MAX9240AGTM+ [MAXIM]

Line Receiver,;
MAX9240AGTM+
型号: MAX9240AGTM+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Receiver,

接口集成电路
文件: 总51页 (文件大小:2110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
General Description  
Benefits and Features  
Ideal for Camera Applications  
• Works with Low-Cost 50Ω Coax Cable and FAKRA  
Connectors or 100Ω STP  
The MAX9240A compact deserializer is designed to  
interface with a GMSL serializer over 50Ω coax or 100Ω  
shielded twisted-pair (STP) cable. The device pairs with  
the MAX9271 or MAX9273 serializers.  
• Error Detection/Correction  
• 9.6kbps to 1Mbps Control Channel in I C-to-I C  
Mode with Clock Stretch Capability  
• Best-in-Class Supply Current: 90mA (max)  
• Double-Rate Clock for Megapixel Cameras  
2
2
The parallel output is programmable for single or double  
output. Double output strobes out half of a parallel word  
on each pixel clock cycle. Double output can be used with  
GMSL serializers that have the double-input feature.  
Cable Equalization Allows 15m Cable at Full Speed  
The device features an embedded control channel that  
operates at 9.6kbps to 1Mbps. Using the control chan-  
nel, a microcontroller (µC) can program the serializer/  
deserializer and peripheral device registers at any time,  
independent of video timing. Two programmable GPIO  
ports and a continuously sampled GPI input are available.  
• 48-Pin (7mm x 7mm) TQFN-EP Package with  
0.5mm Lead Pitch  
● High-Speed Data Deserialization for Megapixel  
Cameras  
• Up to 1.5Gbps Serial-Bit Rate with Single or  
Double Output: 6.25MHz to 100MHz Clock  
For use with longer cables, the device has a program-  
mable equalizer. Programmable spread spectrum is avail-  
able on the parallel output. The serial input meets ISO  
10605 and IEC 61000-4-2 ESD standards. The core sup-  
ply range is 1.7V to 1.9V and the I/O supply range is 1.7V  
to 3.6V. The device is available in a 48-pin (7mm x 7mm)  
TQFN-EP package with 0.5mm lead pitch and operates  
over the -40°C to +105°C temperature range.  
● Multiple Control-Channel Modes for System Flexibility  
• 9.6kbps to 1Mbps Control Channel in UART-to-  
2
UART or UART-to-I C Modes  
● Reduces EMI and Shielding Requirements  
• Input Programmable for 100mV to 500mV Single-  
Ended or 50mV to 400mV Differential  
• Programmable Spread Spectrum on the Parallel  
Output Reduces EMI  
Applications  
• Tracks Spread Spectrum on Serial Input  
● Automotive Camera Systems  
● Peripheral Features for Camera Power-Up and  
Verification  
• Built-In PRBS Checker for BER Testing of the  
Serial Link  
• Fault Detection of Serial Link Shorted Together,  
to Ground, to Battery, or Open  
• Two GPIO Ports  
• Dedicated “Up/Down” GPI for Camera Frame Sync  
Trigger and Other Uses  
Ordering Information appears at end of data sheet.  
• Remote/Local Wake-Up from Sleep Mode  
Typical Application Circuit appears at end of data sheet.  
● Meets Rigorous Automotive and Industrial  
Requirements  
For related parts and recommended products to use with this part, refer  
to www.maximintegrated.com/MAX9240A.related.  
• -40°C to +105°C Operating Temperature  
• ±10kV Contact and ±15kV Air IEC 61000-4-2 ESD  
Protection  
• ±10kV Contact and ±30kV Air ISO 10605 ESD  
Protection  
19-7319; Rev 0; 3/14  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Serial Link Signaling and Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reverse Control Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Data-Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Control Channel and  
Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Interfacing Command-Byte-Only  
2
I C Devices with UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
UART Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2
I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Bit Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Bus Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Format for Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Format for Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2
I C Communication with Remote-Side Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2
I C Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Control-Channel Broadcast Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
GPO/GPI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
PRBS Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Line Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
TABLE OF CONTENTS (continued)  
Manual Programming  
of the Spread-Spectrum Divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Additional Error Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Cyclic Redundancy Check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
HS/VS Encoding and/or Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Serial Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Coax-Mode Splitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Cable Type Configuration Input (CX/TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Configuration Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Link Startup Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Error Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
ERR Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Autoerror Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Dual µC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Changing the Clock Frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Fast Detection of  
Loss-of-Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Providing a Frame Sync  
(Camera Applications). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Software Programming  
of the Device Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Three-Level Configuration Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Configuration Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Compatibility with other GMSL Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
GPIOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Staggered Parallel Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Local Control-Channel Enable (LCCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Line-Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Internal Input Pulldowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2
Choosing I C/UART Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
AC-Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Selection of AC-Coupling Capacitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Power-Supply Circuits and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Power-Supply Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
TABLE OF CONTENTS (continued)  
Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Board Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Chip Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
LIST OF FIGURES  
Figure 1. Reverse Control-Channel Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 2. Test Circuit for Differential Input Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 2a. Line Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 3. Worst-Case Pattern Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 4. Parallel Clock Output High and Low Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 5. I2C Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 6. Output Rise-and-Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 7. Deserializer Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 8. GPI-to-GPO Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 9. Lock Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 10. Power-Up Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 11. Single-Output Waveform (Serializer Using Single Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 12. Single-Output Waveform (Serializer Using Double Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 13. Double-Output Waveform (Serializer Using Single Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 14. Double-Output Waveform (Serializer Using Double Input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 15. Serial-Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 16. GMSL UART Protocol for Base Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 17. GMSL UART Data Format for Base Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 18. SYNC Byte (0x79). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 19. ACK Byte (0xC3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 20. Format Conversion Between GMSL UART and I2C with Register Address (I2CMETHOD = 0) . . . . . . . . 30  
Figure 21. Format Conversion Between GMSL UART and I2C with Register Address (I2CMETHOD = 1) . . . . . . . . 30  
Figure 22. START and STOP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 23. Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 24. Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 25. Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 26. Format for I2C Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
LIST OF FIGURES (continued)  
Figure 27. Format for Write to Multiple Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 28. Format for I2C Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 29. 2:1 Coax-Mode Splitter Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 30. Coax-Mode Connection Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 31. State Diagram, Remote Microcontroller Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 32. Human Body Model ESD Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 33. IEC 61000-4-2 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 34. ISO 10605 Contact Discharge ESD Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
LIST OF TABLES  
Table 1. Power-Up Default Register Map (see Table 16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 2. Output Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 3. Data-Rate Selection Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
Table 4. I C Bit-Rate Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 5. Cable Equalizer Boost Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 6. Parallel Output Spread. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 7. Modulation Coefficients and Maximum SDIV Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 8. Configuration Input Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 9. Startup Procedure for Video-Display Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 10. Startup Procedure for Image-Sensing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 11. MAX9240A Feature Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 12. Staggered Output Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 13. Double-Function Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 13a. Line Fault Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Table 14. Typical Power-Supply Currents (Using Worst-Case Input Pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 15. Suggested Connectors and Cables for GMSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 16. Register Table (see Table 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Absolute Maximum Ratings*  
AVDD to EP.............................................................-0.5V to +1.9V  
DVDD to EP...........................................................-0.5V to +1.9V  
IOVDD to EP..........................................................-0.5V to +3.9V  
IN+, IN- to EP.........................................................-0.5V to +1.9V  
LMN_ TO EP (15mA current limit).........................-0.5V to +3.9V  
TQFN (derate 40mW/°C above +70°C).....................3200mW  
Junction Temperature......................................................+150°C  
Operating Temperature Range......................... -40°C to +105°C  
Storage Temperature Range............................. -65°C to +150°C  
Lead Temperature (soldering, 10s).................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
All other pins to EP................................-0.5V to (V  
+ 0.5V)  
IOVDD  
IN+, IN- short circuit to ground or supply .................Continuous  
Continuous Power Dissipation (T = +70°C)  
*EP is connected to PCB ground.  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
TQFN  
Junction-to-Ambient Thermal Resistance (θ )...........25°C/W  
Junction-to-Case Thermal Resistance (θ )..................1°C/W  
JC  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
DC Electrical Characteristics  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25°C.)(Note 2)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (I2CSEL, LCCEN, GPI, PWDN, MS/HVEN)  
0.65 x  
High-Level Input Voltage  
V
V
IH1  
V
IOVDD  
0.35 x  
Low-Level Input Voltage  
V
V
IL1  
V
IOVDD  
Input Current  
I
V
= 0V to V  
IOVDD  
-10  
+20  
µA  
IN1  
IN  
THREE-LEVEL LOGIC INPUTS (CX/TP)  
0.7 x  
High-Level Input Voltage  
Low-Level Input Voltage  
V
V
V
IH  
V
IOVDD  
0.3 x  
V
IL  
V
IOVDD  
Mid-Level Input Current  
Input Current  
I
(Note 3)  
-10  
+10  
µA  
µA  
INM  
I
-150  
+150  
IN  
SINGLE-ENDED OUTPUTS (DOUT_, PCLKOUT)  
V
V
IOVDD  
- 0.3  
DCS = 0  
DCS = 1  
High-Level Output Voltage  
Low-Level Output Voltage  
V
I
I
= -2mA  
= 2mA  
V
V
OH1  
OUT  
OUT  
IOVDD  
- 0.2  
DCS = 0  
DCS = 1  
0.3  
V
OL1  
0.2  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
DC Electrical Characteristics (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25°C.)(Note 2)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
15  
3
TYP  
25  
7
MAX  
39  
UNITS  
V
V
V
V
V
V
V
V
= 3.0V to 3.6V  
= 1.7V to 1.9V  
= 3.0V to 3.6V  
= 1.7V to 1.9V  
