MAX9724C [MAXIM]

Low RF Susceptibility DirectDrive Stereo Headphone Amplifier with 1.8V Compatible Shutdown;
MAX9724C
型号: MAX9724C
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low RF Susceptibility DirectDrive Stereo Headphone Amplifier with 1.8V Compatible Shutdown

文件: 总19页 (文件大小:350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4130; Rev 0; 5/08  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
General Description  
Features  
Improved RF Noise Rejection (Up to 67dB Over  
The MAX9724C/MAX9724D stereo headphone ampli-  
fiers are designed for portable equipment where board  
space is at a premium. These devices use a unique,  
DirectDrive® architecture to produce a ground-refer-  
enced output from a single supply, eliminating the need  
for large DC-blocking capacitors, saving cost, board  
space, and component height. The MAX9724 sup-  
presses RF radiation received by input and supply  
traces acting as antennas and prevents the amplifier  
from demodulating the coupled noise. The MAX9724C  
offers an externally adjustable gain while the  
MAX9724D has an internally preset gain of -1.5V/V. The  
MAX9724C/MAX9724D deliver up to 60mW per channel  
into a 32Ω load and have low 0.02% THD+N. An 80dB  
at 1kHz power-supply rejection ratio (PSRR) allows  
these devices to operate from noisy digital supplies  
without an additional linear regulator. Comprehensive  
click-and-pop circuitry suppresses audible clicks and  
pops on startup and shutdown.  
Typical Amplifiers)  
No Bulky DC-Blocking Capacitors Required  
Low-Power Shutdown Mode, < 0.1µA  
Adjustable Gain (MAX9724C) or Fixed -1.5V/V  
Gain (MAX9724D)  
Low 0.02% THD+N  
High PSRR (80dB at 1kHz) Eliminates LDO  
Integrated Click-and-Pop Suppression  
2.5V to 5.5V Single-Supply Operation  
Low Quiescent Current (3.5mA)  
Available in Space-Saving Packages  
12-Bump UCSP (1.5mm x 2mm)  
12-Pin Thin QFN (3mm x 3mm x 0.8mm)  
Ordering Information  
TOP  
MARK  
PART  
GAIN (V/V) PIN-PACKAGE  
The MAX9724C/MAX9724D operate from a single 2.5V  
to 5.5V supply, consume only 3.5mA of supply current,  
feature short-circuit and thermal-overload protection,  
and are specified over the extended -40°C to +85°C  
temperature range. The devices are available in tiny  
12-bump UCSP™ (1.5mm x 2mm) and 12-pin thin QFN  
(3mm x 3mm x 0.8mm) packages.  
MAX9724CEBC+T  
MAX9724CETC+  
MAX9724DEBC+T  
MAX9724DETC+  
Adj.  
Adj.  
-1.5  
-1.5  
12 UCSP  
+AGE  
+ABJ  
+AEH  
+ABK  
12 TQFN-EP*  
12 UCSP  
12 TQFN-EP*  
Note: All devices specified over the -40°C to +85°C operating  
range.  
+Denotes a lead-free package.  
T = Tape and reel.  
*EP = Exposed pad.  
Applications  
DVD Players  
Smart Phones  
PDAs  
Cellular Phones  
MP3 Players  
Notebook PCs  
DirectDrive is a registered trademark of  
Maxim Integrated Products, Inc.  
Handheld Gaming Consoles  
UCSP is a trademark of Maxim Integrated Products, Inc.  
Pin Configurations appear at end of data sheet.  
Block Diagrams  
MAX9724D  
MAX9724C  
DirectDrive OUTPUTS  
ELIMINATE DC-BLOCKING  
CAPACITORS  
DirectDrive OUTPUTS  
ELIMINATE DC-BLOCKING  
LEFT  
AUDIO  
INPUT  
LEFT  
AUDIO  
CAPACITORS  
INPUT  
SHDN  
SHDN  
RIGHT  
RIGHT  
AUDIO  
INPUT  
FIXED GAIN ELIMINATES  
AUDIO  
EXTERNAL RESISTOR  
INPUT  
NETWORK  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Continuous Input Current into PVSS .................................260mA  
Continuous Input Current (any other pin)......................... 20mA  
PVSS to SVSS........................................................-0.3V to +0.3V  
PGND to SGND .....................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70°C, multilayer board)  
12-Bump UCSP (derate 6.5mW/°C above +70°C) ........519mW  
A
C1P to PGND..............................................-0.3V to (V  
+ 0.3V)  
DD  
C1N to PGND...........................................(PVSS - 0.3V) to +0.3V  
PVSS and SVSS to PGND.........................................-6V to +0.3V  
θ
................................................................................154 C/W  
12-Pin TQFN (derate 16.7mW/°C above +70°C) .........1333mW  
JA  
IN_ to SGND (MAX9724C) .........................-0.3V to (V  
IN_ to SGND (MAX9724D) ............(SVSS - 0.3V) to (V  
+ 0.3V)  
+ 0.3V)  
θ
JC  
..................................................................................60°C/W  
..................................................................................11°C/W  
JA  
θ
DD  
DD  
OUT_ to SVSS (Note 1) ...-0.3V to Min (V  
- SVSS + 0.3V, +9V)  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Bump Temperature (soldering) Reflow............................+235°C  
DD  
OUT_ to V  
(Note 2) .....+0.3V to Max (SVSS - V  
- 0.3V, -9V)  
DD  
DD  
SHDN to _GND.........................................................-0.3V to +6V  
OUT_ Short Circuit to GND ........................................Continuous  
Short Circuit between OUTL and OUTR ....................Continuous  
Note 1: OUTR and OUTL should be limited to no more than 9V above SVSS, or above V  
+ 0.3V, whichever limits first.  
