MAX9934FALT+T [MAXIM]

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing; 高精度,低电压,电流检测放大器,电流输出和片选的复用
MAX9934FALT+T
型号: MAX9934FALT+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing
高精度,低电压,电流检测放大器,电流输出和片选的复用

模拟IC 信号电路 放大器 光电二极管 信息通信管理
文件: 总22页 (文件大小:1004K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5011; Rev 0; 10/09  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
General Description  
Features  
The MAX9934** high-precision, low-voltage, high-side  
current-sense amplifier is ideal for both bidirectional  
(charge/discharge) and unidirectional current measure-  
ments in battery-powered portable and laptop devices.  
o Input Offset Voltage: 10µV (max)  
o Gain Error Less than 0.25%  
o -0.1V to +5.5V Input Common-Mode Voltage  
Range  
Input offset voltage (V ) is a low 10µV (max) at +25°C  
OS  
across the -0.1V to 5.5V input common-mode voltage  
o Chip Select Allows Multiplexing Several MAX9934  
range, and is independent of V . Its precision input  
CC  
Current Monitors to One ADC  
specification allows the use of very small sense volt-  
ages (typically 10mV full-scale) for minimally invasive  
current sensing.  
o Current Output Allows R  
Selection  
OUT  
for Gain Flexibility  
o Single Supply Operation: 2.5V to 3.6V  
The output of the MAX9934 is a current proportional to  
input V  
and is available in either 25µA/mV or  
o Two Gain Options: G of 25µA/mV (MAX9934T)  
SENSE  
M
5µA/mV gain options (G ) with gain accuracy better  
and 5µA/mV (MAX9934F)  
M
than 0.25% (max) at +25°C. A chip select (CS) allows  
multiplexing of several MAX9934 current outputs to a  
single microcontroller ADC channel (see the Typical  
Operating Circuit). CS is compatible with 1.8V and 3.3V  
logic systems.  
o Bidirectional or Unidirectional Operation  
o Small, 6-Bump UCSP (1mm x 1.5mm x 0.6mm),  
6-Pin µDFN (2mm x 2mm x 0.6mm), and 8-Pin  
µMAX Packages  
Ordering Information  
The MAX9934 is designed to operate from a 2.5V to  
3.6V V  
supply, and draws just 120µA (typ) quiescent  
CC  
PIN-  
PACKAGE  
TOP  
MARK  
current. When powered down (V  
= 0), RS+ and RS-  
CC  
PART  
GAIN  
draw less than 0.1nA (typ) leakage current to reduce  
battery load. The MAX9934 is robust and protected  
from input faults of up to 6V input differential voltage  
between RS+ and RS-.  
MAX9934FALT+T*  
MAX9934FART+T*  
MAX9934FAUA+T  
MAX9934TALT+T*  
MAX9934TART+T*  
MAX9934TAUA+T  
5µA/mV  
5µA/mV  
5µA/mV  
25µA/mV  
25µA/mV  
25µA/mV  
6 µDFN  
6 UCSP  
8 µMAX  
6 µDFN  
6 UCSP  
8 µMAX  
ACP  
AAG  
The MAX9934 is specified for operation over the -40°C  
to +125°C temperature range and is available in 8-pin  
µMAX®, 6-pin µDFN (2mm x 2mm x 0.8mm), or a 6-  
bump UCSP™ (1mm x 1.5mm x 0.6mm), making it ideal  
for space-sensitive applications.  
ACO  
AAF  
Note: All devices are specified over the -40°C to +125°C  
extended temperature range.  
Applications  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
PDAs and Smartphones  
T = Tape and reel.  
MP3 Players  
*Future product—contact factory for availability.  
Sensor Instrumentation Amplifiers  
Notebook PCs and Ultra-Mobile PCs  
Portable Current Monitoring  
Typical Operating Circuit  
V
= 3.3V  
CC  
0.1µF  
I
LOAD  
-0.1V V 5.5V  
CM  
V
CC  
R
SENSE  
MAX9934  
RS-  
RS+  
V
TO ADC  
OUT  
OUT  
R
OUT  
10kΩ  
1000pF  
GND  
CS  
FROM µC  
CHIP SELECT  
µMAX is a registered trademark and UCSP is a trademark of  
Maxim Integrated Products, Inc.  
**Patent pending.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
ABSOLUTE MAXIMUM RATINGS  
RS+, RS- to GND......................................................-0.3V to +6V  
Junction-to-Ambient Thermal Resistance (θ  
)
JA  
V
to GND..............................................................-0.3V to +4V  
(Note 1 ) ................................................................223.6°C/W  
CC  
CS, OUT to GND (V  
= 0, or CS < V )..................-0.3V to +4V  
Junction-to-Case Thermal Resistance (θ  
(Note 1) ....................................................................122°C/W  
6-Bump UCSP (derate multilayer 3.9mW/°C  
above +70°C).............................................................308mW  
)
CC  
IL  
JA  
OUT to GND (CS > V )................................-0.3V to V  
+ 0.3V  
CC  
IH  
Differential Input Voltage (RS+ - RS-).................................... 6V  
Output Short-Circuit Current Duration  
OUT to GND or V ...............................................Continuous  
CC  
Continuous Input Current into Any Terminal..................... 20mA  
Junction-to-Ambient Thermal Resistance (θ  
)
JA  
(Note 1) ....................................................................260°C/W  
Operating Temperature Range .........................-40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Reflow Soldering Temperature (UCSP, µDFN, and  
Continuous Power Dissipation (T = +70°C)  
A
MAX934  
8-Pin µMAX (derate multilayer 4.8mW/°C  
above +70°C).............................................................388mW  
Junction-to-Ambient Thermal Resistance (θ  
)
JA  
(Note 1) ....................................................................206°C/W  
Junction-to-Case Thermal Resistance (θ  
)
µMAX) ..........................................................................+260°C  
JC  
