MAX931-MAX934 [MAXIM]

Ultra Low-Power, Low-Cost Comparators with 2eference; 超低功耗,低成本比较有2eference
MAX931-MAX934
型号: MAX931-MAX934
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra Low-Power, Low-Cost Comparators with 2eference
超低功耗,低成本比较有2eference

文件: 总16页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0194; Rev 1; 2/97  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX931-MAX934 single, dual, and quad micropower,  
low-voltage comparators plus an on-board 2% accurate  
reference feature the lowest power consumption available.  
These comparators draw less than 4µA supply current  
ove r te mp e ra ture (MAX931), a nd inc lud e a n inte rna l  
1.182V ±2% voltage reference, programmable hysteresis,  
and TTL/CMOS outputs that sink and source current.  
Ultra-Low 4µA Max Quiescent Current  
Over Extended Temp. Range (MAX931)  
Power Supplies:  
Single +2.5V to +11V  
Dual ±1.25V to ±5.5V  
Input Voltage Range Includes Negative Supply  
Internal 1.182V ±2% Bandgap Reference  
Adjustable Hysteresis  
Id e a l for 3V or 5V s ing le -s up p ly a p p lic a tions , the  
MAX931-MAX934 operate from a single +2.5V to +11V  
s up p ly (or a ± 1.25V to ± 5V d ua l s up p ly), a nd e a c h  
c omp a ra tors inp ut volta g e ra ng e e xte nd s from the  
negative supply rail to within 1.3V of the positive supply.  
TTL-/CMOS-Compatible Outputs  
12µs Propagation Delay (10mV Overdrive)  
No Switching Crowbar Current  
The MAX931-MAX934s unique output stage continuously  
sources as much as 40mA. And by eliminating power-  
supply glitches that commonly occur when comparators  
c ha ng e log ic s ta te s , the MAX931-MAX934 minimize  
parasitic feedback, which makes them easier to use.  
40mA Continuous Source Current  
Available in Space-Saving µMAX Package  
The single MAX931 and dual MAX932/MAX933 provide a  
unique and simple method for adding hysteresis without  
feedback and complicated equations, using the HYST pin  
and two resistors.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX931CPA  
MAX931CSA  
MAX931CUA  
MAX931EPA  
MAX931ESA  
For applications that require increased precision with  
similar power requirements, see the MAX921-MAX924 data  
sheet. These devices include a 1% precision reference.  
8 µMAX  
8 Plastic DIP  
8 SO  
INTERNAL COMPARATORS  
INTERNAL  
HYSTERESIS  
PACK-  
AGE  
Ordering Information continued on last page.  
PART  
2%  
PER  
For similar devices guaranteed over the military temp. range, see  
the MAX921-MAX924 data sheet. The MAX931, MAX933, and  
MAX934 are pin-compatible with the 1% accurate MAX921,  
MAX923, and MAX924, respectively. The MAX932 and  
MAX922 are not pin-compatible.  
REFERENCE  
PACKAGE  
8-Pin  
DIP/SO/  
µMAX  
MAX931  
MAX932  
Yes  
Yes  
1
2
Yes  
Yes  
8-Pin  
DIP/SO/  
µMAX  
__________Typ ic a l Op e ra t in g Circ u it  
8-Pin  
DIP/SO/  
µMAX  
V
IN  
MAX933  
MAX934  
Yes  
Yes  
2
4
Yes  
No  
7
V+  
3
4
5
6
IN+  
16-Pin  
DIP/SO  
OUT  
8
IN-  
________________________Ap p lic a t io n s  
Battery-Powered Systems  
Threshold Detectors  
HYST  
REF  
MAX931  
Window Comparators  
V-  
GND  
2
1
Oscillator Circuits  
Alarm Circuits  
THRESHOLD DETECTOR  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
ABSOLUTE MAXIMUM RATINGS  
V+ to V-, V+ to GND, GND to V-................................-0.3V, +12V  
Inputs  
Continuous Power Dissipation (T = +70°C)  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
A
Current, IN_+, IN_-, HYST...............................................20mA  
Voltage, IN_+, IN_-, HYST................(V+ + 0.3V) to (V- – 0.3V)  
Outputs  
Current, REF....................................................................20mA  
Current, OUT_.................................................................50mA  
Voltage, REF ....................................(V+ + 0.3V) to (V- – 0.3V)  
Voltage, OUT_ (MAX931/934) .....(V+ + 0.3V) to (GND – 0.3V)  
Voltage, OUT_ (MAX932/933)..........(V+ + 0.3V) to (V- – 0.3V)  
OUT_ Short-Circuit Duration (V+ 5.5V) ...............Continuous  