DD  
Note 2: OUTR and OUTL should be limited to no more than 9V below V , or below SVSS - 0.3V, whichever limits first.  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= 5V, PGND = SGND, SHDN = 5V, C1 = C2 = 1µF, R = , resistive load reference to ground; for MAX9724C gain = -1.5V/V  
L
(R = 20kΩ, R = 30kΩ); for MAX9724D gain = -1.5V/V (internally set), T = -40°C to +85°C, unless otherwise noted. Typical values  
IN  
F
A
are at T = +25°C, unless otherwise noted.) (Note 3)  
A
C/MAX9724D  
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
Quiescent Current  
V
2.5  
5.5  
5.5  
1
V
DD  
I
3.5  
0.1  
mA  
µA  
µs  
CC  
Shutdown Current  
I
SHDN = SGND = PGND  
SHDN  
Shutdown to Full Operation  
Input Impedance  
t
180  
19  
SON  
R
MAX9724D, measured at IN_  
= +25°C (Note 4)  
12  
69  
28  
10  
kΩ  
mV  
IN  
Output Offset Voltage  
V
T
1.5  
OS  
A
V
= 2.7V to 5.5V, T = +25°C  
86  
DD  
A
Power-Supply Rejection Ratio  
PSRR  
f = 1kHz, 100mV  
(Note 4)  
80  
dB  
P-P  
f = 20kHz, 100mV  
(Note 4)  
65  
P-P  
R = 32Ω, THD+N = 1%  
30  
25  
63  
L
Output Power (TQFN)  
Output Power (UCSP)  
P
P
mW  
mW  
OUT  
OUT  
R = 16Ω, THD+N = 1%  
42  
L
R = 32Ω, THD+N = 1%  
45  
L
R = 16Ω, THD+N = 1%  
L
35  
Voltage Gain  
A
MAX9724D (Note 5)  
MAX9724D  
-1.52  
-1.5  
0.15  
0.003  
0.02  
0.04  
0.003  
0.03  
0.05  
102  
105  
98  
-1.48  
V/V  
%
V
Channel-to-Channel Gain Tracking  
R = 1kΩ, V  
= 2V  
, f = 1kHz  
L
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
RMS IN  
Total Harmonic Distortion Plus  
Noise (TQFN) (Note 6)  
THD+N  
THD+N  
%
%
R = 32Ω, P  
= 50mW, f = 1kHz  
IN  
L
R = 16Ω, P  
= 35mW, f = 1kHz  
IN  
L
R = 1kΩ, V  
= 2V  
, f = 1kHz  
RMS IN  
L
Total Harmonic Distortion Plus  
Noise (UCSP) (Note 6)  
R = 32Ω, P  
= 45mW, f = 1kHz  
IN  
L
R = 16Ω, P  
L
= 32mW, f = 1kHz  
IN  
BW = 22Hz to 22kHz  
A-weighted  
R = 1kΩ,  
L
V
= 2V  
OUT  
RMS  
Signal-to-Noise Ratio  
SNR  
dB  
BW = 22Hz to 22kHz  
A-weighted  
R = 32Ω,  
L
P
= 50mW  
101  
OUT  
2
_______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, PGND = SGND, SHDN = 5V, C1 = C2 = 1µF, R = , resistive load reference to ground; for MAX9724C gain = -1.5V/V  
DD  
L
(R = 20kΩ, R = 30kΩ); for MAX9724D gain = -1.5V/V (internally set), T = -40°C to +85°C, unless otherwise noted. Typical values  
IN  
F
A
are at T = +25°C, unless otherwise noted.) (Note 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.5  
MAX  
UNITS  
V/µs  
pF  
Slew Rate  
SR  
Capacitive Drive  
C
No sustained oscillations  
L to R, R to L, f = 10kHz, R = 16Ω,  
100  
L
L
Crosstalk  
-70  
dB  
P
= 15mW  
OUT  
Charge-Pump Oscillator  
Frequency  
f
190  
1.4  
270  
400  
kHz  
OSC  
Into shutdown  
-67  
-64  
R = 32Ω, peak voltage,  
A-weighted, 32 samples per  
second (Notes 4, 7)  
L
Click-and-Pop Level  
K
dB  
Out of  
shutdown  
CP  
DIGITAL INPUTS (SHDN)  
Input-Voltage High  
Input-Voltage Low  
V
V
V
V
INH  
0.4  
1
INL  
Input Leakage Current  
µA  
ELECTRICAL CHARACTERISTICS  
(V  
DD  
= 3V, PGND = SGND, SHDN = 3V, C1 = C2 = 1µF, R = , resistive load reference to ground; for MAX9724C gain = -1.5V/V  
L
(R = 20kΩ, R = 30kΩ); for MAX9724D gain = -1.5V/V (internally set), T = -40°C to +85°C, unless otherwise noted. Typical values  
IN  
F
A
are at T = +25°C, unless otherwise noted.) (Note 3)  
A
PARAMETER  
Quiescent Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.0  
MAX  
UNITS  
mA  
I
CC  
Shutdown Current  
I
SHDN = SGND = PGND  
f = 1kHz, 100mV  
0.1  
µA  
SHDN  
80  
P-P  
Power-Supply Rejection Ratio  
(Note 4)  
PSRR  
dB  
mW  
mW  
f = 20kHz, 100mV  
65  
P-P  
R = 32Ω, THD+N = 1%  
L
20  
Output Power (TQFN)  
Output Power (UCSP)  
P
P
OUT  
OUT  
R = 16Ω, THD+N = 1%  
L
14  
R = 32Ω, THD+N = 1%  
L
17  
R = 16Ω, THD+N = 1%  
L
12  
R = 1kΩ, V  
= 2V , f = 1kHz  
RMS IN  
0.05  
0.03  
0.06  
0.003  
0.04  
0.06  
L
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Total Harmonic Distortion Plus  
Noise (TQFN) (Note 6)  
THD+N  
THD+N  
%
%
R = 32Ω, P  
L
= 15mW, f = 1kHz  
IN  
R = 16Ω, P  
L
= 10mW, f = 1kHz  
IN  
R = 1kΩ, V  
L
= 2V , f = 1kHz  
RMS IN  
Total Harmonic Distortion Plus  
Noise (UCSP) (Note 6)  
R = 32Ω, P  
L
= 15mW, f = 1kHz  
IN  
R = 16Ω, P  
L
= 10mW, f = 1kHz  
IN  
Note 3: All specifications are 100% tested at T = +25°C; temperature limits are guaranteed by design.  
