MAX9248EVKIT+ [MAXIM]

Fully Assembled and Tested;
MAX9248EVKIT+
型号: MAX9248EVKIT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Fully Assembled and Tested

文件: 总12页 (文件大小:1140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4940; Rev 0; 9/09  
MAX9247/MAX9248 Evaluation Kit  
General Description  
Features  
The MAX9247/MAX9248 evaluation kit (EV kit) pro-  
vides a proven design to evaluate the MAX9247 27-bit,  
2.5MHz to 42MHz DC-balanced LVDS serializer and the  
MAX9248 27-bit, 2.5MHz to 42MHz DC-balanced LVDS  
deserializer. The MAX9247 serializes 27 bits of parallel  
input data, 18 bits of video, and 9 bits of control to a  
serial data stream. The MAX9248 deserializes the LVDS  
serial input, which converts to 18 bits of parallel video  
data and 9 bits of parallel control data.  
S 27-Bit Parallel Interface  
S Rosenberger Connector (Cable Included)  
S Independent Evaluation of the MAX9247/MAX9248  
Serializer/Deserializer (SerDes)  
S Proven PCB Layout  
S Fully Assembled and Tested  
The EV kit PCB has a MAX9247ECM+ or MAX9247GCM+  
and a MAX9248ECM+ or MAX9248GCM+ installed.  
Ordering Information  
PART  
TYPE  
MAX9247EVKIT+  
or  
EV Kit  
MAX9248EVKIT+  
+Denotes lead(Pb)-free and RoHS compliant.  
Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
C1–C15,  
0
Not installed, ceramic capacitors  
(0603)  
LVDS connectors, waterblue  
(with EMI/EMC washer)  
Rosenberger D4S20D-40ML5-Z  
C27–C41  
P1, P2  
P3, P4  
2
2
10FF Q10%, 16V X5R ceramic  
capacitors (0805)  
Murata GRM21BR61C106K  
C16–C20, C48,  
10  
SMA vertical-mount connectors  
C58–C61  
R1, R2, R3, R6,  
R7, R9, R10,  
R11, R13, R15,  
R16, R20–R48  
C21, C25, C42,  
0
Not installed, resistors (0603)  
0.001FF Q10%, 50V X7R ceramic  
capacitors (0603)  
Murata GRM188R71H102K  
C44, C46, C51,  
C54, C57, C62,  
10  
C64  
R4, R14  
R5, R12  
R8, R19  
R17, R18  
2
2
2
2
82.5I Q5% resistors (0603)  
130I Q5% resistors (0603)  
49.9I Q1% resistors (0603)  
1kI Q1% resistors (0603)  
C22, C23, C24,  
C26, C43, C45,  
0.1FF Q10%, 16V X7R ceramic  
capacitors (0603)  
Murata GCM188R71C104K  
C47, C49, C50,  
C52, C53, C55,  
C56, C63, C65  
15  
27-bit deserializer (48 LQFP)  
Maxim MAX9248ECM+ or  
Maxim MAX9248GCM+  
U1  
U2  
1
1
JU1–JU5  
JU6, JU7, JU8  
JU9–JU21  
5
3
4-pin headers  
3-pin headers  
2-pin headers  
27-bit serializer (48 LQFP)  
Maxim MAX9247ECM+ or  
Maxim MAX9247GCM+  
13  
2 x 20 shrouded-plug connectors  
(0.100in centers)  
H1, H2  
H3–H9  
2
7
Cable assembly (2m)  
MD Elektronik PT1482  
1
16  
1
2 x 10 shrouded-plug connectors  
(0.100in centers)  
Shunts  
PCB: MAX9247/9248  
EVALUATION KIT+  
_______________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX9247/MAX9248 Evaluation Kit  
Component Suppliers  
SUPPLIER  
MD Elektronik GmbH  
PHONE  
WEBSITE  
www.md-elektronik-gmbh.de  
www.murata-northamerica.com  
www.rosenberger.de  
011-49-86-38-604-0  
770-436-1300  
Murata Electronics North America, Inc.  
Rosenberger Hochfrequenztechnik GmbH  
011-49-86 84-18-0  
Note: Indicate that you are using the MAX9247 and the MAX9248 when contacting these component suppliers.  
4) Connect the GND1 and GND2 pads together.  
Quick Start  
5) Connect the Rosenberger cable from the P1 to the P2  
Required Equipment  
connector of the EV kit.  
• MAX9247/MAX9248 EV kit (cable included)  
