MAX9700AEUB+ [MAXIM]

1.2W, Low-EMI, Filterless, Class D Audio Amplifier;
MAX9700AEUB+
型号: MAX9700AEUB+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1.2W, Low-EMI, Filterless, Class D Audio Amplifier

放大器 信息通信管理 光电二极管 商用集成电路
文件: 总17页 (文件大小:2049K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
General Description  
Features  
Filterless Amplifier Passes FCC Radiated  
The MAX9700 mono class D audio power amplifier  
provides class AB amplifier performance with class D  
efficiency, conserving board space and extending battery  
life. Using a class D architecture, the MAX9700  
delivers 1.2W into an 8Ω load while offering efficiencies  
above 90%. A low-EMI modulation scheme renders the  
traditional class D output filter unnecessary.  
Emissions Standards with 100mm of Cable  
Unique Spread-Spectrum Mode Offers 5dB  
Emissions Improvement Over Conventional Methods  
Optional External SYNC Input  
Simple Master-Slave Setup for Stereo Operation  
94% Efficiency  
The MAX9700 offers two modulation schemes: a fixed-  
frequency (FFM) mode, and a spread-spectrum (SSM)  
mode that reduces EMI-radiated emissions due to the  
modulation frequency. Furthermore, the MAX9700 oscillator  
can be synchronized to an external clock through the  
SYNC input, allowing the switching frequency to be user  
defined. The SYNC input also allows multiple MAX9700s  
to be cascaded and frequency locked, minimizing  
interference due to clock intermodulation. The device  
utilizes a fully differential architecture, a full-bridged  
output, and comprehensive click-and-pop suppression.  
The gain of the MAX9700 is set internally (MAX9700A:  
6dB, MAX9700B: 12dB, MAX9700C: 15.6dB, MAX9700D:  
20dB), further reducing external component count.  
● 1.2W into 8Ω  
Low 0.01% THD+N  
High PSRR (72dB at 217Hz)  
Integrated Click-and-Pop Suppression  
Low Quiescent Current (4mA)  
● Low-Power Shutdown Mode (0.1μA)  
Short-Circuit and Thermal-Overload Protection  
Available in Thermally Efficient, Space-Saving  
Packages  
• 10-Pin TDFN (3mm x 3mm x 0.8mm)  
10-Pin μMAX  
• 12-Bump UCSP (1.5mm x 2mm x 0.6mm)  
Ordering Information  
The MAX9700 features high 72dB PSRR, a low 0.01%  
THD+N, and SNR in excess of 90dB. Short-circuit and  
thermal-overload protection prevent the device from  
damage during a fault condition. The MAX9700 is available  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
MAX9700AETB+  
MAX9700AEUB+  
-40°C to +85°C 10 TDFN-EP* ACM  
-40°C to +85°C 10 µMAX  
®
in 10-pin TDFN (3mm x 3mm x 0.8mm), 10-pin μMAX ,  
MAX9700AEBC+T -40°C to +85°C 12 UCSP  
and 12-bump UCSP™ (1.5mm x 2mm x 0.6mm) packages.  
The MAX9700 is specified over the extended -40°C to  
+85°C temperature range.  
MAX9700BETB+  
MAX9700BEUB+  
-40°C to +85°C 10 TDFN-EP*  
-40°C to +85°C 10 µMAX  
ACI  
MAX9700BEBC+T -40°C to +85°C 12 UCSP  
Applications  
*EP = Exposed pad.  
Ordering Information continued and Selector Guide appears  
at end of data sheet.  
Cellular Phones  
PDAs  
MP3 Players  
Portable Audio  
Block Diagram  
Pin Configurations  
V
DD  
TOP VIEW  
V
1
2
3
4
5
10 PV  
DD  
DD  
IN+  
IN-  
9
8
7
6
OUT-  
DIFFERENTIAL  
AUDIO INPUT  
MODULATOR  
AND H-BRIDGE  
MAXꢀ700  
OUT+  
PGND  
SYNC  
GND  
SHDN  
SYNC  
INPUT  
OSCILLATOR  
MAXꢀ700  
TDFN/µMAX  
Pin Configurations continued at end of data sheet.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
μMAX is a registered trademark of Maxim Integrated Products, Inc.  
19-3030; Rev 3; 3/18  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Absolute Maximum Ratings  
V
to GND ............................................................................6V  
Continuous Power Dissipation (T = +70°C)  
DD  
A
PV  
to PGND........................................................................6V  
10-Pin TDFN (derate 24.4mW/°C above +70°C) ...1951.2mW  
DD  
GND to PGND......................................................-0.3V to +0.3V  
All Other Pins to GND.............................. -0.3V to (V + 0.3V)  
10-Pin μMAX (derate 5.6mW/oC above +70°C) ......444.4mW  
12-Bump UCSP (derate 6.1mW/°C above +70°C)......484mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range........................... -40°C to +85°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Bump Temperature (soldering)  
DD  
Continuous Current Into/Out of PV /PGND/OUT_......±600mA  
DD  
Continuous Input Current (all other pins).........................±20mA  
Duration of OUT_ Short Circuit to GND or PV .....Continuous  
DD  
Duration of Short Circuit Between OUT+ and OUT-....Continuous  
Reflow..........................................................................+235°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= PV  