(Note 1) ......................................................................42°C/W  
6-Pin µDFN (derate multilayer 4.5mW/°C  
above +70°C)..........................................................357.8mW  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V, V  
= V  
= 3.0V, V  
= 0, V  
= (V  
A
+ V )/2, V = 3.3V, R  
= 10kto GND for unidirectional operation,  
CM  
RS+  
RS-  
CC  
OUT  
RS+  
RS-  
SENSE  
CS  
OUT  
R
= 10kto V /2 for bidirectional operation. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.)  
CC  
A
(Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC CHARACTERISTICS  
T
= +25°C  
10  
14  
10  
20  
60  
90  
A
MAX9934T  
MAX9934F  
-40°C T +125°C  
A
Input Offset Voltage (Note 3)  
V
µV  
OS  
T
A
= +25°C  
-40°C T +125°C  
A
MAX9934T  
MAX9934F  
Input Offset Voltage Drift (Note 3)  
Common-Mode Input Voltage  
V
/dT  
nV/°C  
V
OS  
Range (Average of V  
and  
CMVR  
Guaranteed by CMRR2  
-0.1  
+5.5  
RS+  
V
) (Note 3)  
RS-  
T
= +25°C  
128  
112  
128  
109  
119  
104  
98  
134  
135  
125  
113  
A
0 V  
0.2V (MAX9934F)  
V  
-
CC  
CM  
-40°C T +125°C  
A
CMRR1  
T
A
= +25°C  
0 V V  
0.2V (MAX9934T)  
-
CC  
CM  
-40°C T +125°C  
A
Common-Mode Rejection Ratio  
(Note 3)  
dB  
T
A
= +25°C  
-0.1 V 5.5V  
(MAX9934F)  
CM  
-40°C T +125°C  
A
CMRR2  
T
A
= +25°C  
-0.1 V 5.5V  
CM  
(MAX9934T)  
-40°C T +125°C  
98  
A
2
_______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, V  
= V  
= 3.0V, V  
= 0, V  
= (V  
+ V )/2, V = 3.3V, R  
= 10kto GND for unidirectional operation,  
CM  
RS+  
RS-  
CC  
OUT  
RS+  
RS-  
SENSE  
CS  
OUT  
R
= 10kto V /2 for bidirectional operation. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.)  
CC  
A
A
(Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
25  
5
MAX  
UNITS  
MAX9934T  
MAX9934F  
Current Gain (Transconductance)  
G
µA/mV  
M
T
= +25°C  
0.25  
2.0  
A
MAX9934T  
MAX9934F  
-40°C T +125°C  
Current Gain Error  
(Note 4)  
A
G
%
ME  
T
A
= +25°C  
0.25  
2.4  
-40°C T +125°C  
A
MAX9934T  
MAX9934F  
200  
240  
100  
100  
60  
Gain Error Drift  
G
/dT  
ppm/°C  
ME  
Input-Bias Current for RS+  
Input-Bias Current for RS-  
I
V
V
V
V
= V  
= V  
= V  
= 5.5V  
0.1  
0.1  
35  
nA  
nA  
µA  
nA  
BRS+  
RS+  
RS+  
RS+  
RS-  
RS-  
RS-  
V  
- 0.2V  
CC  
I
BRS-  
= 5.5V  
= V = 5.5V  
RS-  
Input Leakage Current  
I
= 0, V  
0.1  
100  
LEK  
CC  
RS+  
DC CHARACTERISTICS  
Minimum Current for Output Low  
I
Unidirectional, V = I x R  
OUT  
1
100  
0.25  
0.25  
0.30  
0.26  
nA  
V
OL  
OL  
OL  
V
I
I
I
I
= +600µA, V  
= V - V  
0.1  
OH  
OUT  
OUT  
OUT  
OUT  
OH  
CC  
OUT  
Output-Voltage Range  
(MAX9934T)  
V
= -600µA, bidirectional  
= +375µA, V = V - V  
0.15  
0.18  
0.18  
OL  
V
OH  
OH  
CC  
OUT  
Output-Voltage Range  
(MAX9934F)  
V
V
= -375µA, bidirectional  
OL  
Deselected Amplifier Output  
Leakage  
V
CS  
and 0 V  
= 0, V = 3.6V,  
OUT  
I
0.1  
0.1  
100  
nA  
OLK  
3.6V  
CC  
LOGIC I/O (CS)  
Input Voltage Low CS  
Input Voltage High CS  
Input Current CS  
V
0.54  
V
V
IL  
V
1.26  
100  
IH  
I ,I  
IL IH  
0 V V  
CC  
nA  
CS  
POWER SUPPLY  
Supply-Voltage Range  
V
Guaranteed by PSRR  
2.5V V 3.6V,  
2.5  
3.6  
V
CC  
CC  
Power-Supply Rejection Ratio  
Supply Current  
PSRR  
110  
120  
120  
120  
dB  
V
= V  
= 2V (Note 3)  
RS+  
RS-  
V
V
= 3.3V, R  
= 10kto 3.3V,  
OUT  
CC  
I
230  
210  
µA  
µA  
CC  
= V  
= 3.1V  
RS+  
RS-  
Supply Current, Output  
Deselected  
V
V
= 0, R  
= 10kto 3.3V,  
OUT  
= 3.1V  
CS  
I
CC,DES  
= V  
RS+  
RS-  
AC CHARACTERISTICS (C = 1000pF)  
L
MAX9934T  
= 25µA/mV, V  
1.5  
5
G
= 5mV  
SENSE  
M
Amplifier Bandwidth  
BW  
kHz  
MAX9934F  
= 5µA/mV, V  
G
= 25mV  
SENSE  
M
_______________________________________________________________________________________  
3
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V, V  
= V  
= 3.0V, V  
= 0, V  
= (V  
+ V )/2, V = 3.3V, R  
= 10kto GND for unidirectional operation,  
CM  
RS+  
RS-  
CC  
OUT  
RS+  
RS-  
SENSE  
CS  
OUT  
R
= 10kto V /2 for bidirectional operation. T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C.)  
CC A A  
(Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
670  
220  
MAX  
UNITS  
0.1% final value, Figure 1, MAX9934T  
0.1% final value, Figure 1, MAX9934F  
Output Settling Time  
Output Select Time  
t
µs  
S
Output to 0.1% final value, Figure 2,  
MAX9934T  
MAX934  
150  
80  
2
t
µs  
ZH  
Output to 0.1% final value, Figure 2,  
MAX9934F  
Output step of 100mV, C = 10pF,  
L
Output Deselect Time  
Power-Down Time  
Power-Up Time  
t
t
t
µs  
µs  
µs  
HZ  
PD  
PU  
Figure 2  
Output step of -100mV, C = 10pF,  
L
2
V
> 2.5V  
CC  
0.1% final value, Figure 3, MAX9934T  
0.1% final value, Figure 3, MAX9934F  
300  
200  
Note 2: All devices are 100% production tested at T = +25°C. Unless otherwise noted, specifications overtemperature are guaran-  
A
teed by design.  
Note 3: Guaranteed by design. Thermocouple, contact resistance, RS- input-bias current, and leakage effects preclude measure-  
ment of this parameter during production testing. Devices are screened during production testing to eliminate defective  
units.  
Note 4: Gain error tested in unidirectional mode: 0.2V V  
3.1V for the MAX9934T; 0.25V V  
2.5V for the MAX9934F.  
OUT  
OUT  
4