A
Note 4: The amplifier inputs are AC-coupled to GND.  
Note 5: Gain for the MAX9724C is adjustable.  
Note 6: Measurement bandwidth is 22Hz to 22kHz.  
Note 7: Test performed with a 32Ω resistive load connected to GND. Mode transitions are controlled by SHDN. K level is calculated  
CP  
as 20log[(peak voltage during mode transition, no input signal)/(peak voltage under normal operation at rated power level)].  
Units are expressed in dB.  
_______________________________________________________________________________________  
3
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
Typical Operating Characteristics  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9724C),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (TQFN)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (UCSP)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (TQFN)  
100  
10  
1
10  
100  
10  
1
V
= 3V  
V
DD  
= 3V  
DD  
V
DD  
= 3V  
R = 16Ω  
L
R = 16Ω  
L
R = 32Ω  
L
1
f
= 1kHz  
IN  
0.1  
f
IN  
= 1kHz  
0.1  
0.1  
f
= 10kHz  
IN  
f
IN  
= 10kHz  
f
= 10kHz  
0.01  
IN  
f
IN  
= 1kHz  
5
0.01  
0.01  
f
IN  
= 20Hz  
15  
f
IN  
= 20Hz  
f
= 20Hz  
20  
IN  
0.001  
0.001  
0.001  
0
10  
20  
30  
40  
0
10  
20  
25  
30  
0
10  
30  
40  
50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (USCP)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (TQFN)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (UCSP)  
C/MAX9724D  
10  
100  
10  
1
10  
V
= 3V  
V
DD  
= 5V  
V
= 5V  
DD  
DD  
R = 32Ω  
L
R = 16Ω  
L
R = 16Ω  
L
1
1
f
IN  
= 1kHz  
0.1  
0.1  
f
IN  
= 1kHz  
0.1  
f
IN  
= 10kHz  
0.01  
0.01  
f = 10kHz  
IN  
f
IN  
= 10kHz  
0.01  
f
IN  
= 1kHz  
f
IN  
= 20Hz  
f
IN  
= 20Hz  
f
= 20Hz  
IN  
0.001  
0.001  
0.001  
0
5
10 15 20 25 30 35 40  
OUTPUT POWER (mW)  
0
20  
40  
60  
80  
100  
0
10 20 30 40 50 60 70  
OUTPUT POWER (mW)  
80  
OUTPUT POWER (mW)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (TQFN)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER (UCSP)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (TQFN)  
100  
10  
1
10  
1
0.1  
V = 3V  
DD  
R = 16Ω  
L
V
= 5V  
V
DD  
= 5V  
DD  
R = 32Ω  
L
R = 32Ω  
L
1
0.1  
P
= 5mW  
OUT  
f
= 1kHz  
IN  
f
IN  
= 1kHz  
0.1  
0.01  
0.001  
P
= 10mW  
0.01  
0.001  
f
IN  
= 10kHz  
75  
OUT  
0.01  
f
IN  
= 10kHz  
100  
f
= 20Hz  
f
= 20Hz  
IN  
IN  
0.001  
0
20  
40  
60  
80  
120  
0
25  
50  
100  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
FREQUENCY (Hz)  
4
_______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9724C),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (TQFN)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (UCSP)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (UCSP)  
1
0.1  
1
0.1  
1
0.1  
V
= 3V  
V
= 3V  
V
DD  
= 3V  
DD  
DD  
R = 16Ω  
L
R = 32Ω  
L
R = 32Ω  
L
P
= 5mW  
OUT  
P
OUT  
= 8mW  
P
OUT  
= 8mW  
P
= 10mW  
OUT  
0.01  
0.001  
0.01  
0.001  
0.01  
0.001  
P
= 13mW  
1k  
OUT  
P
= 15mW  
1k  
OUT  
10  
100  
10k  
100k  
10  
100  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (TQFN)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (UCSP)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (TQFN)  
1
0.1  
1
0.1  
1
V
DD  
= 5V  
V
DD  
= 5V  
V
= 5V  
DD  
R = 16Ω  
L
R = 16Ω  
L
R = 32Ω  
L
P
= 20mW  
OUT  
0.1  
0.01  
P
OUT  
= 30mW  
P
= 20mW  
OUT  
P
OUT  
= 37mW  
0.01  
0.001  
0.01  
0.001  
P
OUT  
= 32mW  
P
OUT  
= 50mW  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER vs. SUPPLY  
VOLTAGE (TQFN)  
OUTPUT POWER vs. SUPPLY  
VOLTAGE (UCSP)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY (UCSP)  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
1
0.1  
f
= 1kHz  
IN  
L
f
= 1kHz  
V
= 5V  
IN  
L
DD  
R = 16Ω  
R = 16Ω  
R = 32Ω  
L
10% THD+N  
10% THD+N  
P
= 20mW  
OUT  
1% THD+N  
0.01  
0.001  
1% THD+N  
P
OUT  
= 45mW  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9724C),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
OUTPUT POWER  
vs. SUPPLY VOLTAGE (TQFN)  
OUTPUT POWER  
vs. SUPPLY VOLTAGE (UCSP)  