= V  
= 3.3V, V  
= V  
= 0V, SYNC = GND (FFM), R = 8Ω, R connected between OUT+ and OUT-,  
DD  
DD  
to T  
SHDN  
GND  
PGND L L  
T
= T  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Inferred from PSRR test  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
Supply Voltage Range  
Quiescent Current  
Shutdown Current  
Turn-On Time  
V
2.5  
5.5  
5.2  
10  
V
DD  
I
4
0.1  
30  
mA  
µA  
ms  
kΩ  
V
DD  
I
SHDN  
t
ON  
Input Resistance  
Input Bias Voltage  
R
T
= +25°C  
A
12  
20  
IN  
V
Either input  
MAX9700A  
MAX9700B  
MAX9700C  
MAX9700D  
0.73  
0.83  
6
0.93  
BIAS  
12  
Voltage Gain  
A
dB  
V
15.6  
20  
T
T
= +25°C  
±11  
±80  
A
Output Offset Voltage  
V
mV  
dB  
OS  
≤ T ≤ T  
MAX  
±120  
MIN  
A
Common-Mode Rejection Ratio  
CMRR  
PSRR  
f
= 1kHz, input referred  
72  
70  
IN  
V
= 2.5V to 5.5V, T = +25°C  
50  
DD  
A
Power-Supply Rejection Ratio  
(Note 3)  
f
f
= 217Hz  
= 20kHz  
72  
dB  
RIPPLE  
RIPPLE  
200mV  
ripple  
P-P  
55  
R = 8Ω  
450  
800  
L
Output Power  
P
THD+N = 1%  
mW  
OUT  
R = 6Ω  
L
R = 8Ω,  
P = 125mW  
OUT  
L
0.01  
0.01  
Total Harmonic Distortion  
Plus Noise  
f
= 1kHz, either  
IN  
THD+N  
%
FFM or SSM  
R = 6Ω,  
L
P
= 125mW  
OUT  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Electrical Characteristics (continued)  
(V  
= PV  
= V  
= 3.3V, V  
= V  
= 0V, SYNC = GND (FFM), R = 8Ω, R connected between OUT+ and OUT-,  
DD  
DD  
SHDN  
GND  
PGND L L  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
BW = 22Hz  
MIN  
TYP  
89  
MAX  
UNITS  
FFM  
SSM  
FFM  
SSM  
to 22kHz  
87  
Signal-to-Noise Ratio  
Oscillator Frequency  
SNR  
V
= 2V  
dB  
OUT  
RMS  
92  
A-weighted  
90  
SYNC = GND  
980  
1100  
1450  
1220  
1620  
SYNC = unconnected  
1280  
f
kHz  
OSC  
1220  
±120  
SYNC = V  
(SSM mode)  
DD  
SYNC Frequency Lock Range  
Efficiency  
800  
2
2000  
kHz  
%
η
P
= 500mW, f = 1kHz  
94  
OUT  
IN  
DIGITAL INPUTS (SHDN, SYNC)  
V
V
IH  
IL  
Input Thresholds  
V
0.8  
±1  
±5  
SHDN Input Leakage Current  
SYNC Input Current  
µA  
µA  
Electrical Characteristics  
(V  
= PV  
= V  
= 5V, V  
= V  
= 0V, SYNC = GND (FFM), R = 8Ω, R connected between OUT+ and OUT-, T = T  
DD  
DD  
SHDN  
GND  
PGND L L A MIN  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Notes 1, 2)  
A
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5.2  
MAX  
UNITS  
Quiescent Current  
I
mA  
µA  
dB  
DD  
Shutdown Current  
I
0.1  
SHDN  
Common-Mode Rejection Ratio  
CMRR  
f = 1kHz, input referred  
72  
f = 217Hz  
f = 20kHz  
72  
Power-Supply Rejection Ratio  
Output Power  
PSRR  
200mV  
ripple  
dB  
mW  
%
P-P  
55  
R = 16Ω  
700  
1200  
1600  
0.015  
0.02  
92.5  
90.5  
95.5  
93.5  
L
P
THD+N = 1%  
R = 8Ω  
L
OUT  
R = 6Ω  
L
R = 8Ω, P  
= 125mW  
Total Harmonic Distortion  
Plus Noise  
f = 1kHz, either  
FFM or SSM  
L
OUT  
THD+N  
SNR  
R = 4Ω, P  
= 125mW  
L
OUT  
FFM  
SSM  
FFM  
SSM  
BW = 22Hz to  
22kHz  
V
=
OUT  
Signal-to-Noise Ratio  
dB  
3V  
RMS  
A-weighted  
Note 1: All devices are 100% production tested at T = +25°C. All temperature limits are guaranteed by design.  
A
Note 2: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For R = 4Ω, L = 33μH.  
L
For R = 8Ω, L = 68μH. For R = 16Ω, L = 136μH.  
L
L
Note 3: PSRR is specified with the amplifier inputs connected to GND through C  
.
IN  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics  
(V  
= 3.3V, SYNC = GND (SSM), T = +25°C, unless otherwise noted.)  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. FREQUENCY  
vs. FREQUENCY  
1
1
0.1  
1
V
DD  
= +3.3V  
V
DD  
= +5V  
V
= +3.3V  
DD  
R = 8  
R
L
= 8  
R = 8  
L
L
P
= 125mW  
OUT  
0.1  
0.1  
0.01  
P
OUT  
= 300mW  
P
OUT  
= 300mW  
SSM MODE  
0.01  
0.01  
0.001  
P
OUT  
= 125mW  
P
= 125mW  
10k  
OUT  
FFM MODE  
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
10  
1
100  
100  
V
= 5V  
V
= 5V  
DD  
DD  
V
= 5V  
DD  
R = 16  
R = 4  
L
L
R = 8  
L
10  
10  
1
1
f = 1kHz  
f = 100Hz  
f = 100Hz  
0.1  
0.01  
f = 10kHz  
0.1  
0.01  
0.1  
f = 10kHz  
0.01  
f = 10kHz  
1.5  
f = 1kHz  
0.5 1.0 1.5 2.0  
f = 100Hz  
0.6 0.8  
f = 1kHz  
0.4  
0.001  
0.001  
0.001  
0
0.2  
1.0  
2.5 3.0 3.5  
0
0.5  
1.0  
2.0  
0
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
100  
100  
100  
10  
1
V
= 2.5V  
V
= 5V  
V
= 5V  
DD  
DD  
DD  
R = 8  
f = 1kHz  
R = 8  
f = 1kHz  
R = 8  
L
V
= 1.25V  
10  
10  
CM  
L
L
NO INPUT CAPACITORS  
FFM  
(SYNC = GND)  
f
= 1.4MHz  
SYNC  
1
1
f
= 800kHz  
SYNC  
DIFFERENTIAL  
INPUT  
SSM  
0.1  
0.01  
0.1  
0.01  
0.1  
0.01  
SINGLE ENDED  
FFM  