_______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
Typical Operating Characteristics  
(V  
= 3.3V, V  
= V  
= 3.0V, V  
A
= 0, C = 1000pF, R  
= 10kto GND for unidirectional operation, R  
= 10kto V /2  
CC  
RS+  
RS-  
SENSE  
L
OUT  
OUT CC  
for bidirectional operation. T = +25°C, unless otherwise noted.)  
OFFSET VOLTAGE  
vs. COMMON-MODE VOLTAGE  
MAX9934T V HISTOGRAM  
MAX9934T DRIFT V HISTOGRAM  
OS  
OS  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
T
A
= +125NC  
6
4
2
0
T
= +25NC  
A
-2  
-4  
-6  
-8  
-10  
T
A
= -40NC  
0
0
-0.1 0.6 1.3 2.0 2.7 3.4 4.1 4.8 5.5  
COMMON-MODE VOLTAGE (V)  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
0
6
12 18 24 30 36 42 48 54 60  
VOS (FV)  
TCVOS (nV/NC)  
OFFSET VOLTAGE  
vs. COMMON-MODE VOLTAGE  
MAX9934T GAIN ERROR  
HISTOGRAM  
MAX9934T GAIN ERROR  
DRIFT HISTOGRAM  
10  
8
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
6
V
= 2.5V  
V
= 3.3V  
CC  
CC  
4
2
0
V
= 3.6V  
CC  
-2  
-4  
-6  
-8  
-10  
0
0
-0.1 0.6 1.3 2.0 2.7 3.4 4.1 4.8 5.5  
COMMON-MODE VOLTAGE (V)  
GE (%)  
TC GE (PPM/NC)  
V
vs. V  
SENSE  
MAX9934F GAIN ERROR  
HISTOGRAM  
MAX9934F GAIN ERROR DRIFT  
HISTOGRAM  
OUT  
V
= GND  
REF  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
GAIN = 25µA/mV  
GAIN = 5µA/mV  
UNIDIRECTIONAL  
0
0
0
10 20 30 40 50 60 70 80  
(mV)  
V
SENSE  
GE (%)  
TC GE (PPM/°C)  
_______________________________________________________________________________________  
5
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
= V  
= 3.0V, V  
A
= 0, C = 1000pF, R  
= 10kto GND for unidirectional operation, R  
= 10kto V /2  
CC  
RS+  
RS-  
SENSE  
L
OUT  
OUT CC  
for bidirectional operation. T = +25°C, unless otherwise noted.)  
V
vs. V  
SENSE  
OUT  
V
= 1.65V  
V
OUT  
vs. V (V < 5mV)  
SENSE OUT  
REF  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
BIDIRECTIONAL  
MAX934  
G = 25FA/mV  
GAIN = 5µA/mV  
G = 5FA/mV  
GAIN = 25µA/mV  
-0.5  
-1.0  
-1.5  
-2.0  
-40  
-20  
0
20  
40  
0
20  
40  
60  
80  
100  
V
(mV)  
VSENSE + VOS (FV)  
SENSE  
SUPPLY CURRENT  
V
OH  
vs. I  
OH  
vs. TEMPERATURE (V = 0)  
CS  
160  
140  
120  
100  
80  
300  
250  
200  
150  
100  
50  
V
= 0V  
CM  
MAX9934F  
V
= 5.5V  
CM  
MAX9934T  
60  
0
40  
0
100  
200  
I
300  
(µA)  
400  
500  
600  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
OH  
SUPPLY CURRENT  
vs. TEMPERATURE  
RS+ BIAS CURRENT  
vs. V  
RS+  
160  
140  
120  
100  
80  
10nA  
1nA  
V
= 0V  
CM  
T
A
= +125°C  
V
= 5.5V  
CM  
100pA  
10pA  
1pA  
T
= +25°C AND -40°C  
A
60  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-0.1 0.6 1.3 2.0 2.7 3.4 4.1 4.8 5.5  
(V)  
TEMPERATURE (°C)  
V
RS+  
6
_______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
= V  
= 3.0V, V  
A
= 0, C = 1000pF, R  
= 10kto GND for unidirectional operation, R  
= 10kto V /2  
CC  
RS+  
RS-  
SENSE  
L
OUT  
OUT CC  
for bidirectional operation. T = +25°C, unless otherwise noted.)  
RS- BIAS CURRENT  
RS- BIAS CURRENT  
vs. V ( 3V V 5.5V)  
vs. V (-0.1V V V )  
RS-  
RS-  
CC  
RS-  
RS_  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100nA  
10nA  
1nA  
T
= +125°C  
A
T
= +125°C  
A
T
= +25°C  
A
T
= -40°C  
A
100pA  
10pA  
1pA  
T
= +25°C AND -40°C  
A
0
-0.1 0.4 0.9 1.4 1.9 2.4 2.9 3.4  
(V)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
V
(V)  
RS-  
RS-  
OUTPUT LEAKAGE CURRENT  
vs. V (V = 0)  
OUTPUT LEAKAGE CURRENT  
vs. V  
(V = 0, V = 0)  
OUT CS  
OUT CC  
CS  
10nA  
1nA  
10nA  
T
= +125°C  
A
1nA  
100pA  
10pA  
1pA  
T
= +125°C  
= +25°C  
A
T
100pA  
10pA  
1pA  
A
T
= +25°C  
A
T
= -40°C  
A
T
= -40°C  
A
100fA  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
(V)  
V
V
OUT  
OUT  
NORMALIZED GAIN  
vs. FREQUENCY  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
10  
0
0
-20  
G = 5FA/mV  
-40  
-10  
-20  
-30  
-40  
G = 25FA/mV  
-60  
-80  
-100  
-120  
-140  
1
10  
100  
1k  
10k  
100k  
0.01  
0.1  
1.0  
10  
100  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
7
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
= V  
= 3.0V, V  
A
= 0, C = 1000pF, R  
= 10kto GND for unidirectional operation, R  
= 10kto V /2  
CC  
RS+  
RS-  
SENSE  
L
OUT  
OUT CC  
for bidirectional operation. T = +25°C, unless otherwise noted.)  
OUTPUT SETTING TIME  
vs. PERCENTAGE OF FINAL VALUE  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
1V V  
STEP  
OUT  
-20  
-40  
MAX934  
MAX9934T  
-60  
MAX9934F  
-80  
-100  
-120  
1.00  
0.10  
0.01  
0.01  
0.1  
1.0  
10  
100  
PERCENTAGE OF FINAL VALUE (%)  
FREQUENCY (kHz)  
LARGE-SIGNAL INPUT STEP  
RESPONSE (MAX9934F)  
LARGE-SIGNAL INPUT STEP  
RESPONSE (MAX9934T)  
MAX9934 toc24  
MAX9934 toc25  
V
V
SENSE  
SENSE  
20mV/div  
5mV/div  
0.01% FINAL VALUE  
1% FINAL VALUE  
0.01% FINAL VALUE  
1% FINAL VALUE  
2V  
2V  
V
V
OUT  
OUT  
1V  
1V  
500mV/div  
500mV/div  
100µs/div  
400µs/div  
CS DISABLED TRANSIENT RESPONSE  
OUTPUT SELECT TIME  
C
= 10pF (MAX9934T)  
OUT  
MAX9934 toc26  
MAX9934 toc27  
C = 0  
L
V
CS  
V
1% FINAL VALUE  
2V/div  
CS  
2V/div  
1V  
V
OUT  
0.1% FINAL VALUE  
500mV/div  
MAX9934T  
MAX9934F  
1% FINAL VALUE  
1V  
V
OUT  
V
OUT  
0.1% FINAL VALUE  
500mV/div  
1V/div  
40Fs/div  
4µs/div  
8
_______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
Typical Operating Characteristics (continued)  
(V = 3.3V, V  
