MAX9383 [MAXIM]

ECL/PECL Phase-Frequency Detectors ; ECL / PECL相位频率检测器\n
MAX9383
型号: MAX9383
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ECL/PECL Phase-Frequency Detectors
ECL / PECL相位频率检测器\n

文件: 总10页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2234; Rev 1; 11/02  
ECL/PECL Phase-Frequency Detectors  
General Description  
Features  
The MAX9382/MAX9383 are high-speed PECL/ECL  
phase-frequency detectors designed for use in high-  
bandwidth phase-locked loop (PLL) applications. The  
devices compare a single-ended reference (R) and a  
VCO (V) input and produce pulse streams on differen-  
tial up (U) and down (D) outputs. When integrated, the  
difference of the output pulse streams provides a con-  
trol voltage proportional to input phase or frequency dif-  
ference. Guaranteed minimum short pulse duration  
completely eliminates minimum phase difference  
requirements during the lock condition, maximizing  
loop jitter performance.  
Guaranteed Minimum Pulse Width Eliminates  
Dead Band  
450MHz Typical Bandwidth with up to ±π Phase  
Detection  
75kInternal Input Pulldown Resistors  
44mA Typical Supply Current  
±±kꢀ ESD Protection ꢁHuman Body Modelꢂ  
Pin Compatible with MCK1±140 and MCH1±140  
Available in 8-Pin µMAX and SO Packages  
The MAX9382/MAX9383 feature low propagation and  
reset delay, making them ideal for high-frequency clock  
synchronization use. The MAX9382 uses 100K logic  
levels, has a supply voltage range of V  
- V = 4.2V  
EE  
CC  
to 5.5V, and is pin compatible with Motorola’s  
MCK12140. The MAX9383 uses 10H logic levels with a  
supply voltage range of V  
- V = 4.75V to 5.5V and  
EE  
CC  
Ordering Information  
is pin compatible with the MCH12140.  
The MAX9382/MAX9383 are available in industry-stan-  
dard 8-pin SO and space-saving 8-pin µMAX packages.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
8 SO  
MAX938±EUA*  
MAX9382ESA  
MAX9383EUA*  
MAX9383ESA  
Applications  
8 µMAX  
8 SO  
Precision Clock Distribution  
*Future product—contact factory for availability.  
Central Office  
DSLAM  
DLC  
Base Station  
ATE  
Functional Diagram  
Pin Configuration  
TOP VIEW  
U
U
R
MAX9382  
MAX9383  
R
U
U
D
D
1
2
3
4
8
7
6
5
V
R
V
V
CC  
Q
S
MAX9382  
MAX9383  
S
Q
R
D
EE  
V
D
µMAX/SO  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
ECL/PECL Phase-Frequency Detectors  
ABSOLUTE MAXIMUM RATINGS  
V
- V ............................................................................+6.0V  
Junction-to-Case Thermal Resistance  
CC  
EE  
Inputs (R, V).................................................(V ) to (V - 0.3V)  
8-Pin µMAX ...............................................................+39°C/W  
8-Pin SO....................................................................+40°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+±50°C  
Storage Temperature Range.............................-65°C to +±50°C  
ESD Protection  
CC  
EE  
Continuous Output Current.................................................50mA  
Surge Output Current........................................................±00mA  
Junction-to-Ambient Thermal Resistance in Still Air*  
8-Pin µMAX ..............................................................+22±°C/W  
8-Pin SO ..................................................................+±70°C/W  
Junction-to-Ambient Thermal Resistance with*  
Human Body Model (R, V, U, U, D, D)............................±2ꢀV  
Soldering Temperature (±0s).......................................... +300°C  
500LFPM Airflow  
8-Pin µMAX ..............................................................+±55°C/W  
8-Pin SO.....................................................................+99°C/W  
*Ratings are for single-layer board.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX938± DC ELECTRICAL CHARACTERISTICS  
(V  
- V = 4.2V to 5.5V. Outputs loaded with 50±±1 to V  
- 2V, unless otherwise noted. Typical values at V - V = 4.5V.)  
