MAX9703_V01 [MAXIM]

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers;
MAX9703_V01
型号: MAX9703_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers

文件: 总24页 (文件大小:1931K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
General Description  
Features  
Filterless Class D Amplifier  
The MAX9703/MAX9704 mono/stereo Class D audio  
power amplifiers provide Class AB amplifier performance  
with Class D efficiency, conserving board space and  
eliminating the need for a bulky heatsink. Using a Class  
D architecture, these devices deliver up to 15W while  
offering up to 78% efficiency. Proprietary and protected  
modulation and switching schemes render the traditional  
Class D output filter unnecessary.  
Unique Spread-Spectrum Mode Offers 5dB  
Emissions Improvement Over Conventional Methods  
Up to 78% Efficient (R = 8Ω)  
L
Up to 88% Efficient (R = 16Ω)  
L
● 15W Continuous Output Power into 8Ω (MAX9703)  
● 2x10W Continuous Output Power into 8Ω (MAX9704)  
Low 0.07% THD+N  
The MAX9703/MAX9704 offer two modulation schemes:  
a fixed-frequency mode (FFM), and a spread-spectrum  
mode (SSM) that reduces EMI-radiated emissions due  
to the modulation frequency. The device utilizes a fully  
differential architecture, a full bridged output, and compre-  
hensive click-and-pop suppression.  
High PSRR (80dB at 1kHz)  
10V to 25V Single-Supply Operation  
Differential Inputs Minimize Common-Mode Noise  
Pin-Selectable Gain Reduces Component Count  
Industry-Leading Click-and-Pop Suppression  
Low Quiescent Current (24mA)  
The MAX9703/MAX9704 feature high 80dB PSRR, low  
0.07% THD+N, and SNR in excess of 95dB. Short-circuit  
and thermal-overload protection prevent the devices from  
being damaged during a fault condition. The MAX9703 is  
available in a 32-pin TQFN (5mm x 5mm x 0.8mm) pack-  
age. The MAX9704 is available in a 32-pin TQFN (7mm x  
7mm x 0.8mm) package. Both devices are specified over  
the extended -40°C to +85°C temperature range.  
● Low-Power Shutdown Mode (0.2μA)  
Short-Circuit and Thermal-Overload Protection  
Available in Thermally Efficient, Space-Saving  
Packages  
• 32-Pin TQFN (5mm x 5mm x 0.8mm)–MAX9703  
• 32-Pin TQFN (7mm x 7mm x 0.8mm)–MAX9704  
Ordering Information  
Applications  
LCD TVs  
LCD Monitors  
Desktop PCs  
LCD Projectors  
PART  
PIN-PACKAGE  
32 TQFN-EP*  
32 TQFN-EP*  
AMP  
Mono  
Stereo  
PKG CODE  
T3255-4  
Hands-Free Car Phone  
MAX9703ETJ+  
MAX9704ETJ+  
Adapters  
T3277-2  
Note: All devices specified for over -40°C to +85°C operating  
temperature range.  
*EP = Exposed paddle.  
+Denotes lead-free package.  
Block Diagrams  
0.47µF  
MAX9704  
INL+  
INL-  
OUTL+  
OUTL-  
MAX9703  
H-BRIDGE  
H-BRIDGE  
0.47µF  
0.47µF  
IN+  
OUT+  
H-BRIDGE  
0.47µF  
IN-  
0.47µF  
0.47µF  
OUT-  
INR+  
OUTR+  
OUTR-  
INR-  
Pin Configurations appears at end of data sheet.  
19-3160; Rev 8; 5/14  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Absolute Maximum Ratings  
(All voltages referenced to PGND.)  
Continuous Power Dissipation (T = +70°C)  
A
V
to PGND, AGND............................................................30V  
Single-Layer Board:  
DD  
OUTR_, OUTL_, C1N.................................-0.3V to (V  
+ 0.3V)  
MAX9703 32-Pin TQFN (derate 21.3mW/°C  
DD  
C1P............................................(V  
CHOLD........................................................(V  
- 0.3V) to (CHOLD + 0.3V)  
above +70°C)..........................................................1702.1mW  
MAX9704 32-Pin TQFN (derate 27mW/°C  
DD  
- 0.3V) to +40V  
DD  
All Other Pins to PGND...........................................-0.3V to +12V  
Duration of OUTR_/OUTL_  
above +70°C)..........................................................2162.2mW  
Multilayer Board:  
Short Circuit to PGND, V ................................................10s  
MAX9703 32-Pin TQFN (derate 34.5mW/°C  
DD  
Continuous Input Current (V , PGND) ...............................1.6A  
Continuous Input Current......................................................0.8A  
Continuous Input Current (all other pins)..........................±20mA  
above +70°C)..........................................................2758.6mW  
MAX9704 32-Pin TQFN (derate 37mW/°C  
DD  
above +70°C)..........................................................2963.0mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= 15V, AGND = PGND = 0V, SHDN ≥ V , A = 16dB, C = C = 0.47μF, C  
= 0.01μF, C1 = 100nF, C2 = 1μF, FS1 = FS2  
REG  
DD  
IH  
V
SS  
IN  
= PGND (f = 660kHz), R connected between OUTL+ and OUTL- and OUTR+ and OUTR-, T = T  