= 3.0V to 3.6V  
= 1.7V to 1.9V  
= 3.0V to 3.6V  
= 1.7V to 1.9V  
V
= 0V,  
DCS = 0  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
IOVDD  
O
13  
DOUT_  
20  
5
35  
10  
33  
10  
54  
16  
63  
V
= 0V,  
DCS = 1  
O
21  
Output Short-Circuit Current  
I
mA  
OS  
15  
5
50  
V
= 0V,  
DCS = 0  
O
17  
PCLKOUT  
30  
9
97  
V
= 0V,  
DCS = 1  
O
32  
OPEN-DRAIN INPUTS/OUTPUTS (GPIO0/DBL, GPIO1/BWS, RX/SDA/EDC, TX/SCL/ES, ERR, LOCK, LFLT)  
0.7 x  
High-Level Input Voltage  
V
V
V
IH2  
V
IOVDD  
0.3 x  
IOVDD  
+5  
Low-Level Input Voltage  
V
IL2  
V
RX/SDA, TX/SCL  
-110  
-80  
Input Current  
I
(Note 4)  
LOCK, ERR, GPIO_, LFLT  
DBL, BWS, EDC, ES  
+5  
+20  
0.4  
0.3  
µA  
IN2  
-10  
V
V
= 1.7V to 1.9V  
= 3.0V to 3.6V  
IOVDD  
IOVDD  
Low-Level Output Voltage  
V
I
= 3mA  
OUT  
V
OL2  
OUTPUT FOR REVERSE CONTROL CHANNEL (IN+, IN-)  
Differential High Output Peak  
V
No high-speed data transmission (Figure 1)  
No high-speed data transmission (Figure 1)  
30  
60  
mV  
mV  
ROH  
Voltage, (V +) - (V -)  
IN  
IN  
Differential Low Output Peak  
Voltage, (V +) - (V -)  
V
-60  
-30  
ROL  
IN  
IN  
DIFFERENTIAL INPUTS (IN+, IN-)  
Activity detector, medium  
60  
45  
threshold (0x22 D[6:5] = 01)  
(Figure 2)  
Differential High Input Threshold  
V
mV  
mV  
IDH(P)  
(Peak) Voltage, (V +) - (V -)  
IN  
IN  
Activity detector,  
low threshold (0x22 D[6:5] = 00)  
Activity detector, medium  
-60  
threshold (0x22 D[6:5] = 01)  
(Figure 2)  
Differential Low Input Threshold  
(Peak) Voltage, (V +) - (V -)  
V
IDL(P)  
IN  
IN  
Activity detector, medium  
-45  
1
threshold (0x22 D[6:5] = 00)  
Input Common-Mode Voltage  
((V +) + (V -))/2  
V
1.3  
1.6  
V
CMR  
IN  
IN  
Differential Input Resistance  
(Internal)  
R
80  
105  
130  
I
Maxim Integrated  
7  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
DC Electrical Characteristics (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25°C.)(Note 2)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (IN+, IN-)  
Activity detector, medium threshold  
(0x22 D[6:5] = 01)  
43  
33  
Single-Ended High Input  
Threshold (Peak) Voltage,  
(V +) - (V -)  
V
mV  
IDH(P)  
Activity detector, low threshold  
(0x22 D[6:5] = 00)  
IN  
IN  
Activity detector, medium threshold  
(0x22 D[6:5] = 01)  
-43  
Single-Ended Low Input  
Threshold (Peak) Voltage,  
(V +) - (V -)  
V
mV  
IDL(P)  
Activity detector, medium threshold  
(0x22 D[6:5] = 00)  
-33  
IN  
IN  
Input Resistance (Internal)  
R
40  
52.5  
65  
I
LINE FAULT DETECTION INPUT (LMN0, LMN1)  
Short-to-GND Threshold  
Normal Threshold  
V
V
Figure 2A  
Figure 2A  
0.3  
V
V
TG  
0.57  
1.07  
TN  
V
0.06  
+
IO  
Open Threshold  
V
Figure 2A  
1.45  
V
TO  
Open Input Voltage  
V
Figure 2A  
Figure 2A  
1.47  
1.75  
V
V
IO  
Short-to-Battery Threshold  
POWER SUPPLY  
V
2.47  
TE  
f
f
f
= 25MHz  
= 50MHz  
= 50MHz  
= 100MHz  
42  
61  
42  
62  
50  
15  
65  
90  
BWS = 0, single output,  
EQ off  
PCLKOUT  
PCLKOUT  
PCLKOUT  
Worst-Case Supply Current  
(Figure 3)  
I
mA  
WCS  
70  
BWS = 0, double output,  
EQ off  
f
90  
PCLKOUT  
Sleep Mode Supply Current  
Power-Down Current  
ESD PROTECTION  
I
100  
70  
µA  
µA  
CCS  
I
PWDN = EP  
CCZ  
Human Body Model, R = 1.5kΩ, C = 100pF  
±8  
D
S
IEC 61000-4-2,  
Contact discharge  
Air discharge  
±10  
R
C
= 330Ω,  
= 150pF  
D
S
±15  
±10  
IN+, IN- (Note 5)  
V
V
kV  
kV  
ESD  
ISO 10605,  
Contact discharge  
Air discharge  
R
C
= 2kΩ,  
= 330pF  
D
S
±30  
All Other Pins (Note 6)  
Human Body Model, R = 1.5kΩ , C = 100pF  
±4  
ESD  
D
S
Maxim Integrated  
8  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
AC Electrical Characteristics  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25°C.)(Note 2)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PARALLEL CLOCK OUTPUT (PCLKOUT)  
BWS = 0, DRS = 1  
8.33  
16.66  
6.25  
12.5  
25  
16.66  
50  
BWS = 0, DRS = 0  
BWS = 1, DRS = 1  
12.5  
37.5  
75  
Clock Frequency  
f
MHz  
PCLKOUT  
BWS = 1, DRS = 0  
BWS = 1, DRS = 0, 15-bit double input  
BWS = 0, DRS = 0, 11-bit double input  
33.33  
40  
100  
60  
Clock Duty Cycle  
Clock Jitter  
DC  
t
/t or t  
/t (Figure 4, Note 7)  
50  
%
HIGH T  
LOW T  
Period jitter, peak to peak, spread off,  
t
1.5Gbps, PRBS pattern, UI = 1/f  
0.05  
UI  
J
PCLKOUT  
(Note 7)  
I2C/UART PORT TIMING  
I2C/UART Bit Rate  
9.6  
20  
1000  
120  
kbps  
30% to 70%, C = 10pF to 100pF,  
L
Output Rise Time  
t
ns  
R
1kΩ pullup to V  
IOVDD  
70% to 30%, C = 10pF to 100pF,  
L
Output Fall Time  
t
20  
120  
ns  
F
1kΩ pullup to V  
IOVDD  
Input Setup Time  
t
I2C only (Figure 5, Note 7)  
I2C only (Figure 5, Note 7)  
100  
ns  
ns  
SET  
Input Hold Time  
t
0
HOLD  
SWITCHING CHARACTERISTICS  
20% to 80%,  
= 1.7V to  
1.9V (Note 7)  
DCS = 1, C = 10pF  
0.4  
0.5  
0.25  
0.3  
0.5  
0.6  
0.3  
0.4  
2.2  
2.8  
1.7  
2.0  
3.1  
3.8  
2.2  
2.4  
L
V
IOVDD  
DCS = 0, C = 5pF  
L
PCLKOUT Rise-and-Fall Time  
t , t  
ns  
R
F
20% to 80%,  
DCS = 1, C = 10pF  
L
V
= 3.0V to  
IOVDD  
DCS = 0, C = 5pF  
3.6V (Note 7)  
L
20% to 80%,  
DCS = 1, C = 10pF  
L
V
= 1.7V to  
IOVDD  
DCS = 0, C = 5pF  
1.9V (Note 7)  
L
Parallel Data Rise-and-Fall Time  
(Figure 6)  
t , t  
ns  
R
F
20% to 80%,  
DCS = 1, C = 10pF  
L
V
= 3.0V to  
IOVDD  
DCS = 0, C = 5pF  
3.6V (Note 7)  
L
Spread spectrum  
enabled  
6960  
2160  
400  
(Figure 7,  
Notes 7, 8)  
Deserializer Delay  
t
Bits  
SD  
Spread spectrum  
disabled  
Reverse Control-Channel Output  
Rise Time  
No forward-channel data transmission  
t
180  
180  
ns  
ns  
R
(Figure 1, Note 7)  
Reverse Control-Channel Output  
Fall Time  
No forward-channel data transmission  
t
400  
F
(Figure 1, Note 7)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
AC Electrical Characteristics (continued)  
(V  
= V  
= 1.7V to 1.9V, V  
= 1.7V to 3.6V, R = 100Ω ±1% (differential), EP connected to PCB ground, T = -40°C to  
AVDD  
DVDD  
IOVDD  
L
A
+105°C, unless otherwise noted. Typical values are at V  
= V  
= V  
= 1.8V, T = +25°C.)(Note 2)  
AVDD  
DVDD  
IOVDD A  
PARAMETER  
GPI-to-GPO Delay  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Deserializer GPI to serializer GPO  
(cable delay not included) (Figure 8)  
t
350  
µs  
GPIO  
Spread spectrum enabled  
Spread spectrum disabled  
1.5  
1
(Figure 9,  
Note 7)  
Lock Time  
t
ms  
ms  
LOCK  
Power-Up Time  
t
(Figure 10)  
6
PU  
Note 2: Limits are 100% production tested at T = +105°C. Limits over the operating temperature range and relevant supply volt-  
A
age range are guaranteed by design and characterization.  
Note 3: To provide a midlevel, leave the input open, or, if driven, put driver in high impedance. High-impedance leakage current  
must be less than ±10µA.  
Note 4: I min due to voltage drop across the internal pullup resistor.  
IN  
Note 5: Specified pin to ground.  
Note 6: Specified pin to all supply/ground.  
Note 7: Guaranteed by design and not production tested.  
Note 8: Measured in serial link bit times. Bit time = 1/(30 x f  
) for BWS = GND. Bit time = 1/(40 x f  
) for BWS = 1.  
PCLKOUT  
PCLKOUT  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Typical Operating Characteristics  
(V  
= V  
= V  
= 1.8V, DBL = low, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
IOVDD A  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 0)  
vs. PCLKOUT FREQUENCY (BWS = 1)  
75  
75  
70  
65  
60  
55  
50  
45  
40  
35  
PRBS ON, SS OFF,  
COAX MODE  
PRBS ON, SS OFF,  
COAX MODE  
70  
65  
60  
55  
50  
45  
40  
35  
EQ ON  
EQ ON  
EQ OFF  
EQ OFF  
5
10 15 20 25 30 35 40 45 50  
PCLKOUT FREQUENCY (MHz)  
5
10  
15  
20  
25  
30  
35  
40  
PCLKOUT FREQUENCY (MHz)  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs. PCLKOUT FREQUENCY (BWS = 0)  
vs. PCLKOUT FREQUENCY (BWS = 1)  
65  
60  
55  
50  
45  
40  
35  
60  
55  
50  
45  
40  
35  
PRBS ON, EQ OFF,  
COAX MODE  
PRBS ON, EQ OFF,  
COAX MODE  
SS ON  
SS ON  
SS OFF  
SS OFF  
5
10 15 20 25 30 35 40 45 50  
PCLKOUT FREQUENCY (MHz)  
5
10  
15  
20  
25  
30  
35  
40  
PCLKOUT FREQUENCY (MHz)  
OUTPUT POWER SPECTRUM vs. PCLKOUT  
FREQUENCY (VARIOUS SPREAD)  
OUTPUT POWER SPECTRUM vs. PCLKOUT  
FREQUENCY (VARIOUS SPREAD)  
0
-10  
-20  
-30  
-40  
-60  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-60  
-60  
-70  
-80  
-90  
-100  
f
= 20MHz  
f
= 50MHz  
PCLKOUT  
PCLKOUT  
0% SPREAD  
0% SPREAD  
1% SPREAD  
4% SPREAD  
2% SPREAD  
4% SPREAD  
2% SPREAD  
18.5 19.0 19.5 20.0 20.5 21.0 21.5  
PCLKOUT FREQUENCY (MHz)  
47  
48  
49  
50  
51  
52  
53  
PCLKOUT FREQUENCY (MHz)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= 1.8V, DBL = low, T = +25°C, unless otherwise noted.)  
AVDD  
DVDD  
IOVDD A  
SERIAL LINK SWITCHING PATTERN  
WITH 6dB PREEMPHASIS (PARALELL  
SERIAL LINK SWITCHING PATTERN  
WITH 6dB PREEMPHASIS (PARALELL  
BIT RATE = 50MHz, 10m STP CABLE)  
BIT RATE = 50MHz, 20m COAX CABLE)  
MAX9240A toc07  
MAX9240A toc08  
50mv/div  
200ps/div  
1.5Gbps  
50mv/div  
200ps/div  
1.5Gbps  
MAXIMUM PCLKOUT FREQUENCY  
vs. STP CABLE LENGTH (BER 10-  
MAXIMUM PCLKOUT FREQUENCY  
vs. COAX CABLE LENGTH (BER 10-  
10  
10  
)
)
60  
40  
20  
0
60  
40  
20  
0
OPTIMUM PE/EQ  
SETTINGS  
6dB PE, EQ OFF  
NO PE, 10.7dB EQ  
6dB PE, EQ OFF  
NO PE, 10.7dB EQ  
NO PE, EQ OFF  
NO PE, EQ OFF  
-12  
BER CAN BE AS LOW AS 10 FOR  
-12  
BER CAN BE AS LOW AS 10 FOR  
CABLE LENGTHS LESS THAN 10m  
CABLE LENGTHS LESS THAN 10m  
0
5
10  
15  
20  
0
5
10  
15  
20  
25  
STP CABLE LENGTH (m)  
COAX CABLE LENGTH (m)  
MAXIMUM PCLKOUT FREQUENCY  
vs. ADDITIONAL DIFFERENTIAL C (BER 10-  
10  
)
L
60  
OPTIMUM PE/EQ  
SETTINGS  
10m STP CABLE  
6dB PE, EQ OFF  
50  
40  
30  
20  
10  
0
NO PE, 10.7dB EQ  
NO PE, EQ OFF  
-12  
BER CAN BE AS LOW AS 10 FOR  
C < 4pF FOR OPTIMUM PE/EQ SETTINGS  
L
0
2
4
6
8
10  
ADDITIONAL DIFFERENTIAL LOAD CAPACITANCE (pF)  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Pin Configuration  
TOP VIEW  
35 34 33 32 31 30 29 28 27  
36  
26  
25  
DOUT20  
DOUT7  
DOUT6  
DOUT5  
24  
23  
22  
37  
38  
39  
DOUT21/HS0  
DOUT22/VS0  
21 DOUT23/HS1  
20 IOVDD  
DOUT4 40  
IOVDD 41  
DOUT3  
DOUT2  
42  
43  
19 DOUT24/VS1  
MAX9240A  
18  
LFLT  
17 LMN1  
16 LMN0  
15 LOCK  
DOUT1 44  
DOUT0 45  
PCLKOUT  
46  
47  
48  
EP  
+
ERR  
MS/HVEN  
AVDD  
14  
13  
PWDN  
2
3
4
5
6
7
8
9
10  
1
11  
12  
TQFN  
(7mm x 7mm X 0.75mm)  
CONNECT EP TO GROUND PLANE  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Pin Description  
PIN  
NAME  
FUNCTION  
GPIO/Bus Width Select Input. Function is determined by the state of LCCEN (Table 13).  
GPIO1 (LCCEN = high): Open-drain, general-purpose input/output with internal 60kΩ pullup to IOVDD.  
BWS (LCCEN = low): Input with internal pulldown to EP. Set BWS = low for 22-bit input latch. Set  
BWS = high for 30-bit input latch.  
1
GPIO1/BWS  
GPIO/Double-Mode Input. Function is determined by the state of LCCEN (Table 13).  
GPIO0 (LCCEN = high): Open-drain, general-purpose input/output with internal 60kΩ pullup to IOVDD.  
DBL (LCCEN = low): Input with internal pulldown to EP. Set DBL = high to use double-input mode. Set  
DBL = low to use single-input mode.  
2
GPIO0/DBL  
3
CX/TP  
Coax/Twisted-Pair Three-Level Configuration Input (Table 8)  
I2C Select. Control-channel interface protocol select input with internal pulldown to EP.  
Set I2CSEL = high to select I2C slave interface. Set I2CSEL = low to select UART interface.  
4
I2CSEL  
Local Control-Channel Enable Input with Internal Pulldown to EP. LCCEN = high enables the control-  
channel interface pins. LCCEN = low disables the control-channel interface pins and selects an  
alternate function on the indicated pins (Table 13).  
5
LCCEN  
1.8V Analog Power Supply. Bypass AVDD to EP with 0.1µF and 0.001µF capacitors as close as  
possible to the device with the smaller capacitor closest to AVDD.  
6, 48  
AVDD  
7
8
9
IN+  
IN-  
Noninverting Coax/Twisted-Pair Serial Input  
Inverting Coax/Twisted-Pair Serial Input  
GPI  
General-Purpose Input. The GMSL serializer GPO (or INT) input follows GPI.  
Receive/Serial Data/Error Detection Correction. Function is determined by the state of LCCEN (Table 13).  
RX/SDA (LCCEN = high): Input/output with internal 30kI pullup to IOVDD. In UART mode, RX/SDA  
is the Rx input of the MAX9240’s UART. In the I2C mode, RX/SDA is the SDA input/output of the  
MAX9240’s I2C master/slave. RX/SDA has an open-drain driver and requires a pullup resistor.  
EDC (LCCEN = low): Input with internal pulldown to EP. Set EDC = high to enable error detection  
correction. Set EDC = low to disable error detection correction.  
10  
RX/SDA/EDC  
Transmit/Serial Clock/Edge Select. Function is determined by the state of LCCEN (Table 13).  
TX/SCL (LCCEN = high). Input/output with internal 30kI pullup to IOVDD. In UART mode, TX/SCL  
is the Tx output of the MAX9240’s UART. In the I2C mode, TX/SCL is the SCL input/output of the  
MAX9240’s I2C master/slave. TX/SCL has an open-drain driver and requires a pullup resistor.  
ES (LCCEN = low): Input with internal pulldown to EP. When ES is high, PCLKOUT indicates valid  
data on the falling edge of PCLKOUT. When ES is low, PCLKOUT indicates valid data on the rising  
edge of PCLKOUT. Do not change the ES input while the pixel clock is running.  
11  
TX/SCL/ES  
1.8V Digital Power Supply. Bypass DVDD to EP with 0.1µF and 0.001µF capacitors as close as possible  
to the device with the smaller value capacitor closest to DVDD.  
12  
13  
14  
DVDD  
PWDN  
ERR  
Active-Low Power-Down Input with Internal Pulldown to EP. Set PWDN low to enter power-down mode  
to reduce power consumption.  
Error Output. Open-drain data error detection and/or correction indication output with internal 60kΩ  
pullup to IOVDD. ERR is output high when PWDN = low.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Open-Drain Lock Output with Internal 60kΩ Pullup to IOVDD. LOCK = high indicates that PLLs are  
locked with correct serial-word-boundary alignment. LOCK = low indicates that PLLs are not locked or  
an incorrect serial-word-boundary alignment. LOCK remains low when the configuration link is active or  
during PRBS test. LOCK is output high when PWDN = low.  
15  
LOCK  
16  
17  
LMN0  
Line Fault Monitor Input 0 (see Figure 2A)  
LMN1  
Line Fault Monitor Input 1 (see Figure 2A)  
Active-Low Open-Drain Line Fault Output. LFLT has a 60kΩ internal pullup to IOVDD. LFLT = low  
indicates a line fault. LFLT is output high when PWDN = low.  
18  
LFLT  
Parallel Data/Vertical Sync 1 Output. Defaults to parallel data output on power-up.  
Parallel data output when VS/HS encoding is disabled.  
19  
DOUT24/VS1  
Decoded vertical sync for upper half of single-output when VS/HS encoding is enabled (Table 2).  
I/O Supply Voltage. 1.8V to 3.3V logic I/O power supply. Bypass IOVDD to EP with 0.1µF and 0.001µF  
capacitors as close as possible to the device with the smallest value capacitor closest to IOVDD.  
20, 41  
21  
IOVDD  
Parallel Data/Horizontal Sync 1 Output. Defaults to parallel data output on power-up.  
Parallel data output when VS/HS encoding is disabled.  
DOUT23/HS1  
Decoded horizontal sync for upper half of single-output when VS/HS encoding is enabled (Table 2).  
Parallel Data/Vertical Sync 0 Output. Defaults to parallel data output on power-up.  
Parallel data output when VS/HS encoding is disabled.  
Decoded vertical sync for lower half of single-output when VS/HS encoding is enabled (Table 2).  
22  
DOUT22/VS0  
DOUT21/HS0  
Parallel Data/Horizontal Sync 0 Output. Defaults to parallel data input on power-up.  
Parallel data output when VS/HS encoding is disabled.  
23  
Decoded horizontal sync for lower half of single-output when VS/HS encoding is enabled (Table 2).  
24–40,  
42–45  
DOUT20–  
DOUT0  
Parallel Data Outputs  
46  
PCLKOUT  
Parallel Clock Output. Latches parallel data into the input of another device.  
Mode Select/HS and VS Encoding Enable with Internal Pulldown to EP. Function is determined by the  
state of LCCEN (Table 13).  
47  
MS/HVEN  
MS (LCCEN = high). Set MS = low to select base mode. Set MS = high to select the bypass mode.  
HVEN (LCCEN = low): Set HVEN = high to enable HS/VS encoding on DOUT_/HS_ and DOUT_/VS_.  
Set HVEN = low to use DOUT_/HS_ and DOUT_/VS_ as parallel data outputs.  
Exposed Pad. EP is internally connected to device ground. MUST connect EP to the PCB ground plane  
through an array of vias for proper thermal and electrical performance.  
EP  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Functional Diagram  
PCLKOUT  
LFLT  
SSPLL  
CLKDIV  
CDRPLL  
LMN0  
LMN1  
LINE  
FAULT  
DOUT[20:0]  
IN+  
IN-  
SERIAL  
TO  
PARALLEL  
DOUT21/HS0  
DOUT22/ VS0  
DOUT23/HS1  
DOUT24/ VS1  
CML Rx  
AND EQ  
FIFO  
SCRAMBLE/  
CRC/  
HAMMING/  
8b/10b  
1x[24:0]  
OR  
2x[10:0]  
OR  
Tx  
DECODE  
2x[14:0]  
REVERSE  
CONTROL  
CHANNEL  
VS /HS  
GPIO  
GPIO0/DBL  
GPIO1/BWS  
GPI  
FCC  
MAX9240A  
2
UART/I C  
TX/SCL/ES  
RX/SDA/EDC  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
R /2  
L
IN+  
IN-  
REVERSE  
CONTROL-CHANNEL  
TRANSMITTER  
V
OD  
V
CMR  
R /2  
L
IN+  
IN-  
IN-  
V
CMR  
IN+  
V
ROH  
0.9 x V  
ROH  
0.1 x V  
ROH  
(IN+) - (IN-)  
0.1 x V  
0.9 x V  
ROL  
t
R
ROL  
V
ROL  
t
F
Figure 1. Reverse Control-Channel Output Parameters  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
R /2  
L
IN+  
IN-  
V
ID(P)  
R /2  
L
_
V
IN+  
+
_
C
C
IN  
IN  
+
_
V
IN-  
V
V
| V - V  
|
ID(P) = IN+ IN-  
(V + V )/2  
CMR = IN+  
IN-  
Figure 2. Test Circuit for Differential Input Measurement  
1.8V  
45.3k*  
4.99k*  
45.3k*  
4.99k*  
GMSL  
DESERIALIZER  
LMN0  
LMN1  
LMN0  
GMSL  
DESERIALIZER  
OUTPUT  
LOGIC  
(IN+)  
TWISTED PAIR  
IN+  
IN-  
49.9k*  
49.9k*  
CONNECTORS  
LFLT  
REFERENCE  
VOLTAGE  
1.8V  
GENERATOR  
45.3k*  
4.99kΩ*  
LMN1  
LMN0  
GMSL  
DESERIALIZER  
OUTPUT  
LOGIC  
(IN-)  
COAX  
IN+  
IN-  
49.9k*  
49.9*  
CONNECTORS  
*±1%  
TOLERANCE  
Figure 2a. Line Fault  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
PCLKOUT  
DOUT_  
NOTE: PCLKOUT PROGRAMMED FOR RISING LATCH EDGE.  
Figure 3. Worst-Case Pattern Output  
t
T
V
OH MIN  
t
HIGH  
PCLKOUT  
V
OL MAX  
t
LOW  
Figure 4. Parallel Clock Output High and Low Times  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
STOP  
CONDITION  
(P)  
BIT 6  
(A6)  
BIT 0  
(R/W)  
ACKNOWLEDGE  
(A)  
PROTOCOL  
t
t
t
HIGH  
SU;STA  
LOW  
1/f  
SCL  
SCL  
t
SP  
t
BUF  
t
t
f
r
SDA  
t
t
t
t
t
SU;STO  
HD;STA  
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;DAT  
2
Figure 5. I C Timing Parameters  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
C
L
SINGLE-ENDED OUTPUT LOAD  
0.8 x V  
I0VDD  
0.2 x V  
I0VDD  
t
t
R
F
Figure 6. Output Rise-and-Fall Times  
SERIAL-WORD LENGTH  
SERIAL WORD N  
SERIAL WORD N+1  
SERIAL WORD N+2  
IN+/-  
FIRST BIT  
LAST BIT  
DOUT_  
PARALLEL WORD N-1  
PARALLEL WORD N  
PARALLEL WORD N-2  
PCLKOUT  
t
SD  
NOTE: PCLKOUT PROGRAMMED FOR RISING LATCHING EDGE.  
Figure 7. Deserializer Delay  
V
IH_MIN  
DESERIALIZER  
GPI  
V
IL_MAX  
t
GPIO  
t
GPIO  
V
OH_MIN  
SERIALIZER  
GPO  
V
OL_MAX  
Figure 8. GPI-to-GPO Delay  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
IN+/-  
IN+ - IN-  
V
PWDN  
IH1  
t
LOCK  
t
PU  
LOCK  
V
OH  
LOCK  
V
OH  
PWDN MUST BE HIGH  
Figure 9. Lock Time  
Figure 10. Power-Up Delay  
Register Mapping  
Detailed Description  
Registers set the operating conditions of the deserializer  
and are programmed using the control channel in base  
mode. The deserializer holds its device address and the  
device address of the serializer it is paired with. Similarly,  
the serializer holds its device address and the address of  
the deserializer. Whenever a device address is changed,  
the new address should be written to both devices. The  
default device address of the deserializer is set by the  
CX/TP input and the default device address of any GMSL  
serializer is 0x80 (see Table 1 and Table 8). Registers  
0x00 and 0x01 in both devices hold the device addresses.  
The MAX9240A deserializer, when paired with the  
MAX9271 or MAX9273 serializer, provides the full set  
of operating features, but offers basic functionality when  
paired with any GMSL serializer.  
The deserializer has a maximum serial-bit rate of 1.5Gbps  
for 15m or more of cable and operates up to a maximum  
output clock of 50MHz in 25-bit, single-output mode, or  
75MHz to 100MHz in 15-bit/11-bit, double-output mode,  
respectively. This bit rate and output flexibility support  
a wide range of displays, from QVGA (320 x 240) to  
WVGA (800 x 480) and higher with 18-bit color, as well as  
megapixel image sensors. Input equalization, combined  
with GMSL serializer pre/deemphasis, extends the cable  
length and enhances link reliability  
Bit Map  
The parallel output functioning and width depend on set-  
tings of the double-/single-output mode (DBL), HS/VS  
encoding (HVEN), error correction used (EDC), and bus  
width (BWS) pins. Table 2 lists the bit map for the control  
pin settings. Unused output bits are pulled low.  
The control channel enables a µC to program the serial-  
izer and deserializer registers and program registers on  
peripherals. The control channel is also used to configure  
and access the GPIO. The µC can be located at either  
end of the link, or when using two µCs, at both ends. Two  
modes of control-channel operation are available. Base  
The parallel output has two output modes: single and  
double output. In single-output mode, the deserialized  
parallel data is clocked out every PCLKOUT cycle. The  
device accepts pixel clocks from 6.25MHz to 50MHz  
(Figures 11 and 12).  
2
mode uses either I C or GMSL UART protocol, while  
bypass mode uses a user-defined UART protocol. UART  
2
protocol allows full-duplex communication, while I C  
In double-output mode, the device splits deserialized  
data into two half-sized words that are output at twice the  
serial-word rate (Figures 13 and 14). The serializer/dese-  
rializer use pixel clock rates from 33.3MHz to 100MHz  
for 11-bit, double-output mode and 25MHz to 75MHz for  
15-bit, double-output mode.  
allows half-duplex communication.  
Spread spectrum is available to reduce EMI on the paral-  
lel output. The serial input complies with ISO 10605 and  
IEC 61000-4-2 ESD protection standards.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
PCLKOUT  
DOUT[24:0] OR  
DOUT[21:0]  
FIRST WORD  
SECOND WORD  
THIRD WORD  
FOURTH WORD  
VS0, VS1  
HS0, HS1  
VS (FROM FIRST WORD)  
HS (FROM FIRST WORD)  
VS (FROM SECOND WORD)  
HS (FROM SECOND WORD)  
VS (FROM THIRD WORD)  
HS (FROM THIRD WORD)  
VS (FROM FOURTH WORD)  
HS (FROM FOURTH WORD)  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS_/HS_. VS_/HS_ HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS_, VS_ ACTIVE ONLY WHEN HVEN = 1.  
Figure 11. Single-Output Waveform (Serializer Using Single Input)  
PCLKOUT  
DOUT[14:0] OR  
FIRST WORD (FROM LATCH A)  
FIRST WORD (FROM LATCH B)  
FIRST WORD (FROM LATCH A)  
FIRST WORD (FROM LATCH B)  
SECOND WORD (FROM LATCH A)  
SECOND WORD (FROM LATCH B)  
SECOND WORD (FROM LATCH A)  
SECOND WORD (FROM LATCH B)  
THIRD WORD (FROM LATCH A)  
THIRD WORD (FROM LATCH B)  
THIRD WORD (FROM LATCH A)  
THIRD WORD (FROM LATCH B)  
FOURTH WORD (FROM LATCH A)  
FOURTH WORD (FROM LATCH B)  
FOURTH WORD (FROM LATCH A)  
FOURTH WORD (FROM LATCH B)  
DOUT[10:0]  
DOUT[24:15] OR  
DOUT[21:11]  
VS0, HS0  
VS1, HS1  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS_ /HS_. VS_ /HS_ HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS_, VS_ ACTIVE ONLY WHEN HVEN = 1.  
Figure 12. Single-Output Waveform (Serializer Using Double Input)  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
PCLKOUT  
DOUT[14:0] OR  
DOUT[10:0]  
DOUTA FIRST WORD  
DOUTB FIRST WORD  
DOUTA SECOND WORD  
DOUTB SECOND WORD  
VS0, HS0  
(SERIALIZER  
DBL = 0)  
FIRST WORD  
SECOND WORD  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS0/HS0. VS0/HS0 HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS0, VS0 ACTIVE ONLY WHEN HVEN = 1.  
Figure 13. Double-Output Waveform (Serializer Using Single Input)  
PCLKOUT  
DOUT[14:0] OR  
DOUTA FIRST WORD  
DOUTA FIRST WORD  
DOUTB FIRST WORD  
DOUTB FIRST WORD  
DOUTA SECOND WORD  
DOUTA SECOND WORD  
DOUTB SECOND WORD  
DOUTB SECOND WORD  
DOUT[10:0]  
VS0, HS0  
(SERIALIZER  
DBL = 1)  
NOTE: DIAGRAM SHOWS POSSIBLE LOCATIONS FOR TRANSITIONS ON VS0/HS0. VS0/HS0 HAVE MINIMUM LENGTH REQUIREMENTS.  
NOTE: HS0, VS0 ACTIVE ONLY WHEN HVEN = 1.  
Figure 14. Double-Output Waveform (Serializer Using Double Input)  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 1. Power-Up Default Register Map (see Table 16)  
REGISTER POWER-UP  
POWER-UP DEFAULT SETTINGS  
(MSB FIRST)  
ADDRESS  
DEFAULT  
(hex)  
(hex)  
SERID = 1000000, serializer device address  
RESERVED = 0  
0x00  
0x01  
0x80  
DESID = 1001000 (CX/TP = high or low), DESID = 1001001 (CX/TP = midlevel), deserializer device  
0x90 or 0x92 address is determined by the state of the CX/TP input at power-up  
CFGBLOCK = 0, registers 0x00 to 0x1F are read/write  
SS = 00, spread spectrum disabled  
RESERVED = 01  
PRNG = 11, automatically detect the pixel clock range  
SRNG = 11, automatically detect serial-data rate  
0x02  
0x03  
0x1F  
AUTOFM = 00, calibrate spread-modulation rate only once after locking  
RESERVED = 0  
SDIV = 00000, autocalibrate sawtooth divider  
0x00  
0x07  
LOCKED = 0, LOCK output is low (read only)  
OUTENB = 0, output enabled  
PRBSEN = 0, PRBS test disabled  
SLEEP = 0, sleep mode deactivated (see the Link Startup Procedure section)  
INTTYPE = 01, base mode uses UART  
0x04  
REVCCEN = 1, reverse control channel active (sending)  
FWDCCEN = 1, forward control channel active (receiving)  
I2CMETHOD = 0, I2C master sends the register address  
DCS = 0, normal parallel output driver current  
HVTRMODE = 1, full periodic HS/VS tracking  
ENEQ = 0, equalizer disabled  
0x05  
0x06  
0x24  
EQTUNE = 1001, 10.7dB equalization  
0x02 or 0x22 RESERVED = 00X00010  
DBL = 0 or 1, single-/double-input mode setting determined by the state of LCCEN and  
GPIO0/DBL at startup  
DRS = 0, high data-rate mode  
BWS = 0 or 1, bit width setting determined by the state of LCCEN and GPIO1/BWS at startup  
ES = 0 or 1, edge-select input setting determined by the state of LCCEN and TX/SCL/ES at startup  
HVTRACK = 0 or 1, HS/VS tracking setting determined by the state of LCCEN and MS/HVEN at  
startup  
0x07  
0xXX  
HVEN = 0 or 1, HS/VS tracking encoding setting determined by the state of LCCEN and MS/HVEN  
at startup  
EDC = 00 or 10, error-detection/correction setting determined by the state of LCCEN and  
RX/SDA/EDC at startup  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 1. Power-Up Default Register Map (see Table 16) (continued)  
REGISTER POWER-UP  
POWER-UP DEFAULT SETTINGS  
ADDRESS  
DEFAULT  
(hex)  
(MSB FIRST)  
(hex)  
INVVS = 0, deserializer does not invert VSYNC  
INVHS = 0, deserializer does not invert HSYNC  
RESERVED = 0  
0x08  
0x00  
UNEQDBL = 0, serializer DBL is not the same as deserializer  
DISSTAG = 0, outputs are staggered  
AUTORST = 0, error registers/output autoreset disabled  
ERRSEL = 00, detected errors trigger ERR  
I2CSCRA = 0000000, I2C address translator source A is 0x00  
RESERVED = 0  
0x09  
0x0A  
0x0B  
0x0C  
0x00  
0x00  
0x00  
0x00  
I2CDSTA = 0000000, I2C address translator destination A is 0x00  
RESERVED = 0  
I2CSCRB = 0000000, I2C address translator source B is 0x00  
RESERVED = 0  
I2CDSTB = 0000000, I2C address translator destination B is 0x00  
RESERVED = 0  
I2CLOCACK = 1, acknowledge not generated when forward channel is not available  
I2CSLVSH = 01, 469ns/234ns I2C setup/hold time  
I2CMSTBT = 101, 339kbps (typ) I2C-to-I2C master bit-rate setting  
I2CSLVTO = 10, 1024µs (typ) I2C-to-I2C slave remote timeout  
0x0D  
0x0E  
0xB6  
RESERVED = 01  
GPIEN = 1, enable GPI-to-GPO signal transmission to serializer  
GPIIN = 0, GPI input is low (read only)  
GPIO1OUT = 1, set GPIO1 to high  
GPIO1IN = 0, GPIO1 input is low (read only)  
GPIO0OUT = 1, set GPIO0 to high  
0x6A  
0x00  
GPIO0IN = 0, GPIO0 input is low (read only)  
0x0F  
0x10  
DETTHR = 00000000, error threshold set to zero for detected errors  
0x00  
(read only)  
DETERR = 00000000, zero errors detected  
0x11  
0x12  
0x00  
0x00  
(read only)  
0x00  
CORRTHR = 00000000, error threshold set to zero for corrected errors  
CORRERR = 00000000, zero errors corrected  
0x13  
PRBSERR = 00000000, zero PRBS errors detected  
(read only)  
PRBSOK = 0, PRBS test not completed  
RESERVED = 000  
LFNEG = 10, no faults detected  
LFPOS = 10, no faults detected  
0x0A  
(read only)  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x2X  
0x30  
0x54  
0x30  
0xC8  
RESERVED = 00100XXX  
RESERVED = 00110000  
RESERVED = 01010100  
RESERVED = 00110000  
RESERVED = 11001000  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 1. Power-Up Default Register Map (see Table 16) (continued)  
REGISTER POWER-UP  
POWER-UP DEFAULT SETTINGS  
ADDRESS  
DEFAULT  
(hex)  
(MSB FIRST)  
(hex)  
0xXX  
(read only)  
0x1A  
0x1B  
0x1C  
RESERVED = XXXXXXXX  
RESERVED = XXXXXXXX  
RESERVED = XXXXXXXX  
0xXX  
(read only)  
0xXX  
(read only)  
CXTP = 0, twisted-pair input  
CXSEL = 0, noninverting input  
I2CSEL = 0, UART input  
LCCEN = 0, local control channel disabled  
RESERVED = XXXX  
0x0X  
(read only)  
0x1D  
0x0A  
(read only)  
0x1E  
0x1F  
ID = 00001100, device ID is 0x0C  
RESERVED = 000  
CAPS = 0, not HDCP capable  
REVISION = XXXX  
0x0X  
(read only)  
X = Indeterminate.  
Table 2. Output Map  
OUTPUT* (PAIRED WITH  
OUTPUT* (PAIRED WITH  
PCLK RANGE**  
EDC  
BWS  
DBL  
HVEN  
MAX9271)  
MAX9273)  
(MHz)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DOUT0:15  
DOUT0:13, HS, VS  
DOUT0:10  
DOUT0:21  
DOUT0:20, HS, VS  
DOUT0:10  
16.66 to 50  
16.66 to 50  
33.33 to 100  
33.33 to 100  
12.5 to 37.5  
12.5 to 37.5  
25 to 75  
DOUT0:10, HS, VS  
DOUT0:15  
DOUT0:10, HS, VS  
DOUT0:21  
DOUT0:13, HS, VS  
DOUT0:14  
DOUT0:20, HS, VS  
DOUT0:14  
DOUT0:13, HS, VS  
DOUT0:15  
DOUT0:14, HS, VS  
DOUT0:15  
25 to 75  
16.66 to 50  
16.66 to 50  
33.33 to 100  
33.33 to 100  
12.5 to 37.5  
12.5 to 37.5  
25 to 75  
DOUT0:13, HS, VS  
DOUT0:7  
DOUT0:15, HS, VS  
DOUT0:7  
DOUT0:7, HS, VS  
DOUT0:15  
DOUT0:7, HS, VS  
DOUT0:21  
DOUT0:13, HS, VS  
DOUT0:14  
DOUT0:20, HS, VS  
DOUT0:14  
DOUT0:13, HS, VS  
DOUT0:14, HS, VS  
25 to 75  
*The number of available outputs depends on the serializer attached to the MAX9240A.  
**Device is in high-speed mode (DRS = LOW). See Table 3 for PCLK ranges in low-speed mode (DRS = high).  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
the opposite direction of the video stream. The reverse  
control channel and forward video data coexist on the  
Serial Link Signaling and Data Format  
The serializer uses differential CMLsignaling to drive twist-  
ed-pair cable and single-ended CML to drive coax cable  
with programmable pre/deemphasis and AC-coupling.  
The deserializer uses AC-coupling and programmable  
channel equalization.  
same serial cable, forming a bidirectional link. The  
reverse control channel operates independently from the  
forward control channel. The reverse control channel is  
available 2ms after power-up. The serializer temporarily  
disables the reverse control channel for 350Fs after start-  
ing/stopping the forward serial link.  
Input data is scrambled and then 8b/10b coded. The  
deserializer recovers the embedded serial clock, then  
samples, decodes, and descrambles the data. In 24-bit  
or 32-bit mode, 22 or 30 bits contain the video data  
and/or error-correction bits, if used. The 23rd or 31st bit  
carries the forward control-channel data. The last bit is the  
parity bit of the previous 23 or 31 bits (Table 15).  
Data-Rate Selection  
The serializer/deserializer use DRS, DBL, and BWS to set  
the PCLKOUT frequency range (Table 3). Set DRS = 1  
for a PCLKOUT frequency range of 6.25MHz to 12.5MHz  
(32-bit, single-output mode) or 8.33MHz to 16.66MHz (24-  
bit, single-output mode). Set DRS = 0 for normal opera-  
tion. It is not recommended to use double-output mode  
when DRS = 1.  
Reverse Control Channel  
The serializer uses the reverse control channel to receive  
2
I C/UART and GPO signals from the deserializer in  
Table 3. Data-Rate Selection Table  
DRS SETTING  
DBL SETTING  
BWS SETTING  
PCLKOUT RANGE (MHz)  
16.66 to 50  
0
0
0
0
1
1
1
1
0 (single input)  
0 (24-bit mode)  
0
1 (32-bit mode)  
12.5 to 35  
1 (double input)  
0
1
0
1
0
1
33.3 to 100  
1
0
0
1
1
25 to 75  
8.33 to 16.66  
6.25 to 12.5  
Do Not Use  
Do Not Use  
24 BITS  
32 BITS  
D0  
D1  
D21  
FCC  
PCB  
D0  
D1  
D29  
FCC  
PCB  
FORWARD  
CONTROL-  
CHANNEL BIT  
FORWARD  
CONTROL-  
CHANNEL BIT  
VIDEO AND ERROR  
CORRECTION DATA  
VIDEO AND ERROR  
CORRECTION DATA  
PACKET  
PARITY  
PACKET  
PARITY  
CHECK BIT  
CHECK BIT  
NOTE: SERIAL DATA SHOWN BEFORE SCRAMBLING AND 8b/10b ENCODING  
Figure 15. Serial-Data Format  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
The deserializer uses differential line coding to send  
signals over the reverse channel to the serializer. The bit  
rate of the control channel is 9.6kbps to 1Mbps in both  
directions. The serializer/deserializer automatically detect  
the control-channel bit rate in base mode. Packet bit-rate  
changes can be made in steps of up to 3.5 times higher  
or lower than the previous bit rate. See the Changing the  
Clock Frequency section for more information.  
Control Channel and  
Register Programming  
The control channel is available for the µC to send and  
receive control data over the serial link simultaneously  
with the high-speed data. The µC controls the link from  
either the serializer or the deserializer side to support  
video-display or image-sensing applications. The control  
channel between the µC and serializer or deserializer  
runs in base mode or bypass mode, according to the  
mode selection (MS/HVEN) input of the device connected  
to the µC. Base mode is a half-duplex control channel and  
bypass mode is a full-duplex control channel.  
Figure 16 shows the UART protocol for writing and read-  
ing in base mode between the µC and the serializer/  
deserializer.  
Figure17showstheUARTdataformat. Evenparityisused.  
Figure 18 and Figure 19 detail the formats of the SYNC  
byte (0x79) and theACK byte (0xC3). The µC and the con-  
nected slave chip generate the SYNC byte and ACK byte,  
respectively. Events such as device wake-up and GPI  
generate transitions on the control channel that can be  
ignored by the µC. Data written to the serializer/deserial-  
izer registers do not take effect until after the ACK byte is  
sent. This allows the µC to verify that write commands are  
received without error, even if the result of the write com-  
mand directly affects the serial link. The slave uses the  
SYNC byte to synchronize with the host UART’s data rate.  
If the GPI or MS/HVEN inputs of the deserializer toggle  
while there is control-channel communication, or if a line  
fault occurs, the control-channel communication is cor-  
rupted. In the event of a missed or delayed acknowledge  
(~1ms due to control-channel timeout), the µC should  
assume there was an error in the packet transmission or  
response. In base mode, the µC must keep the UART Tx/  
Rx lines high no more than 4 bit times between bytes in a  
packet. Keep the UART Tx/Rx lines high for at least 16 bit  
times before starting to send a new packet.  
UART Interface  
In base mode, the µC is the host and can access the  
registers of both the serializer and deserializer from  
either side of the link using the GMSL UART protocol.  
The µC can also program the peripherals on the remote  
side by sending the UART packets to the serializer or  
2
deserializer, with the UART packets converted to I C  
by the device on the remote side of the link. The µC  
communicates with a UART peripheral in base mode  
(through INTTYPE register settings), using the half-  
duplex default GMSL UART protocol of the serializer/  
deserializer. The device addresses of the serializer/  
deserializer in base mode are programmable. The default  
value is 0x80 for the serializer and is determined by the  
CX/TP input for the deserializer (Table 8).  
2
When the peripheral interface is I C, the serializer/  
deserializer convert UART packets to I C that have  
device addresses different from those of the serializer or  
deserializer. The converted I C bit rate is the same as the  
2
2
original UART bit rate.  
WRITE DATA FORMAT  
DEV ADDR + R/W REG ADDR NUMBER OF BYTES BYTE 1  
SYNC  
BYTE N  
ACK  
MASTER READS FROM SLAVE  
MASTER WRITES TO SLAVE  
READ DATA FORMAT  
SYNC  
DEV ADDR + R/W REG ADDR NUMBER OF BYTES  
MASTER WRITES TO SLAVE  
ACK  
BYTE 1  
BYTE N  
MASTER READS FROM SLAVE  
Figure 16. GMSL UART Protocol for Base Mode  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
1 UART FRAME  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
PARITY  
STOP  
FRAME 1  
FRAME 2  
FRAME 3  
STOP  
START  
STOP  
START  
*BASE MODE USES EVEN PARITY  
Figure 17. GMSL UART Data Format for Base Mode  
D0  
1
D1  
0
D2  
0
D3  
1
D4  
1
D5  
1
D6  
1
D7  
0
D0  
1
D1  
1
D2  
0
D3  
0
D4  
0
D5  
0
D6  
1
D7  
1
START  
PARITYSTOP  
START  
PARITY STOP  
Figure 18. SYNC Byte (0x79)  
Figure 19. ACK Byte (0xC3)  
As shown in Figure 20, the remote-side device converts  
connected to the deserializer, there is a 1ms wait time  
between setting MS/HVEN high and the bypass con-  
trol channel being active. There is no delay time when  
switching to bypass mode when the µC is connected to  
the serializer. Do not send a logic-low value longer than  
100µs to ensure proper GPO functionality. Bypass mode  
accepts bit rates down to 10kbps in either direction. See  
the GPO/GPI Control section for GPI functionality limita-  
tions. The control-channel data pattern should not be held  
low longer than 100µs if GPI control is used.  
packets going to or coming from the peripherals from  
2
UART format to I C format and vice versa. The remote  
device removes the byte number count and adds or  
2
2
receives the ACK between the data bytes of I C. The I C  
bit rate is the same as the UART bit rate.  
Interfacing Command-Byte-Only  
2
I C Devices with UART  
2
The serializer/deserializer UART-to-I C conversion  
can interface with devices that do not require register  
2
addresses, such as the MAX7324 GPIO expander. In  
I C Interface  
2
this mode, the I C master ignores the register address  
2
2
In I C-to-I C mode, the deserializer’s control-channel  
byte and directly reads/writes the subsequent data bytes  
2
interface sends and receives data through an I C-  
(Figure 21). Change the communication method of the  
compatible 2-wire interface. The interface uses a serial-  
data line (SDA) and a serial-clock line (SCL) to achieve  
bidirectional communication between master and slave(s).  
A µC master initiates all data transfers to and from the  
device and generates the SCL clock that synchronizes  
2
I C master using the I2CMETHOD bit. I2CMETHOD = 1  
sets command-byte-only mode, while I2CMETHOD = 0  
sets normal mode where the first byte in the data stream  
is the register address.  
2
the data transfer. When an I C transaction starts on the  
UART Bypass Mode  
local-side device’s control-channel port, the remote-side  
In bypass mode, the serializer/deserializer ignore UART  
commands from the µC and the µC communicates with  
the peripherals directly using its own defined UART pro-  
tocol. The µC cannot access the serializer/deserializer  
registers in this mode. Peripherals accessed through the  
forward control channel using the UART interface need  
to handle at least one PCLKOUT period ± 10ns of jitter  
due to the asynchronous sampling of the UART signal  
by PCLKOUT. Set MS/HVEN = high to put the control  
channel into bypass mode. For applications with the µC  
2
device’s control-channel port becomes an I C master  
2
2
that interfaces with remote-side I C perhipherals. The I C  
master must accept clock stretching, which is imposed by  
the deserializer (holding SCL low). The SDA and SCL lines  
operate as both an input and an open-drain output. Pullup  
resistors are required on SDA and SCL. Each transmis-  
sion consists of a START condition (Figure 5) sent by a  
master, followed by the device’s 7-bit slave address plus a  
R/W bit, a register address byte, one or more data bytes,  
and finally a STOP condition.  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
µC  
11  
11  
11  
11  
11  
11  
SYNC FRAME  
DEVICE ID + WR  
REGISTER ADDRESS NUMBER OF BYTES  
DATA 0  
DATA N  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
8
1
1
S
DEV ID W A REG ADDR  
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 0)  
SERIALIZER/DESERIALIZER  
11  
µC  
11  
11  
11  
11  
ACK FRAME  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
REGISTER ADDRESS NUMBER OF BYTES  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
DEV ID W A REG ADDR  
A
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
S: START  
P: STOP  
A: ACKNOWLEDGE  
: MASTER TO SLAVE  
: SLAVE TO MASTER  
2
2
Figure 20. Format Conversion Between GMSL UART and I C with Register Address (I CMETHOD = 0)  
2
UART-TO-I C CONVERSION OF WRITE PACKET (I2CMETHOD = 1)  
µC  
SERIALIZER/DESERIALIZER  
11  
SYNC FRAME  
11  
11  
11  
11  
DATA 0  
11  
DATA N  
11  
ACK FRAME  
DEVICE ID + WR  
REGISTER ADDRESS NUMBER OF BYTES  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
W
A
DATA 0  
A
DATA N  
A
P
2
UART-TO-I C CONVERSION OF READ PACKET (I2CMETHOD = 1)  
µC  
SERIALIZER/DESERIALIZER  
11  
11  
11  
11  
11  
11  
DATA 0  
11  
DATA N  
SYNC FRAME  
DEVICE ID + RD  
REGISTER ADDRESS NUMBER OF BYTES  
ACK FRAME  
SERIALIZER/DESERIALIZER  
PERIPHERAL  
1
7
1
1
8
1
8
1
1
S
DEV ID  
R
A
DATA 0  
A
DATA N  
A
P
: MASTER TO SLAVE  
: SLAVE TO MASTER S: START  
P: STOP A: ACKNOWLEDGE  
2
2
Figure 21. Format Conversion Between GMSL UART and I C with Register Address (I CMETHOD = 1)  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
START and STOP Conditions  
Acknowledge  
Both SCL and SDA remain high when the interface is not  
busy. A master signals the beginning of a transmission  
with a START (S) condition by transitioning SDA from high  
to low while SCL is high (Figure 22). When the master has  
finished communicating with the slave, it issues a STOP  
(P) condition by transitioning SDA from low to high while  
SCL is high. The bus is then free for another transmission.  
The acknowledge bit is a clocked 9th bit that the recipi-  
ent uses to handshake receipt of each byte of data  
(Figure 24). Thus, each byte transferred effectively requires  
9 bits. The master generates the 9th clock pulse, and the  
recipient pulls down SDA during the acknowledge clock  
pulse. The SDA line is stable low during the high period  
of the clock pulse. When the master is transmitting to the  
slave device, the slave device generates the acknowl-  
edge bit because the slave device is the recipient. When  
the slave device is transmitting to the master, the master  
generates the acknowledge bit because the master is the  
recipient. The device generates an acknowledge even  
when the forward control channel is not active (not locked).  
To prevent acknowledge generation when the forward  
control channel is not active, set the I2CLOCACK bit low.  
Bit Transfer  
One data bit is transferred during each clock pulse  
(Figure 23). The data on SDA must remain stable while  
SCL is high.  
SDA  
SCL  
P
S
STOP  
CONDITION  
START  
CONDITION  
Figure 22. START and STOP Conditions  
SDA  
SCL  
DATA LINE STABLE;  
DATA VALID  
CHANGE OF DATA  
ALLOWED  
Figure 23. Bit Transfer  
START  
CONDITION  
CLOCK PULSE FOR  
ACKNOWLEDGE  
1
2
8
9
SCL  
SDA  
BY  
TRANSMITTER  
SDA  
BY  
RECEIVER  
S
Figure 24. Acknowledge  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
beyond storing the register address (Figure 26). Any  
Slave Address  
bytes received after the register address are data bytes.  
The first data byte goes into the register selected by the  
register address, and subsequent data bytes go into  
subsequent registers (Figure 27). If multiple data bytes  
are transmitted before a STOP condition, these bytes  
are stored in subsequent registers because the register  
addresses autoincrement.  
The serializer/deserializer have a 7-bit-long slave address.  
The bit following a 7-bit slave address is the R/W bit, which  
is low for a write command and high for a read command.  
The slave address is 100100X1 for read commands and  
100100X0 for write commands. See Figure 25.  
Bus Reset  
2
The device resets the bus with the I C START condition  
Format for Reading  
for reads. When the R/W bit is set to 1, the serializer/  
deserializer transmit data to the master, thus the master  
is reading from the device.  
The serializer/deserializer are read using the internally  
stored register address as an address pointer, the same  
way the stored register address is used as an address  
pointer for a write. The pointer autoincrements after each  
data byte is read using the same rules as for a write. Thus,  
a read is initiated by first configuring the register address  
by performing a write (Figure 28). The master can now  
read consecutive bytes from the device, with the first  
data byte being read from the register address pointed by  
the previously written register address. Once the master  
sends a NACK, the device stops sending valid data.  
Format for Writing  
A write to the serializer/deserializer comprises the trans-  
mission of the slave address with the R/W bit set to zero,  
followed by at least one byte of information. The first  
byte of information is the register address or command  
byte. The register address determines which register of  
the device is to be written by the next byte, if received.  
If a STOP (P) condition is detected after the register  
address is received, the device takes no further action  
0
0
1
0
1/0  
0
R/W  
SDA  
SCL  
1
ACK  
MSB  
LSB  
Figure 25. Slave Address  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
REGISTER 0x00 WRITE DATA  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
S = START BIT  
P = STOP BIT  
A = ACK  
D_ = DATA BIT  
2
Figure 26. Format for I C Write  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x0000  
S
1
0
0
0
0
0
0
0
A
0
0
0
0
0
0
0
0
A
N
S = START BIT  
P = STOP BIT  
A = ACK  
N = NACK  
D_ = DATA BIT  
REGISTER 0x00 WRITE DATA  
REGISTER 0x02 WRITE DATA  
D7 D6 D5 D4 D3 D2 D1 D0  
A
D7 D6 D5 D4 D3 D2 D1 D0  
P
Figure 27. Format for Write to Multiple Registers  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
0 = WRITE  
ADDRESS = 0x80  
REGISTER ADDRESS = 0x00  
S
1
0
0
0
0
0
0
0
0
A
A
0
0
0
0
0
0
0
0
A
N
1 = READ  
ADDRESS = 0x81  
REGISTER 0x00 READ DATA  
REPEATED START  
S
1
0
0
0
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0  
P
S = START BIT  
P = STOP BIT  
A = ACK  
N = NACK  
D_ = DATA BIT  
2
Figure 28. Format for I C Read  
2
Table 4. I C Bit-Rate Ranges  
LOCAL BIT RATE  
f > 50kbps  
REMOTE BIT-RATE RANGE  
Up to 1Mbps  
I2CMSTBT SETTING  
Any  
Up to 110  
000  
20kbps < f < 50kbps  
f < 20kbps  
Up to 400kbps  
Up to 10kbps  
2
I C Communication with Remote-Side Devices  
Control-Channel Broadcast Mode  
2
The deserializer supports I C communication with a  
The deserializer supports broadcast commands to con-  
trol multiple peripheral devices. Select an unused device  
address to use as a broadcast device address. Program  
the remote-side GMSL device to translate the broadcast  
device address (source address stored in registers 0x09,  
0x0B) to the peripheral device address (destination  
address stored in registers 0x0A, 0x0C). Any commands  
sent to the broadcast address are sent to all designated  
peripherals, while commands sent to a peripheral’s unique  
device address are sent to that particular device only.  
peripheral on the remote side of the communication link  
using SCL clock stretching. While multiple masters can  
reside on either side of the communication link, arbitra-  
tion is not provided. The connected masters need to sup-  
port SCL clock stretching. The remote-side I C bit-rate  
range must be set according to the local-side I C bit rate.  
Supported remote-side bit rates can be found in Table 4.  
Set the I2CMSTBT (register 0x0D) to set the remote I C  
bit rate. If using a bit rate different than 400kbps, local- and  
remote-side I C setup and hold times should be adjusted  
2
2
2
2
GPO/GPI Control  
by setting the SLV_SH register settings on both sides.  
GPO on the serializer follows GPI transitions on the  
deserializer. This GPO/GPI function can be used to  
transmit signals such as frame sync in a surround-view  
camera system. The GPI-to-GPO delay is 0.35ms (max).  
Keep the time between GPI transitions to a minimun  
0.35ms. This includes transitions from the other dese-  
rializer in coax-splitter mode. Bit D4 of register 0x0E in  
the deserializer stores the GPI input state. GPO is low  
after power-up. The FC can set GPO by writing to the  
serializer SET_GPO register bit. Do not send a logic-low  
value on the deserializer RX/SDA input (UART mode)  
longer than 100µs in either base or bypass mode to  
ensure proper GPO/GPI functionality.  
2
I C Address Translation  
2
The deserializer supports I C address translation for up to  
two device addresses. Use address translation to assign  
unique device addresses to peripherals with limited  
2
I C addresses. Source addresses (address to translate  
from) are stored in registers 0x09 and 0x0B. Destination  
addresses (address to translate to) are stored in registers  
0x0A and 0x0C.  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
spectrum modulation frequency within 20kHz to 40kHz.  
Additionally, manual configuration of the sawtooth divider  
(SDIV: 0x03, D[5:0]) allows the user to set a modulation  
frequency according to the PCLKOUT frequency. When  
ranges are manually selected, program the SDIV value  
for a fixed modulation frequency around 20kHz.  
PRBS Test  
The serializer includes a PRBS pattern generator that  
works with bit-error verification in the deserializer. To run  
the PRBS test, set PRBSEN = 1 (0x04, D5) in the deseri-  
alizer and then in the serializer. To exit the PRBS test, set  
PRBSEN = 0 (0x04, D5) in the serializer.  
Manual Programming  
Line Equalizer  
of the Spread-Spectrum Divider  
The deserializer includes an adjustable line equalizer to  
further compensate cable attenuation at high frequencies.  
The cable equalizer has 11 selectable levels of compen-  
sation from 2.1dB to 13dB (Table 5). The device powers  
up with the equalizer disabled. To select other equaliza-  
tion levels, set the corresponding register bits in the dese-  
rializer (0x05 D[3:0]). Use equalization in the deserializer,  
together with preemphasis in the serializer, to create the  
most reliable link for a given cable.  
The modulation rate for the deserializer relates to the  
PCLKOUT frequency as follows:  
f
PCLKOUT  
f
= 1+ DRS  
(
)
M
MOD× SDIV  
where:  
= Modulation frequency  
f
M
DRS = DRS value (0 or 1)  
= PCLKOUT frequency  
f
Spread Spectrum  
PCLKOUT  
To reduce the EMI generated by transitions, the dese-  
rializer output is programmable for spread spectrum. If  
the serializer driving the deserializer has programmable  
spread spectrum, do not enable spread for both at the  
same time or their interaction will cancel benefits. The  
programmable spread-spectrum amplitudes are ±2% and  
±4% (Table 6).  
MOD = Modulation coefficient given in Table 7  
SDIV = 5-bit SDIV setting, manually programmed by  
the µC  
To program the SDIV setting, first look up the modulation  
coefficient according to the desired bus-width and spread-  
spectrum settings. Solve the above equation for SDIV using  
the desired pixel clock and modulation frequencies. If the  
calculated SDIV value is larger than the maximum allowed  
SDIV value in Table 7, set SDIV to the maximum value.  
The deserializer includes  
a sawtooth divider to  
control the spread-modulation rate. Autodetection of  
the PCLKOUT operation range guarantees a spread-  
Table 5. Cable Equalizer Boost Levels  
Table 6. Parallel Output Spread  
SS  
00  
01  
10  
11  
SPREAD (%)  
No spread spectrum. Power-up default.  
±2% spread spectrum.  
BOOST SETTING  
(0x05 D[3:0])  
TYPICAL BOOST GAIN  
(dB)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2.1  
2.8  
3.4  
4.2  
5.2  
6.2  
7
No spread spectrum.  
±4% spread spectrum.  
Table 7. Modulation Coefficients and  
Maximum SDIV Settings  
8.2  
9.4  
SPREAD-  
SPECTRUM  
SETTING (%)  
MODULATION  
COEFFICIENT  
(dec)  
SDIV UPPER  
LIMIT (dec)  
10.7  
Default*  
1001  
4
2
208  
208  
15  
30  
1010  
1011  
11.7  
13  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Additional Error Detection and Correction  
HS/VS Encoding and/or Tracking  
In default mode (additional error detection and correc-  
tion disabled), data encoding/decoding is the same as in  
previous GMSL serializers/deserializers (parity only). At  
the serializer, the parallel input word is scrambled and a  
parity bit is added. The scrambled word is divided into 3 or  
4 bytes (depending on the BWS setting), 8b/10b encoded,  
and then transmitted serially. At the deserializer, the same  
operations are performed in reverse order. The parity bit  
is used by the deserializer to find the word boundary and  
for error detection. Errors are counted in an error counter  
register and an error pin indicates errors.  
HS/VS encoding by a GMSL serializer allows horizontal  
and vertical synchronization signals to be transmitted  
while conserving pixel data bandwidth. With HS/VS  
encoding enabled, 10-bit pixel data with a clock up to  
100MHz can be transmitted using one video pixel of data  
per HS/VS transition versus 8-bit data with a clock up to  
100MHz without HS/VS encoding. The deserializer per-  
forms HS/VS decoding, tracks the period of the HS/VS  
signals, and uses voting to filter HS/VS bit errors. When  
using HS/VS encoding, use a minimum HS/VS low-pulse  
duration of two PCLKOUT cycles when DBL = 0 on the  
deserializer. When DBL = 1, use a minimum HS/VS low-  
pulse duration of five PCLKOUT cycles and a minimum  
high-pulse duration of two PCLKOUT cycles. When using  
hamming code with HS/VS encoding, do not send more  
than two transitions every 16 PCLKOUT cycles.  
The deserializer can use one of two additional error-detec-  
tion/correction methods (selectable by register setting):  
1) 6-bit cyclic redundancy check  
2) 6-bit hamming code with 16-word interleaving  
When the serializer uses double-input mode (DBL = 1),  
the active duration, plus the blanking duration of HS or  
VS signals, should be an even number of PCLKOUT  
cycles. When DBL = 1 in the serializer and DBL = 0 in the  
deserializer, two pixel clock cycles of HS/VS at the serial-  
izer input are output at the HS0/VS0 and HS1/VS1 output  
of the deserializer in one cycle. The first cycle of HS/VS  
goes out of HS0/VS0 and the second cycle goes out of  
HS1/VS1. HS1 and VS1 are not used when HVEN = 0.  
Cyclic Redundancy Check (CRC)  
When CRC is enabled, the serializer adds 6 bits of CRC  
to the input data. This reduces the available bits in the  
input data word by 6, compared to the non-CRC case  
(see Table 2 for details). For example, 16 bits are avail-  
able for input data instead of 22 bits when BWS = 0, and  
24 bits instead of 30 bits when BWS = 1.  
6
The CRC generator polynomial is x + x + 1 (as used in  
the ITU-T G704 telecommunication standard).  
If HS/VS tracking is used without HS/VS encoding, use  
DOUT0 for HSYNC and DOUT1 for VSYNC. In this case,  
if DBL values on the serializer/deserializer are different,  
set the UNEQDBL register bit in the deserializer to 1.  
If the serializer and deserializer have unequal DBL set-  
tings and HVEN = 0, then HS/VS inversion should only  
be used on the side that has DBL = 1. HS/VS encoding  
sends packets when HSYNC or VSYNC is low; use HS/  
VS inversion register bits if input HSYNC and VSYNC  
signals use an active-low convention in order to send data  
packets during the inactive pixel clock periods.  
The parity bit is still added when CRC is enabled, because  
it is used for word-boundary detection. When CRC is  
enabled, each data word is scrambled and then the  
6-bit CRC and 1-bit parity are added before the 8b/10b  
encoding.  
At the deserializer, the CRC code is recalculated. If the  
recalculated CRC code does not match the received CRC  
code, an error is flagged. This CRC error is reported to the  
error counter.  
Hamming Code  
Serial Input  
Hamming code is a simple and effective error-correction  
code to detect and/or correct errors. The MAX9240A  
deserializer (when used with the MAX9271/MAX9273  
GMSL serializers) uses a single-error correction/double-  
error detection per pixel hamming-code scheme.  
The device can receive serial data from two kinds of  
cables: 100Ω twisted pair and 50Ω coax (contact the  
factory for devices compatible with 75Ω cables).  
Coax-Mode Splitter  
The deserializer uses data interleaving for burst error tol-  
erance. Burst errors up to 11 consecutive bits on the serial  
link are corrected and burst errors up to 31 consecutive  
bits are detected.  
In coax mode, OUT+ and OUT- of the serializer are active.  
This enables use as a 1:2 splitter (Figure 29). In coax  
mode, connect OUT+ to IN+ of the deserializer. Connect  
OUT- to IN- of the second deserializer. Control-channel  
data is broadcast from the serializer to both deserializers  
and their attached peripherals. Assign a unique address  
Hamming code adds overhead similar to CRC. See Table 2  
for details regarding the available input word size.  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
GMSL  
SERIALIZER  
MAX9240A  
GMSL  
SERIALIZER  
MAX9240A  
OUT+  
IN+  
IN-  
OUT-  
OUT+  
OUT-  
IN+  
OPTIONAL  
COMPONENTS  
FOR INCREASED  
POWER-SUPPLY  
REJECTION  
IN-  
AVDD  
MAX9240A  
OPTIONAL COMPONENTS  
FOR INCREASED POWER-SUPPLY  
REJECTION  
50  
IN+  
IN-  
Figure 29. 2:1 Coax-Mode Splitter Connection Diagram  
Figure 30. Coax-Mode Connection Diagram  
to send control data to one deserializer. Leave all unused  
IN_ pins unconnected, or connect them to ground through  
50Ω and a capacitor for increased power-supply rejection.  
If OUT- is not used, connect OUT- to AVDD through a 50Ω  
resistor (Figure 30). When there are µCs at the serializer,  
and at each deserializer, only one µC can communicate at  
a time. Disable one splitter control-channel link to prevent  
contention. Use the DIS_REV_P or DIS_REV_N register  
bits to disable a control-channel link.  
Table 8. Configuration Input Map  
CX/TP  
High  
Mid  
FUNCTION  
Coax+ input. Device address 0x90.  
Coax- input. Device address 0x92.  
Twisted-pair input. Device address 0x90.  
Low  
the activity on the serial link and then when it locks, it  
automatically sets its SLEEP register bit to 0.  
Cable Type Configuration Input (CX/TP)  
Power-Down Mode  
CX/TP determines the power-up state of the serial input.  
In coax mode, CX/TP also determines which coax input  
is active, along with the default device address (Table 8).  
These functions can be changed after power-up by writing  
to the appropriate register bits.  
The deserializer has a power-down mode that further  
reduces power consumption compared to sleep mode.  
Set PWDN low to enter power-down mode. In power-  
down mode, the outputs of the device remain in high  
impedance. Entering power-down resets the device’s  
registers. Upon exiting power-down, the state of external  
pins GPIO1/BWS, GPIO0/DBL, CX/TP, I2CSEL, LCCEN,  
RX/SDA/EDC, TX/SCL/ES, and MS/HVEN are latched.  
Sleep Mode  
The deserializer includes a sleep mode to reduce power  
consumption. The device enters or exits sleep mode by a  
command from a local µC or a remote µC using the con-  
trol channel. Set the SLEEP bit to 1 to initiate sleep mode.  
The serializer sleeps immediately after setting its SLEEP  
= 1. The deserializer sleeps after serial link inactivity or  
8ms (whichever arrives first) after setting its SLEEP = 1.  
To wake up from the local side, send an arbitrary control-  
channel command to the deserializer, wait 5ms for the  
chip to power up, and then write 0 to the SLEEP register  
bit to make the wake-up permanent. To wake up from the  
remote side, enable serialization. To deserializer detects  
Configuration Link  
The control channel can operate in a low-speed mode  
called configuration link in the absence of a clock input.  
This allows a microprocessor to program configuration  
registers before starting the video link. An internal oscil-  
lator provides the clock for the configuration link. Set  
CLINKEN = 1 on the serializer to enable the configuration  
link. The configuration link is active until the video link is  
enabled. The video link overrides the configuration link  
and attempts to lock when SEREN = 1.  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
sensing applications. The control channel is available after  
the video link or the configuration link is established. If  
the deserializer powers up after the serializer, the control  
channel becomes unavailable until 2ms after power-up.  
Link Startup Procedure  
Table 9 lists the startup procedure for video-display appli-  
cations. Table 10 lists the startup procedure for image-  
Table 9. Startup Procedure for Video-Display Applications  
NO.  
1
µC  
µC connected to serializer.  
Powers up.  
SERIALIZER  
DESERIALIZER  
Sets all configuration inputs. If any  
configuration inputs are available on  
one end of the link but not on the other,  
always connects that configuration input  
low.  
Sets all configuration inputs. If any  
configuration inputs are available on  
one end of the link but not on the other,  
always connects that configuration input  
low.  
Powers up and loads default settings.  
Powers up and loads default settings.  
Enables configuration link by  
setting CLINKEN = 1 (if not  
enabled automatically) and gets  
an acknowledge. Waits for link to  
be established (~3ms).  
2
Establishes configuration link.  
Locks to configuration link signal.  
Writes one link configuration  
bit (DRS, BWS, or EDC) in  
the deserializer and gets an  
acknowledge.  
Configuration changed from default  
settings (loss-of-lock can occur when  
BWS or EDC changes).  
3
4
5
6
7
Writes corresponding serializer  
link configuration bit and gets an  
acknowledge.  
Configuration changed from default  
settings.  
Relocks to configuration link signal.  
Waits for link to be established  
(~3ms) and then repeats steps 3  
and 4 until all serial link bits are  
configured.  
Writes remaining configuration bits  
in the serializer/deserializer and  
gets an acknowledge.  
Configuration changed from default  
settings.  
Configuration changed from default  
settings.  
Enables video link by setting  
SEREN = 1 and gets an  
acknowledge. Waits for link to be  
established (~3ms).  
Locks to serial link signal and begins  
deserializing data.  
Begins serializing data.  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 10. Startup Procedure for Image-Sensing Applications  
NO.  
µC  
SERIALIZER  
DESERIALIZER  
Sets all configuration inputs. If any  
configuration inputs are available on  
one end of the link but not on the other,  
always connects that configuration input  
low.  
Sets all configuration inputs. If any  
configuration inputs are available on one  
end of the link but not on the other, always  
connects that configuration input low.  
µC connected to deserializer.  
Powers up and loads default settings.  
Establishes serial link.  
Powers up and loads default settings.  
Locks to serial link signal.  
1
3
Powers up.  
Writes deserializer configuration  
bits and gets an acknowledge.  
Configuration changed from default settings  
(loss-of-lock can occur).  
Writes serializer configuration  
bits. Cannot get an acknowledge  
(or gets a dummy acknowledge)  
if loss-of-lock occurred.  
Configuration changed from default  
settings.  
4
5
Relocks the serial link signal.  
Enables video link by setting  
SEREN = 1 (if not enabled  
automatically). Cannot get an  
acknowledge (or gets a dummy  
acknowledge) if loss-of-lock  
occurred. Waits for link to be  
established (~3ms).  
Locks to serial link signal and begins  
deserializing data.  
Begins serializing data.  
SLEEP = 1, VIDEO LINK OR CONFIG  
LINK NOT LOCKED AFTER 8ms  
CONFIG LINK  
CONFIG LINK  
OPERATING  
UNLOCKED  
WAKE-UP  
SIGNAL  
SIGNAL  
POWER-ON  
IDLE  
SERIAL PORT  
LOCKING  
SLEEP  
DETECTED  
PROGRAM  
REGISTERS  
CONFIG LINK  
LOCKED  
0
SLEEP  
VIDEO LINK  
LOCKED  
VIDEO LINK  
UNLOCKED  
SERIAL LINK ACTIVITY STOPS OR 8ms ELAPSES AFTER  
µC SETS SLEEP = 1  
PWDN = HIGH,  
POWER-ON  
GPI CHANGES FROM  
LOW TO HIGH OR  
PRBSEN = 0  
PRBSEN = 1  
SEND GPI TO  
POWER-DOWN  
VIDEO LINK  
OPERATING  
VIDEO LINK  
PRBS TEST  
PWDN = LOW OR  
HIGH TO LOW  
ALL STATES  
OR  
POWER-OFF  
POWER-OFF  
GMSL  
SERIALIZER  
0
SLEEP  
Figure 31. State Diagram, Remote Microcontroller Application  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
In addition, the control channel does not provide arbitra-  
tion between I C masters on both sides of the link. An  
acknowledge frame is not generated when communica-  
Applications Information  
2
Error Checking  
The deserializer checks the serial link for errors and  
stores the number of detected and corrected errors in  
the 8-bit registers, DETERR (0x10) and CORRERR  
(0x12). If a large number of 8b/10b errors are detected  
within a short duration (error rate R 1/4), the deserializer  
loses lock and stops the error counter. The deserializer  
then attempts to relock to the serial data. DETERR and  
CORRERR reset upon successful video link lock, suc-  
cessful readout of their respective registers (through µC),  
or whenever autoerror reset is enabled. The deserializer  
uses a separate PRBS register during the internal PRBS  
test, and DETERR and CORRERR are reset to 0x00.  
tion fails due to contention. If communication across the  
serial link is not required, the µCs can disable the forward  
and reverse control channel using the FWDCCEN and  
REVCCEN bits (0x04, D[1:0]) in the serializer/deserial-  
izer. Communication across the serial link is stopped and  
contention between µCs cannot occur.  
As an example of dual µC use in an image-sensing appli-  
cation, the serializer can be in sleep mode and waiting for  
wake-up by the µC on the deserializer side. After wake-  
up, the serializer-side µC assumes master control of the  
serializer’s registers.  
Changing the Clock Frequency  
It is recommended that the serial link be enabled after  
ERR Output  
The deserializer has an open-drain ERR output. This  
output asserts low whenever the number of detected/  
corrected errors exceeds their respective error thresholds  
during normal operation, or when at least one PRBS error  
is detected during PRBS test. ERR reasserts high when-  
ever DETERR and CORRERR reset, due to DETERR/  
CORRERR readout, video link lock, or autoerror reset.  
the video clock (f  
) and the control-channel  
PCLKOUT  
clock (f  
/f ) are stable. When changing the clock  
UART I2C  
frequency, stop the video clock for 5µs, apply the clock  
at the new frequency, then restart the serial link or toggle  
SEREN. On-the-fly changes in clock frequency are possi-  
ble if the new frequency is immediately stable and without  
glitches. The reverse control channel remains unavailable  
for 350µs after serial link start or stop. When using the  
Autoerror Reset  
UART interface, limit on-the-fly changes in f  
to fac-  
UART  
The default method to reset errors is to read the respec-  
tive error registers in the deserializer (0x10, 0x12, and  
0x13). Autoerror reset clears the error counters DETERR/  
CORRERR and the ERR output ~1Fs after ERR goes low.  
Autoerror reset is disabled on power-up. Enable autoerror  
reset through AUTORST (0x08, D2). Autoerror reset does  
not run when the device is in PRBS test mode.  
tors of less than 3.5 at a time to ensure that the device  
recognizes the UART sync pattern. For example, when  
lowering the UART frequency from 1Mbps to 100kbps,  
first send data at 333kbps then at 100kbps for reduction  
ratios of 3 and 3.333, respectively.  
Fast Detection of  
Loss-of-Synchronization  
Dual µC Control  
A measure of link quality is the recovery time from loss-of-  
synchronization. The host can be quickly notified of loss-  
of-lock by connecting the deserializer’s LOCK output to  
the GPI input. If other sources use the GPI input, such as  
a touch-screen controller, the µC can implement a routine  
to distinguish between interrupts from loss-of-sync and  
normal interrupts. Reverse control-channel communica-  
tion does not require an active forward link to operate and  
accurately tracks the LOCK status of the GMSL link. LOCK  
asserts for video link only and not for the configuration link.  
Usually systems have one µC to run the control channel,  
located on the serializer side for video-display applica-  
tions or on the deserializer side for image-sensing appli-  
cations. However, a µC can reside on each side simulta-  
neously and trade off running the control channel. In this  
case, each µC can communicate with the serializer and  
deserializer and any peripheral devices.  
Contention occurs if both µCs attempt to use the control  
channel at the same time. It is up to the user to prevent  
this contention by implementing a higher-level protocol.  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
CX/TP through a pullup resistor to IOVDD to set a high  
level, a pulldown resistor to GND to set a low level, or  
IOVDD/2 or open to set a midlevel. For digital control, use  
Providing a Frame Sync  
(Camera Applications)  
The GPI/GPO provides a simple solution for camera  
applications that require a frame sync signal from the  
ECU (e.g., surround-view systems). Connect the ECU  
frame sync signal to the GPI input, and connect the GPO  
output to the camera frame sync input. GPI/GPO have  
a typical delay of 275µs. Skew between multiple GPI/  
GPO channels is 115µs (max). If a lower skew signal is  
required, connect the camera’s frame sync input to one of  
three-state logic to drive the three-level logic input.  
Configuration Blocking  
The deserializer can block changes to registers. Set  
CFGBLOCK to make all registers read only. Once set, the  
registers remain blocked until the supplies are removed or  
until PWDN is low.  
2
the GMSL deserializer’s GPIOs and use an I C broadcast  
write command to change the GPIO output state. This has  
a maximum skew of 1.5µs.  
Compatibility with other GMSL Devices  
The MAX9240A deserializer is designed to pair with the  
MAX9271/MAX9273 serializers, but interoperate with any  
GMSL serializers. See the Table 11 for operating limitations.  
Software Programming  
of the Device Addresses  
GPIOs  
Both the serializer and the deserializer have program-  
mable device addresses. This allows multiple GMSL  
The deserializer has two open-drain GPIOs available  
when not used as configuration inputs. GPIO1OUT and  
GPIO0OUT (0x0E, D3 and D1) set the output state of the  
GPIOs. Setting the GPIO output bits to 0 pulls the output  
low, while setting the bits to 1 leaves the output undriven  
and pulled high through internal/external pullup resistors.  
The GPIO input buffers are always enabled. The input  
states are stored in GPIO1 and GPIO0 (0x0E, D2 and  
D0). Set GPIO1OUT/GPIO0OUT to 1 when using GPIO1/  
GPIO0 as an input.  
2
devices, along with I C peripherals, to coexist on the  
same control channel. The serializer device address is in  
register 0x00 of each device, while the deserializer device  
address is in register 0x01 of each device. To change a  
device address, first write to the device whose address  
changes (register 0x00 of the serializer for serializer  
device address change, or register 0x01 of the deserial-  
izer for deserializer device address change). Then write  
the same address into the corresponding register on the  
other device (register 0x00 of the deserializer for serial-  
izer device address change, or register 0x01 of the serial-  
izer for deserializer device address change).  
Staggered Parallel Outputs  
The deserializer staggers the parallel data outputs to  
reduce EMI and noise. Staggering outputs also reduces  
the power-supply transient requirements. By default, the  
deserializer staggers outputs according to Table 12. Disable  
output staggering through the DISSTAG bit (0x08, D3).  
Three-Level Configuration Inputs  
CX/TP is a three-level input that controls the serial-  
interface configuration and power-up defaults. Connect  
Table 11. MAX9240A Feature Compatibility  
MAX9240A FEATURE  
GMSL DESERIALIZER  
HSYNC/VSYNC encoding  
Hamming-code error correction  
I2C-to-I2C  
If feature not supported in the serializer, must be turned off in the deserializer.  
If feature not supported in the serializer, must be turned off in the deserializer.  
If feature not supported in the serializer, must use UART-to-I2C or UART-to-UART.  
CRC error detection  
If feature not supported in the serializer, must be turned off in the deserializer.  
If feature not supported in the serializer, the data is inputted as a single word at 1/2 the output  
frequency.  
Double output  
If feature not supported in the deserializer, must connect unused serial output through 200nF  
and 50Ω in series to AVDD and set the reverse control-channel amplitude to 100mV.  
Coax  
I2S encoding  
If feature is supported in the serializer, must disable I2S in the serializer.  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 12. Staggered Output Delay  
OUTPUT DELAY RELATIVE TO DOUT0 (ns)  
OUTPUT  
DISSTAG = 0  
DISSTAG = 1  
DOUT0–DOUT5, DOUT21, DOUT22  
DOUT6–DOUT10, DOUT23, DOUT24  
DOUT11–DOUT15  
0
0.5  
1
0
0
0
0
0
DOUT16–DOUT20  
1.5  
0.75  
PCLKOUT  
Table 13. Double-Function Configuration  
GPIO0/DBL  
FUNCTION  
GPIO1/BWS  
FUNCTION  
MS/HVEN  
FUNCTION  
LCCEN  
RX/SDA/EDC FUNCTION  
TX/SCL/ES FUNCTION  
MS input  
(low = base mode,  
high = bypass mode)  
Functions as  
GPIO  
Functions as  
GPIO  
High  
UART/I2C input/output  
UART/I2C input/output  
DBL input  
(low = single  
input,  
high = double  
input)  
BWS input  
(low = 24-bit  
mode,  
high = 32-bit  
mode)  
HVEN input  
(low = HS/VS  
encoding disabled,  
high = HS/VS  
EDC input  
ES input  
(low = error detection/  
correction disabled,  
high = error detection/  
correction enabled)  
(low = valid DOUT_ on  
rising edge of PCLKOUT,  
high = valid DOUT_ on  
falling edge of PCLKOUT)  
Low  
encoding enabled)  
Table 13a. Line Fault Mapping  
REGISTER ADDRESS  
BITS  
NAME  
VALUE  
00  
LINE FAULT TYPE  
Negative cable wire shorted to supply voltage  
Negative cable wire shorted to ground  
Normal operation  
01  
D[3:2]  
LFNEG  
10  
11  
Negative cable wire disconnected  
Positive cable wire shorted to supply voltage  
Positive cable wire shorted to ground  
Normal operation  
0x14  
00  
01  
D[1:0]  
LFPOS  
10  
11  
Positive cable wire disconnected  
required external resistor connections. LFLT goes low  
when a line fault is detected and LFLT goes high when  
the line returns to normal. The line-fault failure type is  
stored in 0x14 D[3:0] of the deserializer. Filter LFLT with  
the µC to reduce the detector’s susceptibility to temporary  
ground shifts. The fault detector threshold voltages are  
referenced to the deserializer ground. Additional passive  
components set the DC level of the cable (Figure 2a). If  
the serializer and GMSL deserializer grounds are differ-  
ent, the link DC voltage during normal operation can vary  
and cross one of the fault detection thresholds.  
Local Control-Channel Enable (LCCEN)  
The deserializer provides inputs for limited configura-  
tion of the device when a µC is not connected. Connect  
LCCEN = low upon power-up to disable the local control  
channel and enable the double-function configuration  
inputs (Table 13). All input configuration states are latched  
at power-up.  
Line-Fault Detection  
The line-fault detector in the deserializer monitors for line  
failures such as short to ground, short to battery, and  
open link for system fault diagnosis. Figure 2a shows the  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
For the fault detection circuit, select the resistor’s power  
rating to handle a short to the battery. In coax mode,  
leave the unused line-fault inputs unconnected. To detect  
the short-together case, refer to Application Note 4709:  
GMSL Line-Fault Detection. Table 13a lists the mapping  
for line-fault types.  
transmission line impedance (usually 100Ω differential and  
50Ω single-ended). This leaves the capacitor selection to  
change the system time constant. Use 0.22µF or larger  
high-frequency surface-mount ceramic capacitors, with  
sufficient voltage rating to withstand a short to battery, to  
pass the lower speed reverse control-channel signal. Use  
capacitors with a case size less than 3.2mm x 1.6mm to  
have lower parasitic effects to the high-speed signal.  
Internal Input Pulldowns  
The control and configuration inputs, except three-level  
inputs, include a pulldown resistor to GND. External pull-  
down resistors are not needed.  
Power-Supply Circuits and Bypassing  
The deserializer uses an AVDD and DVDD of 1.7V to  
1.9V. All inputs and outputs, except for the serial input,  
derive power from an IOVDD of 1.7V to 3.6V that scales  
with IOVDD. Proper voltage-supply bypassing is essential  
for high-frequency circuit stability. The GPI-to-GPO delay  
is 0.35ms (max). Keep the time between GPI transmis-  
sions to a minimum 0.35ms.  
2
Choosing I C/UART Pullup Resistors  
2
The I C and UART open-drain lines require a pullup  
resistor to provide a logic-high level. There are tradeoffs  
between power dissipation and speed, and a compromise  
may be required when choosing pullup resistor values.  
Every device connected to the bus introduces some  
Power-Supply Table  
2
capacitance even when the device is not in operation. I C  
specifies 300ns rise times (30% to 70%) for fast mode,  
which is defined for data rates up to 400kbps (see the I C  
specifications in the AC Electrical Characteristics table  
for details). To meet the fast-mode rise-time requirement,  
Power-supply currents shown in the Electrical  
Characteristics table are the sum of the currents from  
AVDD, DVDD, and IOVDD. Typical currents from the indi-  
vidual power supplies are shown in Table 14.  
2
choose the pullup resistors so that rise time t = 0.85 x  
R
Cables and Connectors  
R
x C  
< 300ns. The waveforms are not recog-  
PULLUP  
nized if the transition time becomes too slow. The deserial-  
BUS  
Interconnect for CML typically has a differential imped-  
ance of 100Ω. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities. Coax cables typically have a characteristic  
impedance of 50Ω (contact the factory for 75Ω operation).  
Table 15 lists the suggested cables and connectors used  
in the GMSL link.  
2
2
izer supports I C/UART rates up to 1Mbps (UART-to-I C  
mode) and 400kbps (I C-to-I C mode).  
2
2
AC-Coupling  
AC-coupling isolates the receiver from DC voltages up  
to the voltage rating of the capacitor. Capacitors at the  
serializer output and at the deserializer input are needed  
for proper link operation and to provide protection if either  
end of the cable is shorted to a battery. AC-coupling  
blocks low-frequency ground shifts and low-frequency  
common-mode noise.  
Table 14. Typical Power-Supply Currents  
(Using Worst-Case Input Pattern)  
PCLK (MHz)  
AVDD (mA)  
25.1  
DVDD (mA)  
9.2  
IOVDD (mA)  
10.3  
25  
50  
Selection of AC-Coupling Capacitors  
33.3  
13.7  
13.3  
Voltage droop and the digital sum variation (DSV) of trans-  
mitted symbols cause signal transitions to start from dif-  
ferent voltage levels. Because the transition time is fixed,  
starting the signal transition from different voltage levels  
causes timing jitter. The time constant for an AC-coupled  
link needs to be chosen to reduce droop and jitter to an  
acceptable level. The RC network for an AC-coupled link  
consists of the CML/coax receiver termination resistor  
Table 15. Suggested Connectors and  
Cables for GMSL  
SUPPLIER  
CONNECTOR  
CABLE  
RG174  
TYPE  
Coax  
STP  
Rosenberger 59S2AX-400A5-Y  
JAE  
MX38-FF  
GT11L-2S  
A-BW-Lxxxxx  
(R ), the CML/coax driver termination resistor (R ),  
TR TD  
F-2WME  
AWG28  
and the series AC-coupling capacitors (C). The RC time  
constant, for four equal-value series capacitors, is (C x  
Nissei  
STP  
STP  
Rosenberger D4S10A-40ML5-Z  
Dacar 538  
(R  
+ R ))/4. R  
and R  
are required to match the  
TD  
TR TD  
TR  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Board Layout  
R
D
Separate the LVCMOS logic signals and CML/coax high-  
speed signals to prevent crosstalk. Use a four-layer PCB  
with separate layers for power, ground, CML/coax, and  
LVCMOS logic signals. Layout PCB traces close to each  
other for a 100Ω differential characteristic impedance.  
The trace dimensions depend on the type of trace used  
(microstrip or stripline). Note that two 50Ω PCB traces do  
not have 100Ω differential impedance when brought close  
together—the impedance goes down when the traces  
are brought closer. Use a 50Ω trace for the single-ended  
output when driving coax.  
1M  
1.5kΩ  
CHARGE-CURRENT- DISCHARGE  
LIMIT RESISTOR  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
S
STORAGE  
CAPACITOR  
SOURCE  
Figure 32. Human Body Model ESD Test Circuit  
Route the PCB traces for differential CML channel in par-  
allel to maintain the differential characteristic impedance.  
Avoid vias. Keep PCB traces that make up a differential  
pair equal length to avoid skew within the differential pair.  
R
330  
D
CHARGE-CURRENT- DISCHARGE  
ESD Protection  
LIMIT RESISTOR  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
ESD tolerance is rated for Human Body Model, IEC  
61000-4-2, and ISO 10605. The ISO 10605 and IEC  
61000-4-2 standards specify ESD tolerance for electronic  
systems. The serial link inputs are rated for ISO 10605  
ESD protection and IEC 61000-4-2 ESD protection. All  
pins are tested for the Human Body Model. The Human  
C
150pF  
S
STORAGE  
CAPACITOR  
SOURCE  
Figure 33. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
Body Model discharge components are C = 100pF and  
S
R
= 1.5kΩ (Figure 32). The IEC 61000-4-2 discharge  
D
components are C = 150pF and R = 330Ω (Figure 33).  
S
D
R
2k  
D
The ISO 10605 discharge components are C = 330pF  
S
and R = 2kΩ (Figure 34).  
D
CHARGE-CURRENT- DISCHARGE  
LIMIT RESISTOR  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
STORAGE  
CAPACITOR  
330pF  
SOURCE  
Figure 34. ISO 10605 Contact Discharge ESD Test Circuit  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 16. Register Table (see Table 1)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
Serializer device address.  
D[7:1]  
SERID  
XXXXXXX  
0
1000000  
0x00  
D0  
Reserved.  
0
Deserializer device address. Default address is  
determined by the state of the CX/TP input (Table 8).  
1001000,  
1001001  
D[7:1]  
DESID  
XXXXXXX  
0x01  
0
Normal operation.  
D0  
CFGBLOCK  
0
1
Registers 0x00 to 0x1F are read only.  
No spread spectrum.  
00  
01  
10  
11  
01  
00  
01  
10  
11  
00  
01  
10  
11  
00  
±2% spread spectrum.  
D[7:6]  
D[5:4]  
D[3:2]  
SS  
00  
01  
11  
No spread spectrum.  
±4% spread spectrum.  
Reserved.  
12.5MHz to 25MHz pixel clock.  
25MHz to 50MHz pixel clock.  
Do not use.  
0x02  
PRNG  
Automatically detect the pixel clock range.  
0.5Gbps to 1Gbps serial-data rate.  
1Gbps to 1.5Gbps serial-data rate.  
Automatically detect serial-data rate.  
Automatically detect serial-data rate.  
Calibrate spread-modulation rate only once after locking.  
D[1:0]  
D[7:6]  
SRNG  
11  
Calibrate spread-modulation rate every 2ms after  
locking.  
01  
10  
11  
AUTOFM  
00  
Calibrate spread-modulation rate every 16ms after  
locking.  
0x03  
Calibrate spread-modulation rate every 256ms after  
locking.  
D5  
0
Reserved.  
0
00000  
Autocalibrate sawtooth divider.  
D[4:0]  
SDIV  
00000  
Manual SDIV setting. See the Manual Programming of  
the Spread-Spectrum Divider section.  
XXXXX  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
D7  
NAME  
LOCKED  
OUTENB  
PRBSEN  
SLEEP  
VALUE  
FUNCTION  
0
LOCK output is low.  
LOCK output is high.  
Enable outputs.  
0
(read only)  
1
0
D6  
0
0
0
1
Disable outputs.  
0
Disable PRBS test.  
Enable PRBS test.  
Normal mode.  
D5  
1
0
D4  
1
Activate sleep mode.  
0x04  
00  
01  
10, 11  
0
Local control channel uses I2C when I2CSEL = 0.  
Local control channel uses UART when I2CSEL = 0.  
Local control channel disabled.  
D[3:2]  
D1  
INTTYPE  
01  
1
Disable reverse control channel to serializer (sending).  
Enable reverse control channel to serializer (sending).  
REVCCEN  
1
Disable forward control channel from serializer  
(receiving).  
0
1
0
1
D0  
D7  
FWDCCEN  
1
Enable forward control channel from serializer  
(receiving).  
I2C conversion sends the register address when  
converting UART to I2C.  
I2CMETHOD  
0
Disable sending of I2C register address when  
converting UART to I2C (command-byte-only mode).  
0
Normal parallel output driver current.  
Boosted parallel output driver current.  
Partial periodic HS/VS tracking.  
Full periodic HS/VS tracking.  
Equalizer disabled. Power-up default.  
Equalizer enabled.  
D6  
D5  
D4  
DCS  
HVTRMODE  
ENEQ  
0
1
0
1
0
1
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
11XX  
2.1dB equalizer-boost gain.  
2.8dB equalizer-boost gain.  
3.4dB equalizer-boost gain.  
4.2dB equalizer-boost gain.  
5.2dB equalizer-boost gain.  
6.2dB equalizer-boost gain.  
7dB equalizer-boost gain.  
0x05  
D[3:0]  
EQTUNE  
1001  
8.2dB equalizer-boost gain.  
9.4dB equalizer-boost gain.  
10.7dB equalizer-boost gain. Power-up default.  
11.7dB equalizer-boost gain.  
13dB equalizer-boost gain.  
Do not use.  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
00000010  
0
FUNCTION  
0x06  
D[7:0]  
Reserved.  
00000010  
Single-input mode. Power-up default when LCCEN =  
high or GPIO0/DBL = low.  
D7  
D6  
D5  
DBL  
DRS  
BWS  
0, 1  
Double-input mode. Power-up default when LCCEN =  
low and GPIO0/DBL = high.  
1
0
High data-rate mode.  
Low data-rate mode.  
0
1
24-bit mode. Power-up default when LCCEN = high  
or GPIO1/BWS = low.  
0
0, 1  
32-bit mode. Power-up default when LCCEN = low and  
GPIO1/BWS = high.  
1
Output data valid on rising edge of PCLKOUT.  
Power-up default when LCCEN = high or TX/SCL/ES  
= low. Do not change this value while the pixel clock is  
running.  
0
D4  
ES  
0, 1  
Output data valid on falling edge of PCLKOUT.  
Power-up default when LCCEN = low and TX/SCL/  
ES = high. Do not change this value while the pixel  
clock is running.  
1
0x07  
HS/VS tracking disabled. Power-up default when  
LCCEN = high or MS/HVEN = low.  
0
1
0
1
D3  
HVTRACK  
HVEN  
0, 1  
0, 1  
HS/VS tracking enabled. Power-up default when  
LCCEN = low and MS/HVEN = high.  
HS/VS encoding disabled. Power-up default when  
LCCEN = high or MS/HVEN = low.  
D2  
HS/VS encoding enabled. Power-up default when  
LCCEN = low and MS/HVEN = high.  
1-bit parity error detection (GMSL compatible).  
Power-up default when LCCEN = high or RX/SDA/  
EDC = low.  
00  
01  
10  
11  
6-bit CRC error detection.  
D[1:0]  
EDC  
00, 10  
6-bit hamming code (single-bit error correct, double-  
bit error detect) and 16-word interleaving. Power-up  
default when LCCEN = low and RX/SDA/EDC = high.  
Do not use.  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
No VS or DOUT0 inversion.  
0
Invert VS when HVEN = 1. Invert DOUT0 when  
HVEN = 0.  
Do not use if DBL = 0 in the deserializer and DBL = 1 in  
the serializer.  
D7  
INVVS  
0
1
0
No HS or DOUT1 inversion.  
Invert HS when HVEN = 1. Invert DOUT1 when  
HVEN = 0. Do not use if DBL = 0 in the deserializer and  
DBL = 1 in the serializer.  
D6  
INVHS  
0
1
D5  
D4  
0
0
Reserved.  
0
0
Serializer DBL is not the same as deserializer.  
0x08  
UNEQDBL  
Serializer DBL same as deserializer (set to 1 only when  
HVEN = 0 and HVTRACK = 1).  
1
0
1
0
Enable staggered outputs.  
D3  
DISSTAG  
0
0
Disable staggered outputs.  
Do not automatically reset error registers and outputs.  
D2  
AUTORST  
Automatically reset DETERR and CORRERR registers  
1Fs after ERR asserts.  
1
00  
01  
ERR asserts when DETERR is larger than DETTHR.  
ERR asserts when CORRERR is larger than  
CORRTHR.  
D[1:0]  
ERRSEL  
00  
ERR asserts when DETERR is larger than DETTHR or  
CORRERR is larger than CORRTHR.  
10, 11  
D[7:1]  
D0  
I2CSRCA  
XXXXXXX  
I2C address translator source A.  
0000000  
0x09  
0x0A  
0x0B  
0x0C  
0
Reserved.  
0
D[7:1]  
D0  
I2CDSTA  
XXXXXXX  
I2C address translator destination A.  
Reserved.  
I2C address translator source B.  
0000000  
0
0
D[7:1]  
D0  
I2CSRCB  
XXXXXXX  
0000000  
0
XXXXXXX  
0
Reserved.  
0
0000000  
0
D[7:1]  
D0  
I2CDSTB  
I2C address translator destination B.  
Reserved.  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
NAME  
VALUE  
FUNCTION  
Acknowledge not generated when forward channel is  
not available.  
0
D7  
I2CLOCACK  
1
I2C-to-I2C slave generates local acknowledge when  
forward channel is not available.  
1
00  
352ns/117ns I2C setup/hold time.  
469ns/234ns I2C setup/hold time.  
938ns/352ns I2C setup/hold time.  
1046ns/469ns I2C setup/hold time.  
8.47kbps (typ) I2C-to-I2C master bit-rate setting.  
28.3kbps (typ) I2C-to-I2C master bit-rate setting.  
84.7kbps (typ) I2C-to-I2C master bit-rate setting.  
105kbps (typ) I2C-to-I2C master bit-rate setting.  
173kbps (typ) I2C-to-I2C master bit-rate setting.  
339kbps (typ) I2C-to-I2C master bit-rate setting.  
533kbps (typ) I2C-to-I2C master bit-rate setting.  
837kbps (typ) I2C-to-I2C master bit-rate setting.  
64µs (typ) I2C-to-I2C slave remote timeout.  
256µs (typ) I2C-to-I2C slave remote timeout.  
1024µs (typ) I2C-to-I2C slave remote timeout.  
No I2C-to-I2C slave remote timeout.  
Reserved.  
01  
D[6:5]  
D[4:2]  
D[1:0]  
I2CSLVSH  
I2CMSTBT  
I2CSLVTO  
01  
10  
11  
000  
001  
0x0D  
010  
011  
101  
100  
101  
110  
111  
00  
01  
10  
10  
11  
D[7:6]  
01  
01  
1
0
Disable GPI-to-GPO signal transmission to serializer.  
Enable GPI-to-GPO signal transmission to serializer.  
GPI input is low.  
D5  
GPIEN  
1
0
0
D4  
D3  
D2  
D1  
GPIIN  
(read only)  
1
GPI input is high.  
0
Set GPIO1 to low.  
GPIO1OUT  
GPIO1IN  
1
0x0E  
1
Set GPIO1 to high.  
0
GPIO1 input is low.  
0
(read only)  
1
GPIO1 input is high.  
0
Set GPIO0 to low.  
GPIO0OUT  
1
1
Set GPIO0 to high.  
0
GPIO0 input is low.  
0
D0  
GPIO0IN  
DETTHR  
(read only)  
1
GPIO0 input is high.  
0x0F  
0x10  
0x11  
0x12  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
XXXXXXXX  
Error threshold for detected errors.  
00000000  
00000000  
(read only)  
DETERR  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
Detected error counter.  
CORRTHR  
CORRERR  
Error threshold for corrected errors.  
Corrected error counter.  
00000000  
00000000  
(read only)  
00000000  
(read only)  
0x13  
D[7:0]  
PRBSERR  
XXXXXXXX  
PRBS error counter.  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Table 16. Register Table (see Table 1) (continued)  
REGISTER  
ADDRESS  
DEFAULT  
VALUE  
BITS  
D7  
NAME  
PRBSOK  
VALUE  
FUNCTION  
0
PRBS test not completed.  
0
(read only)  
1
PRBS test completed with success.  
Reserved.  
000  
(read only)  
D[6:4]  
000  
00  
01  
Negative cable wire shorted to supply voltage  
Negative cable wire shorted to ground  
Normal operation  
10  
0x14  
D[3:2]  
D[1:0]  
LFNEG  
(read only)  
10  
11  
Negative cable wire disconnected  
Positive cable wire shorted to supply voltage  
Positive cable wire shorted to ground  
Normal operation  
00  
01  
10  
LFPOS  
(read only)  
10  
11  
Positive cable wire disconnected  
Reserved.  
0x15  
0x16  
0x17  
0x18  
0x19  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
00100XXX  
00110000  
01010100  
00110000  
11001000  
00100XXX  
00110000  
01010100  
00110000  
11001000  
Reserved.  
Reserved.  
Reserved.  
Reserved.  
00000000  
(read only)  
0x1A  
0x1B  
0x1C  
D[7:0]  
D[7:0]  
D[7:0]  
D7  
XXXXXXXX  
XXXXXXXX  
XXXXXXXX  
Reserved.  
Reserved.  
Reserved.  
00000000  
(read only)  
00000000  
(read only)  
0
1
0
1
0
1
0
1
CX/TP input is low.  
CX/TP input is high.  
CXSEL is 0.  
0
CXTP  
CXSEL  
I2CSEL  
LCCEN  
(read only)  
0
D6  
(read only)  
CXSEL is 1.  
Input is low.  
0
0x1D  
D5  
(read only)  
Input is high.  
Input is low.  
0
D4  
(read only)  
Input is high.  
0000  
(read only)  
D[3:0]  
D[7:0]  
D[7:5]  
XXXX  
00001100  
000  
Reserved.  
00001100  
(read only)  
0x1E  
0x1F  
ID  
Device identifier (MAX9240A = 0x0C).  
Reserved.  
000  
(read only)  
0
1
Not HDCP capable.  
HDCP capable.  
Device revision.  
0
D4  
CAPS  
(read only)  
D[3:0]  
REVISION  
XXXX  
(read only)  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Typical Application Circuit  
CAMERA APPLICATION  
PCLK  
DATA  
FS  
PCLKIN  
DIN0–DIN9  
GPO  
PCLKOUT  
PCLK  
DATA  
DOUT0–DOUT9  
CONF1  
CONF0  
CAMERA  
GPU  
MAX9240A  
45k  
5kΩ  
45kΩ  
5kΩ  
MAX9271  
LMN0  
LMN1  
RX/SDA/EDC  
TX/SCL/ES  
TX  
RX  
UART  
TO PERIPHERALS  
LFLT  
GPI  
LFLT  
FS  
RX/SDA/EDC  
TX/SCL/DBL  
LCCEN  
OUT+  
OUT-  
IN+  
IN-  
LOCK  
CX/TP  
50kΩ  
50kΩ  
ECU  
NOTE: NOT ALL PULLUP/PULLDOWN RESISTORS ARE SHOWN. SEE PIN DESCRIPTION FOR DETAILS.  
Package Information  
Ordering Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
PIN-PACKAGE  
48 TQFN-EP*  
48 TQFN-EP*  
MAX9240AGTM+  
MAX9240AGTM/V+**  
-40°C to +105°C  
-40°C to +105°C  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V denotes an automotive qualified part.  
*EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
**Future product—contact factory for availability.  
48 TQFN-EP  
T4877+4  
21-0144  
90-0130  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX9240A  
6.25MHz to 100MHz, 25-Bit GMSL Deserializer for  
Coax or STP Cable With Line Fault Detect  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
3/14  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
51  

相关型号:

MAX9240AGTM+T

Line Driver/Receiver, BICMOS, PQCC48,
MAXIM

MAX9240AGTM/V+

Line Receiver,
MAXIM

MAX9242

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance
MAXIM

MAX9242EUM

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance
MAXIM

MAX9242EUM+

暂无描述
MAXIM

MAX9242EUM+D

暂无描述
MAXIM

MAX9242EUM/V+

Line Receiver, 1 Func, 3 Rcvr, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM

MAX9242GUM

21-Bit Deserializers with Programmable Spread Spectrum and DC Balance
MAXIM

MAX9242GUM+

Line Driver, 1 Func, 1 Driver, CMOS, PDSO48, LEAD FREE, PLASTIC, TSSOP-48
MAXIM

MAX9242GUM+D

Line Receiver
MAXIM

MAX9242GUM+TD

Line Receiver
MAXIM

MAX9242GUM/V+

Line Receiver, 1 Func, 3 Rcvr, CMOS, PDSO48, ROHS COMPLIANT, PLASTIC, TSSOP-48
MAXIM