OUTPUT POWER  
vs. LOAD RESISTANCE (TQFN)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
35  
30  
25  
20  
15  
10  
5
V
= 3V  
DD  
= 1kHz  
f
= 1kHz  
f
= 1kHz  
IN  
L
IN  
L
10% THD+N  
f
R = 32Ω  
R = 32Ω  
IN  
10% THD+N  
10% THD+N  
1% THD+N  
1% THD+N  
1% THD+N  
4.5  
0
10  
10  
10  
100  
1000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
10  
0
3.0  
3.5  
4.0  
5.0  
5.5  
LOAD RESISTANCE (Ω)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OUTPUT POWER  
OUTPUT POWER  
OUTPUT POWER  
C/MAX9724D  
vs. LOAD RESISTANCE (UCSP)  
vs. LOAD RESISTANCE (TQFN)  
vs. LOAD RESISTANCE (UCSP)  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3V  
DD  
THD+N = 10%  
THD+N = 10%  
THD+N = 10%  
f
= 1kHz  
IN  
THD+N = 1%  
THD+N = 1%  
THD+N = 1%  
V
= 5V  
V
= 5V  
DD  
DD  
f
= 1kHz  
f = 1kHz  
IN  
IN  
0
10  
100  
1000  
100  
100  
LOAD RESISTANCE (Ω)  
LOAD RESISTANCE (Ω)  
LOAD RESISTANCE (Ω)  
POWER DISSIPATION  
vs. OUTPUT POWER (TQFN)  
POWER DISSIPATION  
vs. OUTPUT POWER (UCSP)  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
0
-20  
250  
200  
150  
100  
50  
160  
140  
R = 32Ω  
L
R = 16Ω  
L
120  
R = 32Ω  
L
R = 16Ω  
L
-40  
100  
80  
R = 32Ω  
L
-60  
V
DD  
= 5V  
60  
40  
20  
0
-80  
V
= 3V  
V
DD  
= 3V  
DD  
f
= 1kHz  
= P  
f
= 1kHz  
= P  
IN  
IN  
-100  
-120  
V
DD  
= 3V  
1k  
P
OUT  
+ P  
OUTR  
P
OUT  
+ P  
OUTL OUTR  
OUTL  
OUTPUTS IN PHASE  
OUTPUTS IN PHASE  
0
0
20  
40  
60  
80  
5
10 15 20 25 30 35 40 45 50  
OUTPUT POWER (mW)  
100  
10k  
100k  
FREQUENCY (Hz)  
OUTPUT POWER (mW)  
6
_______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9724C),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
OUTPUT POWER vs. LOAD RESISTANCE AND  
CHARGE-PUMP CAPACITOR SIZE (TQFN)  
CROSSTALK vs. FREQUENCY  
0
-20  
80  
70  
60  
50  
40  
30  
20  
P
= 15mW  
OUT  
C1 = C2 = 2.2μF  
C1 = C2 = 1μF  
R = 16Ω  
L
-40  
-60  
RIGHT TO LEFT  
C1 = C2 = 0.47μF  
-80  
LEFT TO RIGHT  
10k  
V
DD  
= 5V  
-100  
-120  
f
= 1kHz  
IN  
THD+N = 1%  
0
50  
100  
150  
10  
100  
1k  
FREQUENCY (Hz)  
100k  
LOAD RESISTANCE (Ω)  
OUTPUT POWER vs. LOAD RESISTANCE AND  
CHARGE-PUMP CAPACITOR SIZE (UCSP)  
80  
OUTPUT SPECTRUM vs. FREQUENCY  
-40  
R = 32Ω  
DD  
L
C1 = C2 = 2.2μF  
-50  
-60  
70  
V
f
= 3V  
= 1kHz  
IN  
60  
V
OUT  
= -60dBV  
-70  
C1 = C2 = 1μF  
C1 = C2 = 0.47μF  
50  
40  
30  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
20  
10  
V
= 5V  
DD  
f
= 1kHz  
IN  
THD+N = 1%  
0
0
5
10  
FREQUENCY (kHz)  
15  
20  
0
50  
100  
150  
LOAD RESISTANCE (Ω)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
NO LOAD  
INPUT GROUNDED  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
Typical Operating Characteristics (continued)  
(V  
DD  
= 5V, PGND = SGND = 0V, SHDN = V , C1 = C2 = 1µF, R = , gain = -1.5V/V (R = 20kΩ, R = 30kΩ for the MAX9724C),  
DD L IN F  
THD+N measurement bandwidth = 22Hz to 22kHz, both outputs driven in phase, T = +25°C, unless otherwise noted.)  
A
EXITING SHUTDOWN  
ENTERING SHUTDOWN  
V
SHDN  
V
SHDN  
5V/div  
5V/div  
V
IN_  
V
IN_  
1V/div  
1V/div  
V
V
OUT_  
OUT_  
500mV/div  
500mV/div  
40μs/div  
20μs/div  
C/MAX9724D  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
UCSP  
C1  
C2  
C3  
C4  
A2  
B3  
A1  
B2  
B4  
A3  
A4  
B1  
1
2
C1P  
PGND  
C1N  
Flying Capacitor Positive Terminal. Connect a 1µF ceramic capacitor from C1P to C1N.  
Power Ground. Connect to SGND.  
3
Flying Capacitor Negative Terminal. Connect a 1µF ceramic capacitor from C1P to C1N.  
Charge-Pump Output. Connect to SVSS and bypass with a 1µF ceramic capacitor to PGND.  
Active-Low Shutdown Input  
4
PVSS  
SHDN  
INL  
5
6
Left-Channel Input  
7
SGND  
INR  
Signal Ground. Connect to PGND.  
8
Right-Channel Input  
9
SVSS  
OUTR  
OUTL  
Amplifier Negative Supply. Connect to PVSS.  
Right-Channel Output  
10  
11  
12  
EP  
Left-Channel Output  
V
Positive Power-Supply Input. Bypass with a 1µF capacitor to PGND.  
Exposed Pad. Internally connected to SVSS. Connect to SVSS or leave unconnected.  