to T  
, unless otherwise  
S
L
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
GENERAL  
SYMBOL  
CONDITIONS  
Inferred from PSRR test  
MIN  
TYP  
MAX  
UNITS  
Supply Voltage Range  
Quiescent Current  
Shutdown Current  
Turn-On Time  
V
10  
25  
22  
34  
1.5  
V
DD  
MAX9703  
MAX9704  
14  
24  
I
R = OPEN  
mA  
µA  
ms  
DD  
L
I
0.2  
100  
50  
SHDN  
C
C
= 470nF  
= 180nF  
SS  
t
ON  
SS  
Amplifier Output Resistance in  
Shutdown  
SHDN = PGND  
150  
330  
kΩ  
kΩ  
A
A
A
A
= 13dB  
35  
30  
58  
48  
80  
65  
V
V
V
V
= 16dB  
Input Impedance  
Voltage Gain  
R
IN  
= 19.1dB  
= 29.6dB  
23  
39  
55  
10  
15  
22  
G1 = L, G2 = L  
G1 = L, G2 = H  
G1 = H, G2 = L  
G1 = H, G2 = H  
29.4  
18.9  
12.8  
15.9  
29.6  
19.1  
13  
29.8  
19.3  
13.2  
16.3  
A
dB  
V
16  
Gain Matching  
Between channels (MAX9704)  
0.5  
±6  
%
mV  
dB  
Output Offset Voltage  
Common-Mode Rejection Ratio  
V
±30  
OS  
CMRR  
f
= 1kHz, input referred  
60  
IN  
V
= 10V to 25V  
54  
80  
DD  
Power-Supply Rejection Ratio  
(Note 3)  
f
f
= 1kHz  
80  
PSRR  
dB  
RIPPLE  
200mV  
ripple  
P-P  
= 20kHz  
66  
RIPPLE  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Electrical Characteristics (continued)  
(V  
= 15V, AGND = PGND = 0V, SHDN ≥ V , A = 16dB, C = C = 0.47μF, C  
= 0.01μF, C1 = 100nF, C2 = 1μF, FS1 = FS2  
REG  
DD  
IH  
V
SS  
IN  
= PGND (f = 660kHz), R connected between OUTL+ and OUTL- and OUTR+ and OUTR-, T = T  
to T  
, unless otherwise  
S
L
A
MIN  
MAX  
noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R = 4Ω  
10  
15  
THD+N = 10%, V  
= 16V, f = 1kHz, T =  
L
DD  
Continuous Output Power  
(MAX9703)  
A
P
R = 8Ω  
W
CONT  
CONT  
L
+25°C, t  
(Note 4)  
= 15min  
CONT  
R = 16Ω, V  
= 24V  
= 24V  
18  
L
DD  
R = 4Ω  
2x5  
2x10  
2x16  
THD+N = 10%, V  
= 16V, f = 1kHz, T =  
L
DD  
Continuous Output Power  
(MAX9704)  
A
P
R = 8Ω  
W
%
L
+25°C, t  
(Note 4)  
= 15min  
CONT  
R = 16Ω, V  
L
DD  
Total Harmonic Distortion Plus  
Noise  
f
P
= 1kHz, either FFM or SSM, R = 8Ω,  
IN L  
THD+N  
SNR  
0.07  
= 4W  
OUT  
FFM  
94  
88  
BW = 22Hz to  
22kHz  
SSM  
FFM  
SSM  
R = 8Ω, P  
10W, f = 1kHz  
=
L
OUT  
Signal-to-Noise Ratio  
Crosstalk  
dB  
dB  
97  
A-weighted  
91  
Left to right, right to left, 8Ω load, f = 10kHz  
65  
IN  
FS1 = L, FS2 = L  
FS1 = L, FS2 = H  
FS1 = H, FS2 = L  
560  
670  
940  
470  
800  
Oscillator Frequency  
f
kHz  
OSC  
670  
±7%  
FS1 = H, FS2 = H (spread-spectrum mode)  
P
P
= 15W, f = 1kHz, R = 8Ω  
78  
88  
6
OUT  
OUT  
L
Efficiency  
η
%
V
= 10W, f = 1kHz, R = 16Ω  
L
Regulator Output  
V
REG  
DIGITAL INPUTS (SHDN, FS_, G_)  
V
2.5  
IH  
Input Thresholds  
V
V
0.8  
±1  
IL  
Input Leakage Current  
µA  
Note 1: All devices are 100% production tested at +25°C. All temperature limits are guaranteed by design.  
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 8Ω, L = 68μH.  
L
For R = 4Ω, L = 33μH.  
L
Note 3: PSRR is specified with the amplifier inputs connected to AGND through C  
.
IN  
Note 4: The MAX9704 continuous 8Ω and 16Ω power measurements account for thermal limitations of the 32-pin TQFN-EP pack-  
age. Continuous 4Ω power measurements account for short-circuit protection of the MAX9703/MAX9704 devices.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Typical Operating Characteristics  
(33μH with 4Ω, 68μH with 8Ω, part in SSM mode, 136μH with 16Ω, measurement BW = 22Hz to 22kHz, unless otherwise noted.)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
10  
1
10  
1
10  
1
V
= 15V  
V
= 15V  
V
= 20V  
DD  
DD  
DD  
R = 4  
R = 8  
R = 8  
A = 16dB  
V
L
L
L
A
= 16dB  
A
= 16dB  
V
V
P
OUT  
= 8W  
P
OUT  
= 8W  
P
OUT  
= 4W  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
P
= 500mW  
OUT  
P
= 500mW  
1k  
OUT  
P
= 500mW  
OUT  
10  
100  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
10  
1
100  
10  
1
10  
1
V
= 20V  
V
R
A
= 15V  
= 4  
= 16dB  
DD  
DD  
V
= 15V  
DD  
R = 8  
L
L
R = 8  
L
A
P
= 16dB  
= 8W  
V
V
A
= 16dB  
V
OUT  
f = 10kHz  
SSM  
f = 10kHz  
f = 1kHz  
0.1  
0.1  
0.01  
0.1  
FFM  
f = 1kHz  
f = 100Hz  
f = 100Hz  
0.01  
0.01  
3
4
5
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
1
2
6
7
8
9
10  
9
0
1
2
3
4
5
6
7
8
10 11 12 13 14 15  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
100  
10  
10  
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V = 20V  
DD  
V
= 20V  
DD  
R = 8  
L
R = 8  
R = 8  
L
L
A = 16dB  
A
= 16dB  
V
V
f = 10kHz  
f = 1kHz  
SSM  
1
R = 4Ω  
L
f = 1kHz  
0.1  
0.1  
V
A
