MAX9773 [MAXIM]

1.8W, Filterless, Ultra-Low EMI, Stereo Class D Audio Power Amplifier;
MAX9773
型号: MAX9773
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1.8W, Filterless, Ultra-Low EMI, Stereo Class D Audio Power Amplifier

文件: 总21页 (文件大小:603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3976; Rev 0; 1/06  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
General Description  
Features  
Filterless Amplifier Passes FCC-Radiation  
The MAX9773 3rd-generation, ultra-low EMI, stereo,  
Class D audio power amplifier provides Class AB per-  
formance with Class D efficiency. The MAX9773 deliv-  
ers 1.8W per channel into a 4Ω load, and offers  
efficiencies above 90%. Active emissions limiting (AEL)  
circuitry greatly reduces EMI by actively controlling the  
output FET gate transitions under all possible transient  
conditions. AEL controls high-frequency emissions  
resulting from conventional Class D free-wheeling  
behavior in the presence of an inductive load. Zero-  
dead-time (ZDT) technology maintains state-of-the-art  
efficiency and THD+N performance by allowing the out-  
put FETs to switch simultaneously without cross con-  
duction. A spread-spectrum modulation scheme  
eliminates the need for output filtering found in tradition-  
al Class D devices. These design concepts reduce  
component count and extend battery life.  
Emissions Standards with 6in of Cable  
Unique Spread-Spectrum Mode and Active  
Emissions Limiting Achieves Better than 15dB  
Margin Under FCC Limit  
Zero Dead Time (ZDT) H-Bridge Maintains Good  
THD+N Performance  
Single-Supply Operation (2.5V to 5.5V)  
Stereo Output (4Ω, V  
= 5V, THD+N = 1%,  
DD  
P
OUT  
= 1.8W)  
No LC Output Filter Required  
85% Efficiency (R = 8Ω, P = 600mW)  
L
Less Than 0.1% THD+N  
High 80dB PSRR  
O
Fully Differential Inputs  
Integrated Click-and-Pop Suppression  
Low-Power Shutdown Mode (0.1µA)  
Short-Circuit and Thermal-Overload Protection  
Pin-for-Pin Compatible with the MAX9701  
The MAX9773 offers two modulation schemes: a fixed-  
frequency (FFM) mode, and a spread-spectrum (SSM)  
mode that reduces EMI-radiated emissions. The  
MAX9773 oscillator can be synchronized to an external  
clock through the SYNC input, allowing synchroniza-  
tion of multiple Maxim Class D amplifiers. The sync  
output (SYNC_OUT) can be used for a master-slave  
application where more channels are required. The  
MAX9773 features a fully differential architecture, a full  
bridge-tied load (BTL) output, and comprehensive  
click-and-pop suppression. The device features inter-  
nally set gains of 12dB, 15.6dB, 20dB, and 26dB  
selected through two gain-select inputs, further reduc-  
ing external component count.  
Available in Thermally Efficient, Space-Saving  
Packages  
24-Pin TQFN-EP (4mm x 4mm x 0.8mm)  
20-Bump UCSP (2mm x 2.5mm x 0.6mm)  
Ordering Information  
PIN-  
PKG  
PART  
TEMP RANGE  
PACKAGE  
CODE  
MAX9773EBP-T -40°C to +85°C 20 UCSP-20  
MAX9773ETG+ -40°C to +85°C 24 TQFN-EP*  
B20-1  
T2444-4  
The MAX9773 features high 80dB PSRR, less than  
0.1% THD+N, and SNR in excess of 88dB. Short-circuit  
and thermal-overload protection prevent the device  
from being damaged during a fault condition. The  
MAX9773 is available in 24-pin thin QFN-EP (4mm x  
4mm x 0.8mm), and 20-bump UCSP™ (2mm x 2.5mm x  
0.6mm) packages. The MAX9773 is specified over the  
extended -40°C to +85°C temperature range.  
+Denotes lead-free package.  
*EP = Exposed paddle.  
Block Diagram  
V
DD  
MAX9773  
INR+  
INR-  
RIGHT  
MODULATOR  
AND H-BRIDGE  
Applications  
GAIN1  
GAIN2  
GAIN  
Cellular/Multimedia Phones  
Notebooks  
INL+  
LEFT  
MODULATOR  
AND H-BRIDGE  
Handheld Gaming Consoles  
MP3 Players  
INL-  
Pin Configurations and Gain Selection appear at end of  
data sheet.  
OSCILLATOR  
SYNC  
SYNC_OUT  
UCSP is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND..............................................................................6V  
Duration of Short Circuit Between OUT+ and OUT- ......Continuous  
DD  
DD  
to PV ..........................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C)  
DD  
A
PV  
to PGND .........................................................................6V  
20-Bump UCSP (derate 10mW/°C above +70°C) ...........800mW  
24-Pin Thin QFN (derate 20.8mW/°C above +70°C)..1666.7mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature (soldering) Reflow............................+235°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
GND to PGND .......................................................-0.3V to +0.3V  