6) Connect the data generator to the H6–H9 connectors  
• Two 3.3V DC power supplies  
and set to generate 27-bit parallel data at LVCMOS/  
• Digital data generator (e.g., HP/Agilent 16522A)  
LVTTL levels. See Table 2 for input bit locations.  
• Two low-phase-noise clock generators (e.g., HP/  
7) Connect the first clock generator to the P4 SMA con-  
nector and set its output frequency between 2.5MHz  
and 42MHz (see Table 3 for PCLK_IN location).  
Agilent 8133A)  
• Logic analyzer or data-acquisition system (e.g., HP/  
Agilent 16500C)  
8) Connect the second clock generator to the P3 SMA  
connector and set to within Q2% of the MAX9247 seri-  
alizer PCLK_IN frequency (see Table 3 for REFCLK  
location).  
• High-performance oscilloscope (e.g., HP/Agilent  
DSO80304B; see the Pseudo-Random Bit Sequence  
(PRBS) Mode section)  
9) Connect the logic analyzer or data-acquisition system  
Procedure  
The MAX9247/MAX9248 EV kit is fully assembled and  
tested. Follow the steps below to verify board operation.  
Caution: Do not turn on the power supplies or signal  
sources until all connections are completed.  
to connectors H1 and H2, as shown in Table 4.  
10) Turn on the power supplies.  
11) Enable the clock generators.  
12) Enable the data generator.  
1) Verify that all jumpers (JU1–JU21) are in their default  
positions, as shown in Table 1.  
13) Enable the logic analyzer or data-acquisition system  
and begin sampling data.  
2) Connect the first 3.3V power supply across the  
DVCC1 and GND1 pads of the EV kit.  
3) Connect the second 3.3V power supply across the  
DVCC2 and GND2 pads of the EV kit.  
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21)  
SHUNT  
JUMPER  
FUNCTION  
DESCRIPTION  
POSITION  
1-2*  
MAX9248 falling latch  
edge  
Connects the R/F pin of the MAX9248 to GND2 for falling output latch  
edge  
JU1  
MAX9248 latch edge  
1-3  
Connects the R/F pin of the MAX9248 to header H4-9  
MAX9248 rising latch  
edge  
Connects the R/F pin of the MAX9248 to DVCC2 for rising output latch  
edge  
1-4  
2
______________________________________________________________________________________  
MAX9247/MAX9248 Evaluation Kit  
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21) (continued)  
SHUNT  
POSITION  
JUMPER  
FUNCTION  
DESCRIPTION  
MAX9248 LVTLL/  
LVCMOS range input  
Connects the RNG1 pin of the MAX9248 to GND2 for logic 0 (see the  
MAX9248 IC data sheet to determine the frequency range)  
1-2*  
MAX9248 LVTLL/  
LVCMOS range input  
JU2  
1-3  
1-4  
1-2*  
1-3  
1-4  
Connects the RNG1 pin of the MAX9248 to header H4-7  
MAX9248 LVTLL/  
LVCMOS range input  
Connects the RNG1 of the MAX9248 to DVCC2 for logic 1 (see the  
MAX9248 IC data sheet to determine the frequency range)  
MAX9248 LVTLL/  
LVCMOS range input  
Connects the RNG0 pin of the MAX9248 to GND2 for logic 0 (see the  
MAX9248 IC data sheet to determine frequency range)  
MAX9248 LVTLL/  
LVCMOS range input  
JU3  
Connects the RNG0 pin of the MAX9248 to header H4-5  
MAX9248 LVTLL/  
LVCMOS range input  
Connects RNG0 pin of the MAX9248 to DVCC2 for logic 1 (see the  
MAX9248 IC data sheet to determine the frequency range)  
MAX9248  
power-down  
1-2  
1-3  
Pulls the PWRDWN pin of the MAX9248 to low for shutdown  
Connects the PWRDWN pin of the MAX9248 to header H4-3  
Pulls the PWRDWN pin of the MAX9248 high for full functionality  
MAX9248  
power-down  
JU4  
MAX9248  
power-down  
1-4*  
1-2  
MAX9248 spread  
spectrum  
Connects the SS pin of the MAX9248 to GND2 for data and clock output  
spread 2% relative to REFCLK  
MAX9248 spread  
spectrum  
JU5  
JU6  
JU7  
1-3  
Connects the SS pin of the MAX9248 to header H4-1  
MAX9248 spread  
spectrum  
Connects the SS pin of the MAX9248 to DVCC2 for data and clock output  
spread 4% relative to REFCLK  
1-4*  
1-2*  
2-3  
MAX9247 hardwired  
inputs  
Connects even pins of headers H5–H9 to DVCC2  
Connects even pins of headers H5–H9 to GND2  
MAX9247 hardwired  
inputs  
MAX9247  
preemphasis  
or MOD1  
Connects the PRE pin of the MAX9247 to DVCC2 for enabling preempha-  
sis  
1-2*  
2-3  
MAX9247  
preemphasis  
or MOD1  
Connects the PRE pin of the MAX9247 to GND2 for disabling preemphasis  
or used for PRBS mode  
_______________________________________________________________________________________  
3
MAX9247/MAX9248 Evaluation Kit  
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21) (continued)  
SHUNT  
POSITION  
JUMPER  
FUNCTION  
DESCRIPTION  
MAX9247  
MOD0  
1-2*  
Connects the I.C. pin (24) of the MAX9247 to DVCC  
JU8  
MAX9247  
MOD0  
Connects the I.C. pin (24) of the MAX9247 to GND2 for enabling PRBS  
mode  
2-3  
JU9  
MAX9247 IN+  
MAX9247 IN-  
Open*  
Open*  
Open*  
Open*  
Open*  
Used for probing IN+  
Used for probing IN-  
JU10  
JU11  
JU12  
JU13  
MAX9247 REFCLK  
MAX9248 OUT-  
MAX9248 OUT+  
Used for probing REFCLK  
Used for probing OUT-  
Used for probing OUT+  
MAX9247  
LVTLL/LVCMOS range  
input  
Connects the RNG1 pin of the MAX9247 to DVCC1 for logic 1 (see the  
MAX9247 IC data sheet to determine the frequency range)  
1-2*  
Open  
1-2*  
JU14  
JU15  
MAX9247  
LVTLL/LVCMOS range  
input  
Internally connects the RNG1 pin of the MAX9247 to ground when left  
unconnected  
MAX9247  
LVTLL/LVCMOS range  
input  
Connects the RNG0 pin of the MAX9247 to DVCC1 for logic 1 (see the  
MAX9247 IC data sheet to determine the frequency range)  
MAX9247  
LVTLL/LVCMOS range  
input  
Internally connects the RNG0 pin of the MAX9247 to ground when left  
unconnected  
Open  
Board-supply  
connectivity  
Connects DVCC2 to PVCC2. This shunt reduces the number of supplies  
required to operate the EV kit.  
1-2*  
Open  
1-2*  
JU16  
JU17  
JU18  
JU19  
JU20  
Board-supply  
connectivity  
Disconnects DVCC2 from PVCC2. The 2-pin header can be utilized for  
supply current measurements.  
Board-supply  
connectivity  
Connects DVCC2 to LVCC2. This shunt reduces the number of supplies  
required to operate the EV kit.  
Board-supply  
connectivity  
Disconnects DVCC2 from LVCC2. The 2-pin header can be utilized for  
supply current measurements.  
Open  
1-2*  
Board-supply  
connectivity  
Connects DVCC2 to OVCC. This shunt reduces the number of supplies  
required to operate the EV kit.  
Board-supply  
connectivity  
Disconnects DVCC2 from OVCC. The 2-pin header can be utilized for sup-  
ply current measurements.  
Open  
1-2*  
Board-supply  
connectivity  
Connects DVCC1 to IVCC. This shunt reduces the number of supplies  
required to operate the EV kit.  
Board-supply  
connectivity  
Disconnects DVCC1 from IVCC. The 2-pin header can be utilized for sup-  