(SYNC UNCONNECTED)  
f
= 2MHz  
SYNC  
0.001  
0.001  
0.001  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Maxim Integrated  
4
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, SYNC = GND (SSM), T = +25°C, unless otherwise noted.)  
A
DD  
TOTAL HARMONIC DISTORTION PLUS NOISE  
EFFICIENCY vs. OUTPUT POWER  
EFFICIENCY vs. OUTPUT POWER  
vs. COMMON-MODE VOLTAGE  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
V
= 3.3V  
DD  
90  
80  
R = 8  
f = 1kHz  
L
R = 8  
L
P
= 300mW  
OUT  
70  
DIFFERENTIAL INPUT  
R = 8  
L
R = 4Ω  
L
1
R = 4Ω  
L
60  
50  
40  
30  
20  
10  
0
0.1  
V
DD  
= 3.3V  
V
DD  
= 5V  
f = 1kHz  
f = 1kHz  
0.01  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1.0  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
0.5  
1.5  
2.0  
2.5  
3.0  
COMMON-MODE VOLTAGE (V)  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
EFFICIENCY  
vs. SYNC INPUT FREQUENCY  
OUTPUT POWER vs.  
SUPPLY VOLTAGE  
EFFICIENCY vs. SUPPLY VOLTAGE  
3.5  
3.0  
2.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f = 1kHz  
R = 4  
L
THD+N = 10%  
THD+N = 1%  
R = 8Ω  
R = 4Ω  
L
R = 8  
L
R = 4Ω  
L
L
2.0  
1.5  
1.0  
0.5  
0
THD+N = 10%  
V
= 3.3V  
DD  
f = 1kHz  
= 300mW  
P
OUT  
R = 8Ω  
THD+N = 1%  
L
f = 1kHz  
= MAX (THD+N = 1%)  
R = 8  
L
P
OUT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
800 1000 1200 1400 1600 1800 2000  
SYNC FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
OUTPUT POWER vs. LOAD RESISTANCE  
2000  
1600  
1200  
800  
400  
0
0
0
f = 1kHz  
THD+N = 1%  
INPUT REFERRED  
OUTPUT REFERRED  
INPUTS AC GROUNDED  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
V
IN  
= 200mV  
P-P  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 3.3V  
DD  
V
DD  
= 5V  
V
DD  
= 3.3V  
-90  
-90  
-100  
-100  
0
10 20 30 40 50 60 70 80 90 100  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
LOAD RESISTANCE ()  
FREQUENCY (Hz)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, SYNC = GND (SSM), T = +25°C, unless otherwise noted.)  
A
DD  
OUTPUT FREQUENCY SPECTRUM  
GSM POWER-SUPPLY REJECTION  
MAX9700 toc19  
0
-20  
FFM MODE  
V
= -60dBV  
OUT  
f = 1kHz  
500mV/div  
V
DD  
R = 8  
L
-40  
UNWEIGHTED  
-60  
-80  
-100  
-120  
-140  
MAX9700  
OUTPUT  
100mV/div  
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
2ms/div  
DUTY CYCLE = 88%  
R = 8  
f = 217Hz  
INPUT LOW = 3V  
INPUT HIGH = 3.5V  
L
WIDEBAND OUTPUT SPECTRUM  
(FFM MODE)  
OUTPUT FREQUENCY SPECTRUM  
OUTPUT FREQUENCY SPECTRUM  
0
0
0
-20  
RBW = 10kHz  
SSM MODE  
SSM MODE  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
OUT  
= -60dBV  
V
OUT  
= -60dBV  
-20  
-40  
f = 1kHz  
f = 1kHz  
R = 8  
R = 8  
L
L
-40  
UNWEIGHTED  
A-WEIGHTED  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
-90  
-100  
1M  
10M  
100M  
1G  
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
0
5k  
10k  
FREQUENCY (Hz)  
15k  
20k  
FREQUENCY (Hz)  
WIDEBAND OUTPUT SPECTRUM  
(SSM MODE)  
TURN-ON/TURN-OFF RESPONSE  
0
RBW = 10kHz  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
3V  
SHDN  
0V  
MAX9700  
OUTPUT  
250mV/div  
-90  
-100  
1M  
10M  
100M  
1G  
10ms/div  
f = 1kHz  
R = 8  
FREQUENCY (Hz)  
L
Maxim Integrated  
6
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, SYNC = GND (SSM), T = +25°C, unless otherwise noted.)  
A
DD  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
6.0  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
T
= +85°C  
A
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
T
= +85°C  
A
T
= +25°C  
A
T
A
= +25°C  
T
= -40°C  
A
T
= -40°C  
4.5  
A
2.5  
3.0  
3.5  
4.0  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Functional Diagram  
V
DD  
1µF  
1
(A1)  
10  
(B4)  
6
(A3)  
V
PV  
DD  
SYNC  
DD  
5
(B2) SHDN  
UVLO/POWER  
MANAGEMENT  
CLICK-AND-POP  
SUPPRESSION  
OSCILLATOR  
PV  
DD  
2
(B1)  
1µF  
8
(A4)  
IN+  
IN-  
OUT+  
OUT-  
PGND  
CLASS D  
MODULATOR  
3
(C1)  
1µF  
PV  
DD  
9
(C4)  
MAX9700  
PGND  
GND  
PGND  
7
4
(B3)  
(C2)  
( ) UCSP BUMP.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Pin Description  
PIN  
BUMP  
NAME  
FUNCTION  
TDFN/µMAX  
UCSP  
Analog Power Supply. Connect to an external power supply. Bypass to GND with a  
1µF capacitor.  
1
A1  
V
DD  
2
3
4
5
B1  
C1  
C2  
B2  
IN+  
IN-  
Noninverting Audio Input  
Inverting Audio Input  
Analog Ground  
GND  
SHDN  
Active-Low Shutdown Input. Connect to V  
for normal operation.  
DD  
Frequency Select and External Clock Input.  
SYNC = GND: Fixed-frequency mode with f = 1100kHz.  
S
6
A3  
SYNC  
SYNC = Unconnected: Fixed-frequency mode with f = 1450kHz.  
S
SYNC = V : Spread-spectrum mode with f = 1220kH ±120kHz.  
DD  
S
SYNC = Clocked: Fixed-frequency mode with f = external clock frequency.  
S
7
8
B3  
A4  
C4  
B4  
PGND  
OUT+  
OUT-  
Power Ground  
Amplifier-Output Positive Phase  
Amplifier-Output Negative Phase  
9
10  
PV  
H-Bridge Power Supply. Connect to V  
.
DD  
DD  
Exposed Pad. Internallly connected to GND. Connect to a large ground plane to  
maximize thermal performance. Not intended as an electrical connection point.  
(TDFN package only.)  
EP  
Operating Modes  
Detailed Description  
The MAX9700 filterless, class D audio power amplifier  
features several improvements to switch-mode amplifier  
technology. The MAX9700 offers class AB performance  
with class D efficiency, while occupying minimal board  
space. A unique filterless modulation scheme, synchroniz-  
able switching frequency, and SSM mode create a com-  
pact, flexible, low-noise, efficient audio power amplifier.  
The differential input architecture reduces common-mode  
noise pickup, and can be used without input-coupling  
capacitors. The device can also be configured as a single-  
ended input amplifier.  
Fixed-Frequency Modulation (FFM) Mode  
The MAX9700 features two FFM modes. The FFM modes  
are selected by setting SYNC = GND for a 1.1MHz switching  
frequency, and SYNC = UNCONNECTED for a 1.45MHz  
switching frequency. In FFM mode, the frequency spectrum  
of the class D output consists of the fundamental switching  
frequency and its associated harmonics (see the Wideband  
FFT graph in the Typical Operating Characteristics). The  
MAX9700 allows the switching frequency to be changed by  
+32%, should the frequency of one or more of the harmon-  
ics fall in a sensitive band. This can be done at any time  
and does not affect audio reproduction.  
Comparators monitor the MAX9700 inputs and compare  
the complementary input voltages to the sawtooth wave-  
form. The comparators trip when the input magnitude of  
the sawtooth exceeds their corresponding input voltage.  
Both comparators reset at a fixed time after the rising  
edge of the second comparator trip point, generating a  
Spread-Spectrum Modulation (SSM) Mode  
The MAX9700 features a unique spread-spectrum  
mode that flattens the wideband spectral components,  
improving EMI emissions that may be radiated by the  
speaker and cables by 5dB. Proprietary techniques  
ensure that the cycle-to-cycle variation of the switch-  
ing period does not degrade audio reproduction or effi-  
ciency (see the Typical Operating Characteristics). Select  
minimum-width pulse t  
at the output of the sec-  
ON(MIN)  
ond comparator (Figure 1). As the input voltage increases  
or decreases, the duration of the pulse at one output  
increases (the first comparator to trip) while the other  
SSM mode by setting SYNC = V . In SSM mode,  
DD  
output pulse duration remains at t  
. This causes  
ON(MIN)  
the switching frequency varies randomly by ±120kHz  
around the center frequency (1.22MHz). The modulation  
scheme remains the same, but the period of the saw-  
the net voltage across the speaker (V  
- V ) to  
OUT-  
OUT+  
change.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
t
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
OUT+  
- V  
OUT-  
Figure 1. MAX9700 Outputs with an Input Signal Applied  
External Clock Mode  
Table 1. Operating Modes  
The SYNC input allows the MAX9700 to be synchronized  
to a system clock (allowing a fully synchronous system),  
or allocating the spectral components of the switching  
harmonics to insensitive frequency bands. Applying an  
external TTL clock of 800kHz to 2MHz to SYNC syn-  
chronizes the switching frequency of the MAX9700. The  
period of the SYNC clock can be randomized, enabling  
the MAX9700 to be synchronized to another MAX9700  
operating in SSM mode.  
SYNC INPUT  
MODE  
FFM with f = 1100kHz  
GND  
S
UNCONNECTED FFM with f = 1450kHz  
S
V
SSM with f = 1220kHz ±120kHz  
S
DD  
Clocked  
FFM with f = external clock frequency  
S
tooth waveform changes from cycle to cycle (Figure 2).  
Instead of a large amount of spectral energy present at  
multiples of the switching frequency, the energy is now  
spread over a bandwidth that increases with frequency.  
Above a few megahertz, the wideband spectrum looks  
like white noise for EMI purposes (Figure 3).  
Filterless Modulation/Common-Mode Idle  
The MAX9700 uses Maxim’s modulation scheme that  
eliminates the LC filter required by traditional class  
D amplifiers, improving efficiency, reducing component  
count, and conserving board space and system cost.  
Conventional class D amplifiers output a 50% duty cycle  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