= 12V  
= 16dB  
DD  
FFM (335kHz)  
V
f = 100Hz  
f = 1kHz  
0.01  
0.01  
2
9
0
4
6
8
10 12 14 16 18 20  
0 1 2 3 4 5 6 7 8 9 1011 12 131415 161718 19 20  
OUTPUT POWER (W)  
0
2
3
4
5
6
7
8
10  
1
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Maxim Integrated  
4
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Typical Operating Characteristics (continued)  
(33μH with 4Ω, 68μH with 8Ω, part in SSM mode, 136μH with 16Ω, measurement BW = 22Hz to 22kHz, unless otherwise noted.)  
OUTPUT POWER  
OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
vs. SUPPLY VOLTAGE  
vs. LOAD RESISTANCE  
20  
18  
16  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
18  
V
A
= 15V  
DD  
R = 16  
L
= 16dB  
V
THD+N = 10%  
16  
14  
12  
10  
8
R = 8  
L
R = 8Ω  
L
R = 16Ω  
L
6
6
THD+N = 1%  
4
V
A
= 15V  
= 16dB  
4
DD  
A
= 16dB  
V
V
2
2
THD+N = 10%  
f = 1kHz  
0
0
0
2
4
6
8
10 12 14 16 18 20  
1
10  
100  
10  
13  
16  
19  
22  
25  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT POWER  
vs. LOAD RESISTANCE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
24  
22  
20  
18  
16  
14  
12  
10  
8
V
A
= 20V  
= 16dB  
V
= 15V  
A
= 16dB  
DD  
DD  
V
R = 8  
R = 8  
200mV INPUT  
V
THD+N = 10%  
L
L
-20  
-40  
A
= 16dB  
V
P-P  
= 15V  
V
DD  
-60  
-80  
THD+N = 1%  
6
-100  
4
2
-120  
0
1
10  
100  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
OUTPUT FREQUENCY SPECTRUM  
OUTPUT FREQUENCY SPECTRUM  
CROSSTALK vs. FREQUENCY  
0
-20  
20  
0
20  
0
A
= 16dB  
FFM MODE  
SSM MODE  
V
1% THD+N  
= 15V  
A
V
= 16dB  
A = 16dB  
V
V
UNWEIGHTED  
= 1kHz  
UNWEIGHTED  
f = 1kHz  
IN  
DD  
8LOAD  
-20  
f
-20  
IN  
P
= 5W  
P
= 5W  
OUT  
OUT  
-40  
-40  
-40  
R = 8  
R = 8  
L
L
LEFT TO RIGHT  
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
RIGHT TO LEFT  
-100  
-120  
0
2
4
6
8
10 12 14 16 18 20  
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10 12 14 16 18 20  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Typical Operating Characteristics (continued)  
(33μH with 4Ω, 68μH with 8Ω, part in SSM mode, 136μH with 16Ω, measurement BW = 22Hz to 22kHz, unless otherwise noted.)  
WIDEBAND OUTPUT SPECTRUM  
(FFM MODE)  
WIDEBAND OUTPUT SPECTRUM  
(SSM MODE)  
OUTPUT FREQUENCY SPECTRUM  
20  
0
0
-20  
0
-20  
SSM MODE  
RBW = 10kHz  
RBW = 10kHz  
A
V
= 16dB  
V
DD  
= 15V  
V
DD  
= 15V  
A-WEIGHTED  
f = 1kHz  
IN  
-20  
P
= 5W  
OUT  
-40  
-40  
-40  
R = 8  
L
-60  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-100  
-120  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
0
2
4
6
8
10 12 14 16 18 20  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
TURN-ON/TURN-OFF RESPONSE  
MAX9703/04 toc22  
35  
0.35  
C
SS  
= 180pF  
30  
25  
0.30  
0.25  
0.20  
0.15  
SHDN  
5V/div  
1V/div  
20  
15  
10  
0.10  
0.05  
OUTPUT  
5
0
f = 1kHz  
R = 8  
L
0
10  
13  
16  
19  
22  
25  
10  
12  
14  
16  
18  
20  
20ms/div  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9703  
MAX9704  
1, 2, 23, 24  
1, 2, 23, 24  
PGND  
Power Ground  
3, 4, 21, 22  
3, 4, 21, 22  
V
Power-Supply Input  
DD  
5
6
7
5
6
7
C1N  
C1P  
Charge-Pump Flying Capacitor Negative Terminal  
Charge-Pump Flying Capacitor Positive Terminal  
CHOLD Charge-Pump Hold Capacitor. Connect a 1µF capacitor from CHOLD to V  
.
DD  
8, 17, 20, 25,  
26, 31, 32  
8
N.C.  
No Connection. Not internally connected.  
9
14  
13  
12  
REG  
AGND  
IN-  
6V Internal Regulator Output. Bypass with a 0.01µF capacitor to AGND.  
10  
11  
12  
13  
Analog Ground  
Negative Input  
Positive Input  
IN+  
SS  
Soft-Start. Connect a 0.47µF capacitor from SS to PGND to enable soft-start feature.  
Active-Low Shutdown. Connect SHDN to PGND to disable the device. Connect to a  
logic-high for normal operation.  
14  
11  
SHDN  
15  
16  
17  
18  
G1  
G2  
Gain-Select Input 1  
Gain-Select Input 2  
18  
19  
FS1  
Frequency-Select Input 1  
19  
20  
FS2  
Frequency-Select Input 2  
27, 28  
29, 30  
OUT-  
OUT+  
INL-  
Negative Audio Output  
Positive Audio Output  
9
Left-Channel Negative Input  
Left-Channel Positive Input  
Right-Channel Negative Input  
Right-Channel Positive Input  
Right-Channel Negative Audio Output  
Right-Channel Positive Audio Output  
Left-Channel Negative Audio Output  
Left-Channel Positive Audio Output  
Exposed Paddle. Connect to PGND.  
10  
INL+  
INR-  
15  
16  
INR+  
OUTR-  
OUTR+  
OUTL-  
OUTL+  
EP  
25, 26  
27, 28  
29, 30  
31, 32  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Table 1. Operating Modes  
Detailed Description  