DD  
EP  
8
_______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
Detailed Description  
V
OUT  
The MAX9724C/MAX9724D stereo headphone ampli-  
fiers feature Maxim’s DirectDrive architecture, eliminat-  
ing the large output-coupling capacitors required by  
conventional single-supply headphone amplifiers. The  
device consists of two 60mW Class AB headphone  
amplifiers, undervoltage lockout (UVLO)/shutdown con-  
trol, charge pump, and comprehensive click-and-pop  
suppression circuitry (see the Functional  
Diagram/Typical Operating Circuits). The charge pump  
V
DD  
V
DD  
V
/2  
DD  
GND  
inverts the positive supply (V ), creating a negative  
DD  
supply (PVSS). The headphone amplifiers operate from  
these bipolar supplies with their outputs biased about  
PGND (Figure 1). The benefit of this PGND bias is that  
the amplifier outputs do not have a DC component. The  
large DC-blocking capacitors required with convention-  
al headphone amplifiers are unnecessary, conserving  
board space, reducing system cost, and improving fre-  
quency response. The MAX9724C/MAX9724D feature  
an undervoltage lockout that prevents operation from  
an insufficient power supply and click-and-pop sup-  
pression that eliminates audible transients on startup  
and shutdown. The MAX9724C/MAX9724D also feature  
thermal-overload and short-circuit protection.  
CONVENTIONAL DRIVER-BIASING SCHEME  
V
OUT  
V
DD  
GND  
2V  
DD  
-V  
DD  
DirectDrive  
Conventional single-supply headphone amplifiers have  
their outputs biased about a nominal DC voltage (typi-  
cally half the supply) for maximum dynamic range.  
Large-coupling capacitors are needed to block this DC  
bias from the headphone. Without these capacitors, a  
significant amount of DC current flows to the head-  
phone, resulting in unnecessary power dissipation and  
possible damage to both headphone and headphone  
amplifier.  
DirectDrive BIASING SCHEME  
Figure 1. Conventional Driver Output Waveform vs.  
MAX9724C/MAX9724D Output Waveform  
Charge Pump  
The MAX9724C/MAX9724D feature a low-noise charge  
pump. The 270kHz switching frequency is well beyond  
the audio range and does not interfere with audio sig-  
nals. The switch drivers feature a controlled switching  
speed that minimizes noise generated by turn-on and  
turn-off transients. The di/dt noise caused by the para-  
sitic bond wire and trace inductance is minimized by  
limiting the switching speed of the charge pump.  
Although not typically required, additional high-fre-  
quency noise attenuation can be achieved by increas-  
ing the value of C2 (see the Functional Diagram/Typical  
Operating Circuits).  
Maxim’s DirectDrive architecture uses a charge pump  
to create an internal negative supply voltage, allowing  
the MAX9724C/MAX9724D outputs to be biased about  
GND. With no DC component, there is no need for the  
large DC-blocking capacitors. The MAX9724C/  
MAX9724D charge pumps require two small ceramic  
capacitors, conserving board space, reducing cost,  
and improving the frequency response of the head-  
phone amplifier. See the Output Power vs. Load  
Resistance and Charge-Pump Capacitor Size graph in  
the Typical Operating Characteristics for details of the  
possible capacitor sizes. There is a low DC voltage on  
the amplifier outputs due to amplifier offset. However,  
the offsets of the MAX9724C/MAX9724D are typically  
1.5mV, which, when combined with a 32Ω load, results  
in less than 47µA of DC current flow to the head-  
phones.  
RF Susceptibility  
Modern audio systems are often subject to RF radiation  
from sources like wireless networks and cellular phone  
networks. Although the RF radiation is out of the audio  
band, many signals, in particular GSM signals, contain  
bursts or modulation at audible frequencies. Most ana-  
log amplifiers demodulate the low-frequency envelope,  
adding noise to the audio signal. The architecture of  
_______________________________________________________________________________________  
9
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
the MAX9724 addresses the problem of the RF suscep-  
tibility by rejecting RF noise and preventing it from cou-  
pling into the audio band.  
Typically, the output of the device driving the  
MAX9724C/MAX9724D has a DC bias of half the supply  
voltage. At startup, the input-coupling capacitor, C , is  
IN  
charged to the preamplifier’s DC bias voltage through  
The RF susceptibility of an amplifier can be measured  
by placing the amplifier in an isolated chamber and sub-  
jecting it to an electric field of known strength. If the  
electric field is modulated with an audio band signal, a  
percentage of the modulated signal is demodulated and  
amplified by the device in the chamber. Figure 2 shows  
the signal level at the outputs of an unoptimized amplifi-  
er and the MAX9724. The test conditions are shown in  
Table 1.  
the MAX9724C/MAX9724D input resistor, R , and a  
IN  
series 15kΩ resistor. This DC shift across the capacitor  
results in an audible click-and-pop. Delay the rise of  
SHDN 4 to 5 time constants based on R x 15kΩ x C  
IN  
IN  
to eliminate clicks-and-pops caused by the input filter.  
Shutdown  
The MAX9724C/MAX9724D feature a < 0.1µA, low-  
power shutdown mode that reduces quiescent current  
consumption and extends battery life for portable appli-  
cations. Drive SHDN low to disable the amplifiers and  
the charge pump. In shutdown mode, the amplifier out-  
put impedance is set to 14kΩ||R (R is 30kΩ for the  
Table 1. RF Susceptibility Test Conditions  
TEST PARAMETER  
SETTING  
RF Field Strength  
50V/m  
F
F
MAX9724D). The amplifiers and charge pump are  
enabled once SHDN is driven high.  