All Other Pins to GND.................................-0.3V to (V + 0.3V)  
Continuous Current In/Out of PV , PGND, OUT_......... 800mA  
Continuous Input Current (all other pins).......................... 20mA  
Duration of OUT_ Short Circuit to  
V
DD  
DD  
/GND/PV /PGND...........................................Continuous  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
= 3.3V, V  
= V  
= 0V, SYNC = 0V (FFM), gain = 12dB (GAIN1 = 1, GAIN2 = 1), R connected between  
PGND  
L
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
PV  
SHDN  
L
GND  
DD  
DD  
OUT+ and OUT-, R = , T = T  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Supply Voltage Range  
Quiescent Current  
Shutdown Current  
V
Inferred from PSRR test  
Per channel  
2.6  
5.5  
7.5  
10  
V
DD  
I
5.5  
0.1  
66  
mA  
µA  
dB  
V
DD  
I
SHDN  
Common-Mode Rejection Ratio  
Input Bias Voltage  
CMRR  
f
= 1kHz  
IN  
V
1.125  
1.25  
80  
1.375  
50  
BIAS  
Turn-On Time  
t
ms  
mV  
ON  
Output Offset Voltage  
V
T
= +25oC  
A
10  
OS  
V
= 2.5V to 5.5V, V = 0V, T = +25oC  
59  
56  
80  
DD  
IN  
A
T
MIN  
< T < T  
A MAX  
Power-Supply Rejection Ratio  
Output Power (Note 3)  
PSRR  
dB  
f
= 217Hz  
= 20kHz  
72  
50  
RIPPLE  
f
RIPPLE  
100mV  
ripple,  
P-P  
V
= 0V  
IN  
R = 8  
500  
750  
1300  
1800  
0.04  
0.08  
86  
L
V
V
= 3.3V  
= 5V  
DD  
DD  
R = 4Ω  
L
THD+N = 1%,  
= +25oC  
P
mW  
%
OUT  
T
A
R = 8Ω  
L
R = 4Ω  
L
R = 8(P  
L
= 400mW), f = 1kHz  
= 600mW), f = 1kHz  
OUT  
Total Harmonic Distortion Plus  
Noise (Note 3)  
THD+N  
SNR  
R = 4(P  
L
OUT  
FFM  
SSM  
FFM  
SSM  
BW = 22Hz  
to 22kHz  
86  
Signal-to-Noise Ratio  
Oscillator Frequency  
V
= 1V  
dB  
OUT  
RMS  
88.5  
88.5  
1100  
1400  
A-weighted  
SYNC = GND, T = +25oC  
A
SYNC = unconnected, T = +25oC  
950  
1250  
1600  
1200  
A
f
kHz  
OSC  
1200  
60  
SYNC = V , T = +25oC  
DD  
A
Minimum On-Time  
t
200  
ns  
MIN  
SYNC Frequency Lock Range  
f
1000  
2000  
kHz  
SYNC  
2
_______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 3.3V, V  
= V  
= 0V, SYNC = 0V (FFM), gain = 12dB (GAIN1 = 1, GAIN2 = 1), R connected between  
PGND  
L
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
PV  
SHDN  
L
GND  
DD  
DD  
OUT+ and OUT-, R = , T = T  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
100  
200  
400  
-50  
MAX  
UNITS  
SYNC_OUT Capacitance Drive  
C
pF  
SYNC_OUT  
Bridge-tied capacitance  
Capacitive Drive  
C
pF  
dBV  
%
L
Single ended  
Into shutdown  
Peak reading, A-weighted,  
32 samples per second  
(Note 4)  
Click-and-Pop Level  
Efficiency  
K
CP  
Out of  
shutdown  
-50  
85  
P
= 600mW per channel,  
= 1kHz, R = 8Ω  
L
OUT  
η
f
IN  
GAIN1 = 0, GAIN2 = 0  
GAIN1 = 1, GAIN2 = 0  
GAIN1 = 0, GAIN2 = 1  
GAIN1 = 1, GAIN2 = 1  
GAIN1 = 0, GAIN2 = 0  
GAIN1 = 1, GAIN2 = 0  
GAIN1 = 0, GAIN2 = 1  
GAIN1 = 1, GAIN2 = 1  
10  
16  
30  
Input Resistance  
R
kΩ  
IN  
45  
60  
26  
20  
Gain  
A
dB  
V
15.6  
12  
Channel-to-Channel Gain  
Tracking  
1
%
L to R, R to L, f = 10kHz, R = 8,  
L
Crosstalk  
80  
dB  
P
= 300mW  
OUT  
DIGITAL INPUTS (SHDN, SYNC, GAIN1, GAIN2)  
Input-Voltage High  
Input-Voltage Low  
V
2
V
V
INH  
V
0.8  
1
INL  
Input Leakage Current  
(SHDN, GAIN1, GAIN2)  
µA  
µA  
V
V
= GND, normal operation  
-15  
2.4  
-7  
SYNC  
SYNC  
Input Leakage Current (SYNC)  
= V , normal operation  
12  
25  
DD  
DIGITAL OUTPUTS (SYNC_OUT)  
Output-Voltage High  
V
I
I
= 3mA, V = 3.3V  
DD  
V
V
OH  
OH  
Output-Voltage Low  
V
= 3mA  
0.4  
OL  
OL  
Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 4, L = 33µH.  
L
For R = 8, L = 68µH.  
L
Note 3: When driving speakers below 4with large signals, exercise care to avoid violating the absolute maximum rating for continuous  
output current.  
Note 4: Testing performed with 8resistive load in series with 68µH inductive load connected across the BTL output. Mode transi-  
tions are controlled by SHDN. K  
level is calculated as: 20 x log[(peak voltage during mode transition, no input signal)].  
CP  
Units are expressed in dBV.  
_______________________________________________________________________________________  
3
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Typical Operating Characteristics  
(V  
= V  
= V  
= 3.3V, V  
= V = 0V, SYNC = V  
PGND  
(SSM), gain = 12dB (GAIN1 = 1, GAIN2 = 1)).  
DD  
PV  
SHDN  
GND  
DD  
DD  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
10  
10  
1
10  
1
V
= 5V  
V
= 5V  
V
= 3.3V  
DD  
DD  
DD  
R = 8  
R = 4Ω  
R = 4Ω  
L
L
L
1
0.1  
OUTPUT POWER = 100mW  
OUTPUT POWER = 600mW  
OUTPUT POWER = 100mW  