8-Pin SO (derate 5.88mW/°C above +70°C)................471mW  
8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW  
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)..842mW  
16-Pin SO (derate 8.70mW/°C above +70°C) ................696mW  
Operating Temperature Ranges:  
MAX93_C_ _ .......................................................0°C to +70°C  
MAX93_E_ _.....................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
1-MAX934  
ELECTRICAL CHARACTERISTICS—5V Operation  
(V+ = 5V, V- = GND = 0V, T = T  
A
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage Range  
(Note 1)  
2.5  
11  
V
T
= +25°C  
2.5  
3.1  
3.1  
5.5  
3.2  
A
MAX931,  
HYST = REF  
C/E temp. ranges  
= +25°C  
4
T
A
4.5  
6
MAX932,  
HYST = REF  
C/E temp. ranges  
= +25°C  
Supply Current  
IN+ = IN- + 100mV  
µA  
T
A
4.5  
6
MAX933,  
HYST = REF  
C/E temp. ranges  
= +25°C  
T
6.5  
8.5  
A
MAX934  
C/E temp. ranges  
COMPARATOR  
Input Offset Voltage  
V
= 2.5V  
±10  
±5  
mV  
nA  
CM  
Input Leakage Current (IN-, IN+)  
Input Leakage Current (HYST)  
IN+ = IN- = 2.5V, C/E temp. ranges  
MAX931, MAX932, MAX933  
±0.01  
±0.02  
nA  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Voltage Noise  
V-  
V+ – 1.3  
1.0  
V
V- to (V+ – 1.3V)  
0.1  
0.1  
20  
mV/V  
mV/V  
V+ = 2.5V to 11V  
1.0  
100Hz to 100kHz  
µV  
RMS  
Hysteresis Input Voltage Range  
MAX931, MAX932, MAX933  
REF – 0.05  
REF  
V
Overdrive = 10mV  
Overdrive = 100mV  
12  
4
Response Time  
T
A
= +25°C, 100pF load  
µs  
2
_______________________________________________________________________________________  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
ELECTRICAL CHARACTERISTICS—5V Operation (continued)  
(V+ = 5V, V- = GND = 0V, T = T  
A
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
= 17mA  
MIN  
TYP  
MAX UNITS  
Output High Voltage  
C/E temp. ranges, I  
V+ – 0.4  
V
OUT  
MAX932,  
MAX933  
V- + 0.4  
GND + 0.4  
C/E temp. ranges,  
Output Low Voltage  
V
I
= 1.8mA  
OUT  
MAX931,  
MAX934  
REFERENCE  
C temp. range  
E temp. range  
1.158  
1.182  
25  
1.206  
1.217  
Reference Voltage  
V
1.147  
15  
T
= +25°C  
A
Source Current  
µA  
µA  
C/E temp. ranges  
= +25°C  
6
T
A
8
4
15  
Sink Current  
C/E temp. ranges  
100Hz to 100kHz  
Voltage Noise  
100  
µV  
RMS  
Note 1: MAX934 comparators work below 2.5V, see Low-Voltage Operation section for more details.  
ELECTRICAL CHARACTERISTICS—3V Operation  
(V+ = 3V, V- = GND = 0V, T = T  
A
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
T
= +25°C  
2.4  
3.4  
3.4  
5.2  
3.0  
3.8  
4.3  
5.8  
4.3  
5.8  
6.2  
8.0  
A
MAX931,  
HYST = REF  
C/E temp. ranges  
= +25°C  
T
A
MAX932,  
HYST = REF  
C/E temp. ranges  
= +25°C  
Supply Current  
IN+ = (IN- + 100mV)  
µA  
T
A
MAX933,  
HYST = REF  
C/E temp. ranges  
= +25°C  
T
A
MAX934  
C/E temp. ranges  
COMPARATOR  
Input Offset Voltage  
V
= 1.5V  
±10  
±1  
mV  
nA  
nA  
CM  
Input Leakage Current (IN-, IN+)  
Input Leakage Current (HYST)  
IN+ = IN- = 1.5V, C/E temp. ranges  
MAX931, MAX932, MAX933  
±0.01  
±0.02  
_______________________________________________________________________________________  
3
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
ELECTRICAL CHARACTERISTICS—3V Operation (continued)  
(V+ = 3V, V- = GND = 0V, T = T  
A
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Voltage Noise  
V-  
V+ – 1.3  
V
V- to (V+ – 1.3V)  
V+ = 2.5V to 11V  
100Hz to 100kHz  
0.2  
0.1  
20  
1
1
mV/V  
mV/V  
µV  
RMS  
Hysteresis Input Voltage Range  
MAX931, MAX932, MAX933  
REF – 0.05  
V+ – 0.4  
REF  
V
Overdrive = 10mV  
Overdrive = 100mV  
14  
5
Response Time  
T
A
= +25°C, 100pF load  
µs  
Output High Voltage  
C/E temp. ranges, I  
= 10mA  
V
V
OUT  
MAX932,  
MAX933  
V- + 0.4  
1-MAX934  
Output Low Voltage  
C/E temp. ranges, I  
= 0.8mA  
OUT  
MAX931  
GND + 0.4  
REFERENCE  
C temp. range  
E temp. range  
1.158  
1.182  
25  
1.206  
1.217  
Reference Voltage  
V
1.147  
T
A
= +25°C  
15  
6
Source Current  
µA  
µA  
C/E temp. ranges  
= +25°C  
T
A
8
15  
Sink Current  
C/E temp. ranges  