The MAX9703/MAX9704 filterless, Class D audio power  
amplifiers feature several improvements to switchmode  
amplifier technology. The MAX9703 is a mono amplifier,  
the MAX9704 is a stereo amplifier. These devices offer  
Class AB performance with Class D efficiency, while occu-  
pying minimal board space. A unique filterless modulation  
scheme and spread-spectrum switching mode create a  
compact, flexible, lownoise, efficient audio power ampli-  
fier. The differential input architecture reduces common-  
mode noise pickup, and can be used without input-cou-  
pling capacitors. The devices can also be configured as a  
single-ended input amplifier.  
SWITCHING MODE  
FS1  
FS2  
(kHz)  
L
L
L
H
L
670  
940  
H
H
470  
H
670 ±7%  
the speaker and cables. This mode is enabled by setting  
FS1 = FS2 = H. In SSM mode, the switching frequency  
varies randomly by ±7% around the center frequency  
(670kHz). The modulation scheme remains the same, but  
the period of the triangle waveform changes from cycle to  
cycle. Instead of a large amount of spectral energy pres-  
ent at multiples of the switching frequency, the energy  
is now spread over a bandwidth that increases with fre-  
quency. Above a few megahertz, the wideband spectrum  
looks like white noise for EMI purposes (see Figure 1).  
Comparators monitor the device inputs and compare the  
complementary input voltages to the triangle waveform.  
The comparators trip when the input magnitude of the  
triangle exceeds their corresponding input voltage.  
Operating Modes  
Fixed-Frequency Modulation (FFM) Mode  
The MAX9703/MAX9704 feature three FFM modes with  
different switching frequencies (Table 1). In FFM mode,  
the frequency spectrum of the Class D output consists of  
the fundamental switching frequency and its associated  
harmonics (see the Wideband Output Spectrum (FFM  
Mode) graph in the Typical Operating Characteristics).  
The MAX9703/ MAX9704 allow the switching frequency  
to be changed by ±35%, should the frequency of one or  
more of the harmonics fall in a sensitive band. This can be  
done at any time and does not affect audio reproduction.  
Efficiency  
Efficiency of a Class D amplifier is attributed to the region  
of operation of the output stage transistors. In a Class  
D amplifier, the output transistors act as currentsteering  
switches and consume negligible additional power. Any  
power loss associated with the Class D output stage is  
2
mostly due to the I R loss of the MOSFET on-resistance,  
and quiescent current overhead.  
The theoretical best efficiency of a linear amplifier is 78%;  
however, that efficiency is only exhibited at peak output  
powers. Under normal operating levels (typical music  
reproduction levels), efficiency falls below 30%, whereas  
the MAX9704 still exhibits >78% efficiency under the  
same conditions (Figure 2).  
Spread-Spectrum Modulation (SSM) Mode  
The MAX9703/MAX9704 feature a unique spread-spec-  
trum mode that flattens the wideband spectral compo-  
nents, improving EMI emissions that may be radiated by  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
V
DD  
C
C
IN  
L1*  
1000pF  
L2*  
IN  
1000pF  
L3*  
MAX9704  
C
C
IN  
1000pF  
L4*  
IN  
1000pF  
*L1–L4 = 0.05DCR, 70AT 100MHz, 3A FAIR RITE FERRITE BEAD (2512067007Y3).  
40  
35  
30  
25  
20  
15  
CE LIMIT  
MAX9704 OUTPUT  
SPECTRUM  
10  
5
30  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
FREQUENCY (MHz)  
Figure 1. MAX9704 EMI Spectrum, 9in PC Board trace, 3in Twisted-Pair Speaker Cable  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
EFFICIENCY vs. OUTPUT POWER  
SS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX9703/  
MAX9704  
GPIO  
MUTE SIGNAL  
MAX9704  
0.18µF  
CLASS AB  
Figure 3. MAX9703/MAX9704 Mute Circuit  
Applications Information  
V
DD  
= 15V  
f = 1kHz  
R = 8  
Filterless Operation  
L
Traditional class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s PWM out-  
put. The filters add cost, increase the solution size of the  
amplifier, and can decrease efficiency. The traditional  
PWM scheme uses large differential output swings (2  
2
4
6
8
20  
0
10 12 14 16 18  
OUTPUT POWER (W)  
Figure 2. MAX9704 Efficiency vs. Class AB Efficiency  
V
peak-to-peak) and causes large ripple currents. Any  
DD  
Shutdown  
parasitic resistance in the filter components results in a  
loss of power, lowering the efficiency.  
The MAX9703/MAX9704 have a shutdown mode that  
reduces power consumption and extends battery life.  
Driving SHDN low places the device in low-power  
(0.2μA) shutdown mode. Connect SHDN to a logic high  