ply current measurements.  
Open  
1-2*  
Board-supply  
connectivity  
Connects DVCC1 to PVCC1. This shunt reduces the number of supplies  
required to operate the EV kit.  
Board-supply  
connectivity  
Disconnects DVCC1 from PVCC1. The 2-pin header can be utilized for  
supply current measurements.  
Open  
4
______________________________________________________________________________________  
MAX9247/MAX9248 Evaluation Kit  
Table 1. MAX9247/MAX9248 EV Kit Jumper Descriptions (JU1−JU21) (continued)  
SHUNT  
POSITION  
JUMPER  
FUNCTION  
DESCRIPTION  
Board-supply  
connectivity  
Connects DVCC1 to LVCC1. This shunt reduces the number of supplies  
required to operate the EV kit.  
1-2*  
JU21  
Board-supply  
connectivity  
Disconnects DVCC1 from LVCC1. The 2-pin header can be utilized for  
supply current measurements.  
Open  
*Default position.  
Table 2. Video and Control Data Inputs  
Detailed Description of Hardware  
INPUT SIGNALS  
DESIGNATION  
DESCRIPTION  
Input video bit 0  
Input video bit 1  
Input video bit 2  
Input video bit 3  
Input video bit 4  
Input video bit 5  
Input video bit 6  
Input video bit 7  
Input video bit 8  
Input video bit 9  
Input video bit 10  
Input video bit 11  
Input video bit 12  
Input video bit 13  
Input video bit 14  
Input video bit 15  
Input video bit 16  
Input video bit 17  
Input control bit 0  
Input control bit 1  
Input control bit 2  
Input control bit 3  
Input control bit 4  
Input control bit 5  
Input control bit 6  
Input control bit 7  
Input control bit 8  
The MAX9247/MAX9248 EV kit provides a proven design  
to evaluate the MAX9247 27-bit, 2.5MHz to 42MHz  
DC-balanced LVDS serializer and the MAX9248 27-bit,  
2.5MHz to 42MHz DC-balanced LVDS deserializer. The  
MAX9247 serializes 27 bits of parallel input data, 18 bits  
of video, and 9 bits of control to a serial data stream.  
The MAX9248 deserializes the LVDS serial input, which  
converts to 18 bits of parallel video data and 9 bits of  
parallel control data.  
RGB_IN0  
H9-1  
RGB_IN1  
H9-3  
RGB_IN2  
H9-5  
RGB_IN3  
H9-7  
RGB_IN4  
H9-9  
RGB_IN5  
H9-11  
H9-13  
H8-1  
RGB_IN6  
RGB_IN7  
Input Signals  
The MAX9247 accepts 27-bit parallel data, 18 video data  
bits, and 9 control data bits. The 27-bit pattern is sup-  
plied to the EV kit by connecting a data generator to the  
four 20-pin headers (H6–H9), or by connecting selected  
pins of H6–H9 to high/low LVCMOS/LVTTL states. See  
Table 2 for input bit locations designated on H6–H9.  
RGB_IN8  
H8-3  
RGB_IN9  
H8-5  
RGB_IN10  
RGB_IN11  
RGB_IN12  
RGB_IN13  
RGB_IN14  
RGB_IN15  
RGB_IN16  
RGB_IN17  
CNTL_IN0  
CNTL_IN1  
CNTL_IN2  
CNTL_IN3  
CNTL_IN4  
CNTL_IN5  
CNTL_IN6  
CNTL_IN7  
CNTL_IN8  
H8-7  
H8-9  
H8-11  
H8-13  
H7-1  
Data-Enable Input (DE_IN)  
The MAX9247 DE_IN pin is accessible through header  
H6-13. Driving the pin high selects RGB_IN[17:0] to be  
latched. Driving the pin low selects CNTL_IN[8:0] to be  
latched.  
H7-3  
H7-5  
H7-7  
H7-9  
H7-11  
H7-13  
H6-1  
Input and Output Clocks  
The MAX9247 parallel input clock (PCLK_IN) is acces-  
sible through H5-5 or SMA connector P4 (see Table 3).  
Apply a clock frequency to the access points, which  
latches data and control inputs and provides the PLL  
clock.  
H6-3  
H6-5  
H6-7  
The MAX9248 reference clock (REFCLK) input is acces-  
sible through H3-5 or SMA connector P3 (see Table 3).  
Apply a reference clock to the access point that is within  
Q2% of the MAX9247 serializer PCLK_IN frequency.  
H6-9  
H6-11  
Table 3. Input/Output Clock Locations  
Output Signals  
The MAX9248 outputs 27-bit parallel data, 18 video data  
bits, and 9 control data bits at LVCMOS/LVTTL levels on  
the 40-pin headers (H1 and H2). To sample the 27-bit  
SIGNAL  
PCLK_IN  
REFCLK  
DESIGNATION  
H5-5 or P4  
H3-5 or P3  
_______________________________________________________________________________________  
5
MAX9247/MAX9248 Evaluation Kit  
pattern, connect a logic analyzer or data-acquisition sys-  
tem to H1 and H2. See Table 4 for the output bit locations  
on the H1 and H2 headers.  
the R/F pin low by placing a shunt in the 1-2 position of  
jumper JU1 (see Table 1). Drive the R/F pin high by plac-  
ing a shunt in the 1-4 position of JU1.  
Data-Enable Output (DE_OUT)  
The MAX9248 DE_OUT pin is accessible through header  
H2-21. A high output indicates that RGB_OUT[17:0] are  
active and a low output indicates that CNTL_OUT[8:0]  
are active.  
Frequency Range Setting (RNG1 and RNG0)  
The parallel clock frequency range for the MAX9247 can  
be configured through jumpers JU14 and JU15. Place a  
shunt on JU14 and JU15 to drive RNG1 and RNG0 high,  
or leave JU14 and JU15 unconnected to drive RNG1 and  
RNG0 low. Refer to the MAX9247 IC data sheet for actual  
frequency settings.  
Rising and Falling Input Latch Edge (R/F)  
The MAX9248 has a selectable rising or falling output  
latch edge through logic setting on the R/F pin. Drive  
The operating frequency range for the MAX9248 can  
be configured through jumpers JU2 and JU3. Place a  
shunt in the 1-4 position of JU2 and JU3 to drive RNG1  
and RNG0 high, or place a shunt in the 1-2 position of  
JU2 and JU3 to drive RNG1 and RNG0 low. Refer to the  
MAX9248 IC data sheet for actual frequency settings.  
Table 4. Video and Control Data Outputs  
OUTPUT  
DESIGNATION  
DESCRIPTION  
SIGNALS  
CNTL_OUT0  
CNTL_OUT1  
CNTL_OUT2  
CNTL_OUT3  
CNTL_OUT4  
CNTL_OUT5  
CNTL_OUT6  
CNTL_OUT7  
CNTL_OUT8  
RGB_OUT0  
RGB_OUT1  
RGB_OUT2  
RGB_OUT3  
RGB_OUT4  
RGB_OUT5  
RGB_OUT6  
RGB_OUT7  
RGB_OUT8  
RGB_OUT9  
RGB_OUT10  
RGB_OUT11  
RGB_OUT12  
RGB_OUT13  
RGB_OUT14  
RGB_OUT15  
RGB_OUT16  
RGB_OUT17  
H2-3  
H2-5  
Output control bit 0  
Output control bit 1  
Output control bit 2  
Output control bit 3  
Output control bit 4  
Output control bit 5  
Output control bit 6  
Output control bit 7  
Output control bit 8  
Output video bit 0  
Output video bit 1  
Output video bit 2  
Output video bit 3  
Output video bit 4  
Output video bit 5  
Output video bit 6  
Output video bit 7  
Output video bit 8  
Output video bit 9  
Output video bit 10  
Output video bit 11  
Output video bit 12  
Output video bit 13  
Output video bit 14  
Output video bit 15  
Output video bit 16  
Output video bit 17  
Power-Down (PWRDWN)  
The power-down mode in the MAX9247 and MAX9248  
puts the outputs in high impedance, stops the PLL, and  
reduces supply current to 50FA or less.  
H2-7  
H2-9  
The MAX9247 PWRDWN pin is accessible through  
header H6-15. Drive the pin high for normal operation  
of the MAX9247 or drive the pin low to power down the  
MAX9247.  
H2-11  
H2-13  
H2-15  
H2-17  
H2-19  
H2-27  
H2-29  
H2-31  
H1-3  
The MAX9248 PWRDWN pin is accessible through  
jumper JU4 (see Table 1). Drive the pin high by placing  
a shunt in the 1-4 position of JU4 for normal operation.  
Drive the pin low by placing a shunt in the 1-2 position of  
JU4 to power down the MAX9248.  
Spread-Spectrum Frequency (SS)  
The MAX9248 can set the frequency spread to ±4% or  
2% by moving the shunt of jumper JU5 to the appropri-  
ate position (see Table 1).  
H1-5  
H1-7  
H1-9  
H1-11  
H1-13  
H1-15  
H1-17  
H1-19  
H1-21  
H1-23  
H1-25  
H1-27  
H1-29  
H1-31  
Pseudo-Random Bit Sequence (PRBS) Mode  
The MAX9247/MAX9248 EV kit offers the user an internal  
test mode to quickly check full functionality and verify  
the quality of the SerDes link. This mode is called the  
pseudo-random bit sequence, or PRBS mode.  
The MAX9247 features an on-chip PRBS generator that  
can be utilized to generate a pseudo-random bit stream  
to evaluate the quality and performance by comparing  
the output of the serializer (prior to the link/cable) with the  
input of the deserializer (after the link/cable).  
6
______________________________________________________________________________________  
MAX9247/MAX9248 Evaluation Kit  
To activate this feature, the MAX9247 must first enter  
Power Supplies  
The MAX9247 is powered by connecting PVCC1, LVCC1,  
IVCC, and DVCC1 to a DC power supply at 3.0V to 3.6V.  
The MAX9247 can be configured to reduce wiring to the  
supply and ground pads by placing shunts on jumpers  
JU19, JU20, and JU21. The MAX9248 is powered by  
applying 3.0V to 3.6V to the PVCC2, LVCC2, OVCC,  
and DVCC2 pads. The MAX9248 can be configured to  
reduce wiring to the supply and ground pads by placing  
shunts on jumpers JU16, JU17, and JU18.  
power-down mode by driving H6-15 low. Place a shunt  
in the 2-3 position of JU7 and JU8. Activate the internal  
PRBS mode by applying a negative DC voltage (-1.0V to  
-3.0V) to the VNEG pad.  
To monitor the SerDes signal integrity, connect one  
channel of the digital oscilloscope with differential probe  
capabilities to OUT+ and OUT- signal lines from jumpers  
JU12 and JU13 (MAX9247). Repeat the same test for  
the deserializer (MAX9248) on signal lines IN+ and IN-,  
accessible through jumpers JU9 and JU10.  
_______________________________________________________________________________________  
7
MAX9247/MAX9248 Evaluation Kit  
V C C O G N D  
V C C O  
D E _ O U T  
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
2 4  
C N T L _ O U T 8  
2 3  
R G B _ O U T 8  
R G B _ O U T 9  
R G B _ O U T 1 0  
R G B _ O U T 1 1  
R G B _ O U T 1 2  
R G B _ O U T 1 3  
R G B _ O U T 1 4  
R G B _ O U T 1 5  
R G B _ O U T 1 6  
R G B _ O U T 1 7  
C N T L _ O U T 7  
2 2  
C N T L _ O U T 6  
2 1  
C N T L _ O U T 5  
2 0  
C N T L _ O U T 4  
1 9  
C N T L _ O U T 3  
1 8  
C N T L _ O U T 2  
1 7  
C N T L _ O U T 1  
1 6  
C N T L _ O U T 0  
1 5  
S S  
1 4  
P W R D W N  
1 3  
O V C C  
P V C C 2  
L V C C 2  
D V C C 2  
V T E S T  
G N D 2  
Figure 1a. MAX9247/MAX9248 EV Kit Schematic (Sheet 1 of 2)  
______________________________________________________________________________________  
8
MAX9247/MAX9248 Evaluation Kit  
V N E G  
P V C C 1  
L V C C 1  
D V C C 1  
I V C C  
G N D 1  
G N D  
V C C  
I . C .  
2 4  
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
P C L K _ I N  
2 3  
H 9 - 2  
H 9 - 4  
H 9 - 6  
H 9 - 8  
H 9 - 1  
R G B _ I N 0  
R G B _ I N 1  
R G B _ I N 2  
R G B _ I N 3  
R G B _ I N 4  
R G B _ I N 5  
R G B _ I N 6  
R G B _ I N 7  
R G B _ I N 8  
R G B _ I N 9  
D E _ I N  
2 2  
H 9 - 3  
C N T L _ I N 8  
2 1  
H 9 - 5  
C N T L _ I N 7  
2 0  
H 9 - 7  
C N T L _ I N 6  
1 9  
H 9 - 1 0  
H 9 - 9  
C N T L _ I N 5  
1 8  
H 9 - 1 2  
H 9 - 1 4  
H 9 - 1 6  
H 9 - 1 8  
H 9 - 2 0  
H 9 - 1 1  
H 9 - 1 3  
H 9 - 1 5  
H 9 - 1 7  
H 9 - 1 9  
C N T L _ I N 4  
1 7  
C N T L _ I N 3  
1 6  
C N T L _ I N 2  
1 5  
V C C  
1 4  
G N D  
1 3  
H 8 - 2  
H 8 - 1  
H 8 - 4  
H 8 - 6  
H 8 - 8  
H 8 - 3  
H 8 - 5  
H 8 - 7  
H 8 - 1 0  
H 8 - 9  
H 8 - 1 2  
H 8 - 1 4  
H 8 - 1 6  
H 8 - 1 8  
H 8 - 2 0  
H 8 - 1 1  
H 8 - 1 3  
H 8 - 1 5  
H 8 - 1 7  
H 8 - 1 9  
H 7 - 2  
H 7 - 1  
H 7 - 4  
H 7 - 6  
H 7 - 8  
H 7 - 3  
H 7 - 5  
H 7 - 7  
H 7 - 1 0  
H 7 - 9  
H 7 - 1 2  
H 7 - 1 4  
H 7 - 1 6  
H 7 - 1 8  
H 7 - 2 0  
H 7 - 1 1  
H 7 - 1 3  
H 7 - 1 5  
H 7 - 1 7  
H 7 - 1 9  
H 6 - 2  
H 6 - 1  
H 6 - 4  
H 6 - 6  
H 6 - 8  
H 6 - 3  
H 6 - 5  
H 6 - 7  
H 6 - 1 0  
H 6 - 9  
H 6 - 1 2  
H 6 - 1 4  
H 6 - 1 6  
H 6 - 1 8  
H 6 - 2 0  
H 6 - 1 1  
H 6 - 1 3  
H 6 - 1 5  
H 6 - 1 7  
H 6 - 1 9  
H 5 - 2  
H 5 - 1  
H 5 - 4  
H 5 - 6  
H 5 - 8  
H 5 - 3  
H 5 - 5  
H 5 - 7  
H 5 - 1 0  
H 5 - 9  
H 5 - 1 2  
H 5 - 1 4  
H 5 - 1 6  
H 5 - 1 8  
H 5 - 2 0  
H 5 - 1 1  
H 5 - 1 3  
H 5 - 1 5  
H 5 - 1 7  
H 5 - 1 9  
Figure 1b. MAX9247/MAX9248 EV Kit Schematic (Sheet 2 of 2)  
_______________________________________________________________________________________  
9
MAX9247/MAX9248 Evaluation Kit  
Figure 2. MAX9247/MAX9248 EV Kit Component Placement Guide—Component Side  
Figure 3. MAX9247/MAX9248 EV Kit PCB Layout—Component Side  
10 _____________________________________________________________________________________  
MAX9247/MAX9248 Evaluation Kit  
Figure 4. MAX9247/MAX9248 EV Kit PCB Layout—Inner Layer 2  
Figure 5. MAX9247/MAX9248 EV Kit PCB Layout—Inner Layer 3  
______________________________________________________________________________________ 11  
MAX9247/MAX9248 Evaluation Kit  
Figure 6. MAX9247/MAX9248 EV Kit PCB Layout—Solder Side  
Figure 7. MAX9247/MAX9248 EV Kit Component Placement Guide—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.  
©

相关型号:

MAX9248GCM+

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers
MAXIM

MAX9248GCM+T

Line Receiver, CMOS, PQFP48,
MAXIM

MAX9248GCM/V+

27-Bit, 2.5MHz to 42MHz DC-Balanced LVDS Deserializers
MAXIM

MAX9248GCM/V+TGB

Line Receiver
MAXIM

MAX9249

Gigabit Multimedia Serial Link Serializer with LVDS System Interface
MAXIM

MAX9249GCM/V+

Gigabit Multimedia Serial Link Serializer with LVDS System Interface
MAXIM

MAX9249GCM/V+T

Gigabit Multimedia Serial Link Serializer with LVDS System Interface
MAXIM

MAX9249GCM/V+TG2C

Line Receiver
MAXIM

MAX9249GCM/V+TGG5

Line Receiver
MAXIM

MAX9249_12

Gigabit Multimedia Serial Link Serializer with LVDS System Interface
MAXIM

MAX924C/D

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM

MAX924CPE

Ultra Low-Power, Single/Dual-Supply Comparators
MAXIM