OUTPUT POWER = 250mW  
OUTPUT POWER = 500mW  
0.1  
0.1  
OUTPUT POWER = 100mW  
OUTPUT POWER = 300mW  
OUTPUT POWER = 300mW  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
OUTPUT POWER = 600mW  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
10  
1
100  
10  
1
10  
1
V
= 3.3V  
V
= 5V  
V
= 5V  
DD  
R = 4Ω  
L
DD  
DD  
R = 8Ω  
R = 8Ω  
L
L
P
= 800mW  
OUT  
OUTPUT POWER = 400mW  
FFM  
SSM  
f
= 1kHz  
IN  
0.1  
0.1  
0.1  
OUTPUT POWER = 100mW  
0.01  
0.001  
0.01  
0.001  
0.01  
f
= 20Hz  
1.0  
f
= 20kHz  
2.0  
IN  
IN  
OUTPUT POWER = 250mW  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
0.5  
1.5  
2.5  
FREQUENCY (Hz)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
100  
10  
100  
10  
100  
10  
V
= 3.3V  
V
= 5V  
V
= 3.3V  
DD  
L
DD  
L
DD  
L
R = 4Ω  
R = 8Ω  
R = 8Ω  
f
= 20Hz  
IN  
1.0  
1
1
f
= 1kHz  
IN  
f
= 1kHz  
IN  
0.1  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
f
= 1kHz  
f = 20kHz  
IN  
IN  
f
= 20kHz  
1.5  
f
= 20Hz  
0.6  
IN  
f = 20Hz  
IN  
IN  
f = 20kHz  
IN  
0
0.3  
0.9  
1.2  
1.8  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
OUTPUT POWER (W)  
0.6  
0.8  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
4
_______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 3.3V, V  
= V = 0V, SYNC = V  
PGND  
(SSM), gain = 12dB (GAIN1 = 1, GAIN2 = 1)).  
DD  
PV  
SHDN  
GND  
DD  
DD  
TOTAL HARMONIC DISTORTION  
PLUS NOISE vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
DD  
R = 8Ω  
L
R = 8Ω  
L
R = 8Ω  
L
f
= 1kHz  
IN  
10  
1
R = 4Ω  
L
R = 4Ω  
L
FFM  
0.1  
V
= 5V  
DD  
0.01  
0.001  
V
f
= 3.3V  
= 1kHz  
SSM  
DD  
IN  
f
IN  
= 1kHz  
OUTPUT POWER PER CHANNEL  
OUTPUT POWER PER CHANNEL  
0
0.4  
0.8  
1.2  
1.6  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. SUPPLY VOLTAGE  
OUTPUT POWER vs. LOAD RESISTANCE  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R = 4Ω  
IN  
R = 8Ω  
L
L
V
Z
= 5V, f = 1kHz,  
DD  
f
= 1kHz  
f
= 1kHz  
IN  
= 33µH  
LOAD  
IN SERIES WITH R  
L
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
THD+N = 1%  
THD+N = 1%  
THD+N = 1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
LOAD RESISTANCE ()  
100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 3.3V, V  
= V = 0V, SYNC = V  
PGND  
(SSM), gain = 12dB (GAIN1 = 1, GAIN2 = 1)).  
DD  
PV  
SHDN  
GND  
DD  
DD  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
OUTPUT POWER vs. LOAD RESISTANCE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.2  
V
= 100mV  
P-P  
V
= 100mV  
P-P  
V
Z
= 3.3V, f = 1kHz,  
RIPPLE  
RIPPLE  
DD  
R = 8Ω  
L
R = 8Ω  
L
= 33µH  
LOAD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 3.3V  
DD  
IN SERIES WITH R  
L
THD+N = 10%  
V
= 5V  
DD  
THD+N = 1%  
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
0
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
1
100  
LOAD RESISTANCE ()  
CROSSTALK vs. FREQUENCY  
CROSSTALK vs. INPUT AMPLITUDE  
-40  
-50  
P
= 300mW  
f = 1kHz  
IN  
R = 8Ω  
L
OUT  
L
-10  
R = 8Ω  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
ONE CHANNEL DRIVEN  
-60  
-70  
-80  
RIGHT TO LEFT  
-90  
-100  
-110  
-120  
-130  
-140  
LEFT TO RIGHT  
-100  
-110  
-120  
10  
100  
1k  
10k  
100k  
-94  
-74  
-54  
-34  
-14  
6
FREQUENCY (Hz)  
INPUT AMPLITUDE (dB)  
OUTPUT FREQUENCY SPECTRUM  
OUTPUT FREQUENCY SPECTRUM  
0
-20  
0
-20  
FFM MODE  
SSM MODE  
V
= -60dBV  
V
= -60dB  
OUT  
OUT  
f = 1kHz  
f = 1kHz  
R = 8Ω  
R = 8Ω  
L
L
-40  
-40  
UNWEIGHTED  
UNWEIGHTED  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
5
10  
15  
20  
0
5
10  
15  
20  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 3.3V, V  
= V = 0V, SYNC = V  
PGND  
(SSM), gain = 12dB (GAIN1 = 1, GAIN2 = 1)).  
DD  
PV  
SHDN  
GND  
DD  
DD  
WIDEBAND OUTPUT SPECTRUM  
(FFM MODE)  
WIDEBAND OUTPUT SPECTRUM  
(SSM MODE (SPEAKER MODE))  
0
0
R = 8,  
DD  
INPUTS  
AC-GROUNDED  
L
R = 8,  
DD  
INPUTS  
AC-GROUNDED  
L
-10  
-10  
V
= 5V  
V
= 5V  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
TURN-ON/TURN-OFF RESPONSE  
MAX9773 toc25  
20  
17  
14  
11  
8
BOTH CHANNELS DRIVEN  
SHDN  
2V/div  
1V/div  
SSM  
FFM  
MAX9773  
DIFFERENTIAL  
OUTPUT  
5
20ms/div  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
UCSP  
1
A2  
SHDN  
Active-Low Shutdown. Connect to V  
for normal operation.  
DD  
Frequency Select and External Clock Input:  
SYNC = GND: Fixed-frequency mode with f = 1100kHz.  
S
2
B3  
SYNC  
SYNC = Unconnected: Fixed-frequency mode with f = 1400kHz.  
S
SYNC = V : Spread-spectrum mode with f = 1200kHz 60kHz.  
DD  
S
SYNC = Clocked: Fixed-frequency mode with f = external clock frequency.  