CC EE  
CC  
EE  
CC  
(Notes ±, 2, 3)  
-40°C  
+85°C  
+±5°C  
TYP  
PARAMETER  
INPUTS ꢁR, ꢀꢂ  
CONDITIONS  
UNITS  
SYMBOL  
MIN  
TYP  
MAX  
MIN  
MAX  
MIN  
TYP  
MAX  
Input High  
Voltage  
V
-
V
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
V
V
V
IH  
±.±65  
0.880 ±.±65  
0.880 ±.±65  
0.880  
Input Low  
Voltage  
V
-
V
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
V
IL  
±.8±0  
±.475 ±.8±0  
±. 475 ±.8±0  
±.475  
Input High  
Current  
I
V
V
= V  
= V  
±50  
±50  
±50  
µA  
µA  
IH  
IN  
IN  
IHMAX  
ILMIN  
Input Low  
Current  
I
0.5  
0.5  
0.5  
IL  
OUTPUTS ꢁU, U, D, Dꢂ  
Single-Ended  
Output High  
Voltage  
V
V
= V or  
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
CC  
IN  
IL  
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
OH  
±.085 0.990 0.880 ±.035 0.960 0.880 ±.035 0.940 0.880  
Single-Ended  
Output Low  
Voltage  
V
V
= V or  
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
CC  
IN  
IL  
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
OL  
±.890 ±.8±0 ±.555 ±.850 ±.770 ±.620 ±.8±0 ±.730 ±.600  
Differential  
Output Voltage  
V
V
-
V
V
= V or  
IH  
OH  
IN  
IL  
585  
820  
43  
585  
8±0  
44  
585  
800  
45  
mV  
mA  
OL  
POWER SUPPLY  
Supply Current  
I
(Note 4)  
56  
56  
58  
EE  
±
_______________________________________________________________________________________  
ECL/PECL Phase-Frequency Detectors  
MAX9383 DC ELECTRICAL CHARACTERISTICS  
(V  
- V = 4.75V to 5.5V. Outputs loaded with 50±±1 to V  
- 2V, unless otherwise noted. Typical values at V - V = 5.2V.)  
CC EE  
CC  
EE  
CC  
(Notes ±, 2, 3)  
-40°C  
+±5°C  
+85°C  
PARAMETER SYMBOL CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
INPUTS ꢁR, ꢀꢂ  
Input High  
Voltage  
V
-
V
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
V
V
V
IH  
±.230  
0.890 ±.±30  
0.8±0 ±.060  
0.720  
Input Low  
Voltage  
V
-
V
-
V
-
V
-
V
-
V
-
CC  
CC  
CC  
CC  
CC  
CC  
V
IL  
±.950  
±.500 ±.950  
±. 480 ±.950  
±.480  
Input High  
Current  
I
V
V
= V  
= V  
±50  
±50  
±50  
µA  
µA  
IH  
IN  
IN  
IHMAX  
ILMIN  
Input Low  
Current  
I
0.5  
0.5  
0.5  
IL  
OUTPUTS ꢁU, U, D, Dꢂ  
Single-Ended  
Output High  
Voltage  
V
V
= V or  
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
CC  
IN  
IL  
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
OH  
±.±±5 ±.0±0 0.890 0.980 0.924 0.8±0 0.945 0.900 0.720  
Single-Ended  
Output Low  
Voltage  
V
= V or  
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
V
-
CC  
IN  
IH  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
V
OL  
V
±.990  
±.832 ±.650 ±.950  
±.740 ±.630 ±.950  
±.700 ±.595  
IL  
Differential  
Output Voltage  
V
V
-
V
V
= V or  
IH  
OH  
IN  
IL  
650  
822  
37  
650  
8±7  
38  
650  
803  
mV  
mA  
OL  
POWER SUPPLY  
Supply Current  
I
(Note 4)  
52  
52  
39  
52  
EE  
MAX938±/MAX9383 AC ELECTRICAL CHARACTERISTICS  
(Over specified DC input parameters, f = ±00MHz, outputs loaded with 50±±1 to V  
- 2V, unless otherwise noted.) (Note 5)  
CC  
-40°C  
+±5°C  
+85°C  
PARAMETER SYMBOL CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
R Input to U  
Output Delay  
t
Figure ±  
Figure ±  
Figure ±  
Figure ±  
Figure ±  
575  
650  
750  
590  
660  
780  
635  
720  
830  
ps  
ps  
ps  
ps  
ps  
PRU  
V Input to D  
Output Delay  
t
t
575  
945  
945  
370  
650  
750  
590  
960  
960  
370  
660  
780  
635  
720  
830  
PVD  
R Input to D  
Output Delay  
±±20  
±±20  
470  
±320  
±320  
±±±0  
±±±0  
450  
±360  
±360  
±005  
±005  
370  
±±50  
±±50  
430  
±360  
±360  
PRD  
V Input to U  
Output Delay  
t
PVU  
Minimum Pulse  
Duration  
t
Pmin  
_______________________________________________________________________________________  
3
ECL/PECL Phase-Frequency Detectors  
MAX938±/MAX9383 AC ELECTRICAL CHARACTERISTICS ꢁcontinuedꢂ  
(Over specified DC input parameters, f = ±00MHz, outputs loaded with 50±±1 to V  
- 2V, unless otherwise noted.) (Note 5)  
CC  
-40°C  
+±5°C  
+85°C  
PARAMETER  
SYMBOL CONDITIONS  
UNITS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
π usable  
phase  
difference  
range  
Maximum  
Operating  
Frequency  
f
400  
450  
400  
450  
400  
450  
MAX  
MHz  
V
= 200MHz,  
IN  
30  
70  
28  
60  
28  
60  
501 duty  
Phase Offset  
ps  
cycle (Note 6)  
V
= 400MHz,  
IN  
Added Random  
Jitter  
ps  
(RMS)  
0.2  
±.0  
0.2  
±.0  
0.2  
±.0  
501 duty  
cycle (Note 7)  
t
RJ  
Output Rise/ Fall  
Time  
201 to 801,  
Figure 2  
t , t  
R
80  
±60  
±00  
±80  
±±0  
±90  
ps  
F
Note 1: Measurements are made with the device in thermal equilibrium.  
Note ±: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 3: DC parameters are production tested at +85°C. DC limits are guaranteed by design and characterization over the full oper-  
ating temperature range.  
Note 4: All pins open except V  
and V  
.
EE  
CC  
Note 5: Guaranteed by design and characterization. Limits are set to ±6 sigma.  
Note 6: Phase offset is defined as the difference in propagation delay timing between the two input paths. It is measured between  
the U and D outputs at the differential crosspoint with a rising edge simultaneously applied at the R and V inputs.  
Note 7: Device jitter added to the input signal.  
4
_______________________________________________________________________________________  
ECL/PECL Phase-Frequency Detectors  
Typical Operating Characteristics  
(V  
- V = +4.5V (MAX9382) or V  
- V = +5.2V (MAX9383), V = V  
- ±.00V, V = V  
- ±.60V, f = f = ±00MHz, outputs  
CC  
EE  
CC  
EE  
IH  
CC  
IL  
CC  
R
V
loaded with 50to V  
- 2V, T = +25°C, unless otherwise noted.)  
CC  
A
MAX9382  
TRANSITION TIME vs. TEMPERATURE  
MAX9383  
TRANSITION TIME vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
150  
125  
100  
75  
200  
45.0  
42.5  
40.0  
37.5  
35.0  
32.5  
30.0  
MAX9382  
RISE TIME  
FALL TIME  
175  
150  
125  
100  
RISE TIME  
FALL TIME  
MAX9383  
50  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
80  
85  
-40  
-15  
10  
35  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT SHORT-PULSE DURATION  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. TEMPERATURE  
550  
525  
500  
475  
450  
425  
750  
725  
700  
675  
650  
625  
600  
t
OR t  
PVD  
PRU  
MAX9382  
MAX9383  
MAX9383  
MAX9382  
400  
-15  
85  
-40  
-15  
10  
35  
60  
80  
-40  
10  
35  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT PHASE ERROR  
vs. INPUT PHASE DIFFERENCE  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. FREQUENCY  
50  
40  
30  
20  
10  
0
830  
820  
810  
800  
790  
780  
770  
MAX9383  
MAX9382  
-4  
-2  
0
2
4
0
500  
1000  
1500  
2000  
INPUT PHASE DIFFERENCE (ns)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
ECL/PECL Phase-Frequency Detectors  
Pin Description  
PIN  
NAME  
FUNCTION  
Inverting Up Output. Pulse stream is generated at this pin when f > f or V lags R in phase.  