= V  
= 3.0V, V  
A
= 0, C = 1000pF, R  
= 10kto GND for unidirectional operation, R  
= 10kto V /2  
CC  
RS+  
RS-  
SENSE  
L
OUT  
OUT CC  
for bidirectional operation. T = +25°C, unless otherwise noted.)  
SATURATION RECOVERY TIME  
V = V TO 1V (MAX9934T)  
OUT  
POWER-UP TIME  
OL  
MAX9934 toc28  
MAX9934 toc29  
UNIDIRECTIONAL  
V
CS  
2V/div  
V
SENSE  
1% FINAL VALUE  
5mV/div  
1mV  
1V  
1V  
0.1% FINAL VALUE  
V
OUT  
500mV/div  
1% FINAL VALUE  
MAX9934T  
MAX9934F  
1V  
0V  
V
OUT  
500mV/div  
0.1% FINAL VALUE  
V
OUT  
500mV/div  
C
= 0.1µF  
BYPASS  
100Fs/div  
400Fs/div  
SATURATION RECOVERY TIME  
= V TO 1V (MAX9934T)  
V
OUT  
OH  
MAX9934 toc30  
UNIDIRECTIONAL  
V
SENSE  
10mV/div  
V
OUT  
1V/div  
1V  
400µs/div  
_______________________________________________________________________________________  
9
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
Pin Description  
PIN/BUMP  
NAME  
FUNCTION  
UCSP  
µMAX  
µDFN  
A1  
1
1
V
Power Supply  
Current Output. OUT provides an output current proportional to input V  
CC  
. Connect  
SENSE  
A2  
2
2
OUT  
an external resistor (R ) from OUT to GND for unidirectional sensing or to an  
OUT  
external reference voltage for bidirectional sensing.  
MAX934  
A3  
B1  
B2  
3
8
7
3
6
5
GND  
RS+  
RS-  
Ground  
Sense Resistor Power Side Connection  
Sense Resistor Load Side Connection  
Chip-Select Input. Drive CS high to enable OUT, drive CS low to put OUT in a high-  
impedance state.  
B3  
6
4
CS  
4, 5  
N.C.  
No Connection. Not internally connected.  
Functional Diagram  
V
SENSE  
CS  
MAX9934  
% FINAL VALUE  
V
CC  
2V  
V
OUT  
1V STEP  
RS+  
RS-  
% FINAL VALUE  
G
*R  
GAIN  
G
m
m
1V  
OUT  
t
S
t
S
GND  
*R  
R
= 40FOR THE MAX9934T AND  
= 200FOR THE MAX9934F.  
GAIN  
GAIN  
Figure 1. Output Settling Time  
achieve gain error of less than 0.25%. The precision V  
OS  
Detailed Description  
specification allows accurate current measurements with  
a low-value current-sense resistor, thus reducing power  
dissipation in battery-powered systems, as well as load-  
regulation issues in low-voltage DC power supplies.  
The MAX9934 high-side, current-sense amplifier moni-  
tors current through an external current-sense resistor  
by amplifying the voltage across the resistor (V  
)
SENSE  
). An output voltage  
to create an output current (I  
OUT  
The MAX9934 high-side current-sense amplifier fea-  
tures a -0.1V to +5.5V input common-mode range that  
is independent of supply voltage (V ). This ability to  
CC  
sense at voltages beyond the supply rail allows the  
monitoring of currents out of a power supply even in a  
shorted condition, while also enabling high-side current  
sensing at voltages greater than the MAX9934 supply  
(V  
) then develops across the external output resis-  
OUT  
tor (R  
). See the Typical Operating Circuit.  
OUT  
The MAX9934 uses precision amplifier design tech-  
niques to achieve a low-input offset voltage of less than  
10µV. These techniques also enable extremely low-input  
offset voltage drift over time and temperature and  
10 ______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
1.8V  
3.3V  
V
CS  
V
CC  
2.5V  
0V  
0V  
% FINAL VALUE  
% FINAL VALUE  
t
PD  
t
HZ  
V
OUT  
V
OUT  
100mV  
100mV  
t
PU  
t
ZH  
Figure 2. Output Select and Deselect Time  
Figure 3. Output Power-Up and Power-Down Time  
voltage. Further, when V  
= 0, the amplifier maintains  
CC  
Applications Information  
an extremely high impedance on both its inputs and  
output, up to the maximum operating voltages (see the  
Absolute Maximum Ratings section).  
Advantages of Current-Output  
Architecture  
The transconductance transfer function of the MAX9934  
converts input differential voltage to an output current.  
The MAX9934 features a CS that can be used to dese-  
lect its output current-source. This allows multiple cur-  
rent-sense amplifier outputs to be multiplexed into a  
single ADC channel with a single R  
Select Functionality for Multiplexed Systems section for  
more details.  
An output termination resistor, R  
, then converts this  
OUT  
current to a voltage. In a large circuit board with multi-  
ple ground planes and multiple current-measurement  
rails spread across the board, traditional voltage-output  
current-sense amplifiers become susceptible to  
ground-bounce errors. These errors occur because the  
local ground at the location of the current-sense amplifi-  
er is at a slightly different voltage than the local ground  
voltage at the ADC that is sampling the voltage. The  
MAX9934 allows accurate measurements to be made  
even in the presence of system ground noise. This is  
achieved by sending the output information as a cur-  
rent, and by terminating to the ADC ground.  
. See the Chip  
OUT  
The Functional Diagram shows the internal operation of  
the MAX9934. At its core is the indirect current-feed-  
back architecture. This architecture uses two matched  
transconductance amplifiers to convert their input dif-  
ferential voltages into an output current. A high-gain  
feedback amplifier forces the voltage drop across  
R
to be the same as the input differential voltage.  
GAIN  
The internal resistor (R  
) sets the transconductance  
GAIN  
gain of the device. Both input and output transconduc-  