t
t
t
t
SW  
SW  
SW  
SW  
V
IN-  
V
IN+  
OUT-  
OUT+  
t
ON(MIN)  
V
OUT+  
- V  
OUT-  
Figure 2. MAX9700 Output with an Input Signal Applied (SSM Mode)  
square wave when no signal is present. With no filter,  
the square wave appears across the load as a DC volt-  
age, resulting in finite load current, increasing power  
consumption. When no signal is present at the input of  
the MAX9700, the outputs switch as shown in Figure 4.  
Because the MAX9700 drives the speaker differentially,  
the two outputs cancel each other, resulting in no net Idle  
Mode™ voltage across the speaker, minimizing power  
consumption.  
amplifier, the output transistors act as current-steering  
switches and consume negligible additional power. Any  
power loss associated with the class D output stage is  
mostly due to the I x R loss of the MOSFET on-resistance,  
and quiescent current overhead.  
The theoretical best efficiency of a linear amplifier is 78%;  
however, that efficiency is only exhibited at peak output  
powers. Under normal operating levels (typical music  
reproduction levels), efficiency falls below 30%, whereas  
the MAX9700 still exhibits >90% efficiencies under the  
same conditions (Figure 5).  
Efficiency  
Efficiency of a class D amplifier is attributed to the region  
of operation of the output stage transistors. In a class D  
Idle Mode is a trademark of Maxim Integrated Products  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
V
= 0V  
IN  
50.0  
45.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
OUT-  
OUT+  
30.0  
60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0  
FREQUENCY (MHz)  
V
- V = 0V  
OUT+ OUT-  
Figure 3. MAX9700 EMI Spectrum  
Figure 4. MAX9700 Outputs with No Input Signal  
Shutdown  
The MAX9700 has a shutdown mode that reduces power  
consumption and extends battery life. Driving SHDN low  
places the MAX9700 in a low-power (0.1μA) shutdown  
EFFICIENCY vs. OUTPUT POWER  
100  
90  
80  
mode. Connect SHDN to V  
for normal operation.  
DD  
Click-and-Pop Suppression  
MAX9700  
70  
60  
50  
40  
30  
20  
10  
0
The MAX9700 features comprehensive click-and-pop  
suppression that eliminates audible transients on startup  
and shutdown. While in shutdown, the H-bridge is in a  
high-impedance state. During startup or power-up, the  
input amplifiers are muted and an internal loop sets the  
modulator bias voltages to the correct levels, prevent-  
ing clicks and pops when the H-bridge is subsequently  
enabled. For 35ms following startup, a soft-start function  
gradually unmutes the input amplifiers.  
CLASS AB  
V
= 3.3V  
DD  
f = 1kHz  
R - 8  
L
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7  
OUTPUT POWER (W)  
Applications Information  
Figure 5. MAX9700 Efficiency vs. Class AB Efficiency  
Filterless Operation  
Traditional class D amplifiers require an output filter to  
recover the audio signal from the amplifier’s output. The  
filters add cost, increase the solution size of the ampli-  
fier, and can decrease efficiency. The traditional PWM  
Because the frequency of the MAX9700 output is well  
beyond the bandwidth of most speakers, voice coil move-  
ment due to the square-wave frequency is very small.  
Although this movement is small, a speaker not designed  
to handle the additional power can be damaged. For  
optimum results, use a speaker with a series inductance  
>10μH. Typical 8Ω speakers exhibit series inductances in  
the 20μH to 100μH range.  
scheme uses large differential output swings (2 x V  
DD  
peak-to-peak) and causes large ripple currents. Any para-  
sitic resistance in the filter components results in a loss of  
power, lowering the efficiency.  
The MAX9700 does not require an output filter. The  
device relies on the inherent inductance of the speaker  
coil and the natural filtering of both the speaker and  
the human ear to recover the audio component of the  
square-wave output. Eliminating the output filter results in  
a smaller, less costly, more efficient solution.  
Power-Conversion Efficiency  
Unlike a class AB amplifier, the output offset voltage of a  
class D amplifier does not noticeably increase quiescent  
current draw when a load is applied. This is due to the  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
power conversion of the class D amplifier. For example,  
an 8mV DC offset across an 8Ω load results in 1mA extra  
current consumption in a class AB device. In the class  
D case, an 8mV offset into 8Ω equates to an additional  
power drain of 8μW. Due to the high efficiency of the  
class D amplifier, this represents an additional quiescent-  
1µF  
SINGLE-ENDED  
AUDIO INPUT  
IN+  
IN-  
MAX9700  
current draw of 8μW/(V /100η), which is on the order of  
DD  
1µF  
a few microamps.  
Input Amplifier  
Differential Input  
Figure 6. Single-Ended Input  
The MAX9700 features a differential input structure,  
making it compatible with many CODECs, and offering  
improved noise immunity over a single-ended input ampli-  
fier. In devices such as cellular phones, high-frequency  
signals from the RF transmitter can be picked up by the  
amplifier’s input traces. The signals appear at the ampli-  
fier’s inputs as common-mode noise. A differential input  
amplifier amplifies the difference of the two inputs; any  
signal common to both inputs is canceled.  
whose dielectrics have low-voltage coefficients, such as  
tantalum or aluminum electrolytic. Capacitors with high-  
voltage coefficients, such as ceramics, may result in  
increased distortion at low frequencies.  
Other considerations when designing the input filter  
include the constraints of the overall system and the  
actual frequency band of interest. Although high-fidelity  
audio calls for a flat gain response between 20Hz and  
20kHz, portable voice-reproduction devices such as cellu-  
lar phones and two-way radios need only concentrate on  
the frequency range of the spoken human voice (typically  
300Hz to 3.5kHz). In addition, speakers used in portable  
devices typically have a poor response below 150Hz.  
Taking these two factors into consideration, the input  
filter may not need to be designed for a 20Hz to 20kHz  
response, saving both board space and cost due to the  
use of smaller capacitors.  
Single-Ended Input  
The MAX9700 can be configured as a single-ended input  
amplifier by capacitively coupling either input to GND and  
driving the other input (Figure 6).  
DC-Coupled Input  
The input amplifier can accept DC-coupled inputs that  
are biased within the amplifier’s common-mode range  
(see the Typical Operating Characteristics). DC coupling  
eliminates the input-coupling capacitors, reducing compo-  
nent count to potentially one external component (see the  
System Diagram). However, the low-frequency rejection  
of the capacitors is lost, allowing low-frequency signals to  
feedthrough to the load.  
Output Filter  
The MAX9700 does not require an output filter. The  
device passes FCC emissions standards with 100mm  
of unshielded speaker cables. However, output filter-  
ing can be used if a design is failing radiated emissions  
due to board layout or cable length, or the circuit is near  
EMI-sensitive devices. Use an LC filter when radiated  
emissions are a concern, or when long leads are used to  
connect the amplifier to the speaker.  
Component Selection  
Input Filter  
An input capacitor, C , in conjunction with the input  
IN  
impedance of the MAX9700 forms a highpass filter that  
removes the DC bias from an incoming signal. The  
AC-coupling capacitor allows the amplifier to bias the sig-  
nal to an optimum DC level. Assuming zero source imped-  
ance, the -3dB point of the highpass filter is given by:  
Supply Bypassing/Layout  
Proper power-supply bypassing ensures low-distortion  
operation. For optimum performance, bypass V  
to  
DD  
GND and PV  
to PGND with separate 0.1μF capacitors  
DD  
as close to each pin as possible. A low-impedance, high-  
current power-supply connection to PV is assumed.  
1
f
=
3dB  
DD  
2πR C  
IN IN  
Additional bulk capacitance should be added as required  
depending on the application and power-supply charac-  
teristics. GND and PGND should be star connected to  
system ground. Refer to the MAX9700 evaluation kit for  
layout guidance.  
Choose C  
so f  
is well below the lowest fre-  
-3dB  
IN  
quency of interest. Setting f  
too high affects the  
-3dB  
low-frequency response of the amplifier. Use capacitors  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Stereo Configuration  
Two MAX9700s can be configured as a stereo amplifier  
(Figure 7). Device U1 is the master amplifier; its unfil-  
tered output drives the SYNC input of the slave device  
(U2), synchronizing the switching frequencies of the two  
devices. Synchronizing two MAX9700s ensures that no  
beat frequencies occur within the audio spectrum. This  
configuration works when the master device is in either  
FFM or SSM mode. There is excellent THD+N perfor-  
mance and minimal crosstalk between devices due to  
the SYNC connection (Figures 8 and 9). U2 locks onto  
only the frequency present at SYNC, not the pulse width.  
The internal feedback loop of device U2 ensures that the  
audio component of U1’s output is rejected.  
V
DD  
1µF  
V
DD  
PV  
DD  
MAX9700  
IN+  
IN-  
OUT+  
RIGHT-CHANNEL  
DIFFERENTIAL  
AUDIO INPUT  
OUT-  
SYNC  
Designing with Volume Control  
The MAX9700 can easily be driven by single-ended  
sources (Figure 6), but extra care is needed if the source  
impedance “seen” by each differential input is unbalanced,  
such as the case in Figure 10a, where the MAX9700 is  
used with an audio taper potentiometer acting as a vol-  
ume control. Functionally, this configuration works well,  
but can suffer from click-pop transients at power-up (or  
coming out of SHDN) depending on the volume-control  
setting. As shown, the click-pop performance is fine for  
either max or min volume, but worsens at other settings.  
1µF  
V
DD  
PV  
DD  
MAX9700  
IN+  
IN-  
OUT+  
LEFT-CHANNEL  
DIFFERENTIAL  
AUDIO INPUT  
OUT-  
SYNC  
Figure 7. Master-Slave Stereo Configuration  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs. OUTPUT POWER  
CROSSTALK vs. FREQUENCY  
0
100  
10  
1
V
= 3.3V  
DD  
V
= 3.3V  
DD  
R = 8  
f = 1kHz  
L
-20  
-40  
f = 1kHz  
R = 8  
SLAVE DEVICE  
L
V
= 500mV  
IN  
P-P  
-60  
MASTER-TO-SLAVE  
SLAVE-TO-MASTER  
0.1  
-80  
-100  
-120  
0.01  
0.001  
10  
100  
1k  
10k  
100k  
0
0.1  
0.2  
0.3  
0.4  
0.5  
FREQUENCY (Hz)  
OUTPUT POWER (W)  
Figure 8. Master-Slave THD+N  
Figure 9. Master-Slave Crosstalk  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
One solution is the configuration shown in Figure 10b.  
The potentiometer is connected between the differential  
inputs, and these “see” identical RC paths when the  
device powers up. The variable resistive element appears  
between the two inputs, meaning the setting affects both  
inputs the same way. The potentiometer is audio taper,  
as in Figure 10a. This significantly improves transient  
performance on power-up or release from SHDN. A simi-  
lar approach can be applied when the MAX9700 is driven  
differentially and a volume control is required.  
UCSP Applications Information  
For the latest application details on UCSP construc-  
tion, dimensions, tape carrier information, PC board  
techniques, bump-pad layout, and recommended reflow  
temperature profile, as well as the latest information on  
reliability testing results, refer to the Application Note:  
UCSP—A Wafer-Level Chip-Scale Package available on  
Maxim’s website at www.maximintegrated.com/ucsp.  
1µF  
22k  
CW  
1µF  
IN-  
IN-  
50k  
CW  
MAX9700  
50kΩ  
MAX9700  
1µF  
IN+  
22kΩ  
IN+  
1µF  
Figure 10b. Improved Single-Ended Drive of MAX9700 Plus  
Volume  
Figure 10a. Single-Ended Drive of MAX9700 Plus Volume  
Ordering Information (continued)  
Selector Guide  
PART  
PIN-PACKAGE  
10 TDFN-EP*  
10 µMAX  
GAIN (dB)  
PIN-  
PACKAGE  
TOP  
PART  
TEMP RANGE  
MARK  
ACN  
MAX9700AETB+  
MAX9700AEUB+  
MAX9700AEBC+T  
MAX9700BETB+  
MAX9700BEUB+  
MAX9700BEBC+T  
MAX9700CETB+  
MAX9700CEUB+  
MAX9700CEBC+T  
MAX9700DETB+  
MAX9700DEUB+  
MAX9700DEBC+T  
6
6
MAX9700CETB+  
MAX9700CEUB+  
-40°C to +85°C 10 TDFN-EP*  
-40°C to +85°C 10 µMAX  
12 UCSP  
6
MAX9700CEBC+T -40°C to +85°C 12 UCSP  
10 TDFN-EP*  
10 µMAX  
12  
MAX9700DETB+  
MAX9700DEUB+  
-40°C to +85°C 10 TDFN-EP* ACO  
12  
-40°C to +85°C 10 µMAX  
12 UCSP  
12  
MAX9700DEBC+T -40°C to +85°C 12 UCSP  
10 TDFN-EP*  
10 µMAX  
15.6  
15.6  
15.6  
20  
*EP = Exposed pad.  
12 UCSP  
10 TDFN-EP*  
10 µMAX  
20  
12 UCSP  
20  
*EP = Exposed pad.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
System Diagram  
V
DD  
1µF  
V
DD  
V
0.1µF  
PV  
DD  
DD  
AUX_IN  
BIAS  
OUT+  
IN+  
MAX9700  
IN-  
OUT-  
OUT  
2.2k  
SHDN  
SYNC  
CODEC/  
BASEBAND  
PROCESSOR  
OUT  
MAXꢀ0ꢁꢂ  
2.2kΩ  
0.1µF  
IN+  
IN-  
V
DD  
0.1µF  
1µF  
V
DD  
SHDN  
1µF  
1µF  
INL  
OUTL  
OUTR  
MAX9722  
INR  
µCONTROLLER  
PV  
SV  
SS  
SS  
C1P  
CIN  
1µF  
1µF  
Chip Information  
TRANSISTOR COUNT: 3595  
Pin Configurations (continued)  
TOP VIEW  
(BUMP SIDE DOWN)  
1
PROCESS: BiCMOS  
MAX9700  
2
3
4
V
SYNC  
PGND  
OUT+  
DD  
A
B
IN+  
IN-  
SHDN  
PV  
DD  
GND  
OUT-  
C
ꢀCꢁꢂ  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
12 UCSP  
PACKAGE CODE  
B12-11  
DOCUMENT NO.  
21-0104  
10 TDFN-EP  
10 μMAX  
T1033-1  
21-0137  
U10-2  
21-0061  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX9700  
1.2W, Low-EMI, Filterless,  
Class D Audio Amplifier  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
10/03  
6/04  
0
1
2
3
Initial release  
Changes made to TOCs and specs  
3–8, 14, 15  
1, 2, 3, 8, 14  
1, 14  
10/08  
3/18  
Addition of EP information to pin description table  
Updated Ordering Information  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
17  

相关型号:

MAX9700AEUB+T

Audio Amplifier, 0.8W, 1 Channel(s), 1 Func, BICMOS, PDSO10, MO-187C-BA, UMAX-10
MAXIM

MAX9700AEUB-T

Audio Amplifier, 1.6W, 1 Channel(s), 1 Func, BICMOS, PDSO10, MO-187CBA, MICRO, SOP-10
MAXIM

MAX9700B

Selectable Switching Frequency
MAXIM

MAX9700BEBC+

Audio Amplifier, 1.6W, 1 Channel(s), 1 Func, BICMOS, PBGA12, UCSP-12
MAXIM

MAX9700BEBC+T

1.2W, Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9700BEBC-T

1.2W, Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9700BETB

1.2W, Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9700BETB+

暂无描述
MAXIM

MAX9700BETB-T

Audio Amplifier, 1.6W, 1 Channel(s), 1 Func, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10
MAXIM

MAX9700BEUB

1.2W, Low-EMI, Filterless, Class D Audio Amplifier
MAXIM

MAX9700BEUB+

Audio Amplifier, 0.8W, 1 Channel(s), 1 Func, BICMOS, PDSO10, UMAX-10
MAXIM

MAX9700BEUB+T

Audio Amplifier, 0.8W, 1 Channel(s), 1 Func, BICMOS, PDSO10, MO-187C-BA, UMAX-10
MAXIM