for normal operation.  
The MAX9703/MAX9704 do not require an output fil-  
ter. The devices rely on the inherent inductance of the  
speaker coil and the natural filtering of both the speaker  
and the human ear to recover the audio component of the  
square-wave output. Eliminating the output filter results in  
a smaller, less-costly, more-efficient solution.  
Click-and-Pop Suppression  
The MAX9703/MAX9704 feature comprehensive clicka-  
nd-pop suppression that eliminates audible transients on  
startup and shutdown. While in shutdown, the Hbridge is  
pulled to PGND through 330kΩ. During startup, or power-  
up, the input amplifiers are muted and an internal loop  
sets the modulator bias voltages to the correct levels,  
preventing clicks and pops when the Hbridge is subse-  
quently enabled. Following startup, a soft-start function  
gradually unmutes the input amplifiers. The value of the  
soft-start capacitor has an impact on the click/pop levels.  
Because the frequency of the MAX9703/MAX9704 output  
is well beyond the bandwidth of most speakers, voice  
coil movement due to the square-wave frequency is very  
small. Although this movement is small, a speaker not  
designed to handle the additional power can be dam-  
aged. For optimum results, use a speaker with a series  
inductance > 30μH. Typical 8Ω speakers exhibit series  
inductances in the range of 30μH to 100μH. Optimum  
efficiency is achieved with speaker inductances > 60μH.  
For optimum performance, C should be at least 0.18μF  
with a voltage rating of at least 7V.  
SS  
Internal Regulator Output (V  
)
REG  
The MAX9703/MAX9704 feature an internal, 6V regula-  
tor output (V ). The MAX9703/MAX9704 REG output  
Mute Function  
REG  
The MAX9703/MA9704 features a clickless/popless mute  
mode. When the device is muted, the outputs stop  
switching, muting the speaker. Mute only affects the out-  
put stage and does not shut down the device. To mute  
the MAX9703/MAX9704, drive SS to PGND by using a  
MOSFET pulldown (Figure 3). Driving SS to PGND during  
the power-up/down or shutdown/turn-on cycle optimizes  
click-and-pop suppression.  
pin simplifies system design and reduces system cost by  
providing a logic voltage high for the MAX9703/ MAX9704  
logic pins (G_, FS_). V  
is not available as a logic  
REG  
voltage high in shutdown mode. Do not apply V  
as a  
REG  
6V potential to surrounding system components. Bypass  
REG with a 6.3V, 0.01μF capacitor to AGND.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Gain Selection  
The MAX9703/MAX9704 feature an internally set, logic-  
selectable gain. The G1 and G2 logic inputs set the gain  
of the MAX9703/MAX9704 speaker amplifier (Table 2).  
0.47µF  
SINGLE-ENDED  
AUDIO INPUT  
IN+  
MAX9703/  
MAX9704  
IN-  
Table 2. Gain Selection  
0.47µF  
G1  
0
G2  
0
GAIN (dB)  
29.6  
0
1
19.1  
Figure 4. Single-Ended Input  
1
0
13  
1
1
16  
the signal to an optimum DC level. Assuming zero-source  
impedance, the -3dB point of the highpass filter is given by:  
Output Offset  
1
f
=
-
Unlike a Class AB amplifier, the output offset voltage of  
Class D amplifiers does not noticeably increase quiescent  
current draw when a load is applied. This is due to the  
power conversion of the Class D amplifier. For example,  
an 8mV DC offset across an 8Ω load results in 1mA extra  
current consumption in a class AB device. In the Class  
D case, an 8mV offset into 8Ω equates to an additional  
power drain of 8μW. Due to the high efficiency of the  
Class D amplifier, this represents an additional quiescent  
3dB  
2πR C  
IN IN  
Choose C so f  
interest. Setting f  
is well below the lowest frequency of  
too high affects the low-frequency  
IN  
-3dB  
-3dB  
response of the amplifier. Use capacitors with dielectrics  
that have low-voltage coefficients, such as tantalum or  
aluminum electrolytic. Capacitors with highvoltage coef-  
ficients, such as ceramics, may result in increased distor-  
tion at low frequencies.  
current draw of: 8μW/(V /100 x η), which is in the order  
DD  
of a few microamps.  
Charge-Pump Capacitor Selection  
Use capacitors with an ESR less than 100mΩ for optimum  
performance. Low-ESR ceramic capacitors minimize  
the output resistance of the charge pump. For best per-  
formance over the extended temperature range, select  
capacitors with an X7R dielectric.  
Input Amplifier  
Differential Input  
The MAX9703/MAX9704 feature a differential input struc-  
ture, making them compatible with many CODECs, and  