tance amplifiers feature excellent common-mode rejec-  
tion characteristics, helping the MAX9934 to deliver  
industry-leading precision specifications over the full  
common-mode range.  
A further advantage of current-output systems is the  
flexibility in setting final voltage gain of the device.  
Since the final voltage gain is user-controlled by the  
choice of output termination resistor, it is easy to opti-  
mize the monitored load current range to the ADC input  
voltage range. It is no longer necessary to increase the  
size of the sense resistor (also increasing power dissi-  
pation) as necessary with fixed-gain, voltage-output  
current-sense amplifiers.  
______________________________________________________________________________________ 11  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
I
LOAD1  
V
= 3.3V  
CC  
0.1µF  
-0.1V V 5.5V  
V
IN1  
CM  
R
SENSE  
OUT1  
MAX9934  
MICROCONTROLLER  
MAX934  
CS1  
I
LOAD2  
V
= 3.3V  
CC  
0.1µF  
V
-0.1V V 5.5V  
IN2  
CM  
R
SENSE  
OUT2  
MAX9934  
CS2  
I
LOAD3  
V
= 3.3V  
CC  
0.1µF  
-0.1V V 5.5V  
V
CM  
IN3  
R
SENSE  
OUT3  
MAX9934  
CS3  
ADC  
V
OUT  
UNIDIRECTIONAL OPERATION  
10kΩ  
(OPTIONAL)  
Figure 4. Typical Application Circuit Showing Chip-Select Multiplexing  
amplifier outputs are connected in common to a single  
load resistor located adjacent to the monitoring ADC.  
This resistor is terminated to the ADC ground reference  
as shown in Figure 4 for unidirectional applications.  
Chip-Select Functionality  
for Multiplexed Systems  
The MAX9934 features a CS that can be used to dese-  
lect the output current - source achieving a high-imped-  
ance output with 0.1nA leakage current. Thus, different  
supply voltages can be used to power different  
MAX9934 devices that are multiplexed on the same  
bus. This technique makes it possible for advanced  
current monitoring and power-management schemes to  
be implemented when a limited number of ADC chan-  
nels are available.  
Figure 5 shows a bidirectional multiplexed application.  
Terminating the external resistor at the ground refer-  
ence of the ADC minimizes errors due to ground shift  
as discussed in the Advantages of Current-Output  
Architecture section.  
The MAX9934 is capable of both sourcing and sinking  
current from OUT, and thus can be used as a precision  
bidirectional current-sense amplifier. To enable this  
In a multiplexed arrangement, each MAX9934 is typi-  
cally placed near the load being monitored and all  
functionality, terminate R  
to a midrail voltage V  
.
OUT  
BIAS  
12 ______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
I
LOAD1  
V
= 3.3V  
CC  
-0.1V V 5.5V  
V
IN1  
CM  
R
SENSE  
OUT1  
MAX9934  
MICROCONTROLLER  
CS1  
CS  
I
LOAD2  
V
= 3.3V  
CC  
-0.1V V 5.5V  
V
CM  
IN2  
R
SENSE  
OUT2  
MAX9934  
CS  
CS2  
I
LOAD3  
V
= 3.3V  
CC  
-0.1V V 5.5V  
V
CM  
IN3  
R
SENSE  
OUT3  
MAX9934  
CS3  
CS  
TO EXTERNAL  
REFERENCE  
VOLTAGE  
R
V
OUT  
V
REF  
R
2
R
=
OUT  
10kΩ  
ADC  
R
10kΩ  
(OPTIONAL)  
Figure 5. Bidirectional Multiplexed Operation  
In Figure 5, V  
is equal to V  
when the sum of all  
Since the ADC reference voltage, V  
, determines the  
OUT  
BIAS  
REF  
outputs is zero. For positive input-sense voltages, the  
MAX9934 sources current causing its output voltage to  
full-scale reading, a common choice for V  
is  
BIAS  
V
/2. The current output makes it possible to use a  
REF  
rise above V  
. For negative input-sense voltages,  
simple resistor-divider from V  
to GND to generate  
REF  
BIAS  
the MAX9934 sinks current causing its output voltage to  
V
BIAS  
. The output resistance for gain calculation is the  
be lower than V  
sensing.  
, thus allowing bidirectional current  
BIAS  
parallel combination of the two resistors. For example, if  
two equal value resistors, R, are used to generate a  
V
= V  
/2, the output termination resistance for  
REF  
BIAS  
gain calculation is R  
= R/2. See Figure 5.  
OUT  
______________________________________________________________________________________ 13  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
A MAX9934 can be deselected by either forcing V  
Choosing R  
SENSE  
and R  
OUT  
CS  
= 0  
low as shown in Figures 4 and 5, or by making V  
In the current-sense application, the monitored load  
current (I ) develops a sense voltage (V  
CC  
as shown in Figure 6. In all these conditions, the  
MAX9934 maintains a high-impedance output with  
0.1nA (typ) leakage current. In this state, OUT can rise  
)
SENSE  
). The  
LOAD  
across a current-sense resistor (R  
SENSE  
MAX9934 sources or sinks an output current that is pro-  
portional to V . Finally, the MAX9934 output cur-  
above V  
if necessary. Thus, different supply voltages  
CC  
SENSE  
can be used to power different MAX9934 devices that  
are multiplexed on the same OUT bus. Multiplexing by  
rent is provided to an output resistor (R  
) to develop  
OUT  
an output voltage across R  
the sensed load current.  
that is proportional to  
OUT  
forcing the MAX9934 to be powered down (V  
= 0)  
CC  
MAX934  
reduces its supply current to zero to help extend bat-  
tery life in portable applications.  
V
= 3.3V  
CC  
1/4 MAX4737  
I
LOAD1  
0.1µF  
V
V
V
-0.1V V 5.5V  
IN1  
IN2  
IN3  
CM  
R
SENSE  
CS  