R
V
±
U
Terminate with 50resistor to V  
- 2V or equivalent.  
CC  
Noninverting Up Output. Pulse stream is generated at this pin when f > f or V lags R in phase.  
R
V
2
3
4
U
D
D
Terminate with 50resistor to V  
- 2V or equivalent.  
CC  
Inverting Down Output. Pulse stream is generated at this pin when f > f or R lags V in phase.  
V
R
Terminate with 50resistor to V  
- 2V or equivalent.  
CC  
Noninverting Down Output. Pulse stream is generated at this pin when f > f or R lags V in phase.  
V
R
Terminate with 50resistor to V  
- 2V or equivalent.  
CC  
5
6
7
V
EE  
Negative Supply  
V
R
Single-Ended VCO Input  
Single-Ended Reference Input  
Positive Supply. Bypass from V  
capacitors as close to the device as possible with the smaller value capacitor closest to the device.  
to V with 0.±µF and 0.0±µF ceramic capacitors. Place the  
EE  
CC  
8
V
CC  
detect phase differences up to ±2π. The application  
Detailed Description  
frequency and the characteristics of the device internal  
The MAX9382/MAX9383 are high-speed phase or fre-  
quency detectors. The MAX9382 is compatible with ±00K  
reset circuits determine the usable input phase differ-  
ence range.  
logic and has a power-supply range of V  
- V = 4.2V  
EE  
CC  
to 5.5V. The MAX9383 is compatible with ±0H logic with a  
Frequency Detection  
Figure 4 is the state diagram for the MAX9382/  
MAX9383. With the two inputs at the same frequency,  
and input R leading input V, the device toggles  
between states 0 and 2. Similarly, if input R lags input  
V, the device toggles between states 0 and ±. With the  
two inputs at different frequencies, the output becomes  
a function of the frequency difference. The normalized  
ideal transfer function is given by:  
power-supply range of V  
- V = 4.75V to 5.5V. Both  
EE  
CC  
devices are specified to function from -40°C to +85°C.  
Each device is symmetrical; the R and V input functions  
may be swapped, together with the U and D output  
functions, and the inputs and outputs relabeled.  
Because of this device symmetry, a necessary condi-  
tion for correct phase measurement operation is that  
the U and D outputs must both be high (state 0 condi-  
tion) when the rising edge of the leading input is  
received. This condition is automatically generated  
when the two inputs are at different frequencies.  
fR  
2fV  
VOUT_AVE =±-  
for fV > fR  
and  
Phase Detection  
The MAX9382/MAX9383 are intended for use in high-  
bandwidth PLL applications. These devices compare a  
single-ended VCO input (V) to a single-ended refer-  
ence input (R) to determine the phase or frequency  
relationship between V and R. The device differential  
outputs U, U and D, D provide pulse trains with duty  
cycle proportional to the phase or frequency difference  
between R and V. These outputs are the up and down  
signals required to control the system VCO. Figure ±  
shows typical waveforms when V leads R and V lags R.  
Subtracting and integrating these two outputs provide  
the necessary VCO control signal. Figure 3 shows the  
device transfer function obtained. The detector can  
fV  
2fR  
VOUT_AVE =±-  
for fR > fV  
Output Pulses  
When inputs R and V are at the same phase and fre-  
quency, outputs U, U and D, D produce a stream of  
minimum duration pulses that occur at the rising edges  
of the input waveforms. This is the locꢀ condition. If  
either input starts to lead the other in phase, the width  
of pulses on the corresponding output (U for R input, D  
for V input) increases in proportion to the phase differ-  
ence. In a PLL implementation, these outputs direct the  
6
_______________________________________________________________________________________  
ECL/PECL Phase-Frequency Detectors  
R
V
U
U
D
D
t
t
PVU  
t
Pmin  
PRU  
a) INPUT AND OUTPUT WAVEFORMS FOR V LEADING R  
R
V
U
U
D
D
t
t
PRD  
t
Pmin  
PVD  
b) INPUT AND OUTPUT WAVEFORMS FOR V LAGGING R  
Figure 1. Typical Waveforms when f = f  
R
V
system VCO to increase or decrease frequency to  
maintain the locꢀ condition.  
U - U  
OR  
80%  
20%  
80%  
20%  
The minimum output pulse duration is an important  
parameter for the design of the signal processing func-  
tions, which follow the phase detector. When controlling  
a charge-pump integrator, a detector can produce a  
dead-zone characteristic at the locꢀ condition if the  
minimum pulse width is too short. MAX9382/MAX9383  
eliminate this dead-zone characteristic, and the result-  
ing phase offset at locꢀ, by providing a well-defined  
minimum output pulse width.  
D - D  
t
t
R
F
Figure 2. Output Transition Times  
PECL systems, connect V  
to a positive supply and  
CC  
V
EE  
to ground.  
Applications Information  
Power-Supply Bypassing  
The MAX9382/MAX9383 input and output levels are  
defined to be relative to the positive supply voltage. In  
ECL systems, the positive supply voltage is convention-  
ally chosen to be system ground. This arrangement  
produces the best noise immunity, since ground is nor-  
mally a system-wide reference voltage. Operate the  
Adequate power-supply bypassing is necessary to  
maximize the performance and noise immunity of ECL  
devices. This is particularly true of a PECL system  
where the power-supply voltage is used as a reference.  
Bypass V  
to V with high-frequency surface-mount  
EE  
ceramic 0.±µF and 0.0±µF capacitors in parallel and as  
close to the device as possible, with the 0.0±µF capaci-  
CC  
devices with V  
connected to ground and V con-  
EE  
CC  
nected to a negative supply for ECL systems. With  
_______________________________________________________________________________________  
7
ECL/PECL Phase-Frequency Detectors  
Circuit Board Traces  
Input and output trace characteristics affect the perfor-  
mance of ECL/PECL devices. Connect each of the  
detectors inputs and outputs to a 50characteristic  
impedance trace. Avoid impedance discontinuities,  
maintain the distance between differential traces, avoid  
sharp corners, and ꢀeep the electrical length of the dif-  
ferential traces matched. This maximizes common-  
mode noise rejection and reduces signal sꢀew. Trace  
vias cause impedance discontinuities, so ꢀeep the  
number of vias in the 50traces to a minimum. Reduce  
reflections by maintaining the 50characteristic  
impedance through connectors and across cables.  
f > f  
V
f < f  
V
R
R
OR  
OR  
V LEADS R  
V LAGS R  
V
OH  
AVG  
(U)  
V
V
OL  
OH  
AVG  
(D)  
V
V
OL  
- V  
OH  
OL  
AVG  
(U - D)  
0
Output Termination  
V
4π  
- V  
OL  
OH  
Terminate outputs through 50to V  
- 2V or use an  
CC  
-4π  
-3π  
-2π  
-π  
π
2π  
3π  
0
equivalent Thevenin termination. When a single-ended  
signal is taꢀen from a differential output, terminate both  
outputs. For example, if the U output of the MAX9382 or  
MAX9383 is connected to a single-ended input, termi-  
nate both the U and U outputs.  
Figure 3. Average Output Voltage vs. Phase Difference  
tor closest to the device pins. Use multiple parallel vias  
for ground plane connection to minimize inductance.  
Chip Information  
TRANSISTOR COUNT: 706  
PROCESS: Bipolar  
R
V
STATE 2  
STATE 0  
STATE 1  
VCO  
U = 0  
D = 1  
VCO  
UP  
U = 1  
U = 1  
D = 1  
R
V
DOWN  
D = 0  
V
R
Figure 4. MAX9382/MAX9383 State Diagram  
8
_______________________________________________________________________________________  
ECL/PECL Phase-Frequency Detectors  
Package Information  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
_______________________________________________________________________________________  
9
ECL/PECL Phase-Frequency Detectors  
Package Information (continued)  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
10 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademarꢀ of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY