MAX9374-MAX9374A [MAXIM]

Differential LVPECL-to-LVDS Translators; 差分LVPECL至LVDS转换器
MAX9374-MAX9374A
型号: MAX9374-MAX9374A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Differential LVPECL-to-LVDS Translators
差分LVPECL至LVDS转换器

转换器
文件: 总9页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2326; Rev 0; 1/02  
Differential LVPECL-to-LVDS Translators  
General Description  
Features  
The MAX9374 and MAX9374A are 2.0GHz differential  
LVPECL-to-LVDS translators and are designed for tele-  
com applications. They feature 250ps propagation  
delay. The differential output conforms to the ANSI  
TIA/EIA-644 LVDS standard. The inputs are biased with  
internal resistors such that the output is differential low  
Guaranteed 2.0GHz Operating Frequency  
250ps (typ) Propagation Delay  
1.0ps RMS Jitter (typ)  
2.375V to 2.625V Low-Voltage Supply Range  
(MAX9374)  
when inputs are open. An on-chip V reference output  
BB  
is available for single-ended operation.  
On-Chip V  
Reference for Single-Ended Input  
BB  
The MAX9374 is designed for low-voltage operation  
from a 2.375V to 2.625V power supply for use in 2.5V  
systems. The MAX9374A is designed for 3.0V to 3.6V  
operation in systems with a nominal 3.3V supply. Both  
devices are offered in industry-standard 8-pin SOT23  
and SO packages.  
Output Low for Open Inputs  
Output Conforms to ANSI TIA/EIA-644 LVDS  
Standard  
ESD Protection >2.0kV (Human Body Model)  
Available in Small 8-Pin SOT23 Package  
Ordering Information  
Applications  
Precision Clock Buffer  
Low-Jitter Data Repeater  
Central Office Clock Distribution  
DSLAM/DLC  
TEMP  
RANGE  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
MAX9374EKA-T  
-40 C to +85 C 8 SOT23-8  
-40 C to +85 C 8 SO  
AAKU  
MAX9374ESA  
MAX9374AEKA-T -40 C to +85 C 8 SOT23-8  
MAX9374AESA -40 C to +85 C 8 SO  
AAKV  
Base Station  
Mass Storage  
Pin Configurations/Functional Diagrams appear at end of  
data sheet.  
Typical Application Circuit  
LVDS RECEIVER  
MAX9374/MAX9374A  
Z = 50  
0
D
Q
LVPECL  
INPUT  
100Ω  
D
Q
Z = 50Ω  
0
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Differential LVPECL-to-LVDS Translators  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
to GND...........................................................................4.0V  
Junction-to-Ambient Thermal Resistance with  
V , V to GND..............................................-0.3V to V  
+ 0.3V  
500 LFPM Airflow  
D
D
CC  
V
V
to V ................................................................................3.0V  
8-Pin SOT23...............................................................+78°C/W  
8-Pin SO.....................................................................+99°C/W  
Junction-to-Case Thermal Resistance  
D
D
Sink/Source Current.......................................................1mA  
BB  
Short-Circuit Duration (Q, Q to GND).........................Continuous  
8-Pin SOT23...............................................................+80°C/W  
8-Pin SO.....................................................................+40°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
ESD Protection  
Short-Circuit Duration (Q to Q)...................................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mW  
8-Pin SO (derate 5.9mW/°C above +70°C)..................470mW  
Junction-to-Ambient Thermal Resistance  
8-Pin SOT23.............................................................+112°C/W  
8-Pin SO...................................................................+170°C/W  
Human Body Model (D, D, Q, Q) .......................................2kV  
Soldering Temperature (10s)...........................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 2.375V to 2.625V for MAX9374, V  
= 3.0V to 3.6V for MAX9374A, 1001ꢀ across outputs, V = 0.095V to V  
or 3V,  
CC  
CC  
ID  
CC  
whichever is less, V  
= 1.2V to V , V  
= GND to V  
- 0.095V, unless otherwise noted. Typical values are at V  
= 2.0V, V  
=
ILD  
IHD  
CC ILD  
CC  
IHD  
1.85V, V  
= 3.3V for MAX9374A, V  
= 2.5V for MAX9374.) (Notes 1, 2)  
CC  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
)
CONDITIONS  
UNITS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
DIFFERENTIAL INPUT (D,  
High Voltage of  
Differential Input  
V
Figure 1  
Figure 1  
1.2  
V
1.2  
V
1.2  
V
CC  
V
V
IHD  
CC  
CC  
Low Voltage of  
Differential Input  
V
-
V
-
V
-
CC  
CC  
CC  
V
GND  
GND  
GND  
ILD  
0.095  
0.095  
0.095  
V
connected  
BB  
Single-Ended Input  
High Voltage  
to D (V for  
V
-
V
-
V
-
CC  
IL  
CC  
CC  
V
V
V
V
CC  
V
V
IH  
CC  
CC  
1.165  
1.165  
1.165  
V
connected  
BB  
to D), Figure 1  
V
connected  
BB  
Single-Ended Input  
Low Voltage  
V
-
V
-
V
-
CC  
to D (V for  
CC  
CC  
IH  
V
V
V
V
EE  
IL  
EE  
EE  
V
connected  
1.475  
1.475  
1.475  
BB  
to D), Figure 1  
V
V
V
< 3.0V  
0.1  
0.1  
V
0.1  
0.1  
V
0.1  
0.1  
V
V
V
-
CC  
CC  
CC  
CC  
CC  
IHD  
Differential Input Voltage  
Input Current  
V
3.0V  
3.0  
3.0  
3.0  
ILD  
, V  
IHMAX ILMIN  
I
-150  
150 -150  
150 -150  
150  
µA  
IN  
(Note 3)  
DIFFERENTIAL OUTPUT (Q,  
Output High Voltage  
)
V
Figure 1  
Figure 1  
1.6  
0.9  
1.6  
0.9  
1.6  
V
V
OH  
Output Low Voltage  
V
0.9  
OL  
Differential Output  
Voltage  
V
Figure 1  
250  
350  
450  
250  
350  
450  
250  
350  
450  
mV  
OD  
2
_______________________________________________________________________________________  
Differential LVPECL-to-LVDS Translators  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.375V to 2.625V for MAX9374, V  
= 3.0V to 3.6V for MAX9374A, 1001ꢀ across outputs, V = 0.095V to V  
or 3V,  
CC  
CC  
ID  
CC  
whichever is less, V  
= 1.2V to V , V  
= GND to V  
- 0.095V, unless otherwise noted. Typical values are at V  
= 2.0V, V  
=
ILD  
IHD  
CC ILD  
CC  
IHD  
1.85V, V  
= 3.3V for MAX9374A, V  
= 2.5V for MAX9374.) (Notes 1, 2)  
CC  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
25 25 25  
1.125 1.25 1.375 1.125 1.25 1.375 1.125 1.25 1.375  
Change in V  
Between  
OD  
Complementary Output  
States  
V  
1
1
1
mV  
V
OD  
Output Offset Voltage  
V
OS  
Change in V Between  
OS  
Complementary Output  
States  
V  
3
25  
30  
3
25  
30  
3
25  
30  
mV  
OS  
Output Short-Circuit  
Current  
Q or Q short to  
GND  
I
23  
23  
23  
mA  
OSC  
V
AND SUPPLY  
BB  
I
=
0.6mA  
V
1.38  
-
V
- V  
-
V
- V  
-
V
1.26  
-
CC  
BB  
CC  
CC  
CC  
CC  
CC  
Reference Voltage  
Supply Current  
V
V
BB  
(Note 4)  
1.26 1.38  
1.26 1.38  
I
(Note 5)  
16  
30  
18  
30  
20  
30  
mA  
CC  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 2.375V to 2.625V for MAX9374, V  
= 3.0V to 3.6V for MAX9374A, 1001ꢀ across outputs, V  
- V  
= 0.15V to V  
or  
CC  
CC  
IHD  
ILD  
CC  
3V, whichever is less, V  
= 1.2V to V , V  
= GND to V  
- 0.15V, f = 1GHz, input transition time = 125ps, input duty cycle =  
IHD  
CC ILD  
CC IN  
50ꢀ, unless otherwise noted. Typical values are at V  
unless otherwise noted.) (Notes 1, 6)  
= 2.0V, V  
= 1.85V, V  
= 3.3V for MAX9374A, V  
= 2.5V for MAX9374,  
IHD  
ILD  
CC  
CC  
-40°C  
+25°C  
+85°C  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
Differential Input to  
Differential Output Delay  
t
t
,
PLHD  
PHLD  
Figure 1  
116  
126  
240  
250  
420  
128  
138  
250  
250  
403  
145  
155  
260  
260  
440  
ps  
Single-Ended Input to  
Differential Output Delay  
t
t
,
PLHS  
Figure 1  
(Note 7)  
430  
304  
2
415  
275  
2
450  
295  
2
ps  
ps  
PHLS  
Part-to-Part Skew  
t
SKPP  
f
= 1.0GHz,  
IN  
0.9  
0.8  
1
1
clock pattern  
Added Random Jitter  
(Note 8)  
t
t
ps  
(RMS)  
RJ  
f
= 2.0GHz,  
IN  
2
0.9  
2
0.9  
2
clock pattern  
f
= 2.0Gbps,  
IN  
Added Deterministic  
Jitter (Note 8)  
223 -1 PRBS  
pattern  
45  
75  
46  
75  
38  
75  
ps  
(P-P)  
DJ  
Operating Frequency  
Output Rise/Fall Time  
f
V
250mV  
OD  
2.0  
2.2  
92  
2.0  
2.2  
91  
2.0  
2.2  
90  
MHz  
ps  
MAX  
20% to 80%,  
Figure 1  
t , t  
R
200  
200  
200  
F
_______________________________________________________________________________________  
3
Differential LVPECL-to-LVDS Translators  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 2.375V to 2.625V for MAX9374, V  
= 3.0V to 3.6V for MAX9374A, 1001% across outputs, V  
- V  
= 0.15V to V  
or  
CC  
CC  
IHD  
ILD  
CC  
3V, whichever is less, V  
= 1.2V to V , V  
= GND to V  
- 0.15V, f = 1GHz, input transition time = 125ps, input duty cycle =  
IHD  
CC ILD  
CC IN  
50%, unless otherwise noted. Typical values are at V  
unless otherwise noted.) (Notes 1, 6)  
= 2.0V, V  
= 1.85V, V  
= 3.3V for MAX9374A, V  
= 2.5V for MAX9374,  
IHD  
ILD  
CC  
CC  
Note 1: Measurements are made with the device in thermal equilibrium.  
Note 2: DC parameters are production tested at T = +25°C and guaranteed by design over the full operating temperature range.  
A
Note 3: Current into a pin is defined as positive. Current out of a pin is defined as negative.  
Note 4: Use V as a reference for inputs on the same device only.  
BB  
Note 5: 100across the outputs, all other pins open except V  
and GND.  
CC  
Note 6: Guaranteed by design and characterization. Limits are set at 6 sigma.  
Note 7: Measured between outputs of different parts at the signal crossing points under identical conditions for a same-edge transition.  
Note 8: Device jitter added to the input signal.  
Typical Operating Characteristics  
(MAX9374A, 1001% across outputs, f = 1GHz, input transition time = 125ps, input duty cycle = 50%, V  
= 3.3V, V  
= 2.0V,  
IHD  
IN  
CC  
V
= 1.85V, T = +25°C, unless otherwise noted.)  
ILD  
A
DIFFERENTIAL OUTPUT VOLTAGE (V  
vs. FREQUENCY  
)
OD  
RISE/FALL TIME vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
MAX9374 toc02  
140  
120  
100  
80  
400  
350  
300  
250  
200  
150  
100  
3
2
1
0
24  
22  
20  
18  
16  
14  
12  
10  
100LOAD  
V
OD  
RISE  
JITTER  
FALL  
60  
40  
-40  
-15  
10  
35  
60  
85  
0.1 0.4 0.7 1.0 1.3 1.6 1.9 2.2  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FREQUENCY (GHz)  
TEMPERATURE (°C)  
PROPAGATION DELAY vs. HIGH VOLTAGE  
OF DIFFERENTIAL INPUT (V  
PROPAGATION DELAY vs. TEMPERATURE  
)
IHD  
280  
260  
240  
220  
200  
180  
300  
280  
260  
240  
220  
200  
1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
(V)  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
IHD  
4
_______________________________________________________________________________________  
Differential LVPECL-to-LVDS Translators  
Pin Description  
PIN  
SOT23  
NAME  
FUNCTION  
SO  
Reference Output Voltage. Connect to the inverting or noninverting data input to provide a reference  
1
4
V
for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V ; otherwise,  
CC  
BB  
leave it open.  
2
3
4
5
3
2
GND  
D
Ground. Provide a low-impedance connection to the ground plane.  
Inverted LVPECL Data Input. 36.5kpullup to V  
and 75kpulldown to GND.  
CC  
D
Noninverted LVPECL Data Input. 75kpullup to V  
and 75kpulldown to GND.  
CC  
Positive Supply Voltage. Bypass V  
to GND with 0.1µF and 0.01µF ceramic capacitors. Place the  
CC  
5
8
V
CC  
capacitors as close to the device as possible with the smaller value capacitor closest to the device.  
Noninverted LVDS Output. Typically terminate with 100to Q.  
Inverted LVDS Output. Typically terminate with 100to Q.  
6
7
8
7
6
1
Q
Q
N.C.  
No Connection. Not internally connected.  
D
D
V
V
IHD  
ILD  
V
- V  
ILD  
IHD  
t
t
PHL_  
PLH_  
Q
Q
V
V
OH  
OL  
V
V
OS  
OD  
80%  
80%  
0 (DIFFERENTIAL)  
0 (DIFFERENTIAL)  
20%  
20%  
(Q) - (Q)  
t
t
F
R
Figure 1. MAX9374/MAX9374A Timing Diagram  
_______________________________________________________________________________________  
5
Differential LVPECL-to-LVDS Translators  
Differential LVDS Output  
Detailed Description  
The differential outputs conform to the ANSI TIA/EIA-644  
LVDS standard. Typically, terminate the outputs with 100  
across Q and Q, as shown in the Typical Application  
Circuit. The outputs are short-circuit protected.  
The MAX9374/MAX9374A are 2.0GHz differential  
LVPECL-to-LVDS translators. The output is differential  
LVDS and conforms to the ANSI TIA/EIA-644 LVDS  
standard. The inputs are biased with internal resistors  
such that the output is differential low when inputs are  
Applications Information  
Supply Bypassing  
to GND with high-frequency surface-mount  
open. An on-chip V  
reference output is available for  
BB  
single-ended input operation. The MAX9374 is  
designed for low-voltage operation from 2.375V to  
2.625V in systems with a nominal 2.5V supply. The  
MAX9374A is designed for 3.0V to 3.6V operation in  
systems with a nominal 3.3V supply.  
Bypass V  
CC  
ceramic 0.1µF and 0.01µF capacitors in parallel and as  
close to the device as possible, with the 0.01µF capaci-  
tor closest to the device. Use multiple parallel vias to  
minimize parasitic inductance. When using the V ref-  
BB  
Differential LVPECL Input  
The MAX9374/MAX9374A accept differential LVPECL  
inputs and can be configured to accept single-ended  
erence output, bypass it with a 0.01µF ceramic capaci-  
tor to V  
(if the V  
reference is not used, it can be  
BB  
CC  
left open).  
inputs through the use of the V voltage reference out-  
BB  
Controlled-Impedance Traces  
put. The maximum magnitude of the differential signal  
Input and output trace characteristics affect the perfor-  
mance of the MAX9374/MAX9374A. Connect high-fre-  
quency input and output signals to 50characteristic  
impedance traces. Minimize the number of vias to pre-  
vent impedance discontinuities. Reduce reflections by  
maintaining the 50characteristic impedance through  
cables and connectors. Reduce skew within a differen-  
tial pair by matching the electrical length of the traces.  
applied to the input is 3.0V or V , whichever is less.  
CC  
This limit also applies to the difference between any ref-  
erence voltage input and a single-ended input.  
Specifications for the high and low voltages of a differ-  
ential input (V  
and V ) and the differential input  
ILD  
- V ) apply simultaneously.  
IHD  
ILD  
voltage (V  
IHD  
Single-Ended Inputs and V  
BB  
The differential inputs can be configured to accept a  
Output Termination  
Terminate the outputs with 100across Q and Q as  
shown in the Typical Application Circuit. Both outputs  
must be terminated.  
single-ended input through the use of the V  
refer-  
BB  
ence voltage. A noninverting, single-ended input is pro-  
duced by connecting V to the D input and applying a  
BB  
single-ended input signal to the D input. Similarly, an  
inverting input is produced by connecting V to the D  
BB  
input and applying the input signal to the D input. With  
a differential input configured as single ended (using  
V
BB  
), the single-ended input can be driven to V  
and  
CC  
GND or with a single-ended LVPECL signal. Note that a  
single-ended input must be at least V 95mV or a  
differential input of at least 95mV to switch the outputs  
to the V and V levels specified in the DC Electrical  
BB  
OH  
OL  
Characteristics table.  
When using the V  
reference output, bypass it with a  
BB  
0.01µF ceramic capacitor to V . If the V reference is  
CC  
BB  
not used, leave it unconnected. Use V only for inputs  
that are on the same device as the V reference.  
BB  
BB  
Input Bias Resistors  
Internal biasing resistors ensure a (differential) output-  
low condition in the event that the inputs are not connect-  
ed. The inverting input (D) is biased with a 36.5kpull-  
down to V  
and a 75kpullup to GND. The  
CC  
noninverting input (D) is biased with a 75kpullup to  
V
CC  
and 75kpulldown to GND.  
6
_______________________________________________________________________________________  
Differential LVPECL-to-LVDS Translators  
Pin Configurations/Functional Diagrams  
V
1
2
8
7
1
2
8
7
N.C.  
Q
N.C.  
D
V
CC  
BB  
75kΩ  
75kΩ  
75kΩ  
75kΩ  
36.5kΩ  
GND  
Q
3
4
6
5
3
4
6
5
D
D
Q
D
Q
36.5kΩ  
75kΩ  
75kΩ  
V
V
GND  
CC  
BB  
MAX9374/MAX9374A  
MAX9374/MAX9374A  
SOT23  
SO  
Chip Information  
TRANSISTOR COUNT: 236  
PROCESS: Bipolar  
_______________________________________________________________________________________  
7
Differential LVPECL-to-LVDS Translators  
Package Information  
8
_______________________________________________________________________________________  
Differential LVPECL-to-LVDS Translators  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________ 9  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9374A

Differential LVPECL-to-LVDS Translators
MAXIM

MAX9374AEKA+

PECL to LVDS Translator,
MAXIM

MAX9374AEKA+T

PECL to LVDS Translator, 1 Func, Complementary Output, BIPolar, PDSO8, SOT-23, 8 PIN
MAXIM

MAX9374AEKA-T

Differential LVPECL-to-LVDS Translators
MAXIM

MAX9374AESA

Differential LVPECL-to-LVDS Translators
MAXIM

MAX9374AESA+

PECL to LVDS Translator, 1 Func, Complementary Output, BIPolar, PDSO8, MS-012AA, SOIC-8
MAXIM

MAX9374AESA-T

PECL to LVDS Translator, 1 Func, Complementary Output, BIPolar, PDSO8, MS-012AA, SOIC-8
MAXIM

MAX9374EKA+T

PECL to LVDS Translator, 1 Func, Complementary Output, BIPolar, PDSO8, SOT-23, 8 PIN
MAXIM

MAX9374EKA-T

Differential LVPECL-to-LVDS Translators
MAXIM

MAX9374ESA

Differential LVPECL-to-LVDS Translators
MAXIM

MAX9374ESA+

PECL to LVDS Translator, 1 Func, Complementary Output, BIPolar, PDSO8, MS-012AA, SOIC-8
MAXIM

MAX9375

Single LVDS/Anything-to-LVPECL Translator
MAXIM