RF Modulation Type  
Sine wave  
100%  
RF Modulation Index  
RF Modulation Frequency  
Applications Information  
1kHz  
7
Power Dissipation  
Under normal operating conditions, linear power ampli-  
fiers can dissipate a significant amount of power. The  
maximum power dissipation for each package is given  
in the Absolute Maximum Ratings section under  
Continuous Power Dissipation or can be calculated by  
the following equation:  
Click-and-Pop Suppression  
In conventional single-supply audio amplifiers, the out-  
put-coupling capacitor contributes significantly to audi-  
ble clicks and pops. Upon startup, the amplifier charges  
the coupling capacitor to its bias voltage, typically half  
the supply. Likewise, on shutdown, the capacitor is dis-  
charged. This results in a DC shift across the capacitor,  
which appears as an audible transient at the speaker.  
Since the MAX9724C/MAX9724D do not require output-  
coupling capacitors, this problem does not arise.  
Additionally, the MAX9724C/MAX9724D feature exten-  
sive click-and-pop suppression that eliminates any audi-  
ble transient sources internal to the device.  
T
T  
A
J(MAX)  
P
=
DISSPKG(MAX)  
θ
JA  
where T  
is +150°C, T is the ambient tempera-  
A
J(MAX)  
ture, and θ is the reciprocal of the derating factor in  
JA  
40  
62dB IMPROVEMENT  
AT 850MHz  
RF SUSCEPTIBLE  
AMPLIFIER  
39dB IMPROVEMENT  
AT 900MHz  
20  
0
67dB IMPROVEMENT  
AT 1800MHz  
49dB IMPROVEMENT  
AT 1900MHz  
-20  
-40  
-60  
-80  
-100  
MAX9724  
100  
600  
1100  
1600  
2100  
2600  
RF CARRIER FREQUENCY (MHz)  
Figure 2. RF Susceptibility of the MAX9724 and a Typical Headphone Amplifier  
10 ______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
°C/W as specified in the Absolute Maximum Ratings  
opposite supply voltage by 9V. For example, if V  
=
DD  
section. For example, θ of the thin QFN package is  
5V, the charge pump sets PVSS = -5V. Therefore, the  
peak output swing must be less than 4V to prevent  
exceeding the absolute maximum ratings.  
JA  
+68°C/W, and 154.2°C/W for the UCSP package.  
The MAX9724C/MAX9724D have two power dissipation  
sources; a charge pump and the two output amplifiers.  
If power dissipation for a given application exceeds the  
maximum allowed for a particular package, reduce  
UVLO  
The MAX9724C/MAX9724D feature an undervoltage  
lockout (UVLO) function that prevents the device from  
operating if the supply voltage is less than 2.5V. This fea-  
ture ensures proper operation during brownout condi-  
tions and prevents deep battery discharge. Once the  
supply voltage exceeds the UVLO threshold, the  
MAX9724C/MAX9724D charge pump is turned on and  
the amplifiers are powered, provided that SHDN is high.  
V
, increase load impedance, decrease the ambient  
DD  
temperature, or add heatsinking to the device. Large  
output, supply, and ground traces decrease θ , allow-  
ing more heat to be transferred from the package to the  
surrounding air.  
JA  
Thermal-overload protection limits total power dissipa-  
tion in the MAX9724C/MAX9724D. When the junction  
temperature exceeds +150°C, the thermal protection  
circuitry disables the amplifier output stage. The ampli-  
fiers are enabled once the junction temperature cools  
by approximately 12°C. This results in a pulsing output  
under continuous thermal-overload conditions.  
Component Selection  
Input-Coupling Capacitor  
The input capacitor (C ), in conjunction with the input  
IN  
resistor (R ), forms a highpass filter that removes the  
IN  
DC bias from an incoming signal (see the Functional  
Diagram/Typical Operating Circuits). The AC-coupling  
capacitor allows the device to bias the signal to an opti-  
mum DC level. Assuming zero-source impedance, the  
-3dB point of the highpass filter is given by:  
Output Dynamic Range  
Dynamic range is the difference between the noise floor  
of the system and the output level at 1% THD+N.  
Determine the system’s dynamic range before setting the  
maximum output gain. Output clipping occurs if the out-  
put signal is greater than the dynamic range of the sys-  
tem. The DirectDrive architecture of the MAX9724C/  
MAX9724D has increased the dynamic range compared  
to other single-supply amplifiers.  
1
f
=
3dB  
2πR C  
IN IN  
Choose the C such that f  
is well below the lowest  
-3dB  
IN  
-3dB  
frequency of interest. Setting f  
too high affects the  
Maximum Output Swing  
device’s low-frequency response. Use capacitors  
whose dielectrics have low-voltage coefficients, such  
as tantalum or aluminum electrolytic. Capacitors with  
high-voltage coefficients, such as ceramics, can result  
in increased distortion at low frequencies.  
V
DD  
< 4.35V  
If the output load impedance is greater than 1kΩ, the  
MAX9724C/MAX9724D can swing within a few millivolts  
of their supply rail. For example, with a 3.3V supply, the  
output swing is 2V , or 2.83V peak while maintaining  
RMS  
Charge-Pump Capacitor Selection  
Use ceramic capacitors with a low ESR for optimum  
performance. For optimal performance over the extend-  
ed temperature range, select capacitors with an X7R  
dielectric. Table 2 lists suggested manufacturers.  
a low 0.003% THD+N. If the supply voltage drops to  
3V, the same 2.83V peak has only 0.05% THD+N.  
V
DD  
> 4.35V  
Internal device structures limit the maximum voltage  
swing of the MAX9724C/MAX9724D when operated at  
supply voltages greater than 4.35V. The output must not  
be driven such that the peak output voltage exceeds the  
Flying Capacitor (C1)  
The value of the flying capacitor (see the Functional  
Diagram/Typical Operating Circuits) affects the charge  
Table 2. Suggested Capacitor Manufacturers  
WEBSITE  
SUPPLIER  
Taiyo Yuden  
PHONE  
FAX  
800-348-2496  
847-803-6100  
770-436-1300  
847-925-0899  
847-390-4405  
770-436-3030  
www.t-yuden.com  
www.component.tdk.com  
www.murata.com  
TDK  
Murata  
______________________________________________________________________________________ 11  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
pump’s load regulation and output resistance. A C1  
value that is too small degrades the device’s ability to  
provide sufficient current drive, which leads to a loss of  
output voltage. Increasing the value of C1 improves load  
regulation and reduces the charge-pump output resis-  
tance to an extent. See the Output Power vs. Load  
Resistance and Charge-Pump Capacitor Size graph in  
the Typical Operating Characteristics. Above 1µF, the  
on-resistance of the switches and the ESR of C1 and C2  
dominate.  
Choose feedback resistor values in the tens of kΩ  
range. Lower values may cause excessive power dissi-  
pation and require impractically small values of R for  
IN  
large gain settings. The high-impedance state of the  
outputs can also be degraded during shutdown mode  
if an inadequate feedback resistor is used since the  
equivalent output impedance during shutdown is  
14kΩ||R (R is equal to 30kΩ for the MAX9724D). The  
f
F
source resistance of the input device may also need to  
be taken into consideration. Since the effective value of  
R
is equal to the sum of the source resistance of the  
IN  
Hold Capacitor (C2)  
The hold capacitor value (see the Functional  
Diagram/Typical Operating Circuits) and ESR directly  
affect the ripple at PVSS. Increasing the value of C2  
reduces output ripple. Likewise, decreasing the ESR of  
C2 reduces both ripple and output resistance. Lower  
capacitance values can be used in systems with low  
maximum output power levels. See the Output Power  
vs. Load Resistance and Charge-Pump Capacitor Size  
graph in the Typical Operating Characteristics.  
input device and the value of the input resistor connect-  
ed to the inverting terminal of the headphone amplifier  
(20kΩ for the MAX9724D), the overall closed-loop gain  
of the headphone amplifier can be reduced if the input  
resistor is not significantly larger than the source resis-  
tance of the input device.  
R
F
C/MAX9724D  
Power-Supply Bypass Capacitor (C3)  
The power-supply bypass capacitor (see the Functional  
Diagram/Typical Operating Circuits) lowers the output  
impedance of the power supply and reduces the  
impact of the MAX9724C/MAX9724D’s charge-pump  
MAX9724C  
R
IN  
LEFT  
AUDIO  
INPUT  
INL  
switching transients. Bypass V  
with C3, the same  
DD  
OUTL  
value as C1, and place it physically close to the V  
and PGND pins.  
DD  
Amplifier Gain  
The gain of the MAX9724D amplifier is internally set to  
-1.5V/V. All gain-setting resistors are integrated into the  
device, reducing external component count. The inter-  
nally set gain, in combination with DirectDrive, results in  
a headphone amplifier that requires only five small  
capacitors to complete the amplifier circuit: two for the  
charge pump, two for audio input coupling, and one for  
power-supply bypassing (see the Functional  
Diagram/Typical Operating Circuits).  
OUTR  
R
IN  
RIGHT  
AUDIO  
INPUT  
INR  
R
F
Figure 3. Gain Setting for the MAX9724C  
The gain of the MAX9724C amplifier is set externally as  
shown in Figure 3, the gain is:  
A = -R /R (V/V)  
V
F
IN  
12 ______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
sinusoidal signal equates to approximately 5.7V  
,
Lineout Amplifier and Filter Block  
P-P  
which means that the audio system designer cannot  
simply run the lineout stage from a (typically common)  
5V supply—the resulting output swing would be inade-  
quate. A common solution to this problem is to use op  
amps driven from split supplies ( 5V typically), or to  
use a high-voltage supply rail (9V to 12V). This can  
mean adding extra cost and complexity to the system  
power supply to meet this output level requirement.  
The MAX9724C can be used as an audio line driver  
capable of providing 2V  
gle 5V supply (see Figure 4 for the RMS Output Voltage  
vs. Supply Voltage plot). 2V is a popular audio line  
level, first used in CD players, but now common in DVD  
and set-top box (STB) interfacing standards. A 2V  
into 10kΩ loads with a sin-  
RMS  
RMS  
RMS  
RMS OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
Having the ability to derive 2V  
from a 5V supply, or  
RMS  
even 3.3V supply, can often simplify power-supply  
design in some systems.  
3.5  
f
= 1kHz  
IN  
R = 10kΩ  
L
When the MAX9724C is used as a line driver to provide  
outputs that feed stereo equipment (receivers, STBs,  
notebooks, and desktops) with a digital-to-analog con-  
verter (DAC) used as an audio input source, it is often  
desirable to eliminate any high-frequency quantization  
noise produced by the DAC output before it reaches  
the load. This high-frequency noise can cause the input  
stages of the line-in equipment to exceed slew-rate lim-  
itations or create excessive EMI emissions on the  
cables between devices.  
THD+N = 1%  
3.0  
2.5  
2.0  
1.5  
LIMITED BY ABS.  
MAXIMUM RATINGS  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
Figure 4. RMS Output Voltage vs. Supply Voltage  
15kΩ  
220pF  
LEFT  
AUDIO  
INPUT  
1μF  
MAX9724C  
7.5kΩ  
7.5kΩ  
INL  
LINE IN DEVICE  
OUTL  
1.2nF  
STEREO  
DAC  
10kΩ  
1.2nF  
7.5kΩ  
RIGHT  
AUDIO  
INPUT  
OUTR  
1μF  
7.5kΩ  
INR  
10kΩ  
220pF  
15kΩ  
Figure 5. MAX9724C Line Out Amplifier and Filter Block Configuration  
______________________________________________________________________________________ 13  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
To suppress this noise, and to provide a 2V  
stan-  
RMS  
dard audio output level from a single 5V supply, the  
MAX9724C can be configured as a line driver and  
active lowpass filter. Figure 5 shows the MAX9724C  
connected as 2-pole Rauch/multiple feedback filter with  
a passband gain of 6dB and a -3dB (below passband)  
cutoff frequency of approximately 27kHz (see Figure 6  
for the Gain vs. Frequency plot).  