100Hz to 100kHz  
4
Voltage Noise  
100  
µV  
RMS  
4
_______________________________________________________________________________________  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = 5V, V- = GND, T = +25°C, unless otherwise noted.)  
A
OUTPUT VOLTAGE LOW  
vs. LOAD CURRENT  
OUTPUT VOLTAGE HIGH vs.  
LOAD CURRENT  
REFERENCE OUTPUT VOLTAGE vs.  
OUTPUT LOAD CURRENT  
2.5  
2.0  
5.0  
1.190  
V+ = 5V  
SINK  
V+ = 5V  
4.5  
4.0  
1.185  
1.180  
V+ = 3V  
SOURCE  
1.5  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.175  
1.170  
1.165  
1.160  
1.155  
V+ = 3V  
V+ = 5V  
OR  
0.5  
0.0  
V+ = 3V  
0
4
8
12  
16  
20  
0
10  
20  
30  
40  
50  
0
5
10  
15  
20  
25  
30  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT LOAD CURRENT (µA)  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
MAX931  
MAX932  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
1.22  
1.21  
4.5  
5.0  
4.5  
IN+ = IN- + 100mV  
IN+ = IN- +100mV  
4.0  
3.5  
3.0  
EXTENDED TEMP. RANGE  
1.20  
1.19  
4.0  
3.5  
3.0  
2.5  
2.0  
V+ = 5V, V- = - 5V  
COMMERCIAL  
TEMP. RANGE  
V+ = 5V, V- = 0V  
1.18  
1.17  
V+ = 3V, V- = 0V  
1.16  
1.15  
2.5  
2.0  
V+ = 3V, V- = 0V  
20 60  
V+ = 5V, V- = 0V  
-20 20  
1.14  
-60  
60  
100  
140  
-60  
-20  
100  
140  
-60 -40 -20  
0
20 40 60 80 100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX934  
MAX934  
MAX933  
SUPPLY CURRENT vs.  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
LOW SUPPLY VOLTAGES  
10  
9
5.0  
10  
IN+ = (IN- + 100mV)  
IN+ = IN- +100mV  
IN+ = IN- +100mV  
4.5  
4.0  
8
1
V+ = 5V, V- = 0V  
7
V+ = 5V, V- = -5V  
3.5  
3.0  
2.5  
2.0  
6
0.1  
V+ = 5V, V- = 0V  
V+ = 3V, V- = 0V  
5
4
V+ = 3V, V- = 0V  
3
0.01  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
1.0  
1.5  
2.0  
2.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SINGLE-SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = 5V, V- = GND, T = +25°C, unless otherwise noted.)  
A
RESPONSE TIME vs.  
LOAD CAPACITANCE  
HYSTERESIS CONTROL  
TRANSFER FUNCTION  
80  
60  
5.0  
4.5  
18  
16  
100k  
V
0
OUTPUT HIGH  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10µF  
40  
20  
14  
12  
V
OHL  
NO CHANGE  
0
10  
8
-20  
V
OLH  
-40  
-60  
6
4
OUTPUT LOW  
1-MAX934  
-80  
2
0
10  
20  
-V  
30  
(mV)  
40  
50  
-0.3  
-0.1  
0.1  
0.2  
0.3  
-0.2  
0
0
20  
40  
60  
80  
100  
V
IN+ INPUT VOLTAGE (mV)  
REF HYST  
LOAD CAPACITANCE (nF)  
RESPONSE TIME FOR VARIOUS  
INPUT OVERDRIVES  
RESPONSE TIME FOR VARIOUS  
INPUT OVERDRIVES  
MAX934 RESPONSE TIME  
AT LOW SUPPLY VOLTAGES  
10  
5
5
4
3
4
3
100mV  
10mV  
1
20mV  
100mV  
2
1
2
1
50mV  
20mV  
50mV  
10mV  
0
100  
0
0
±20mV OVERDRIVE  
0.1  
±100mV  
OVERDRIVE  
0
100  
0.01  
-2  
2
6
10  
14  
18  
1.0  
1.5  
2.0  
2.5  
-2  
2
6
10  
14  
18  
RESPONSE TIME (µs)  
SINGLE-SUPPLY VOLTAGE (V)  
RESPONSE TIME (µs)  
SHORT-CIRCUIT SOURCE CURRENT  
vs. SUPPLY VOLTAGE  
SHORT-CIRCUIT SINK CURRENT  
vs. SUPPLY VOLTAGE  
MAX934 OUTPUT DRIVE  
AT LOW SUPPLY VOLTAGES  
200  
100  
OUT CONNECTED TO V+  
GND CONNECTED TO V-  
180  
160  
140  
120  
100  
80  
OUT CONNECTED TO V-  
SOURCE CURRENT INTO 0.75V LOAD  
20  
10  
1
10  
0
60  
40  
20  
SINK CURRENT AT V  
= 0.4V  
2.0  
OUT  
0
0.1  
0
1.0  
2.0  
3.0  
4.0  
5.0  
0
5
10  
1.0  
1.5  
2.5  
TOTAL SUPPLY VOLTAGE (V)  
TOTAL SUPPLY VOLTAGE (V)  
SINGLE-SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
____________________________________________________________P in De s c rip t io n s  
PIN  
NAME  
FUNCTION  
MAX931 MAX932 MAX933  
1
GND  
OUTA  
V-  
Ground. Connect to V- for single-supply operation. Output swings from V+ to GND.  
1
1
Comparator A output. Sinks and sources current. Swings from V+ to V-.  
Negative supply. Connect to ground for single-supply operation (MAX931).  
Noninverting comparator input  
2
3
4
2
3
4
2
3
4
IN+  
INA+  
IN-  
Noninverting input of comparator A  
Inverting comparator input  
INB+  
INB-  
Noninverting input of comparator B  
Inverting input of comparator B  
Hysteresis input. Connect to REF if not used. Input voltage range is from  
5
5
5
HYST  
V
to V  
- 50mV.  
REF  
REF  
6
7
8
6
7
8
6
7
8
REF  
V+  
Reference output. 1.182V with respect to V-.  
Positive supply  
OUT  
OUTB  
Comparator output. Sinks and sources current. Swings from V+ to GND.  
Comparator B output. Sinks and sources current. Swings from V+ to V-.  
PIN  
NAME  
FUNCTION  
MAX934  
1
2
OUTB  
OUTA  
V+  
Comparator B output. Sinks and sources current. Swings from V+ to GND.  
Comparator A output. Sinks and sources current. Swings from V+ to GND.  
Positive supply  
3
4
INA-  
INA+  
INB-  
INB+  
REF  
Inverting input of comparator A  
5
Noninverting input of comparator A  
6
Inverting input of comparator B  
7
Noninverting input of comparator B  
8
Reference output. 1.182V with respect to V-.  
Negative supply. Connect to ground for single-supply operation.  
Inverting input of comparator C  
9
V-  
10  
11  
12  
13  
14  
15  
16  
INC-  
INC+  
IND-  
IND+  
GND  
OUTD  
OUTC  
Noninverting input of comparator C  
Inverting input of comparator D  
Noninverting input of comparator D  
Ground. Connect to V- for single-supply operation.  
Comparator D output. Sinks and sources current. Swings from V+ to GND.  
Comparator C output. Sinks and sources current. Swings from V+ to GND.  
_______________________________________________________________________________________  
7
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
a s e p a ra te g round for the outp ut d rive r, a llowing  
_______________De t a ile d De s c rip t io n  
operation with dual supplies ranging from ±1.25V to  
± 5.5V. Conne c t V- to GND whe n op e ra ting the  
MAX931 and the MAX934 from a single supply. The  
maximum supply voltage in this case is still 11V.  
The MAX931-MAX934 comprise various combinations  
of a micropower 1.182V reference and a micropower  
comparator. The Typical Operating Circuit shows the  
MAX931 configuration, and Figures 1a-1c show the  
MAX932/MAX933/MAX934 configurations.  
For proper comparator operation, the input signal can  
be driven from the negative supply (V-) to within one  
volt of the positive supply (V+ - 1V). The guaranteed  
c ommon-mod e inp ut volta g e ra ng e e xte nd s from  
V- to (V+ - 1.3V). The inputs can be taken above and  
below the supply rails by up to 300mV without damage.  
Each comparator continuously sources up to 40mA, and  
the unique output stage eliminates crowbar glitches  
during output transitions. This makes them immune to  
parasitic feedback (which can cause instability) and  
provides excellent performance, even when circuit-  
board layout is not optimal.  
Operating the MAX931 and MAX934 at ±5V provides  
TTL/CMOS compatibility when monitoring bipolar input  
signals. TTL compatibility for the MAX932 and MAX933  
is achieved by operation from a single +5V supply.  
Internal hysteresis in the MAX931/MAX932/MAX933  
p rovid e s the e a s ie s t me thod for imp le me nting  
hysteresis. It also produces faster hysteresis action  
and consumes much less current than circuits using  
external positive feedback.  
1-MAX934  
Lo w -Vo lt a g e Op e ra t io n : V+ = 1 V  
(MAX9 3 4 On ly)  
P o w e r-S u p p ly a n d In p u t S ig n a l Ra n g e s  
This family of devices operates from a single +2.5V to  
+11V power supply. The MAX931 and MAX934 have  
The guaranteed minimum operating voltage is 2.5V (or  
±1.25V). As the total supply voltage is reduced below  
2.5V, the p e rforma nc e d e g ra d e s a nd the s up p ly  
MAX932  
OUTB  
V+  
OUTA  
V-  
8
7
1
2
MAX934  
OUTB  
OUTA  
OUTC  
OUTD  
1
16  
15  
REF  
INA+  
INB+  
6
5
3
4
2
3
HYST  
V+  
GND 14  
D
A
V-  
INA-  
INA+  
IND+  
13  
4
5
Figure 1a. MAX932 Functional Diagram  
IND-  
12  
B
C
MAX933  
OUTB  
V+  
OUTA  
1
8
7
INC+  
11  
INB-  
INB+  
REF  
6
7
8
V-  
2
3
4
INC-  
10  
REF  
INA+  
INB-  
6
5
V-  
9
HYST  
V-  
Figure 1c. MAX934 Functional Diagram  
Figure 1b. MAX933 Functional Diagram  
8
_______________________________________________________________________________________  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
current falls. The reference will not function below  
As the inp ut volta g e a p p roa c he s the c omp a ra tor's  
offset, the output begins to bounce back and forth; this  
about 2.2V, although the comparators will continue to  
operate with a total supply voltage as low as 1V. While  
the MAX934 has comparators that may be used at  
supply voltages below 2V, the MAX931, MAX932, and  
MAX933 ma y not b e us e d with s up p ly volta g e s  
significantly below 2.5V.  
peaks when  
V
IN  
= VOS. (The lowpass filter shown on  
the g ra p h a ve ra g e s out the b ounc ing , ma king the  
transfer function easy to observe.) Consequently, the  
comparator has an effective wideband peak-to-peak  
nois e of a round 0.3mV. The volta g e re fe re nc e ha s  
peak-to peak noise approaching 1mV. Thus, when a  
comparator is used with the reference, the combined  
peak-to-peak noise is about 1mV. This, of course, is  
muc h hig he r tha n the RMS nois e of the ind ivid ua l  
components. Care should be taken in the layout to  
a void c a p a c itive c oup ling from a ny outp ut to the  
reference pin. Crosstalk can significantly increase the  
actual noise of the reference.  
At low supply voltages, the comparators’ output drive is  
reduced and the propagation delay increases (see  
Typical Operating Characteristics ). The useful input  
voltage range extends from the negative supply to a  
little und e r 1V b e low the p os itive s up p ly, whic h is  
s lig htly c los e r to the p os itive ra il tha n the d e vic e  
op e ra ting from hig he r s up p ly volta g e s . Te s t your  
prototype over the full temperature and supply-voltage  
range if operation below 2.5V is anticipated.  
__________Ap p lic a t io n s In fo rm a t io n  
Co m p a ra t o r Ou t p u t  
With 100mV of overdrive, propagation delay is typically  
s. The Typical Operating Characteristics show the  
propagation delay for various overdrive levels.  
Hys t e re s is  
Hysteresis increases the comparators’ noise margin by  
increasing the upper threshold and decreasing the  
lower threshold (see Figure 2).  
The MAX931 and MAX934 output swings from V+ to  
GND, s o TTL c omp a tib ility is a s s ure d b y us ing a  
+5V ±10% supply. The negative supply does not affect  
the output swing, and can range from 0V to -5V ±10%.  
Hysteresis (MAX931/MAX932/MAX933)  
To add hysteresis to the MAX931/MAX932/MAX933,  
c onne c t re s is tor R1 b e twe e n REF a nd HYST, a nd  
connect resistor R2 between HYST and V- (Figure 3). If  
no hysteresis is required, connect HYST to REF. When  
hysteresis is added, the upper threshold increases by  
the same amount that the lower threshold decreases.  
The hysteresis band (the difference between the upper  
and lower thresholds, VHB) is approximately equal to  
twice the voltage between REF and HYST. The HYST  
input can be adjusted to a maximum voltage of REF  
a nd to a minimum volta g e of (REF - 50mV). The  
The MAX932 and MAX933 do not have a GND pin, and  
their outputs swing from V+ to V-. Connect V- to ground  
and V+ to a +5V supply to achieve TTL compatibility.  
The MAX931-MAX934s unique design achieves an  
outp ut s ourc e c urre nt of more tha n 40mA a nd a  
s ink c urre nt of ove r 5mA, while ke e p ing q uie s c e nt  
currents in the microampere range. The output can  
source 100mA (at V+ = 5V) for short pulses, as long as  
the p a c ka g e 's ma ximum p owe r d is s ip a tion is not  
exceeded. The output stage does not generate crowbar  
switching currents during transitions, which minimizes  
feedback through the supplies and helps ensure stability  
without bypassing.  
THRESHOLDS  
IN+  
Vo lt a g e Re fe re n c e  
The internal bandgap voltage reference has an output  
of 1.182V a b ove V-. Note tha t the REF volta g e is  
referenced to V-, not to GND. Its accuracy is ±2% in  
the range 0°C to +70°C. The REF output is typically  
capable of sourcing 15µA and sinking 8µA. Do not  
bypass the REF output. For applications that require a  
1% p re c is ion re fe re nc e , s e e the MAX921-MAX924  
data sheet.  
HYSTERESIS  
IN-  
BAND  
VREF - VHYST  
V
HB  
OUT  
No is e Co n s id e ra t io n s  
Although the comparators have a very high gain, useful  
gain is limited by noise. This is shown in the Transfer  
Function graph (see Typical Operating Characteristics).  
Figure 2. Threshold Hysteresis Band  
_______________________________________________________________________________________  
9
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
maximum difference between REF and HYST (50mV)  
will therefore produce a 100mV max hysteresis band.  
Use the following equations to determine R1 and R2:  
2. Choose the hysteresis voltage (VHB), the voltage  
between the upper and lower thresholds. In this  
example, choose VHB = 50mV.  
V
3. Calculate R1.  
HB  
R1 =  
V
2 × I  
HB  
(
)
REF  
R1 = R3 ×  
V +  
V
HB  
1.182 –  
0.05  
= 10M ×  
2
R2 =  
5
I
REF  
= 100kΩ  
Whe re IREF (the c urre nt s ourc e d b y the re fe re nc e )  
s hould not e xc e e d the REF s ourc e c a p a b ility, a nd  
s hould b e s ig nific a ntly la rg e r tha n the HYST inp ut  
c urre nt. IREF va lue s b e twe e n 0.1µA a nd 4µA a re  
us ua lly a p p rop ria te . If 2.4Mis c hos e n for  
R2 (IREF = 0.5µA), the equation for R1 and VHB can be  
approximated as:  
4. Choose the threshold voltage for VIN rising (VTHR). In  
this example, choose VTHR = 3V.  
5. Calculate R2.  
1
R2 =  
V
1
1
THR  
1-MAX934  
(V  
R1 R3  
REF × R1)  
R1 (k) = V (mV)  
HB  
1
Whe n hys te re s is is ob ta ine d in this ma nne r for  
the MAX932/MAX933, the same hysteresis applies to  
both comparators.  
=
3
1
1
(1.182 × 100k)  
100k 10M  
Hysteresis (MAX934)  
Hysteresis can be set with two resistors using positive  
feedback, as shown in Figure 4. This circuit generally  
draws more current than the circuits using the HYST  
pin on the MAX931/MAX932/MAX933, and the high  
feedback impedance slows hysteresis. The design  
procedure is as follows:  
= 65.44kΩ  
A 1% preferred value is 64.9k.  
6. Verify the threshold voltages with these formulas:  
V
rising :  
IN  
1
1
1
V
= V  
× R1 ×  
+
+
THR  
REF  
R1  
R2  
R3  
1. Choose R3. The leakage current of IN+ is under 1nA  
(up to +85°C), so the current through R3 can be  
around 100nA and still maintain good accuracy.  
The current through R3 at the trip point is VREF/R3,  
or 100nA for R3 = 11.8M. 10Mis a g ood  
practical value.  
V
falling :  
IN  
R1 × V +  
(
THR  
)
V
= V  
THF  
R3  
2.5V TO 11V  
7
V+  
R3  
I
REF  
6
5
V+  
REF  
R1  
V
IN  
R1  
R2  
MAX931  
MAX932  
MAX933  
OUT  
V+  
V-  
R2  
MAX934  
GND  
HYST  
V-  
V
REF  
2
Figure 4. External Hysteresis  
Figure 3. Programming the HYST Pin  
10 ______________________________________________________________________________________  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
For example: 2Mx 10µF x 4.6 = 92sec. The actual  
time will va ry with b oth the le a ka g e c urre nt of the  
capacitor and the voltage applied to the circuit.  
Bo a rd La yo u t a n d Byp a s s in g  
Power-supply bypass capacitors are not needed if the  
supply impedance is low, but 100nF bypass capacitors  
should be used when the supply impedance is high or  
when the supply leads are long. Minimize signal lead  
lengths to reduce stray capacitance between the input  
and output that might cause instability. Do not bypass  
the reference output.  
Win d o w De t e c t o r  
The MAX933 is id e a l for ma king wind ow d e te c tors  
(undervoltage/overvoltage detectors). The schematic  
is shown in Figure 6, with component values selected  
for a n 4.5V und e rvolta g e thre s hold , a nd a 5.5V  
overvoltage threshold. Choose different thresholds by  
changing the values of R1, R2, and R3. To prevent  
chatter at the output when the supply voltage is close  
to a threshold, hysteresis has been added using R4  
and R5. OUTA provides an active-low undervoltage  
indication, and OUTB gives an active-low overvoltage  
indication. ANDing the two outputs provides an active-  
high, power-good signal.  
_______________Typ ic a l Ap p lic a t io n s  
Au t o -Off P o w e r S o u rc e  
Figure 5 shows the schematic for a 40mA power supply  
tha t ha s a time d a uto p owe r-off func tion. The  
comparator output is the switched power-supply output.  
With a 10mA load, it typically provides a voltage of  
(VBATT - 0.12V), but draws only 3.5µA quiescent current.  
This circuit takes advantage of the four key features of  
the MAX931: 2.5µA s up p ly c urre nt, a n inte rna l  
reference, hysteresis, and high current output. Using  
the component values shown, the three-resistor voltage  
divider programs the maximum ±50mV of hysteresis  
and sets the IN- voltage at 100mV. This gives an IN+  
trip threshold of approximately 50mV for IN+ falling.  
The design procedure is as follows:  
1. Choose the required hysteresis level and calculate  
values for R4 and R5 according to the formulas in  
the Hysteresis (MAX931/MAX932/MAX933) section.  
In this example, ±5mV of hysteresis has been added  
at the comparator input (VH = VHB/2). This means  
that the hysteresis apparent at VIN will be larger  
because of the input resistor divider.  
The RC time constant determines the maximum power-  
on time of the OUT pin before power-down occurs.  
This period can be approximated by:  
2. Select R1. The leakage current into INB- is normally  
under 1nA, so the current through R1 should exceed  
R x C x 4.6sec  
MOMENTARY SWITCH  
V
IN  
+5V  
V+  
V
V
UTH  
= 5.5V  
= 4.5V  
OTH  
4.5V TO 6.0V  
7
V+  
R3  
R2  
INA+  
UNDERVOLTAGE  
POWER GOOD  
OVERVOLTAGE  
OUTA  
OUTB  
MAX931  
IN+  
3
8
6
REF  
HYST  
47k  
R
C
5
4
R5  
10k  
HYST  
IN-  
REF  
INB-  
OUT  
1.1M  
100k  
VBATT -0.15V  
10mA  
V-  
GND  
1
R1  
R4  
2.4M  
2
MAX933  
V-  
Figure 6. Window Detector  
Figure 5. Auto-off power switch operates on 2.5µA quiescent  
current.  
______________________________________________________________________________________ 11  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
100nA for the thresholds to be accurate. R1 values  
up to about 10Mcan be used, but values in the  
100kto 1Mrange are usually easier to deal with.  
In this example, choose R1 = 294k.  
The full-s c a le thre s hold (a ll LEDs on) is g ive n b y  
= (R1 + R2)/R1 volts. The other thresholds are at  
3/4 full scale, 1/2 full scale, and 1/4 full scale. The  
output resistors limit the current into the LEDs.  
V
IN  
3. Ca lc ula te R2 + R3. The ove rvolta g e thre s hold  
s hould b e 5.5V whe n VIN is ris ing . The d e s ig n  
equation is as follows:  
Le ve l S h ift e r  
Figure 8 shows a circuit to shift from bipolar ±5V inputs  
to TTL s ig na ls . The 10kre s is tors p rote c t the  
comparator inputs, and do not materially affect the  
operation of the circuit.  
V
OTH  
R2 + R3 = R1 ×  
1  
V
+ V  
H
REF  
Tw o -S t a g e Lo w -Vo lt a g e De t e c t o r  
Fig ure 9 s hows the MAX932 monitoring a n inp ut  
5.5  
(1.182 + 0.005)  
= 294k ×  
1  
volta g e in two s te p s . Whe n V is hig he r tha n the  
IN  
LOW and FAIL thresholds, outputs are high. Threshold  
c a lc ula tions a re s imila r to thos e for the wind ow-  
detector application.  
= 1.068MΩ  
4. Calculate R2. The undervoltage threshold should  
be 4.5V when V is falling. The design equation is  
1-MAX934  
IN  
as follows:  
R2  
R1  
(V  
V )  
H
REF  
V
R2 = (R1 + R2 + R3) ×  
R1  
V
IN  
UTH  
+5V  
3
(1.182 0.005)  
= (294k + 1.068M) ×  
= 62.2kΩ  
294k  
V+  
4.5  
MAX934  
1.182V  
Choose R2 = 61.9k(1% standard value).  
8
REF  
5. Calculate R3.  
V-  
9
2
R3 = (R2 + R3) R2  
= 1.068M 61.9k  
182k  
250k  
250k  
5
4
INA+  
INA-  
OUTA  
1V  
= 1.006MΩ  
330  
330Ω  
330Ω  
330Ω  
Choose R3 = 1M(1% standard value).  
7
6
INB+  
INB-  
6. Verify the resistor values. The equations are as  
follows, evaluated for the above example.  
1
OUTB  
750mV  
Overvoltage threshold :  
(R1 + R2 + R3)  
V
= (V  
+ V ) ×  
OTH  
REF H  
R1  
INC+  
11  
16  
= 5.474V.  
Undervoltage threshold :  
OUTC  
OUTD  
500mV  
250mV  
10 INC-  
(R1 + R2 + R3)  
V
= (V  
V ) ×  
UTH  
REF H  