offering improved noise immunity over a single-ended  
input amplifier. In devices such as PCs, noisy digital sig-  
nals can be picked up by the amplifier’s input traces. The  
signals appear at the amplifiers’ inputs as commonmode  
noise. A differential input amplifier amplifies the difference  
of the two inputs, any signal common to both inputs is  
canceled.  
Flying Capacitor (C1)  
The value of the flying capacitor (C1) affects the load  
regulation and output resistance of the charge pump. A  
C1 value that is too small degrades the device’s ability to  
provide sufficient current drive. Increasing the value of C1  
improves load regulation and reduces the chargepump  
output resistance to an extent. Above 1μF, the onresis-  
tance of the switches and the ESR of C1 and C2 dominate.  
Single-Ended Input  
The MAX9703/MAX9704 can be configured as singleen-  
ded input amplifiers by capacitively coupling either input  
to AGND and driving the other input (Figure 4).  
Hold Capacitor (C2)  
The output capacitor value and ESR directly affect the  
ripple at CHOLD. Increasing C2 reduces output ripple.  
Likewise, decreasing the ESR of C2 reduces both ripple  
and output resistance. Lower capacitance values can be  
used in systems with low maximum output power levels.  
Component Selection  
Input Filter  
An input capacitor, C , in conjunction with the input  
IN  
impedance of the MAX9703/MAX9704, forms a highpass  
filter that removes the DC bias from an incoming signal.  
The AC-coupling capacitor allows the amplifier to bias  
Output Filter  
The MAX9703/MAX9704 do not require an output filter  
and can pass FCC emissions standards with unshielded  
speaker cables. However, output filtering can be used if a  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
design is failing radiated emissions due to board layout or  
cable length, or the circuit is near EMIsensitive devices.  
Use a ferrite bead filter when radiated frequencies above  
10MHz are of concern. Use an LC filter when radiated  
frequencies below 10MHz are of concern, or when long  
leads connect the amplifier to the speaker. Refer to the  
MAX9704 Evaluation Kit schematic for details of this filter.  
Audio content, both music and voice, has a much lower  
RMS value relative to its peak output power. Figure  
5 shows a sine wave and an audio signal in the time  
domain. Both are measured for RMS value by the oscil-  
loscope. Although the audio signal has a slightly higher  
peak value than the sine wave, its RMS value is almost  
half that of the sine wave. Therefore, while an audio sig-  
nal may reach similar peaks as a continuous sine wave,  
the actual thermal impact on the Class D amplifier is  
highly reduced. If the thermal performance of a system  
is being evaluated, it is important to use actual audio  
signals instead of sine waves for testing. If sine waves  
must be used, the thermal performance will be less than  
the system’s actual capability.  
Sharing Input Sources  
In certain systems, a single audio source can be shared  
by multiple devices (speaker and headphone ampli-  
fiers). When sharing inputs, it is common to mute the  
unused device, rather than completely shutting it down,  
preventing the unused device inputs from distorting the  
input signal. Mute the MAX9703/MAX9704 by driving SS  
low through an open-drain output or MOSFET (see the  
System Diagram). Driving SS low turns off the Class D  
output stage, but does not affect the input bias levels of  
the MAX9703/MAX9704. Be aware that during normal  
operation, the voltage at SS can be up to 7V, depending  
on the MAX9703/MAX9704 supply.  
PC Board Thermal Considerations  
The exposed pad is the primary route of keeping heat  
away from the IC. With a bottom-side exposed pad, the  
PC board and its copper becomes the primary heatsink  
for the Class D amplifier. Solder the exposed pad to a  
large copper polygon. Add as much copper as possible  
from this polygon to any adjacent pin on the Class D  
amplifier as well as to any adjacent components, pro-  
vided these connections are at the same potential. These  
copper paths must be as wide as possible. Each of these  
paths contributes to the overall thermal capabilities of  
the system.  
Supply Bypassing/Layout  
Proper power-supply bypassing ensures low distortion  
operation. For optimum performance, bypass V  
to  
DD  
PGND with a 0.1μF capacitor as close to each V  
pin  
DD  
as possible. A low-impedance, high-current power-supply  
connection to V is assumed. Additional bulk capaci-  
DD  
The copper polygon to which the exposed pad is attached  
should have multiple vias to the opposite side of the PC  
board, where they connect to another copper polygon.  
Make this polygon as large as possible within the sys-  
tem’s constraints for signal routing.  
tance should be added as required depending on the  
application and power-supply characteristics. AGND and  
PGND should be star connected to system ground. Refer  
to the MAX9704 Evaluation Kit for layout guidance.  
Class D Amplifier Thermal  
Considerations  
Class D amplifiers provide much better efficiency and ther-  
mal performance than a comparable Class AB amplifier.  
However, the system’s thermal performance must be consid-  
ered with realistic expectations and include consideration of  
many parameters. This section examines Class D amplifiers  
using general examples to illustrate good design practices.  
Continuous Sine Wave vs. Music  
When a Class D amplifier is evaluated in the lab, often  
a continuous sine wave is used as the signal source.  
While this is convenient for measurement purposes, it  
represents a worst-case scenario for thermal loading on  
the amplifier. It is not uncommon for a Class D amplifier  
to enter thermal shutdown if driven near maximum output  
power with a continuous sine wave.  
20ms/div  
Figure 5. RMS Comparison of Sine Wave vs. Audio Signal  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Additional improvements are possible if all the traces from  
the device are made as wide as possible. Although the IC  
pins are not the primary thermal path of the package, they  
do provide a small amount. The total improvement would  
not exceed about 10%, but it could make the difference  
between acceptable performance and thermal problems.  
Decreasing the ambient temperature or reducing θ  
will improve the die temperature of the MAX9704. θ  
can be reduced by increasing the copper size/weight of  
the ground plane connected to the exposed paddle of  
JA  
JA  
the MAX9704 TQFN package. Additionally, θ  
can be  
JA  
reduced by attaching a heatsink, adding a fan, or mount-  
ing a vertical PC board.  
Auxiliary Heatsinking  
Load Impedance  
If operating in higher ambient temperatures, it is possible  
to improve the thermal performance of a PC board with  
the addition of an external heatsink. The thermal resis-  
tance to this heatsink must be kept as low as possible to  
maximize its performance. With a bottom-side exposed  
pad, the lowest resistance thermal path is on the bottom  
of the PC board. The topside of the IC is not a significant  
thermal path for the device, and therefore is not a costef-  
fective location for a heatsink.  
The on-resistance of the MOSFET output stage in Class  
D amplifiers affects both the efficiency and the peak-  
current capability. Reducing the peak current into the load  
2
reduces the I R losses in the MOSFETs, thereby increas-  
ing efficiency. To keep the peak currents lower, choose  
the highest impedance speaker which can still deliver the  
desired output power within the voltage swing limits of the  
Class D amplifier and its supply voltage.  
Although most loudspeakers are either 4Ω or 8Ω, there  
are other impedances available which can provide a more  
thermally efficient solution.  
Thermal Calculations  
The die temperature of a Class D amplifier can be esti-  
mated with some basic calculations. For example, the die  
temperature is calculated for the below conditions:  
Another consideration is the load impedance across  
the audio frequency band. A loudspeaker is a complex  
electromechanical system with a variety of resonances.  
In other words, an 8Ω speaker is usually only 8Ω imped-  
ance within a very narrow range, and often extends well  
below 8Ω, reducing the thermal efficiency below what is  
expected. This lower-than-expected impedance can be  
further reduced when a crossover network is used in a  
multi-driver audio system.  
● T = +40°C  
A
● P  
= 2x8W = 16W  
OUT  
● R = 16Ω  
L
● Efficiency (η) = 87%  
● θ = 27°C/W  
JA  
First, the Class D amplifier’s power dissipation must be  
calculated.  
Optimize MAX9703/MAX9704 Efficiency with  
Load Impedance and Supply Voltage  
P
16W  
0.87  
OUT  
η
P
=
P  
=
OUT  
16W = 2.4W  
DISS  
To optimize the efficiency of the MAX9703/MAX9704,  
load the output stage with 12Ω to 16Ω speakers. The  
MAX9703/MAX9704 exhibits highest efficiency perfor-  
mance when driving higher load impedance (see the  
Typical Operating Characteristics). If a 12Ω to 16Ω load is  
not available, select a lower supply voltage when driving  
6Ω to 10Ω loads.  
Then the power dissipation is used to calculate the die  
temperature, T , as follows:  
C
T
= T + PDISS x θ  
A JA  
C
= 40°C + 2.4W x 27°C/W  
= 104.8°C  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Functional Diagrams  
10V TO 25V  
100µF*  
25V  
0.1µF  
0.1µF  
25V  
25V  
1
2
3
4
21 22  
23 24  
PGND  
PGND  
V
V
DD  
DD  
0.47µF  
0.47µF  
IN+  
OUT+ 30  
OUT+  
12  
11  
29  
OUT- 28  
MODULATOR  
OSCILLATOR  
H-BRIDGE  
IN-  
27  
OUT-  
18  
19  
FS1  
FS2  
V
REG  
V
REG  
MAX9703  
14  
SHDN  
15 G1  
GAIN  
CONTROL  
V
V
REG  
16 G2  
REG  
6
5
C1P  
C1N  
C1  
0.1µF  
25V  
13 SS  
SHUTDOWN  
CONTROL  
CHARGE PUMP  
CHOLD  
0.18µF  
10V  
V
REG  
REG  
9
0.01µF  
10V  
10 AGND  
7
C2  
1µF  
25V  
V
DD  
LOGIC INPUTS SHOWN FOR A = 16dB (SSM).  
V
V
= LOGIC HIGH > 2.5V.  
IN  
CHOOSE CAPACITOR VOLTAGE RATING V  
*SYSTEM-LEVEL REQUIREMENT.  
.
DD  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX9703/MAX9704  
Functional Diagrams (continued)  
100µF*  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
10V TO 25V  
25V  
0.1µF  
25V  
0.1µF  
25V  
1
2
3
4
21 22  
23 24  
PGND  
PGND  
V
V
DD  
DD  
0.47µF  
10 INL+  
OUTL+ 32  
OUTL+  
31  
OUTL- 30  
29  
MODULATOR  
0.47µF  
H-BRIDGE  
9
INL-  
OUTL-  
19  
20  
FS1  
FS2  
V
REG  
OSCILLATOR  
MODULATOR  
V
REG  
0.47µF  
0.47µF  
INR+  
INR-  
OUTR+ 28  
OUTR+  
16  
15  
27  
H-BRIDGE  
OUTR- 26  
OUTR- 25  
11  
SHDN  
MAX9704  
17 G1  
18 G2  
12 SS  
V
REG  
GAIN  
CONTROL  
V
REG  
6
5
C1P  
C1N  
C1  
SHUTDOWN  
CONTROL  
CHARGE PUMP  
0.18µF  
10V  
0.1µF  
25V  
V
REG  
REG  
14  
0.01µF  
10V  
13 AGND  
CHOLD  
7
C2  
1µF  
25V  
V
DD  
LOGIC INPUTS SHOWN FOR A = 16dB (SSM).  
V
V
= LOGIC HIGH > 2.5V.  
IN  
CHOOSE CAPACITOR VOLTAGE RATING V  
*SYSTEM-LEVEL REQUIREMENT.  
.
DD  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
System Diagram  
V
DD  
100µF*  
1µF  
SHDN  
V
DD  
0.47µF  
OUTL-  
INL-  
OUTL-  
0.47µF  
INL+  
OUTL+  
OUTL+  
CODEC  
MAX9704  
0.47µF  
0.47µF  
OUTR+  
INR+  
OUTR+  
OUTR-  
INR-  
SS  
OUTR-  
5V  
100k  
0.18µF  
SHDN  
INL-  
1µF  
V
DD  
MAX9722B  
1µF  
1µF  
15kΩ  
15kΩ  
OUTL  
INL+  
OUTR  
INR+  
1µF  
PV  
SV  
SS  
INR-  
SS  
1µF  
C1P  
CIN  
30kΩ  
30kΩ  
1µF  
LOGIC INPUTS SHOWN FOR A = 16dB (SSM).  
V
*BULK CAPACITANCE, IF NEEDED.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Pin Configurations  
TOP VIEW  
23 22 21 20 19 18 17  
23 22 21 20 19 18 17  
24  
24  
N.C. 25  
N.C. 26  
OUT- 27  
OUT- 28  
OUT+ 29  
OUT+ 30  
N.C. 31  
16 G2  
OUTR- 25  
OUTR- 26  
OUTR+ 27  
OUTR+ 28  
OUTL- 29  
OUTL- 30  
OUTL+ 31  
16 INR+  
15 INR-  
14 REG.  
13 AGND  
12 SS  
15 G1  
14 SHDN  
13 SS  
MAX9704  
MAX9703  
12 IN+  
11 IN-  
11 SHDN  
10 INL+  
10 AGND  
N.C.  
9
REG.  
OUTL+  
9
INL-  
32  
32  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
1
1
TQFN (5mm x 5mm)  
TQFN (7mm x 7mm)  
Chip Information  
MAX9703 TRANSISTOR COUNT: 3093  
MAX9704 TRANSISTOR COUNT: 4630  
PROCESS: BiCMOS  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
32 TQFN-EP (Mono)  
32 TQFN-EP (Stereo)  
PACKAGE CODE  
T3255-4  
OUTLINE NO.  
21-0144  
LAND PATTERN NO.  
90-0012  
T3277-2  
21-0140  
90-0125  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX9703/MAX9704  
10W Stereo/15W Mono, Filterless,  
Spread-Spectrum, Class D Amplifiers  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
Removed automotive reference in Applications section and corrected  
package code  
8
5/14  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
24  

相关型号:

MAX9704

10W Stereo/15W Mono, Filterless, Spread-Spectrum, Class D Amplifiers
MAXIM

MAX9704ETJ

15W, Filterless, Spread-Spectrum Mono/Stereo Class D Amplifiers
MAXIM

MAX9704ETJ+

Audio Amplifier, 16W, 2 Channel(s), 1 Func, BICMOS, PQCC32, 7 X 7 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220, TQFN-32
MAXIM

MAX9704ETJ+T

Audio Amplifier, 20W, 2 Channel(s), 1 Func, BICMOS, 7 X 7 MM, 0.80 MM HEIGHT, TQFN-32
MAXIM

MAX9704ETJ-T

Audio Amplifier, 20W, 2 Channel(s), 1 Func, BICMOS, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-32
MAXIM

MAX9705

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9705AEBC+T

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9705AETB+

Audio Amplifier, 2.3W, 1 Channel(s), 1 Func, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEED-3, TDFN-10
MAXIM

MAX9705AETB+T

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9705AETB/V+

Audio Amplifier
MAXIM

MAX9705AETB/V+T

Audio Amplifier
MAXIM

MAX9705AEUB

2.3W, Ultra-Low-EMI, Filterless, Class D Audio Amplifier
MAXIM