MAX9724C ACTIVE FILTER GAIN  
vs. FREQUENCY  
10  
5
R = 10kΩ  
L
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
Layout and Grounding  
Proper layout and grounding are essential for optimum  
performance. Connect PGND and SGND together at a  
single point on the PCB. Connect PVSS to SVSS and  
bypass with a 1µF capacitor. Place the power-supply  
bypass capacitor and the charge-pump hold capacitor  
as close to the MAX9724 as possible. Route PGND and  
all traces that carry switching transients away from  
SGND and the audio signal path. The thin QFN pack-  
age features an exposed pad that improves thermal  
efficiency. Ensure that the exposed pad is electrical-  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 6. Frequency Response of Active Filter of Figure 4  
ly isolated from PGND, SGND, and V . Connect the  
DD  
exposed paddle to SVSS only when the board lay-  
out dictates that the exposed pad cannot be left  
floating.  
C/MAX9724D  
UCSP Applications Information  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow tempera-  
ture profile, as well as the latest information on reliability  
testing results, refer to the Application Note UCSP—A  
Wafer-Level Chip-Scale Package available on Maxim’s  
website at www.maxim-ic.com/ucsp.  
14 ______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
System Diagram  
V
DD  
0.1μF  
15kΩ  
1μF  
15kΩ  
INR  
OUTR+  
OUTR-  
V
DD  
PVDD  
BIAS  
1μF  
MAX9710  
GND  
PGND  
MUTE  
SHDN  
INL  
OUTL-  
OUTL+  
0.1μF  
15kΩ  
V
DD  
15kΩ  
μCONTROLLER  
100kΩ  
100kΩ  
0.1μF  
STEREO  
DAC  
OUTL  
SHDN  
O.47μF  
O.47μF  
MAX9724D  
OUTR  
SGND  
INL  
INR  
PGND  
V
PVSS  
SVSS  
DD  
V
DD  
C1P  
C1N  
1μF  
1μF  
1μF  
______________________________________________________________________________________ 15  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
Functional Diagram/Typical Operating Circuits  
2.7V TO 5.5V  
C
IN  
0.47μF  
R
R
IN*  
F*  
LEFT  
AUDIO  
INPUT  
20kΩ  
30kΩ  
ON  
C3  
1μF  
OFF  
12  
5
6
(B3)  
(B1)  
(A2)  
INL  
V
DD  
SHDN  
V
DD  
11  
(A4)  
OUTL  
HEADPHONE  
JACK  
1
(C1)  
SVSS  
C1P  
UVLO/  
SHUTDOWN  
CONTROL  
CLICK-AND-POP  
SUPPRESSION  
CHARGE  
PUMP  
SGND  
C1  
1μF  
V
DD  
C/MAX9724D  
3
10  
(A3)  
(C3) C1N  
OUTR  
MAX9724C  
SVSS  
PVSS  
SVSS  
PGND  
SGND  
INR  
4
(C4)  
7
(A1)  
2
(C2)  
9
(B4)  
8
(B2)  
C
IN  
R
*
R *  
IN  
F
C2  
1μF  
0.47μF  
20kΩ  
30kΩ  
RIGHT  
AUDIO  
INPUT  
*R AND R VALUES ARE CHOSEN FOR A GAIN -1.5V/V.  
IN  
F
( ) UCSP PACKAGE  
16 ______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D  
Functional Diagram/Typical Operating Circuits (continued)  
2.7V TO 5.5V  
C
IN  
0.47μF  
LEFT  
AUDIO  
INPUT  
ON  
C3  
1μF  
OFF  
12  
5
6
(B3)  
(B1)  
(A2)  
V
INL  
DD  
SHDN  
R
F*  
30kΩ  
V
DD  
R
IN*  
20kΩ  
11  
(A4)  
OUTL  
HEADPHONE  
JACK  
1
(C1)  
V
SS  
C1P  
UVLO/  
SHUTDOWN  
CONTROL  
CLICK-AND-POP  
SUPPRESSION  
CHARGE  
PUMP  
SGND  
C1  
1μF  
V
DD  
3
10  
(A3)  
(C3) C1N  
OUTR  
R
IN  
20kΩ  
MAX9724D  
SVSS  
R
F
30kΩ  
SVSS  
9
(B4) (C2)  
PVSS  
INR  
8
(B2)  
PGND  
2
SGND  
4
(C4)  
C2  
1μF  
7
(A1)  
C
IN  
0.47μF  
RIGHT  
AUDIO  
INPUT  
( ) UCSP PACKAGE  
______________________________________________________________________________________ 17  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
Pin Configurations  
TOP VIEW (BUMPS ON BOTTOM)  
TOP VIEW  
1
2
3
4
9
8
7
MAX9724C/MAX9724D  
A
B
C
10  
OUTR  
6
5
INL  
SGND  
SHDN  
INR  
OUTR  
INL  
OUTL  
SVSS  
MAX9724C  
MAX9724D  
OUTL 11  
SHDN  
PVSS  
V
DD  
V
DD 12  
4
+
C1P  
PGND  
C1N  
PVSS  
1
2
3
UCSP  
TQFN  
C/MAX9724D  
Chip Information  
TRANSISTOR COUNT: 993  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
Low RF Susceptibility DirectDrive Stereo Head-  
phone Amplifier with 1.8V Compatible Shutdown  
C/MAX9724D/MAX9724D  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE TYPE  
12 UCSP  
PACKAGE CODE  
B12-1  
DOCUMENT NO.  
21-0104  
12 TQFN-EP  
T1233-1  
21-0136  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY