHz.  
Fig ure 8 s hows the c onne c tion d ia g ra m for the  
TMS32010. In this example, the MX7575/MX7576 are  
mapped as a port address. A conversion is initiated by  
using an IN A and a PA instruction, and the conversion  
result is placed in the TMS32010 accumulator.  
ROM Interface Mode  
Figure 5 shows the timing diagram for ROM interface  
mode. In this mode, the µP does not need to be placed  
in a wait state. A conversion is started with a read  
ins truc tion (RD a nd CS g o low), a nd old d a ta is  
accessed. The BUSY signal then goes low to indicate  
the s ta rt of a c onve rs ion. As b e fore , the MX7575  
track/hold acquires the signal on the third falling clock  
edge after RD goes low, while the MX7576 samples it  
eight times during a conversion. At the end of a conver-  
sion (BUSY going high), another read instruction always  
accesses the new data and normally starts a second  
conversion. However, if RD and CS go low within one  
Asynchronous Conversion Mode (MX7576)  
Tying the MODE pin low places the MX7576 into a con-  
tinuous conversion mode. The RD and CS inputs are  
only used for reading data from the converter. Figure 9  
shows the timing diagram for this mode of operation,  
and Figure 10 shows the connection diagram for the  
8085A. In this mode, the MX7576 looks like a ROM to  
6
_______________________________________________________________________________________  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
/MX576  
UPDATE  
LATCH  
DEFER  
UPDATING  
ADDRESS BUS  
Z-80  
+5V  
TP/MODE  
CS  
CS  
ADDRESS  
DECODE  
MREQ  
EN  
MX7575*  
t
1
t
5
MX7576  
t
4
RD  
RD  
RD  
D7  
D0  
BUSY  
t
t
7
3
DB7  
DB0  
HIGH-  
IMPEDANCE  
BUS  
HIGH-  
IMPEDANCE  
BUS  
DATA BUS  
VALID  
DATA  
VALID  
DATA  
DATA  
HIGH-IMPEDANCE BUS  
* SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 7. MX7575/MX7576 to Z-80 ROM Interface  
Figure 9. MX7576 Asynchronous Conversion Mode Timing  
Diagram  
PA2  
A0A15  
ADDRESS BUS  
ADDRESS BUS  
PA0  
+5V  
MODE  
CS  
TP/MODE  
TMS32010  
8085A  
ADDRESS  
ENCODE  
ADDRESS  
MEN  
CS  
EN  
MX7576*  
MX7575*  
MX7576  
DECODE  
RD  
RD  
RD  
DEN  
ADDRESS  
LATCH  
ALE  
D7  
D0  
D0D7  
AD0AD7  
DATA BUS  
DB7  
DB0  
DATA BUS  
* SOME CIRCUITRY OMITTED FOR CLARITY  
* SOME CIRCUITRY OMITTED FOR CLARITY  
Figure 10. MX7576 to 8085A Asynchronous Conversion Mode  
Interface  
Figure 8. MX7575/MX7576 to TMS32010 ROM Interface  
the µP, in that data can be accessed independently of  
the clock. The output latches are normally updated on  
the rising edge of BUSY. But if CS and RD are low  
when BUSY goes high, the data latches are not updat-  
ed until one of these inputs returns high. Additionally,  
the MX7576 stops converting and BUSY stays high until  
RD or CS goes high. This mode of operation allows a  
simple interface to the µP.  
the CLK input to the ADC (both should be derived from  
the same source), because the sampling instants occur  
three clock cycles after CS and RD go low. Therefore,  
the sampling instants occur at exactly equal intervals if  
the conversions are started at equal intervals. In this  
scheme, the output data is fed into a FIFO latch, which  
allows the µP to access data at its own rate. This guar-  
antees that data is not read from the ADC in the middle  
of a conversion. If data is read from the ADC during a  
conversion, the conversion in progress may be dis -  
turbed, but the accessed data that belonged to the pre-  
vious conversion will be correct.  
Processor Interface for Signal Acquisition (MX7575)  
In many applications, it is necessary to sample the  
input signal at exactly equal intervals to minimize errors  
due to sampling uncertainty or jitter. In order to achieve  
this objective with the previously discussed interfaces,  
the user must match software delays or count the num-  
ber of elapsed clock cycles. This becomes difficult in  
interrupt-driven systems where the uncertainty in inter-  
rupt servicing delays is another complicating factor.  
The tra c k/hold sta rts hold ing the input on the third  
falling edge of the clock after CS and RD go low. If CS  
and RD go low within 20ns of a falling clock edge, the  
ADC may or may not consider this falling edge as the  
first of the three edges that determine the sampling  
ins ta nt. The re fore , the CS a nd RD s hould not b e  
allowed to go low within this period when sampling  
accuracy is required.  
The solution is to use a real-time clock to control the  
start of a conversion. This should be synchronous with  
_______________________________________________________________________________________  
7
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
MX7 5 7 5 Tra c k /Ho ld  
The track/hold consists of a sampling capacitor and a  
switch to capture the input signal. The simplified dia-  
gram of this block is shown in Figure 11. At the begin-  
ning of the conversion, switch S1 is closed, and the  
input signal is tracked. The input signal is held (switch  
S1 opens) on the third falling edge of clock after CS  
and RD go low (Figure 12). This allows a minimum of  
two clock cycles for the input capacitor to be charged  
to the input voltage through the switch resistance. The  
time required for the hold capacitor to settle to ±1/4LSB  
is typically 7ns. Therefore, the input signal is allowed  
a mp le time to s e ttle b e fore it is a c q uire d b y the  
track/hold. When a conversion ends, switch S1 closes,  
and the input signal is tracked.  
MX7 5 7 6 An a lo g In p u t  
The MX7576 analog input can also be modeled with the  
switch and capacitor as shown in Figure 11. However,  
unlike the MX7575, the MX7576 samples the input volt-  
age eight times during a conversion (once before each  
comparator decision). Therefore, the precautions that  
apply to the MX7575 also apply to the MX7576. These  
include minimizing the analog source impedance and  
reducing noise coupling from the digital circuitry during  
a conversion, especially near a sampling instant.  
Re fe re n c e In p u t  
The high speed of this ADC can be partially attributed to  
the “inverted voltage output” topology of the DAC that it  
uses. This topology provides low offset and gain errors  
and fast settling times. The input current to the DAC,  
however, is not constant. During a conversion, as differ-  
ent DAC codes are tried, the DC impedance of the DAC  
can vary between 6kand 18k. Furthermore, when  
the DAC codes change, small amounts of transient cur-  
rent are drawn from the reference input. These charac-  
teristics require a low DC and AC driving impedance for  
the reference circuitry to minimize conversion errors.  
The track/hold is capable of acquiring signals with slew  
rates of up to 386mV/µs (or equivalently a 50kHz sine  
wave with 2.46Vp-p amplitude). Figure 13 shows the  
signal-to-noise ratio (SNR) versus input frequency for  
the ADC. The SNR plot is generated at a sampling rate  
of 200kHz using sinusoidal inputs with a peak-to-peak  
amplitude of 2.46V. The reconstructed sine wave is  
passed through a 50kHz 8th-order Chebychev filter.  
The improvement in SNR at high frequencies is due to  
the filter cutoff.  
/MX576  
Figure 15 shows the reference circuitry recommended  
to drive the reference input of the MX7575/MX7576.  
The switching nature of the analog input results in tran-  
sient currents that charge the input capacitance of the  
track/hold. Keep the driving source impedance low  
(below 2k), so that the settling characteristics of the  
track/hold are not degraded. A low driving impedance  
also minimizes undesirable noise pickup and reduces  
DC errors caused by transient currents at the analog  
input. As with any ADC, it is important to keep external  
sources of noise to a minimum during a conversion.  
Therefore, keep the data bus as quiet as possible dur-  
ing a conversion, especially when the track/hold is  
making the transition to the hold mode.  
CS  
RD  
BUSY  
EXTERNAL  
CLOCK  
INPUT SIGNAL HELD HERE  
a) WITH EXTERNAL CLOCK  
For conversion times that are significantly longer than  
s, the devices accuracy may degrade slightly, as  
shown in Figure 14. This degradation is due to the  
charge that is lost from the hold capacitor in the pres-  
ence of small on-chip leakage currents.  
CS  
RD  
BUSY  
R
500Ω  
ON  
S1  
V
IN  
INTERNAL  
INPUT SIGNAL HELD HERE  
CLOCK  
C
S
C
H
0.5pF  
2pF  
b) WITH INTERNAL CLOCK  
Figure 12. MX7575 Track/Hold (Slow-Memory Interface)  
Timing Diagrams  
Figure 11. Equivalent Input Circuit  
8
_______________________________________________________________________________________  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
/MX576  
The decoupling capacitors are necessary to provide a  
low AC source impedance.  
40  
T = +25°C  
A
In t e rn a l/Ex t e rn a l Clo c k  
The MX7575/MX7576 can be run with either an exter-  
nally applied clock or their internal clock. In either case,  
the signal appearing at the clock pin is internally divid-  
ed by two to provide an internal clock signal that is rela-  
tive ly ins e ns itive to the inp ut c loc k d uty c yc le .  
Therefore, a single conversion takes 20 input clock  
cycles, which corresponds to 10 internal clock cycles.  
42  
44  
46  
48  
50  
52  
54  
Internal Clock  
The internal oscillator frequency is set by an external  
capacitor, C  
, and an external resistor, R  
, which  
CLK  
CLK  
100  
1k  
10k  
100k  
are connected as shown in Figure 16a. During a con-  
version, a sawtooth waveform is generated on the CLK  
INPUT FREQUENCY (Hz)  
pin by charging C  
through R  
and discharging it  
CLK  
CLK  
through an internal switch. At the end of a conversion,  
the internal oscillator is shut down by clamping the CLK  
Figure 13. MX7575 SNR vs. Input Frequency  
pin to V through an internal switch. The circuit for the  
DD  
inte rna l os c illa tor c a n e a s ily b e ove rd rive n with a n  
external clock source.  
The inte rna l os c illa tor p rovid e s a c onve nie nt c loc k  
source for the MX7575. Figure 17 shows typical conver-  
sion times versus temperature for the recommended  
2.5  
A: T = +125°C  
A
B: T = +85°C  
A
C: T = +25°C  
A
2.0  
R
and C  
combination. Due to process varia-  
CLK  
CLK  
tions, the oscillation frequency for this R  
/C  
com-  
CLK CLK  
1.5  
1.0  
0.5  
b ina tion ma y va ry b y a s muc h a s ± 50% from the  
nominal value shown in Figure 17. Therefore, an exter-  
nal clock should be used in the following situations:  
1) Applications that require the conversion time to be  
within 50% of the minimum conversion time for the  
specified accuracy (5µs MX7575/10µs MX7576).  
A
B
C
2) Applications in which time-related software con-  
straints cannot accommodate conversion-time differ-  
e nc e s tha t ma y oc c ur from unit to unit or ove r  
temperature for a given device.  
0
10  
100  
1000  
10000  
CONVERSION TIME (µs)  
Figure 14. MX7575 Accuracy vs. Conversion Time  
External Clock  
The CLK input of the MX7575/MX7576 may be driven  
directly by a 74HC or 4000B series buffer (e g., 4049),  
or by an LS TTL output with a 5.6kpull-up resistor. At  
the end of a conversion, the device ignores the clock  
input and disables its internal clock signal. Therefore,  
the external clock may continue to run between conver-  
sions without being disabled. The duty cycle of the  
e xte rna l c loc k ma y va ry from 30% to 70%. As d is -  
cussed previously, in order to maintain accuracy, clock  
ra te s s ig nific a ntly lowe r tha n the d a ta s he e t limits  
(4MHz for MX7575 and 2MHz for MX7576) should not  
be used.  
+5V  
3.3k  
1.23V  
REF  
+
+
ICL8069  
47µF  
0.1µF  
_
Figure 15. External Reference Circuit  
_______________________________________________________________________________________  
9
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
OUTPUT  
CODE  
+5V  
FULL-SCALE  
TRANSITION  
(FS - 3/2LSB)  
47µF  
0.1µF  
+5V  
1111 1111  
1111 1110  
1111 1101  
R
CLK  
+5V  
18  
V
DD  
AIN  
REF  
100k, 2%  
5
4
1
2
3
16  
17  
15  
CLK  
BUSY  
CS  
2.46V(max)  
3.3k  
C
CLK  
100pF, 1%  
+1.23V  
0.1µF  
0000 0011  
0000 0010  
0000 0001  
0000 0000  
FS = 2V  
REF  
+
47µF  
2FS  
RD  
TP/  
MODE  
1LSB = –––  
CONTROL INPUTS  
256  
-
AGND  
D7D0  
DATA OUT  
MX7575  
MX7576  
0
1LSB 3LSBs  
2LSBs  
AIN, INPUT VOLTAGE (IN TERMS OF LSBs)  
FS - 1LSB  
9
/MX576  
Figure 16a. Unipolar Configuration  
Figure 16b. Nominal Transfer Characteristic for Unipolar  
Operation  
accurate enough that calibration will not be necessary. If  
calibration is not needed, resistors R1–R7 should have a  
0.1% tolerance, with R4 and R5 replaced by one 10kΩ  
resistor, and R2 and R3 with one 1kresistor. If calibra-  
tion is required, follow the steps in the sections below.  
______________ Typ ic a l Ap p lic a t io n s  
Un ip o la r Op e ra t io n  
Figure 16a shows the analog circuit connections for  
unipolar operation, and Figure 16b shows the nominal  
transfer characteristic for unipolar operation. Since the  
offset and full-scale errors of the MX7575/MX7576 are  
very small, it is not necessary to null these errors in  
most cases. If calibration is required, follow the steps in  
the sections below.  
Offset Adjust  
Adjust the offset error by applying an analog input volt-  
age of 2.43V (+FS - 3/2LSB). Then adjust resistor R5  
until the output code flickers between 1111 1110 and  
1111 1111.  
Offset Adjust  
The offset error can be adjusted by using the offset trim  
capability of an op amp (when it is used as a voltage fol-  
lower) to drive the analog input, AIN. The op amp should  
have a common-mode input range that includes 0V. Set  
its initial input to 4.8mV (1/2LSB), while varying its offset  
until the ADC output code flickers between 0000 0000  
and 0000 0001.  
Full-Scale Adjust  
Null the full-scale error by applying an analog input  
voltage of -2.45V (-FS + 1/2LSB). Then adjust resistor  
R3 until the output code flickers between 0000 0000  
and 0000 0001.  
14  
13  
MX7576  
Full-Scale Adjustment  
Make the full-scale adjustment by forcing the analog  
input, AIN, to 2.445V (FS - 3/2LSB). Then vary the refer-  
ence input voltage until the ADC output code flickers  
between 1111 1110 and 1111 1111.  
MX7575  
12  
11  
10  
Bip o la r Op e ra t io n  
Figure 18a shows an example of the circuit connection  
for bipolar operation, and Figure 18b shows the nominal  
transfer characteristic for bipolar operation. The output  
code provided by the MX7575 is offset binary. The ana-  
log inp ut ra ng e for this c irc uit is ± 2.46V (1LSB =  
19.22mV), even though the voltage appearing at AIN is  
in the 0V to 2.46V range. In most cases, the MX7575 is  
9
8
R
C
CLK  
= 100k  
= 100pF  
CLK  
7
-55 -25  
0
25 50  
75 100 125  
AMBIENT TEMPERATURE (°C)  
Figure 17. Typical Conversion Times vs. Temperature Using  
Internal Clock  
10 ______________________________________________________________________________________  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
/MX576  
+5V  
47µF  
+5V  
OUTPUT  
CODE  
0.1µF  
+5V  
R
CLK  
18  
V
DD  
111...111  
5
R6  
17  
CLK  
REF  
111...110  
3.3k  
C
L
+5V  
TLC271  
100pF  
2%  
100...010  
100...001  
100...000  
011...111  
011...110  
0.1µF 47µF  
+
MX7575  
ICL8069  
1.2V  
REFERENCE  
-FS  
2
-1/2LSB  
R1  
1k  
R5  
5k  
AIN  
FS  
2
16  
-1LSB  
1/2LSB  
AIN  
AGND DGND  
D7D0  
DATA OUT  
R4  
8.2k  
R2  
820Ω  
15  
9
FS = 2V  
REF  
000...001  
000...000  
2FS  
256  
R7  
10k  
R3  
500Ω  
1LSB =  
INPUT VOLTAGE  
Figure 18a. MX7575 Bipolar Configuration  
Figure 18b. Nominal Transfer Characteristic for Bipolar  
Operation  
__________Ap p lic a t io n s In fo rm a t io n  
__Fu n c t io n a l Dia g ra m s (c o n t in u e d )  
No is e  
To minimize noise coupling, keep both the input signal  
lead to AIN and the signal return lead from AGND as  
short as possible. If this is not possible, a shielded  
cable or a twisted-pair transmission line is recommend-  
ed. Additionally, potential differences between the ADC  
ground and the signal-source ground should be mini-  
mize d , s inc e the s e volta g e d iffe re nc e s a p p e a r a s  
errors superimposed on the input signal. To minimize  
system noise pickup, keep the driving source resis-  
tance below 2k.  
V
DD  
18  
16  
AIN  
MX7576  
COMP  
15  
17  
AGND  
REF  
DAC  
SAR  
CLOCK  
OSCILLATOR  
5
CLK  
6
1
2
3
CS  
RD  
MODE  
D7  
.
LATCH AND  
THREE-STATE  
OUTPUT DRIVERS  
P ro p e r La yo u t  
For PC board layouts, take care to keep digital lines  
well separated from any analog lines. Establish a sin-  
gle-point, analog ground (separate from the digital sys-  
tem ground) near the MX7575/MX7576. This analog  
ground point should be connected to the digital system  
ground through a single-track connection only. Any  
supply or reference bypass capacitors, analog input fil-  
te r c a p a c itors , or inp ut s ig na l s hie ld ing s hould b e  
returned to the analog ground point.  
CONTROL  
LOGIC  
.
D0  
14  
4
9
BUSY  
DGND  
______________________________________________________________________________________ 11  
CMOS , µP -Co m p a t ib le , 5 µs /1 0 µs , 8 -Bit ADCs  
____P in Co n fig u ra t io n s (c o n t in u e d )  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
INL  
(LSB)  
PART  
TEMP. RANGE  
PIN-PACKAGE  
TOP VIEW  
MX7575JEWN -40°C to +85°C  
MX7575KEWN -40°C to +85°C  
MX7575JEQP -40°C to +85°C  
MX7575KEQP -40°C to +85°C  
18 Wide SO  
18 Wide SO  
20 PLCC  
±1  
3
2
1
20 19  
±1/2  
±1  
20 PLCC  
±1/2  
±1  
TP (MODE)  
BUSY  
AIN  
18  
17  
16  
15  
4
5
6
7
8
MX7575SQ  
MX7575TQ  
MX7576JN  
MX7576KN  
MX7576JCWN  
MX7576KCWN  
MX7576JP  
-55°C to +125°C  
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-25°C to +85°C  
-25°C to +85°C  
18 CERDIP**  
18 CERDIP**  
18 Plastic DIP  
18 Plastic DIP  
18 Wide SO  
18 Wide SO  
20 PLCC  
AGND  
D0 (LSB)  
D1  
±1/2  
±1  
MX7575  
MX7576  
CLK  
±1/2  
±1  
D7 (MSB)  
D6  
±1/2  
±1  
D2  
14  
/MX576  
MX7576KP  
MX7576J/D  
MX7576AQ  
MX7576BQ  
20 PLCC  
±1/2  
±1  
9
10 11 12  
13  
Dice*  
18 CERDIP**  
18 CERDIP**  
18 Wide SO  
18 Wide SO  
20 PLCC  
±1  
±1/2  
±1  
PLCC  
MX7576JEWN -40°C to +85°C  
MX7576KEWN -40°C to +85°C  
MX7576JEQP -40°C to +85°C  
MX7576KEQP -40°C to +85°C  
( ) ARE FOR MX7576 ONLY.  
±1/2  
±1  
20 PLCC  
±1/2  
±1  
MX7576SQ  
MX7576TQ  
-55°C to +125°C  
-55°C to +125°C  
18 CERDIP**  
18 CERDIP**  
±1/2  
*
Contact factory for dice specifications.  
** Contact factory for availability.  
__________________________________________________________Ch ip To p o g ra p h ie s  
MX7575  
MX7576  
D6  
D7  
CLK  
N. C.  
D6  
CLK  
MODE  
BUSY  
D7  
(MSB)  
BUSY  
D5  
DGND  
D4  
D5  
DGND  
D4  
TP  
N. C.  
RD  
RD  
CS  
CS  
0. 081"  
0. 081"  
V
DD  
V
DD  
(2. 057mm)  
(2. 057mm)  
REF  
REF  
D3  
D3  
AIN  
AGND*  
D0  
(LSB)  
AIN  
AGND*  
D2  
D1  
D0  
AGND*  
D2  
D1  
AGND*  
0. 130"  
0. 130"  
(3. 302mm)  
(3. 302mm)  
*The two AGND pads must both be used (bonded together).  
*The two AGND pads must both be used (bonded together).  
TRANSISTOR COUNT: 768  
TRANSISTOR COUNT: 768  
SUBSTRATE CONNECTED TO V  
DD  
SUBSTRATE CONNECTED TO V  
DD  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MX7575KCWN+

暂无描述
MAXIM

MX7575KCWN+T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDSO18, SO-18
MAXIM

MX7575KCWN-T

暂无描述
MAXIM

MX7575KEQP

CMOS, uP-Compatible, 5レs/10レs, 8-Bit ADCs
MAXIM

MX7575KEWN

CMOS, uP-Compatible, 5レs/10レs, 8-Bit ADCs
MAXIM

MX7575KEWN+

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDSO18, SO-18
MAXIM

MX7575KEWN+T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDSO18, SO-18
MAXIM

MX7575KN

CMOS, uP-Compatible, 5レs/10レs, 8-Bit ADCs
MAXIM

MX7575KN+

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PDIP18, PLASTIC, DIP-18
MAXIM

MX7575KP

CMOS, uP-Compatible, 5レs/10レs, 8-Bit ADCs
MAXIM

MX7575KP+

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PQCC20, PLASTIC, LCC-20
MAXIM

MX7575KP+T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, PQCC20, PLASTIC, LCC-20
MAXIM