S
3, 8, 11, 16  
A3  
N.C.  
No Connection. Not internally connected.  
Left-Channel Amplifier Output Positive Phase  
4
5, 14  
6, 13  
7
OUTL+  
A4, D4  
B4, C4  
A5  
PV  
H-Bridge Power Supply. Connect to V . Bypass with a 0.1µF capacitor to PGND.  
DD  
DD  
PGND  
OUTL-  
GND  
Power Ground  
Left-Channel Amplifier Output Negative Phase  
Analog Ground  
9, 22  
10  
B1, B5  
C5  
SYNC_OUT Clock Signal Output  
12  
D5  
OUTR-  
OUTR+  
GAIN1  
GAIN2  
INR-  
Right-Channel Amplifier Output Negative Phase  
15  
D3  
Right-Channel Amplifier Output Positive Phase  
Gain-Select Input 1  
17  
C3  
18  
D2  
Gain-Select Input 2  
19  
D1  
Right-Channel Inverting Input  
Right-Channel Noninverting Input  
20  
C2  
INR+  
21  
C1  
V
Analog Power Supply. Connect to PV . Bypass with a 10µF capacitor to GND.  
DD  
DD  
23  
B2  
INL+  
INL-  
Left-Channel Noninverting Input  
Left-Channel Inverting Input  
24  
A1  
Exposed Pad. Connect the exposed thermal pad to the GND plane (see the Supply  
Bypassing, Layout, and Grounding section).  
EP  
EP  
8
_______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Functional Diagram  
V
DD  
0.1µF  
10µF*  
V
DD  
PV  
DD  
SYNC_OUT  
OSCILLATOR  
AND  
SYNC  
SAWTOOTH  
V
BIAS  
470nF  
470nF  
R
R
IN  
OUTL+  
INL+  
INL-  
CLASS D  
MODULATOR  
AND H-BRIDGE  
OUTL-  
IN  
470nF  
470nF  
R
R
IN  
INR+  
INR-  
OUTR+  
OUTR-  
CLASS D  
MODULATOR  
AND H-BRIDGE  
IN  
V
BIAS  
V
BIAS  
BIAS  
GENERATOR  
GAIN1  
GAIN2  
SHDN  
GAIN  
CONTROL  
MAX9773  
GND  
PGND  
*BULK CAPACITANCE.  
_______________________________________________________________________________________  
9
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
t
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
- V  
OUT-  
OUT+  
Figure 1. MAX9773 Outputs with an Input Signal Applied  
input-coupling capacitors. The inputs can also be config-  
ured to accept a single-ended input signal.  
Detailed Description  
The MAX9773 ultra-low EMI, filterless, stereo Class D  
audio power amplifier incorporates several improve-  
ments to switch-mode amplifier topology. The MAX9773  
features output-driver AEL circuitry to reduce EMI. Zero  
dead time technology maintains state-of-the art efficien-  
cy and THD+N performance by allowing the output FETs  
to switch simultaneously without cross conduction. The  
MAX9773 offers Class AB performance with Class D effi-  
ciency, while occupying minimal board space. A unique,  
filterless modulation scheme, synchronizable switching  
frequency, and spread-spectrum switching mode create  
a compact, flexible, low-noise, efficient audio power  
amplifier. The differential input architecture reduces  
common-mode noise pickup, and can be used without  
Comparators monitor the MAX9773 inputs and compare  
the complementary input voltages to the sawtooth wave-  
form. The comparators trip when the input magnitude of  
the sawtooth exceeds their corresponding input voltage.  
Both comparators reset at a fixed time after the rising  
edge of the second comparator trip point, generating a  
minimum-width pulse (t ) at the output of the sec-  
ON(MIN)  
ond comparator (Figure 1). As the input voltage increases  
or decreases, the duration of the pulse at one output  
increases while the other output pulse duration remains  
the same. This causes the net voltage across the speaker  
(V  
- V  
) to change. The minimum-width pulse  
OUT-  
OUT+  
helps the device to achieve high levels of linearity.  
10 ______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
t
t
t
t
SW  
SW  
SW  
SW  
V
IN_-  
V
IN_+  
OUT_-  
OUT_+  
t
ON(MIN)  
V
- V  
OUT_-  
OUT_+  
Figure 2. MAX9773 Outputs with an Input Signal Applied (SSM Mode)  
Operating Modes  
Table 1. Operating Modes  
Fixed-Frequency (FFM) Mode  
The MAX9773 features two fixed-frequency modes.  
Connect SYNC to GND to select a 1.1MHz switching fre-  
quency. Leave SYNC unconnected to select a 1.4MHz  
switching frequency. The frequency spectrum of the  
MAX9773 consists of the fundamental switching frequen-  
cy and its associated harmonics (see the Wideband FFT  
graph in the Typical Operating Characteristics). Program  
the switching frequency so the harmonics do not fall  
within a sensitive frequency band (Table 1). Audio repro-  
duction is not affected by changing the switching fre-  
quency.  
SYNC  
MODE  
GND  
FFM with f  
FFM with f  
= 1100kHz  
OSC  
OSC  
Unconnected  
= 1400kHz  
V
SSM with f  
= 1200kHz 60kHz  
= external clock frequency  
DD  
OSC  
OSC  
Clocked  
FFM with f  
______________________________________________________________________________________ 11  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Spread-Spectrum (SSM) Mode  
The MAX9773 features a unique spread-spectrum  
mode that flattens the wideband spectral components,  
improving EMI emissions that may be radiated by the  
speaker and cables. This mode is enabled by connect-  
the MAX9773 to be synchronized to another Maxim Class  
D amplifier operating in SSM mode.  
SYNC_OUT  
SYNC_OUT allows several MAX9773s as well as other  
Class D amplifiers (such as the MAX9700) to be cas-  
caded. The synchronized output minimizes interfer-  
ence due to clock intermodulation caused by the  
switching spread between single devices. Using  
SYNC_OUT, the modulation scheme remains the same  
and audio reproduction is not affected by changing the  
switching frequency.  
ing SYNC to V  
(Table 1). In SSM mode, the switching  
DD  
frequency varies randomly by 60kHz around the cen-  
ter frequency (1.2MHz). The modulation scheme  
remains the same, but the period of the sawtooth wave-  
form changes from cycle to cycle (Figure 2). Instead of  
a large amount of spectral energy present at multiples  
of the switching frequency, the energy is now spread  
over a bandwidth that increases with frequency. Above  
a few megahertz, the wideband spectrum looks like  
white noise for EMI purposes (Figure 3). A proprietary  
amplifier topology ensures this does not corrupt the  
noise floor in the audio bandwidth.  
Filterless Modulation/Common-Mode Idle  
The MAX9773 uses Maxim’s unique modulation scheme  
that eliminates the LC filter required by traditional Class D  
amplifiers, improving efficiency, reducing component  
count, conserving board space and system cost.  
Conventional Class D amplifiers output a 50% duty cycle,  
180° out-of-phase square wave when no signal is pre-  
sent. With no filter, the square wave appears across the  
load as a DC voltage, resulting in finite load current,  
which increases power consumption especially when  
idling. When no signal is present at the input of the  
MAX9773, the amplifiers output an in-phase square wave  
as shown in Figure 4. Because the MAX9773 drives the  
speaker differentially, the two outputs cancel each other,  
resulting in no net idle mode voltage across the speaker,  
minimizing power consumption.  
Synchronous Switching Mode  
SYNC  
The SYNC input allows the MAX9773 to be synchronized  
to a user-defined clock, or another Maxim Class D ampli-  
fier, creating a fully synchronous system, minimizing  
clock intermodulation, and allocating spectral compo-  
nents of the switching harmonics to insensitive frequency  
bands. Applying a TTL clock signal between 1000kHz  
and 2000kHz to SYNC synchronizes the MAX9773. The  
period of the SYNC clock can be randomized, allowing  
40  
35  
30  
25  
20  
15  
10  
5
30  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
300  
FREQUENCY (MHz)  
Figure 3. EMI Spectrum of MAX9773 with 6in of Twisted-Pair Speaker Cable with TDK Ferrite Beads MPZ1608S300A  
12 ______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
EFFICIENCY vs. OUTPUT POWER  
100  
V
= 0V  
IN_  
MAX9773  
90  
80  
70  
60  
50  
40  
OUT_-  
OUT_+  
30  
CLASS AB  
20  
10  
0
V
= 3.3V  
DD  
f = 1kHz  
R - 8Ω  
L
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
OUTPUT POWER (W)  
V
- V = 0V  
OUT_+ OUT_-  
Figure 4. MAX9773 Outputs with No Input Signal  
Figure 5. MAX9773 Efficiency vs. Class AB Efficiency  
The filters add cost, increase the solution size of the  
amplifier, and can decrease efficiency. The traditional  
PWM scheme uses large differential output swings (2 x  
Efficiency  
Efficiency of a Class D amplifier is due to the switching  
operation of the output stage transistors. In a Class D  
amplifier, the output transistors act as current-steering  
switches and consume negligible additional power.  
Any power loss associated with the Class D output  
stage is mostly due to the I*R loss of the MOSFET on-  
resistance, and quiescent-current overhead.  
V
) and causes large ripple currents. Any parasitic  
DD(P-P)  
resistance in the filter components results in a loss of  
power, lowering the efficiency.  
The MAX9773 does not require an output filter. The  
device relies on the inherent inductance of the speaker  
coil and the natural filtering of both the speaker and the  
human ear to recover the audio component of the  
square-wave output. Eliminating the output filter results  
in a smaller, less costly, more efficient solution.  
The theoretical best efficiency of a linear amplifier is  