OUT1  
MAX9934  
MICROCONTROLLER  
CS1  
V
= 3.3V  
CC  
1/4 MAX4737  
I
LOAD2  
0.1µF  
-0.1V V 5.5V  
CM  
R
SENSE  
CS  
OUT2  
MAX9934  
CS2  
V
= 3.3V  
CC  
1/4 MAX4737  
I
LOAD3  
0.1µF  
-0.1V V 5.5V  
CM  
R
SENSE  
CS  
OUT3  
CS3  
MAX9934  
ADC  
R
OUT  
10kΩ  
(OPTIONAL)  
Figure 6. Multiplexed Amplifiers with Power Saving  
14 ______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
Three components are to be selected to optimize the  
Table 1. Unidirectional Gain Table*  
current-sense system: R  
, R  
, and the  
OUT  
SENSE  
OUTPUT  
CURRENT  
(µA)  
MAX9934 gain option (G = 25µA/mV or 5µA/mV).  
M
V
R
(k)  
GAIN  
(V/V)  
SENSE  
(mV)  
OUT  
PART  
Tables 1 and 2 are gain tables for unidirectional and  
bidirectional operation, respectively. They offer a few  
examples for both MAX9934 options having an output  
range of 3.1V unidirectional and 1.65V bidirectional.  
12.4  
24.8  
62  
310  
620  
310  
375  
10  
5
250  
125  
50  
MAX9934T  
MAX9934F  
Note that the output current of the MAX9934 adds to its  
quiescent current. This can be calculated as follows:  
10  
8
75  
40  
I
= V  
/R  
OUT,MAX  
OUT,MAX OUT  
*All calculations were made with V  
= 3.3V and V  
=
CC  
OUT(MAX)  
When selecting R  
LOAD  
power dissipation in R  
, consider the expected magni-  
SENSE  
and the required V  
V
CC  
- V  
= 3.1V.  
OH  
tude of I  
to manage  
SENSE  
:
SENSE  
Table 2. Bidirectional Gain Table*  
R
= V  
/I  
SENSE  
SENSE,MAX LOAD,MAX  
OUTPUT  
CURRENT  
(µA)  
R
is typically a low-value resistor specifically  
SENSE  
V
R
OUT  
(k)  
SENSE  
(mV)  
PART  
GAIN (V/V)  
designed for current-sense applications.  
Finally, in selecting the appropriate MAX9934 gain option  
(G ), consider both the required V  
and I  
:
M
SENSE  
OUT  
5.8  
11.6  
24  
145  
290  
600  
145  
290  
360  
10  
5
250  
125  
60  
G
M
= I  
/V  
OUT,MAX SENSE,MAX  
MAX9934T  
MAX9934F  
Once all three component values have been selected in  
the current-sense application, the system performance  
is represented by:  
2.4  
10  
5
29  
50  
58  
25  
V
= R  
x I  
SENSE  
SENSE LOAD  
72  
4
20  
and  
x G x R  
OUT  
*All calculations were made with V = 3.3V, V  
= V  
-
CC  
OUT(MAX)  
CC  
V
OH  
= 3.1V, V  
= V , and OUT connected to an exter-  
V
OUT  
= V  
OUT(MIN) OL  
SENSE  
M
nal reference voltage of V  
= 1.65V through R  
.
REF  
OUT  
Accuracy  
In a first-order analysis of accuracy there are two  
MAX9934 specifications that contribute to output error,  
Interfacing the MAX9934 to SAR ADCs  
Since the MAX9934 is essentially a high-output imped-  
ance current-source, its output termination resistor,  
input offset (V ) and gain error (GE). The MAX9934 has  
OS  
a maximum V of 10µV and a maximum GE of 0.25%.  
OS  
R
, acts like a source impedance when driving an  
OUT  
Note that the tolerance and temperature coefficient of  
the chosen resistors directly affect the precision of any  
measurement system.  
ADC channel. Most successive approximation register  
(SAR) architecture ADCs specify a maximum source  
resistance to avoid compromising the accuracy of their  
Efficiency and Power Dissipation  
readings. Choose the output termination resistor R  
OUT  
At high-current levels, the I2R losses in R  
can be  
such that it is less than that required by the ADC speci-  
is larger than the  
SENSE  
significant. Take this into consideration when choosing  
the resistor value and its power dissipation (wattage)  
rating. Also, the sense resistor’s value drifts if it is  
fication (10kor less). If the R  
OUT  
source resistance specified, the ADC internal sampling  
capacitor can momentarily load the amplifier output  
and cause a drop in the voltage reading.  
allowed to self-heat excessively. The precision V  
of  
OS  
the MAX9934 allows the use of a small sense resistor to  
reduce power dissipation and eliminate hot spots.  
If R  
is larger than the source resistance specified,  
OUT  
consider using a ceramic capacitor from ADC input to  
GND. This input capacitor supplies momentary charge  
to the internal ADC sampling capacitor, helping hold  
Kelvin Contacts  
Due to the high currents that flow through R  
, take  
SENSE  
V
OUT  
constant to within 1/2 LSB during the acquisition  
care to prevent trace resistance in the load current path  
from causing errors in the sense voltage. Use a four ter-  
minal current-sense resistor or Kelvin contacts (force  
and sense) PCB layout techniques.  
period. Use of this capacitor reduces the noise in the  
output signal to improve sensitivity of measurement.  
______________________________________________________________________________________ 15  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
Effect of Input-Bias Currents  
The MAX9934 has extremely low CMOS input-bias cur-  
rents at both RS+ and RS- (0.1nA) when the input com-  
mon-mode voltage is less than the supply voltage.  
When the input common-mode voltage becomes higher  
BUCK  
CONTROLLER  
ASIC  
than the supply voltage, it draws the input stage operat-  
ing current from RS-, 35µA (typ). RS+ maintains its  
CMOS input characteristics.  
Low-input-bias currents are extremely useful in design  
of input filters for current-sense amplifiers. Input differ-  
ential filters are sometimes required to average out  
MAX934  
RS+  
RS-  
rapidly varying load currents. An example of such load  
currents are those consumed by a processor, or  
switching power supply. Large bias and offset currents  
can interact with resistors used in these external filters  
to generate large input offset voltages and gain errors.  
For more detailed information, see Application Note  
AN3888: Performance of Current-Sense Amplifiers with  
Input Series Resistors.  
MAX9934  
Due to the low-input-bias currents, resistors as large as  
10kcan be easily used without impact on error speci-  
fications with the MAX9934. For applications where the  
input common-mode voltage is below V , a balanced  
CC  
Figure 7. One-Sided Input Filter  
differential filter can be used. For applications where  
the input common-mode voltage extends above V  
,
CC  
Use as Precision  
Instrumentation Amplifier  
When the input common-mode voltage is below V  
use a one-sided filter with a capacitor between RS+  
and RS-, and a filter resistor in series with RS+ to main-  
tain the excellent performance of the MAX9934. See  
Figure 7.  
,
CC  
the input bias current of the RS- input drops to the  
10pA range, the same range as the RS+ input. This  
low-input-bias current in combination with the rail-to-rail  
common-mode input range, the extremely high com-  
PCB Layout  
For applications where the input common-mode voltage  
extends above V , trace resistance between R  
mon-mode rejection, and low V  
of the MAX9934  
OS  
CC  
SENSE  
error due to the  
make it ideally suited for use as a precision instrumen-  
tation amplifier. In addition, the MAX9934 is stable into  
an infinite capacitive load, allowing filtering flexibility.  
and RS- influences the effective V  
OS  
voltage drop developed across the trace resistance by  
the 35µA input bias current at RS-.  
Figure 8 shows the MAX9934 in a multiplexed arrange-  
ment of strain-gauge amplifiers.  
Monitoring Very Low Currents  
The accuracy of the MAX9934 leads to a wide dynamic  
range. This applies to both unidirectional mode and  
bidirectional mode. This is made possible in the unidi-  
rectional mode because the output maintains gain  
UCSP Applications Information  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, printed circuit  
board techniques, bump-pad layout, and recommend-  
ed reflow temperature profile, as well as the latest infor-  
mation on reliability testing results go to the Maxim  
website at www.maxim-ic.com/ucsp for the  
Application Note 1891: Understanding the Basics of the  
Wafer-Level Chip-Scale Package (WL-CSP).  
accuracy below 1mV as shown in the V  
vs. V  
SENSE  
OUT  
(V  
< 5mV) graph in the Typical Operating Char-  
OUT  
acteristics. Extending the useful output below 1mV  
makes it possible for the MAX9934 to accurately moni-  
tor very low currents.  
16 ______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
V
= 3.3V  
CC  
0.1µF  
OUT1  
V
IN1  
MAX9934  
CS  
CS1  
V
= 3.3V  
CC  
0.1µF  
MICROCONTROLLER  
OUT2  
V
IN2  
MAX9934  
CS  
CS2  
V
CC  
= 3.3V  
0.1µF  
OUT3  
V
IN3  
MAX9934  
CS  
CS3  
TO EXTERNAL  
REFERENCE  
VOLTAGE  
R
V
REF  
10k  
R
OUT  
= R/2  
ADC  
V
OUT  
R
10kΩ  
(OPTIONAL)  
Figure 8. Multiplexed, Strain-Gauge Amplifier Operation  
______________________________________________________________________________________ 17  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
Pin Configurations  
TOP VIEW  
(BUMPS ON BOTTOM)  
TOP VIEW  
MAX9934T/F  
+
+
+
V
1
2
3
4
8
7
6
5
RS+  
RS-  
CS  
CC  
RS+  
RS-  
B1  
A1  
A2  
A3  
V
CC  
V
1
6
5
4
RS+  
RS-  
CS  
CC  
OUT  
GND  
N.C.  
MAX9934T/F  
MAX934  
OUT  
GND  
B2  
B3  
OUT  
GND  
2
3
MAX9934T/F  
N.C.  
CS  
µMAX  
UCSP  
µDFN  
Chip Information  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
2x3 UCSP  
6 µDFN  
PACKAGE CODE  
R61A1+1  
L622+1  
DOCUMENT NO.  
21-0228  
21-0164  
8 µMAX  
U8+1  
21-0036  
______________________________________________________________________________________ 19  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
A
b
D
e
N
MAX934  
AAA  
AAA  
SOLDER  
MASK  
COVERAGE  
E
PIN 1  
0.10x45  
L
L1  
1
PIN 1  
INDEX AREA  
SAMPLE  
MARKING  
A
A
7
(N/2 -1) x e)  
C
L
C
L
b
L
L
A
e
e
A2  
EVEN TERMINAL  
ODD TERMINAL  
A1  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
1
21-0164  
B
2
20 ______________________________________________________________________________________  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
MAX934  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
0.15  
0.020  
1.95  
1.95  
0.30  
NOM.  
0.75  
0.20  
0.025  
2.00  
2.00  
0.40  
MAX.  
0.80  
0.25  
0.035  
2.05  
2.05  
0.50  
A
A1  
A2  
D
-
E
L
L1  
0.10 REF.  
PACKAGE VARIATIONS  
PKG. CODE  
L622-1  
N
6
e
b
(N/2 -1) x e  
0.65 BSC 0.30±0.05 1.30 REF.  
0.50 BSC 0.25±0.05 1.50 REF.  
0.40 BSC 0.20±0.03 1.60 REF.  
L822-1  
8
L1022-1  
10  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
2
21-0164  
B
2
______________________________________________________________________________________ 21  
High-Precision, Low-Voltage, Current-Sense Amplifier  
with Current Output and Chip Select for Multiplexing  
Package Information (continued)  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
MAX934  
α
α
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9934FART+

Analog Circuit, 1 Func, BICMOS, PBGA6, 1 X 1.50 MM, 0.60 MM HEIGHT, ROHS COMPLIANT, UCSP-6
MAXIM

MAX9934FART+T

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing
MAXIM

MAX9934FART+TG0Y

Analog Circuit, 1 Func, BICMOS, PBGA6, 1 X 1.50 MM, 0.60 MM HEIGHT, ROHS COMPLIANT, UCSP-6
MAXIM

MAX9934FAUA+

Analog Circuit, 1 Func, BICMOS, PDSO8, ROHS COMPLIANT, MICRO MAX-8
MAXIM

MAX9934FAUA+T

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing
MAXIM

MAX9934FAUA/V+T

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing
MAXIM

MAX9934TALT+T

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing
MAXIM

MAX9934TART+

Analog Circuit, 1 Func, BICMOS, PBGA6, 1 X 1.50 MM, 0.60 MM HEIGHT, ROHS COMPLIANT, UCSP-6
MAXIM

MAX9934TART+T

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing
MAXIM

MAX9934TAUA+

Analog Circuit, 1 Func, BICMOS, PDSO8, ROHS COMPLIANT, MICRO MAX-8
MAXIM

MAX9934TAUA+T

High-Precision, Low-Voltage, Current-Sense Amplifier with Current Output and Chip Select for Multiplexing
MAXIM

MAX9934TAUA/V+T

Analog Circuit, 1 Func, BICMOS, PDSO8, ROHS COMPLIANT, MICRO MAX-8
MAXIM