(R1 + R2)  
13  
IND+  
250k  
250k  
15  
= 4.484V,  
12 IND-  
R5  
where the hysteresis voltage V = V  
×
REF  
.
H
R4  
GND  
14  
Ba r-Gra p h Le ve l Ga u g e  
The high output source capability of the MAX931 series  
is useful for driving LEDs. An example of this is the  
simple four-stage level detector shown in Figure 7.  
Figure 7. Bar-Graph Level Gauge  
12 ______________________________________________________________________________________  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
+5V  
V+  
MAX934  
10k  
10k  
INA+  
INA-  
V
IN  
0 FOR V < 0V  
+5V  
V+  
INA  
V
INA  
1 FOR V > 0V  
INB  
OUTA  
OUTB  
OUTC  
R3  
R2  
INA+  
REF  
INPUT VOLTAGE FAIL  
INPUT VOLTAGE LOW  
INB+  
INB-  
V
INB  
R5  
R4  
HYST  
INB+  
10k  
10k  
INC+  
INC-  
V
INC  
R1  
MAX932  
V-  
IND+  
IND-  
V
IND  
OUTD  
REF  
N.C.  
V-  
GND  
-5V  
Figure 8. Level Shifter: ±5V Input to CMOS Output  
Figure 9. Two-Stage Low-Voltage Detector  
______________________________________________________________________________________ 13  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
_________________P in Co n fig u ra t io n s  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
TOP VIEW  
MAX932CPA  
MAX932CSA  
MAX932CUA  
MAX932EPA  
MAX932ESA  
MAX933CPA  
MAX933CSA  
MAX933CUA  
MAX933EPA  
MAX933ESA  
MAX934CPE  
MAX934CSE  
MAX934EPE  
MAX934ESE  
1
2
3
4
8
7
6
5
GND  
V-  
OUT  
V+  
8 µMAX  
8 Plastic DIP  
8 SO  
MAX931  
REF  
IN+  
IN-  
8 Plastic DIP  
8 SO  
HYST  
DIP/SO/µMAX  
8 µMAX  
8 Plastic DIP  
8 SO  
1
2
3
4
8
7
6
5
OUTA  
V-  
OUTB  
V+  
16 Plastic DIP  
16 Narrow SO  
16 Plastic DIP  
16 Narrow SO  
1-MAX934  
MAX932  
REF  
INA+  
INB+  
HYST  
For similar devices guaranteed over the military temp. range, see  
the MAX921-MAX924 data sheet. The MAX931, MAX933, and  
MAX934 are pin-compatible with the 1% accurate MAX921,  
MAX923, and MAX924, respectively. The MAX932 and  
MAX922 are not pin-compatible.  
DIP/SO/µMAX  
1
2
3
4
8
7
6
5
OUTA  
V-  
OUTB  
V+  
MAX933  
REF  
INA+  
INB-  
HYST  
DIP/SO/µMAX  
OUTB  
OUTA  
V+  
OUTC  
OUTD  
GND  
IND+  
IND-  
INC+  
INC-  
V-  
1
16  
15  
14  
13  
12  
11  
10  
9
2
3
4
5
6
7
8
INA-  
MAX934  
INA+  
INB-  
INB+  
REF  
DIP/Narrow SO  
14 ______________________________________________________________________________________  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
1-MAX934  
________________________________________________________P a c k a g e In fo rm a t io n  
______________________________________________________________________________________ 15  
Ult ra Lo w -P o w e r, Lo w -Co s t  
Co m p a ra t o rs w it h 2 % Re fe re n c e  
__________________________________________P a c k a g e In fo rm a t io n (c o n t in u e d )  
1-MAX934  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9310

1:5 Clock Driver with Selectable LVPECL Inputs and LVDS Outputs
MAXIM

MAX9310A

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs
MAXIM

MAX9310AEUP

1:5 Clock Driver with Selectable LVPECL Inputs/Single-Ended Inputs and LVDS Outputs
MAXIM

MAX9310AEUP+

Clock Driver, 5 True Output(s), 0 Inverted Output(s), Bipolar, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX9310AEUP+T

Clock Driver, 5 True Output(s), 0 Inverted Output(s), Bipolar, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX9310EUP

Clock Driver, 5 True Output(s), 0 Inverted Output(s), Bipolar, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX9310EUP+

Clock Driver, 5 True Output(s), 0 Inverted Output(s), Bipolar, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX9310EUP+T

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), Bipolar, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX9310EUP-T

Low Skew Clock Driver, 5 True Output(s), 0 Inverted Output(s), Bipolar, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX9311

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9311ECJ

1:10 Differential LVPECL/LVECL/HSTL Clock and Data Drivers
MAXIM

MAX9311ECJ+T

Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, LQFP-32
MAXIM