78%; however, that efficiency is only exhibited at peak  
output powers. Under normal operating levels (typical  
music reproduction levels), efficiency falls below 30%,  
whereas the MAX9773 still exhibits >80% efficiencies  
under the same conditions (Figure 5).  
Because the frequency of the MAX9773 output is well  
beyond the bandwidth of most speakers, voice coil  
movement due to the square-wave frequency is very  
small. Although this movement is small, a speaker not  
designed to handle the additional power can be dam-  
aged. For optimum results, use a speaker with a series  
inductance >10µH. Typical 8speakers, for portable  
audio applications, exhibit series inductances in the  
range of 20µH to 100µH.  
Shutdown  
The MAX9773 has a shutdown mode that reduces power  
consumption and extends battery life. Driving SHDN low  
places the MAX9773 in a low-power (0.1µA) shutdown  
mode. Connect SHDN to V for normal operation.  
DD  
Click-and-Pop Suppression  
The MAX9773 features comprehensive click-and-pop  
suppression that eliminates audible transients on startup  
and shutdown. While in shutdown, the H-bridge is in a  
high-impedance state. During startup, or power-up, the  
input amplifiers are muted and an internal loop sets the  
modulator bias voltages to the correct levels, preventing  
clicks and pops when the H-bridge is subsequently  
enabled. For 80ms following startup, a soft-start function  
gradually unmutes the input amplifiers.  
Output Offset  
Unlike a Class AB amplifier, the output offset voltage of a  
Class D amplifier does not noticeably increase quiescent  
current draw when a load is applied. This is due to the  
power conversion of the Class D amplifier. For example,  
an 8mV DC offset across an 8load results in 1mA extra  
current consumption in a Class AB device. In the Class D  
case, an 8mV offset into 8equates to an additional  
power drain of 8µW. Due to the high efficiency of the  
Class D amplifier, this represents an additional quiescent  
Applications Information  
Filterless Operation  
Traditional Class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s PWM output.  
current draw of: 8µW/(V  
order of a few µA.  
/ 100 x η), which is on the  
DD  
______________________________________________________________________________________ 13  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Selectable Gain  
The MAX9773 features four selectable gain settings,  
minimizing external component count. Gains of 12dB,  
15.6dB, 20dB, and 26dB are set through gain-select  
inputs, GAIN1 and GAIN2. GAIN1 and GAIN2 can be  
hardwired or digitally controlled. Table 2 shows the  
suggested gain settings to attain a maximum output  
power from a given peak input voltage and given load  
Table 2. Gain Settings (V  
THD+N = 10%)  
= 3.3V,  
DD  
GAIN  
(dB)  
INPUT  
(V  
R
P
OUT  
L
GAIN1  
GAIN2  
)
()  
(mW)  
950  
950  
950  
950  
650  
650  
650  
650  
RMS  
0.097699  
0.194936  
0.323513  
0.489657  
0.114288  
0.228035  
0.378444  
0.572798  
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
+26  
+20  
+15.6  
12  
4
4
4
4
8
8
8
8
at V  
= 3.3V and THD+N = 10%.  
DD  
Custom Gain Settings  
+26  
+20  
+15.6  
12  
The MAX9773 can be set up with any gain setting by  
adding three external resistors per amplifier. Figure 6  
shows the required circuit for setting up custom gain.  
Table 3 displays a list of the components to use for sev-  
eral gain settings.  
Table 3. Custom Gain Components  
GAIN_ SETTINGS  
GAIN (dB)  
R1 ()  
R2 ()  
C
(µF)  
GAIN TOLERANCE (dB)  
IN  
GAIN1  
GAIN2  
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
750  
1k  
1
20k  
10k  
6k  
1
+0.12/-0.07  
+0.14/-0.08  
+0.13/-0.08  
+0.16/-0.1  
+0.19/-0.12  
1.5  
2.2  
1k  
1.5k  
2k  
6k  
2.2  
6k  
2
1
1.2k  
2k  
30k  
20k  
10k  
10k  
40k  
40k  
20k  
1
+0.1/-0.06  
+0.15/-0.09  
+0.12/-0.07  
+0.15/-0.09  
+0.06/-0.03  
+0.15/-0.09  
+0.14/-0.08  
1
2k  
1.2  
2.5k  
1k  
1.2  
0.86  
0.68  
0.86  
1
2.8k  
2.8k  
1.8k  
4k  
40k  
40k  
30k  
20k  
16k  
16k  
14k  
12k  
12k  
10k  
10k  
10k  
0.86  
0.68  
0.68  
0.68  
0.68  
0.68  
0.68  
0.68  
0.68  
0.68  
0.58  
0.47  
+0.08/-0.05  
+0.15/-0.09  
+0.17/-0.1  
+0.15/-0.09  
+0.15/-0.09  
+0.17/-0.1  
+0.17/-0.1  
+0.16/-0.1  
+0.17/-0.1  
+0.16/-0.1  
+0.16/-0.1  
+0.17/-0.1  
5k  
8
5k  
7
5.5k  
7k  
6
5
8k  
4
8k  
3
10k  
11k  
12k  
14k  
2
1
0
14 ______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
0.47µF  
SINGLE-ENDED  
INL+  
LEFT AUDIO INPUT  
OUTL+  
MAX9773  
0.47µF  
SINGLE-ENDED  
INR+  
C
C
IN  
R
R1  
R1  
IN  
MAX9773  
RIGHT AUDIO INPUT  
INL+  
INL-  
OUTL-  
OUTR+  
INL-  
INR-  
R2  
0.47µF  
IN  
R
R
IN  
0.47µF  
OUTR-  
GAIN1  
GAIN2  
SHDN  
C
C
IN  
R1  
R1  
IN  
INR+  
INR-  
R2  
GND  
PGND  
SYNC  
IN  
2.5V TO 5.5V  
V
DD  
R
IN  
PV  
DD  
10µF  
0.1µF  
FFM MODE WITH f  
= 1100kHz, GAIN = 15.6dB.  
OSC  
Figure 6. Custom Gain Setting  
Figure 7. Single-Ended Input  
The internal input resistance, R , changes with each  
IN  
AC-coupling capacitor allows the amplifier to automati-  
cally bias the signal to an optimum DC level. Assuming  
zero-source impedance, the -3dB point of the highpass  
filter is given by:  
gain setting. The R1 resistors attenuate the gain and  
resistors R2 compensate for R ’s tolerance, which can  
IN  
be as high as 25%. C must be adjusted to compen-  
IN  
sate for the total change in input impedance or the low-  
frequency roll-off point shifts.  
1
f
=
3dB  
2πR C  
IN IN  
Input Amplifier  
Differential Input  
The MAX9773 features a differential input structure,  
making it compatible with many CODECs and offers  
improved noise immunity over a single-ended input  
amplifier. In devices such as cellular phones, high-fre-  
quency signals from the RF transmitter can be picked  
up by the amplifier’s input traces. The signals appear at  
the amplifier’s inputs as common-mode noise. A differ-  
ential input amplifier amplifies the difference of the two  
inputs, any signal common to both inputs is canceled.  
Choose C so f  
is well below the lowest frequency  
IN  
-3dB  
of interest. Use capacitors whose dielectrics have low-  
voltage coefficients, such as tantalum or aluminum  
electrolytic. Capacitors with high-voltage coefficients,  
such as ceramics, may result in increased distortion at  
low frequencies.  
Other considerations when designing the input filter  
include the constraints of the overall system and the  
actual frequency band of interest. Although high-fidelity  
audio calls for a flat-gain response between 20Hz and  
20kHz, portable voice-reproduction devices such as  
cellular phones and two-way radios need only concen-  
trate on the frequency range of the spoken human voice  
(typically 300Hz to 3.5kHz). In addition, speakers used  
in portable devices typically have a poor response  
below 300Hz. Taking these two factors into considera-  
tion, the input filter may not need to be designed for a  
20Hz to 20kHz response, saving both board space and  
cost due to the use of smaller capacitors.  
Single-Ended Input  
The MAX9773 can be configured as a single-ended  
input amplifier by capacitively coupling either input to  
GND, and driving the other input (Figure 7).  
Component Selection  
Input Filter  
An input capacitor, C , in conjunction with the  
IN  
MAX9773 input impedance (R ) forms a highpass filter  
IN  
that removes the DC bias from an incoming signal. The  
______________________________________________________________________________________ 15  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
5V  
C
IN  
2200pF  
10µF  
INL+  
INR+  
INL-  
OUTL+  
C
IN  
2200pF  
8Ω  
8Ω  
MAX9773  
OUTL-  
OUTR+  
C
IN  
2200pF  
10µF  
C
IN  
2200pF  
INR-  
OUTR-  
SYNC  
SYNC_OUT  
R3  
10kΩ  
5V  
R1  
20kΩ  
V
DD  
R4  
39kΩ  
SYNC  
IN+  
C2  
1nF  
1µF  
R2  
20kΩ  
MAX9705  
C1  
OUT+  
OUT-  
0.01µF  
4Ω  
MAX4238  
1µF  
1.25V  
IN-  
NOTE: VALUES SHOWN ARE FOR A LOWPASS CUTOFF OF 2Hz AND A BASS GAIN OF -1V/V.  
FFM MODE WITH f = 1100kHz.  
OSC  
Figure 8. 2.1 Channel Application Circuit  
Output Filter  
2.1 Channel Configuration  
The MAX9773 does not require an output filter. The  
device passes FCC emissions standards with 6in of  
unshielded speaker cables. However, output filtering  
can be used if a design is failing radiated emissions due  
to board layout or cable length, or if the circuit is near  
EMI-sensitive devices. Use a ferrite bead filter when  
radiated frequencies above 10MHz are of concern. Use  
an LC filter or a common-mode choke when radiated  
emissions below 10MHz are of concern, or when long  
leads (>6in) connect the amplifier to the speaker.  
The typical 2.1 channel application circuit (Figure 8)  
shows the MAX9773 configured as a mid/high-frequency  
amplifier and the MAX9705 configured as a mono bass  
amplifier. Input capacitors (C ) set the highpass cutoff  
IN  
frequency according to the following equation:  
1
f =  
2π × R × C  
IN  
IN  
where R  
is the typical input resistance of the  
IN  
MAX9773. The 10µF capacitors on the output of the  
MAX9773 ensure a two-pole highpass filter.  
16 ______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Low frequencies are summed through a two-pole low-  
pass filter and sent to the MAX9705 mono speaker  
amplifier. The passband gain of the lowpass filter is  
unity for in-phase stereo signals:  
Bypass V  
with a 0.1µF capacitor to GND and PV  
DD DD  
with a 10µF capacitor to PGND. Place the bypass  
capacitors as close to the MAX9773 as possible. Use  
large, low-resistance output traces. Current drawn from  
the outputs increases as load impedance decreases.  
High-output trace resistance decreases the power deliv-  
ered to the load. Large output, supply, and GND traces  
allow more heat to move from the MAX9773 to the air,  
decreasing the thermal impedance of the circuit.  
2 × R3  
A
=
VLP  
R1  
where R1 = R2 and R3 = R1//R2. The cutoff frequency  
of the lowpass filter is set by the following equation:  
The MAX9773 thin QFN-EP package features an  
exposed thermal pad on its underside. This pad lowers  
the package’s thermal impedance by providing a direct  
heat conduction path from the die to the PC board.  
Connect the exposed thermal pad to the GND plane.  
1
2π  
1
f
LP  
=
×
C1 × C2 × R3 × R4  
Supply Bypassing, Layout, and Grounding  
Proper layout and grounding are essential for optimum  
performance. Use large traces for the power-supply  
inputs and amplifier outputs to minimize losses due to  
parasitic trace resistance. Large traces also aid in moving  
heat away from the package. Proper grounding improves  
audio performance, minimizes crosstalk between chan-  
nels, and prevents any switching noise from coupling into  
the audio signal. Connect PGND and GND together at a  
single point on the PC board. Route all traces that carry  
switching transients away from GND and the traces/com-  
ponents in the audio signal path.  
UCSP Applications Information  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, printed circuit board  
techniques, bump-pad layout, and recommended reflow  
temperature profile, as well as the latest information on  
reliability testing results, refer to Application Note:  
UCSP—A Wafer-Level Chip-Scale Package available on  
Maxim’s website at www.maxim-ic.com/ucsp.  
______________________________________________________________________________________ 17  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
System Diagram  
18 ______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Pin Configurations  
TOP VIEW  
TOP VIEW  
(BUMPS ON BOTTOM)  
MAX9773  
1
2
3
4
5
18 17 16 15 14 13  
A
B
C
D
INL-  
GND  
SHDN  
OUTL+  
SYNC  
PV  
OUTL-  
DD  
INR- 19  
INR+ 20  
21  
12 OUTR-  
11 N.C.  
INL+  
INR+  
PGND  
PGND  
GND  
V
DD  
10 SYNC_OUT  
MAX9773  
GND 22  
INL+ 23  
INL- 24  
9
8
7
GND  
SYNC  
_OUT  
V
DD  
GAIN1  
N.C.  
+
OUTL-  
INR-  
GAIN2  
OUTR+  
UCSP  
PV  
DD  
OUTR-  
1
2
3
4
5
6
TQFN  
Gain Selection  
Chip Information  
PROCESS: BiCMOS  
GAIN SELECTION  
GAIN (dB)  
GAIN1 = 0, GAIN2 = 0  
GAIN1 = 1, GAIN2 = 0  
GAIN1 = 0, GAIN2 = 1  
GAIN1 = 1, GAIN2 = 1  
26  
20  
15.6  
12  
______________________________________________________________________________________ 19  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
1
E
21-0139  
2
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
2
E
21-0139  
2
MAX9773 Package Code: T2444-4  
20 ______________________________________________________________________________________  
1.8W, Filterless, Ultra-Low EMI,  
Stereo Class D Audio Power Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 5x4 UCSP  
1
21-0095  
I
1
MAX9773 Package Code: B20-1  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2006 Maxim Integrated Products  
Heaney  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9773EBP-T

1.8W, Filterless, Ultra-Low EMI, Stereo Class D Audio Power Amplifier
MAXIM

MAX9773ETG+

1.8W, Filterless, Ultra-Low EMI, Stereo Class D Audio Power Amplifier
MAXIM

MAX9773ETG+T

Audio Amplifier, 1.8W, 2 Channel(s), 1 Func, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WGGD-2, TQFN-24
MAXIM

MAX9775

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9775EBX+

Audio Amplifier, 3 Func, BICMOS, PBGA36
MAXIM

MAX9775EBX+T

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9775EBX+T*

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9775ETJ+

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9775ETJ+*

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9775_V01

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9776

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM

MAX9776EBX+T

2 x 1.5W, Stereo Class D Audio Subsystem with DirectDrive Headphone Amplifier
MAXIM