MAX9210_V01 [MAXIM]

Programmable DC-Balance 21-Bit Deserializers;
MAX9210_V01
型号: MAX9210_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Programmable DC-Balance 21-Bit Deserializers

文件: 总17页 (文件大小:1294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
General Description  
Features  
The MAX9210/MAX9214/MAX9220/MAX9222 deserial-  
ize three LVDS serial data inputs into 21 single-ended  
LVCMOS/ LVTTL outputs. A parallel rate LVDS clock  
received with the LVDS data streams provides timing  
for deserialization. The outputs have a separate supply,  
allowing 1.8V to 5V output logic levels.  
Programmable DC Balance or Non-DC Balance  
DC Balance Allows AC-Coupling for Wider Input  
Common-Mode Voltage Range  
As Low as 8MHz Operation (MAX9210/MAX9220)  
Falling-Edge Output Strobe (MAX9220/MAX9222)  
Slower Output Transitions for Reduced EMI  
The MAX9210/MAX9214/MAX9220/MAX9222 fea-  
ture programmable DC balance, which allows isolation  
between a serializer and deserializer using AC-coupling.  
Each deserializer decodes data transmitted by one of  
MAX9209/MAX9213 serializers.  
(MAX9210/MAX9220)  
High-Impedance Outputs when PWRDWN is Low  
Allow Output Busing  
Pin Compatible with DS90CR216A/DS90CR218A  
The MAX9210/MAX9214 have rising-edge output strobes,  
and when DC balance is not programmed, are compat-  
ible with non-DC-balanced 21-bit deserializers such as  
the DS90CR216A and DS90CR218A. The MAX9220/  
MAX9222 have falling-edge output strobes.  
(MAX9210/MAX9214)  
Fail-Safe Inputs in Non-DC-Balanced Mode  
5V Tolerant PWRDWN Input  
PLL Requires No External Components  
Up to 1.785Gbps Throughput  
Two frequency versions and two DC-balance default  
conditions are available for maximum replacement flex-  
ibility and compatibility with popular non-DC-balanced  
deserializers. The transition time of the single-ended  
outputs is increased on the low-frequency version parts  
(MAX9210/MAX9220) for reduced EMI. The LVDS inputs  
meet IEC 61000-4-2 Level 4 ESD specification, ±15kV for  
Air Discharge and ±8kV Contact Discharge.  
Separate Output Supply Pins Allow Interface to 1.8V,  
2.5V, 3.3V, and 5V Logic  
LVDS Inputs Meet IEC 61000-4-2 Level and ISO  
10605 ESD Requirements  
LVDS Inputs Conform to ANSI TIA/EIA-644 LVDS  
Standard  
The MAX9210/MAX9214/MAX9220/MAX9222 are avail-  
able in a TSSOP package, and operate over the -40°C to  
+85°C temperature range.  
Low-Profile 48-Lead TSSOP Package  
+3.3V Main Power Supply  
-40°C to +85°C Operating Temperature Range  
Applications  
Digital Copiers  
Laser Printers  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
48 TSSOP  
48 TSSOP  
48 TSSOP  
48 TSSOP  
MAX9210EUM  
MAX9214EUM  
MAX9220EUM  
MAX9222EUM  
Functional Diagram and Pin Configuration appear at end of  
data sheet.  
19-2864; Rev 6; 5/14  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
Absolute Maximum Ratings  
V
to GND .........................................................-0.5V to +4.0V  
ESD Protection  
Human Body Model (R = 1.5kΩ, C = 100pF)  
CC  
V
to GND.......................................................-0.5V to +6.0V  
CCO  
D
S
RxIN_, RxCLK IN_ to GND..................................-0.5V to +4.0V  
All Pins to GND ...........................................................±5kV  
PWRDWN to GND ...............................................-0.5V to +6.0V  
IEC 61000-4-2 (R = 330Ω, C = 150pF)  
Contact Discharge (RxIN_, RxCLK IN_) to GND............±8kV  
Air Discharge (RxIN_, RxCLK IN_) to GND..................±15kV  
D
S
DCB/NC to GND....................................... -0.5V to (V  
+ 0.5V)  
+ 0.5V)  
CC  
RxOUT_, RxCLK OUT to GND ..............-0.5V to (V  
CCO  
Continuous Power Dissipation (T = +70°C)  
ISO 10605 (R = 2kΩ, C = 330pF)  
D S  
A
TSSOP (derate 16mW/°C above +70°C) ..................1282mW  
Storage Temperature Range............................ -65°C to +150°C  
Junction Temperature......................................................+150°C  
Contact Discharge (RxIN_, RxCLK IN_) to GND............±8kV  
Air Discharge (RxIN_, RxCLK IN_) to GND..................±25kV  
Lead Temperature (soldering, 10s) .................................+300°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
DC Electrical Characteristics  
(V  
= +3.0V to +3.6V, V  
= +3.0V to +5.5V, PWRDWN = high, DCB/NC = high or low, differential input voltage |V | = 0.05V to  
CC  
CCO ID  
1.2V, input common-mode voltage V  
= |V  
| to 2.4V - |V  
|, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
CM  
ID/2  
ID/2 A  
V
= V  
= +3.3V, |V | = 0.2V, V  
= 1.25V, T = +25°C.) (Notes 1, 2)  
CC  
CCO  
ID  
CM A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SINGLE-ENDED INPUTS (PWRDWN, DCB/NC)  
PWRDWN  
2.0  
2.0  
-0.3  
-20  
5.5  
+ 0.3  
+0.8  
+20  
High-Level Input Voltage  
V
V
IH  
DCB/NC  
V
CC  
Low-Level Input Voltage  
Input Current  
V
I
V
µA  
V
IL  
V
= high or low, PWRDWN = high or low  
IN  
IN  
Input Clamp Voltage  
V
I
= -18mA  
-1.5  
CL  
CL  
SINGLE-ENDED OUTPUTS (RxOUT_, RxCLK OUT)  
I
= -100µA  
V
V
V
V
- 0.1  
OH  
CCO  
CCO  
CCO  
CCO  
RxCLK OUT  
MAX9210/  
- 0.25  
- 0.40  
- 0.25  
High-Level Output Voltage  
V
V
OH  
MAX9220  
I
I
I
= -2mA  
= 100µA  
= 2mA  
RxOUT_  
OH  
OL  
OL  
MAX9214/MAX9222  
0.1  
0.2  
RxCLK OUT  
RxOUT_  
MAX9210/  
MAX9220  
Low-Level Output Voltage  
V
V
OL  
0.26  
0.2  
MAX9214/MAX9222  
PWRDWN = low,  
_ = -0.3V to V  
High-Impedance Output Current  
I
-20  
20  
µA  
OZ  
V
+ 0.3V  
CCO  
OUT  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
DC Electrical Characteristics (continued)  
(V  
= +3.0V to +3.6V, V  
= +3.0V to +5.5V, PWRDWN = high, DCB/NC = high or low, differential input voltage |V | = 0.05V to  
CC  
CCO ID  
1.2V, input common-mode voltage V  
= |V  
| to 2.4V - |V  
|, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
CM  
ID/2  
ID/2 A  
V
= V  
= +3.3V, |V | = 0.2V, V  
= 1.25V, T = +25°C.) (Notes 1, 2)  
A
CC  
CCO  
ID  
CM  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-10  
-5  
TYP  
MAX  
-40  
-20  
-40  
-75  
-37  
-75  
UNITS  
RxCLK OUT  
RxOUT_  
MAX9210/  
MAX9220  
V
= 3.0V  
CCO  
to 3.6V,  
mA  
V
= 0  
Output Short-Circuit Current  
(Note: Short one output at a  
time.)  
OUT  
MAX9214/MAX9222  
-10  
-28  
-14  
-28  
I
OS  
RxCLK OUT  
RxOUT_  
MAX9210/  
MAX9220  
V
= 4.5V  
CCO  
to 5.5V,  
= 0  
V
OUT  
MAX9214/MAX9222  
LVDS INPUTS  
Differential Input High Threshold  
Differential Input Low Threshold  
Input Current  
V
50  
mV  
mV  
µA  
TH  
V
-50  
-25  
TL  
I
,
IN+  
PWRDWN = high or low  
+25  
+25  
I
IN-  
I
,
V
= V = 0 or open,  
CCO  
INO+  
CC  
Power-Off Input Current  
Input Resistor 1  
-25  
42  
µA  
I
DCB/NC, PWRDWN = 0 or open  
INO-  
PWRDWN = high or low, Figure 1  
R
78  
kΩ  
IN1  
IN2  
V
= V  
= 0 or open, Figure 1  
CC  
CCO  
PWRDWN = high or low, Figure 1  
Input Resistor 2  
R
246  
410  
kΩ  
V
= V  
CCO  
= 0 or open, Figure 1  
MAX9210/  
CC  
POWER SUPPLY  
8MHz  
32  
46  
42  
57  
16MHz  
34MHz  
16MHz  
34MHz  
66MHz  
10MHz  
20MHz  
33MHz  
40MHz  
20MHz  
33MHz  
40MHz  
66MHz  
85MHz  
C = 8pF, worst-  
L
case pattern,  
MAX9220  
81  
98  
DC-balanced mode;  
52  
63  
V
= V  
= 3.0V  
CC  
CCO  
MAX9214/  
MAX9222  
to 3.6V, Figure 2  
86  
106  
177  
42  
152  
33  
Worst-Case Supply Current  
I
46  
58  
mA  
CCW  
MAX9210/  
MAX9220  
67  
80  
C = 8pF, worst  
L
case pattern,  
non-DC-balanced  
78  
94  
53  
64  
mode; V  
= V  
CC  
CCO  
72  
85  
= 3.0V to 3.6V,  
Figure 2  
MAX9214/  
MAX9222  
81  
99  
127  
159  
149  
186  
50  
Power-Down Supply Current  
I
PWRDWN = low  
µA  
CCZ  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
AC Electrical Characteristics  
(V  
= V  
= +3.0V to +3.6V, 100mV  
at 200kHz supply noise, C = 8pF, PWRDWN = high, DCB/NC = high or low, differential  
CC  
CCO  
P-P  
L
input voltage |V | = 0.1V to 1.2V, input common mode voltage V  
= |V  
| to 2.4V - |V  
|, T = -40°C to +85°C, unless otherwise  
ID  
CM  
ID/2  
ID/2 A  
noted. Typical values are at V  
= V  
= +3.3V, |V | = 0.2V, V  
= 1.25V, T = 25°C.) (Notes 3, 4, 5)  
CC  
CCO  
ID  
CM A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
3.52  
2.2  
TYP  
5.04  
3.15  
3.15  
3.18  
2.12  
2.12  
7044  
3137  
1327  
685  
MAX  
6.24  
3.9  
UNITS  
RxOUT_  
MAX9210/  
MAX9220  
0.1V  
0.9V  
Figure 3  
to  
to  
CCO  
CCO  
Output Rise Time  
Output Fall Time  
CLHT  
CHLT  
,
,
RxCLK OUT  
ns  
MAX9214/MAX9222  
2.2  
3.9  
RxOUT_  
RxCLK OUT  
1.95  
1.3  
4.35  
2.9  
MAX9210/  
MAX9220  
0.9V  
0.1V  
Figure 3  
CCO  
CCO  
ns  
MAX9214/MAX9222  
8MHz  
1.3  
2.9  
6600  
2560  
900  
330  
6600  
2500  
960  
330  
16MHz  
34MHz  
66MHz  
10MHz  
20MHz  
40MHz  
85MHz  
DC-balanced mode,  
Figure 4 (Note 6)  
RxIN Skew Margin  
RSKM  
ps  
7044  
3300  
1448  
685  
Non-DC-balanced mode,  
Figure 4 (Note 6)  
RxCLK OUT High Time  
RxCLK OUT Low Time  
RCOH  
RCOL  
RSRC  
RHRC  
RCCD  
Figures 5a, 5b  
Figures 5a, 5b  
Figures 5a, 5b  
Figures 5a, 5b  
Figures 6a, 6b  
0.35 x RCOP  
0.35 x RCOP  
0.30 x RCOP  
0.45 x RCOP  
ns  
ns  
ns  
ns  
ns  
RxOUT Setup to RxCLK OUT  
RxOUT Hold from RxCLK OUT  
RxCLK IN to RxCLK OUT Delay  
4.9  
6.17  
8.1  
32800 x RCIP  
100  
Deserializer Phase-Locked Loop  
Set  
RPLLS  
RPDD  
Figure 7  
Figure 8  
ns  
ns  
Deserializer Power-Down Delay  
Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground  
except V and V  
.
TL  
TH  
Note 2: Maximum and minimum limits over temperature are guaranteed by design and characterization. Devices are production  
tested at T = +25°C.  
A
Note 3: AC parameters are guaranteed by design and characterization, and are not production tested. Limits are set at ±6 sigma.  
Note 4: C includes probe and test jig capacitance.  
L
Note 5: RCIP is the period of RxCLK IN. RCOP is the period of RxCLK OUT. RCIP = RCOP.  
Note 6: RSKM measured with ≤ 150ps cycle-to-cycle jitter on RxCLK IN.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
Typical Operating Characteristics  
(V  
= V  
= +3.3V, C = 8pF, PWRDWN = high, differential input voltage │V │ = 0.2V, input common-mode voltage V  
= 1.2V,  
CM  
CC  
CCO  
L
ID  
T
= +25°C, unless otherwise noted.)  
A
WORST-CASE PATTERN AND PRBS  
SUPPLY CURRENT vs. FREQUENCY  
WORST-CASE PATTERN AND PRBS  
SUPPLY CURRENT vs. FREQUENCY  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
MAX9220  
DC-BALANCED MODE  
MAX9220  
NON-DC-BALANCED MODE  
WORST-CASE PATTERN  
WORST-CASE PATTERN  
50  
40  
50  
40  
7
2 - 1 PRBS  
7
2 - 1 PRBS  
30  
20  
30  
20  
5
10  
15  
20  
30  
35  
40  
5
10  
15  
20  
30  
35  
40  
25  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
WORST-CASE PATTERN SUPPLY CURRENT  
vs. FREQUENCY  
WORST-CASE PATTERN SUPPLY CURRENT  
vs. FREQUENCY  
160  
160  
MAX9214  
MAX9214  
DC-BALANCED MODE  
NON-DC-BALANCED MODE  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
30  
5
20  
35  
50  
65  
80  
15  
45  
60  
75  
90  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT TRANSITION TIME  
OUTPUT TRANSITION TIME  
vs. OUTPUT SUPPLY VOLTAGE (V  
)
vs. OUTPUT SUPPLY VOLTAGE (V  
)
CCO  
CCO  
5
7
6
5
4
3
2
1
MAX9220  
MAX9214  
4
3
2
1
t
R
t
R
t
F
t
F
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT SUPPLY VOLTAGE (V)  
OUTPUT SUPPLY VOLTAGE (V)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 2, 4, 5,  
45, 46, 47  
RxOUT14–  
RxOUT20  
Channel 2 Single-Ended Outputs  
Ground  
3, 25, 32, 38, 44  
GND  
LVTTL/LVCMOS DC-Balance Programming Input:  
MAX9210: pulled up to V  
MAX9214: pulled up to V  
MAX9220: pulled up to V  
MAX9222: pulled up to V  
See Table 1.  
CC  
CC  
CC  
CC  
6
DCB/NC  
7, 13, 18  
LVDS GND  
RxIN0-  
LVDS Ground  
8
9
Inverting Channel 0 LVDS Serial Data Input  
Noninverting Channel 0 LVDS Serial Data Input  
Inverting Channel 1 LVDS Serial Data Input  
Noninverting Channel 1 LVDS Serial Data Input  
LVDS Supply Voltage  
RxIN0+  
RxIN1-  
10  
11  
RxIN1+  
12  
LVDS V  
CC  
14  
RxIN2-  
RxIN2+  
Inverting Channel 2 LVDS Serial Data Input  
Noninverting Channel 2 LVDS Serial Data Input  
Inverting LVDS Parallel Rate Clock Input  
Noninverting LVDS Parallel Rate Clock Input  
PLL Ground  
15  
16  
RxCLK IN-  
RxCLK IN+  
PLL GND  
17  
19, 21  
20  
PLL V  
PLL Supply Voltage  
CC  
5V Tolerant LVTTL/LVCMOS Power-Down Input. Internally pulled down to GND. Outputs  
are high impedance when PWRDWN = low or open.  
22  
23  
PWRDWN  
Parallel Rate Clock Single-Ended Output. MAX9210/MAX9214, rising edge strobe.  
MAX9220/MAX9222, falling edge strobe.  
RxCLK OUT  
24, 26, 27, 29,  
30, 31, 33  
RxOUT0–  
RxOUT6  
Channel 0 Single-Ended Outputs  
Output Supply Voltage  
28, 36, 48  
V
CCO  
34, 35, 37, 39,  
40, 41, 43  
RxOUT7–  
RxOUT13  
Channel 1 Single-Ended Outputs  
Digital Supply Voltage  
42  
V
CC  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
Table 1. DC-Balance Programming  
OUTPUT STROBE  
EDGE  
OPERATING  
FREQUENCY (MHz)  
DEVICE  
DCB/NC  
OPERATING MODE  
High or open  
Low  
DC balanced  
Non-DC balanced  
DC balanced  
8 to 34  
MAX9210  
Rising  
Rising  
Falling  
Falling  
10 to 40  
High or open  
Low  
16 to 66  
MAX9214  
MAX9220  
MAX9222  
Non-DC balanced  
DC balanced  
20 to 85  
High or open  
Low  
8 to 34  
Non-DC balanced  
DC balanced  
10 to 40  
High or open  
Low  
16 to 66  
Non-DC balanced  
20 to 85  
Detailed Description  
V
CC  
The MAX9210/MAX9220 operate at a parallel clock  
frequency of 8MHz to 34MHz in DC-balanced mode  
and 10MHz to 40MHz in non-DC-balanced mode. The  
MAX9214/MAX9222 operate at a parallel clock frequency  
of 16MHz to 66MHz in DC-balanced mode and 20MHz to  
85MHz in non-DC-balanced mode. The transition times of  
the single-ended outputs are increased on the MAX9210/  
MAX9220 for reduced EMI.  
RIN2  
RxIN_ + OR  
RxCLK IN+  
RxIN_ + OR  
RxCLK IN+  
V
CC  
- 0.3V  
RIN1  
RIN1  
RIN1  
RIN1  
DC-balanced or non-DC-balanced operation is controlled  
by the DCB/NC pin (see Table 1 for DCB/NC default set-  
tings and operating modes). In non-DC-balanced mode,  
each channel deserializes 7 bits every cycle of the parallel  
clock. In DC-balanced mode, 9 bits are deserialized every  
clock cycle (7 data bits + 2 DCbalance bits). The highest  
data rate in DC-balanced mode for the MAX9214 and  
MAX9222 is 66MHz x 9 = 594Mbps. In non-DC-balanced  
mode, the maximum data rate is 85MHz x 7 = 595Mbps.  
1.2V  
RxIN_ - OR  
RxCLK IN-  
RxIN_ - OR  
RxCLK IN-  
NON-DC-BALANCED MODE  
DC-BALANCED MODE  
DC Balance  
Figure 1. LVDS Input Circuits  
Data coding by the MAX9209/MAX9213 serializers (which  
are companion devices to the MAX9210/MAX9214/  
MAX9220/MAX9222 deserializers) limits the imbalance  
of ones and zeros transmitted on each channel. If +1 is  
assigned to each binary 1 transmitted and -1 is assigned  
to each binary 0 transmitted, the variation in the running  
sum of assigned values is called the digital sum variation  
(DSV). The maximum DSV for the data channels is 10.  
At most, 10 more zeros than ones, or 10 more ones than  
zeros, are transmitted. The maximum DSV for the clock  
channel is five. Limiting the DSV and choosing the correct  
coupling capacitors maintains differential signal amplitude  
and reduces jitter due to droop on AC-coupled links.  
RCIP  
RxCLK OUT  
ODD RxOUT  
EVEN RxOUT  
RISING EDGE STROBE SHOWN.  
Figure 2. Worst-Case Test Pattern  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
90%  
90%  
RxOUT_ OR  
RxCLK OUT  
10%  
10%  
RxOUT_ OR  
RxCLK OUT  
8pF  
CLHT  
CHLT  
Figure 3. Output Load and Transition Times  
IDEAL SERIAL BIT TIME  
1.3V  
1.1V  
RxCLK IN  
V
= 0  
ID  
RCCD  
1.5V  
RxCLK OUT  
RSKM  
RSKM  
IDEAL  
IDEAL  
Figure 6a. Rising-Edge Clock-IN to Clock-OUT Delay  
MIN  
MAX  
INTERNAL STROBE  
+
Figure 4. LVDS Receiver Input Skew Margin  
RxCLK IN  
V
ID  
= 0  
-
RCCD  
RCIP  
1.5V  
RxCLK OUT  
RxCLK OUT  
2.0V  
2.0V  
2.0V  
0.8V  
0.8V  
RCOL  
RCOH  
RHRC  
2.0V  
Figure 6b. Falling-Edge Clock-IN to Clock-OUT Delay  
RSRC  
2.0V  
0.8V  
RxOUT_  
0.8V  
2V  
Figure 5a. Rising-Edge Output Setup/Hold and High/Low Times  
PWRDWN  
3V  
RCIP  
V
CC  
RPLLS  
2.0V  
0.8V  
2.0V  
RxCLK OUT  
0.8V  
0.8V  
RxCLK IN  
RCOH  
RSRC  
RCOL  
RHRC  
2.0V  
0.8V  
2.0V  
0.8V  
RxCLK OUT  
RxOUT_  
HIGH-Z  
Figure 5b. Falling-Edge Output Setup/Hold and High/Low Times  
Figure 7. Phase-Locked Loop Set Time  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
To obtain DC balance on the data channels, the serial-  
izer parallel data is inverted or not inverted, depending  
on the sign of the digital sum at the word boundary. Two  
complementary bits are appended to each group of 7 par-  
allel input data bits to indicate to the MAX9210/MAX9214/  
MAX9220/MAX9222 deserializers whether the data bits  
are inverted (see Figures 9 and 10). The deserializer  
restores the original state of the parallel data. The LVDS  
clock signal alternates duty cycles of 4/9 and 5/9, which  
maintain DC balance.  
PWRDWN  
0.8V  
RxCLK IN  
RPDD  
RxOUT_  
RxCLK OUT  
AC-Coupling Benefits  
Bit errors experienced with DC-coupling can be elimi-  
nated by increasing the receiver common-mode voltage  
range by AC-coupling. AC-coupling increases the com-  
mon-mode voltage range of an LVDS receiver to nearly  
HIGH-Z  
Figure 8. Power-Down Delay  
+
-
RxCLK IN  
CYCLE N - 1  
CYCLE N  
CYCLE N + 1  
TxIN15 TxIN14 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14  
RxIN2  
TxIN8  
RxIN1  
TxIN7  
TxIN0  
TxIN13 TxIN12 TxIN11 TxIN10 TxIN9  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
TxIN13 TxIN12 TxIN11 TxIN10 TxIN9  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
TxIN1  
RxIN0  
TxIN6  
TxIN5  
TxIN4  
TxIN3  
TxIN2  
TxIN6  
TxIN5  
TxIN4  
TxIN3  
TxIN2  
TxIN_ IS DATA FROM THE SERIALIZER.  
Figure 9. Deserializer Serial Input in Non-DC-Balanced Mode  
+
-
RxCLK IN  
CYCLE N - 1  
CYCLE N  
CYCLE N + 1  
DCB2 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14  
DCA2  
RxIN2  
DCB2  
TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14  
DCA2  
DCA1  
DCA0  
DCA1  
RxIN1  
DCB1  
DCB0  
TxIN13 TxIN12 TxIN11 TxIN10 TxIN9  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
DCB1 TxIN13 TxIN12 TxIN11 TxIN10  
TxIN9  
TxIN2  
TxIN8  
TxIN1  
TxIN7  
TxIN0  
DCA0  
RxIN0  
TxIN6  
TxIN5  
TxIN4  
TxIN3  
TxIN2  
DCB0  
TxIN6  
TxIN5  
TxIN4  
TxIN3  
TxIN_, DCA_, AND DCB_ ARE DATA FROM THE SERIALIZER.  
Figure 10. Deserializer Serial Input in DC-Balanced Mode  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
the voltage rating of the capacitor. The typical LVDS  
driver output is 350mV centered on an offset voltage of  
1.25V, making single-ended output voltages of 1.425V  
and 1.075V. An LVDS receiver accepts signals from 0 to  
2.4V, allowing approximately ±1V common-mode differ-  
ence between the driver and receiver on a DC-coupled  
link (2.4V - 1.425V = 0.975V and 1.075V - 0V = 1.075V).  
Common-mode voltage differences may be due to ground  
potential variation or common-mode noise. If there is  
more than ±1V of difference, the receiver is not guaran-  
teed to read the input signal correctly and may cause bit  
errors. AC-coupling filters low-frequency ground shifts and  
common-mode noise and passes high-frequency data. A  
common-mode voltage difference up to the voltage rating  
of the coupling capacitor (minus half the differential swing)  
is tolerated. DC-balanced coding of the data is required to  
maintain the differential signal amplitude and limit jitter on  
an AC-coupled link. A capacitor in series with each output  
of the LVDS driver is sufficient for AC-coupling. However,  
two capacitors—one at the serializer output and one at  
the deserializer input—provide protection in case either  
end of the cable is shorted to a high voltage.  
Applications Information  
Selection of AC-Coupling Capacitors  
Voltage droop and the DSV of transmitted symbols cause  
signal transitions to start from different voltage levels.  
Because the transition time is finite, starting the signal  
transition from different voltage levels causes timing jit-  
ter. The time constant for an AC-coupled link needs to be  
chosen to reduce droop and jitter to an acceptable level.  
The RC network for an AC-coupled link consists of the  
LVDS receiver termination resistor (R ), the LVDS driver  
T
output resistor (R ), and the series AC-coupling capaci-  
O
tors (C). The RC time constant for two equal-value series  
MAX9210  
MAX9214  
MAX9220  
MAX9222  
MAX9209  
MAX9213  
TRANSMISSION LINE  
TxOUT  
RxIN  
7
7
7
7
100  
100Ω  
100Ω  
100Ω  
7 : 1  
7 : 1  
7 : 1  
PLL  
1 : 7  
1 : 7  
1 : 7  
PLL  
7
7
TxIN  
RxOUT  
PWRDWN  
TxCLK IN  
PWRDWN  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 11. DC-Coupled Link, Non-DC-Balanced Mode  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
MAX9210  
MAX9214  
MAX9220  
MAX9222  
HIGH-FREQUENCY, CERAMIC  
SURFACE-MOUNT CAPACITORS  
CAN ALSO BE PLACED AT THE  
MAX9209  
MAX9213  
SERIALIZER INSTEAD OF THE DESERIALIZER.  
TxOUT  
RxIN  
7
7
7
7
100  
100Ω  
100Ω  
100Ω  
(7 + 2):1  
(7 + 2):1  
(7 + 2):1  
PLL  
1:(9 - 2)  
7
TxIN  
1:(9 - 2)  
1:(9 - 2)  
PLL  
RxOUT  
7
PWRDWN  
TxCLK IN  
PWRDWN  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 12. Two Capacitors per Link, AC-Coupled, DC-Balanced Mode  
capacitors is (C x (R + R ))/2 (Figure 12). The RC time  
Equation 1 is for two series capacitors (Figure 12). The  
T
O
constant for four equal-value series capacitors is (C x (R  
bit time (t ) is the period of the parallel clock divided by 9.  
T
B
+ R ))/4 (Figure 13).  
The DSV is 10. See equation 3 for four series capacitors  
(Figure 13).  
O
R is required to match the transmission line impedance  
T
(usually 100Ω) and R is determined by the LVDS driver  
The capacitor for 2% maximum droop at 8MHz parallel  
rate clock is:  
O
design (the minimum differential output resistance of 78Ω  
for the MAX9209/MAX9213 serializers is used in the fol-  
lowing example). This leaves the capacitor selection to  
change the system time constant.  
C = - (2 x t x DSV)/(ln (1 - D) x (R + R ))  
B
T
O
C = - (2 x 13.9ns x 10)/(ln (1 - 0.02) x (100Ω + 78Ω))  
C = 0.0773μF  
In the following example, the capacitor value for a droop  
of 2% is calculated. Jitter due to this droop is then calcu-  
lated assuming a 1ns transition time:  
Jitter due to droop is proportional to the droop and transi-  
tion time:  
t = t x D (Eq 2)  
C = - (2 x t x DSV)/(ln (1 - D) x (R + R )) (Eq 1)  
J
T
B
T
O
where:  
where:  
t = jitter (s).  
J
C = AC-coupling capacitor (F).  
t = transition time (s) (0 to 100%).  
T
t = bit time (s).  
B
D = droop (% of signal amplitude).  
Jitter due to 2% droop and assumed 1ns transition time is:  
DSV = digital sum variation (integer).  
ln = natural log.  
D = droop (% of signal amplitude).  
t = 1ns x 0.02  
J
R = termination resistor (Ω).  
T
t = 20ps  
J
R
= output resistance (Ω).  
O
Maxim Integrated  
11  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
MAX9209  
MAX9213  
MAX9210  
MAX9214  
MAX9220  
MAX9222  
HIGH-FREQUENCY CERAMIC  
SURFACE-MOUNT CAPACITORS  
TxOUT  
RxIN  
7
7
7
7
100  
(7 + 2):1  
(7 + 2):1  
(7 + 2):1  
PLL  
1:(9 - 2)  
7
100Ω  
100Ω  
100Ω  
TxIN  
1:(9 - 2)  
1:(9 - 2)  
PLL  
RxOUT  
7
PWRDWN  
TxCLK IN  
PWRDWN  
RxCLK OUT  
TxCLK OUT  
RxCLK IN  
21:3 SERIALIZER  
3:21 DESERIALIZER  
Figure 13. Four Capacitors per Link, AC-Coupled, DC-Balanced Mode  
The transition time in a real system depends on the fre-  
quency response of the cable driven by the serializer. The  
capacitor value decreases for a higher frequency parallel  
clock and for higher levels of droop and jitter. Use high-  
frequency, surface-mount ceramic capacitors.  
quency. In this case, all outputs are driven low. To prevent  
switching due to noise when the clock input is not driven,  
bias the clock input to differential +15mV by connecting a  
10kΩ ±1% pullup resistor between the noninverting input  
and V , and a 10kΩ ±1% pulldown resistor between the  
CC  
inverting input and ground. These bias resistors, along  
with the 100Ω ±1% tolerance termination resistor, provide  
+15mV of differential input. However, the +15mV bias  
causes degradation of RSKM proportional to the slew  
rate of the clock input. For example, if the clock transi-  
tions 250mV in 500ps, the slew rate of 0.5mV/ps reduces  
RSKM by 30ps.  
Equation 1 altered for four series capacitors (Figure 13) is:  
C = - (4 x t x DSV)/(ln (1 - D) x (R + R )) (Eq 3)  
B
T
O
Fail-Safe  
The MAX9210/MAX9214/MAX9220/MAX9222 have fail-  
safe LVDS inputs in non-DC-balanced mode (Figure 1).  
Fail-safe drives the outputs low when the corresponding  
LVDS input is open, undriven and shorted, or undriven  
and parallel terminated. The fail-safe on the LVDS clock  
input drives all outputs low. Fail-safe does not operate in  
DC-balanced mode.  
Unused LVDS Data Inputs  
In non-DC-balanced mode, leave unused LVDS data  
inputs open. In non-DC balanced mode, the input failsafe  
circuit drives the corresponding outputs low and no pullup  
or pulldown resistors are needed. In DC-balanced mode,  
at each unused LVDS data input, pull the inverting input  
Input Bias and Frequency Detection  
In DC-balanced mode, the inverting and noninverting  
LVDS inputs are internally connected to +1.2V through  
42kΩ (min) to provide biasing for AC-coupling (Figure 1).  
A frequency-detection circuit on the clock input detects  
when the input is not switching, or is switching at low fre-  
up to V  
using a 10kΩ resistor, and pull the noninvert-  
CC  
ing input down to ground using a 10kΩ resistor. Do not  
connect a termination resistor. The pullup and pulldown  
resistors drive the corresponding outputs low and prevent  
switching due to noise.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
inputs are rated for ±8kV Contact Discharge and ±15kV  
Air Discharge. The Human Body Model discharge com-  
PWRDWN  
Driving PWRDWN low puts the outputs in high impedance,  
stops the PLL, and reduces supply current to 50μA or less.  
Driving PWRDWN high drives the outputs low until the  
PLL locks. The outputs of two deserializers ca be bused to  
form a 2:1 mux with the outputs controlled by PWRDWN.  
Wait 100ns between disabling one deserializer (driving  
PWRDWN low) and enabling the second one (driving  
PWRDWN high) to avoid contention of the bused outputs.  
ponents are C = 100pF and R = 1.5kΩ (Figure 15).  
S
D
For the Human Body Model, all pins are rated for ±5kV  
Contact Discharge. The ISO 10605 discharge compo-  
nents are C = 330pF and R = 2kΩ (Figure 16). For  
S
D
ISO 10605, the LVDS inputs are rated for ±8kV Contact  
Discharge and ±25kV Air Discharge.  
5V Tolerant Input  
PWRDWN is 5V tolerant and is internally pulled down to  
Input Clock and PLL Lock Time  
GND. DCB/NC is not 5V tolerant. The input voltage range  
There is no required timing sequence for the application  
or reapplication of the parallel rate clock (RxCLK IN) rela-  
tive to PWRDWN, or to a power-supply ramp for proper  
PLL lock. The PLL lock time is set by an internal counter.  
The maximum time to lock is 32,800 clock periods. Power  
and clock should be stable to meet the lock time specifica-  
tion. When the PLL is locking, the outputs are low.  
for DCB/NC is nominally ground to V . Normally, DCB/  
CC  
NC is connected to V  
or ground.  
CC  
R
D
50TO 100Ω  
330Ω  
CHARGE-CURRENT- DISCHARGE  
Power-Supply Bypassing  
There are separate on-chip power domains for digital cir-  
cuits, outputs, PLL, and LVDS inputs. Bypass each V  
LIMIT RESISTOR  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
150pF  
S
STORAGE  
CAPACITOR  
,
CC  
V
CCO  
, PLL V , and LVDS V  
pin with high-frequency,  
CC  
CC  
SOURCE  
surface-mount ceramic 0.1μF and 0.001μF capacitors in  
parallel as close to the device as possible, with the small-  
est value capacitor closest to the supply pin.  
Figure 14. IEC 61000-4-2 Contact Discharge ESD Test Circuit  
Cables and Connectors  
Interconnect for LVDS typically has a differential imped-  
ance of 100Ω. Use cables and connectors that have  
matched differential impedance to minimize impedance  
discontinuities.  
R
1.5k  
D
1MΩ  
CHARGE-CURRENT- DISCHARGE  
LIMIT RESISTOR  
RESISTANCE  
Twisted-pair and shielded twisted-pair cables offer supe-  
rior signal quality compared to ribbon cable and tend to  
generate less EMI due to magnetic field canceling effects.  
Balanced cables pick up noise as common mode, which  
is rejected by the LVDS receiver.  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
S
STORAGE  
CAPACITOR  
100pF  
SOURCE  
Board Layout  
Figure 15. Human Body ESD Test Circuit  
Keep the LVTTL/LVCMOS outputs and LVDS input sig-  
nals separated to prevent crosstalk. A four-layer print-  
edcircuit board (PCB) with separate layers for power,  
ground, LVDS inputs, and digital signals is recommended.  
R
2k  
D
50TO 100Ω  
CHARGE-CURRENT- DISCHARGE  
ESD Protection  
LIMIT RESISTOR  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
The MAX9210/MAX9214/MAX9220/MAX9222 ESD toler-  
ance is rated for IEC 61000-4-2, Human Body Model and  
ISO 10605 standards. IEC 61000-4-2 and ISO 10605  
specify ESD tolerance for electronic systems. The IEC  
61000-4-2 discharge components are CS = 150pF and  
DEVICE  
UNDER  
TEST  
C
330pF  
S
STORAGE  
CAPACITOR  
SOURCE  
R
= 330Ω (Figure 14). For IEC 61000-4-2, the LVDS  
D
Figure 16. ISO 10605 Contact Discharge ESD Test Circuit  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
The maximum supply current in DC-balanced mode for  
Skew Margin (RSKM)  
V
= V = 3.6V at f = 34MHz is 106mA (from the  
CCO C  
CC  
Skew margin (RSKM) is the time allowed for degrada-  
tion of the serial data sampling setup and hold times by  
sources other than the deserializer. The deserializer sam-  
pling uncertainty is accounted for and does not need to be  
subtracted from RSKM. The main outside contributors of  
jitter and skew that subtract from RSKM are interconnect  
intersymbol interference, serializer pulse position uncer-  
tainty, and pair-to-pair path skew.  
DC Electrical Characteristics table). Add 10.4mA to get  
the total approximate maximum supply current at V  
=
CCO  
5.5V and V  
= 3.6V.  
CC  
If the output supply voltage is less than V  
= 3.6V, the  
CCO  
reduced supply current can be calculated using the same  
formula and method.  
At high switching frequency, high supply voltage, and  
high capacitive loading, power dissipation can exceed  
the package power dissipation rating. Do not exceed  
the maximum package power dissipation rating. See the  
Absolute Maximum Ratings for maximum package power  
dissipation capacity and temperature derating.  
V
Output Supply and Power Dissipation  
CCO  
The outputs have a separate supply (V  
) for inter-  
CCO  
facing to systems with 1.8V to 5V nominal input logic  
levels. The DC Electrical Characteristics table gives the  
maximum supply current for V  
= 3.6V with 8pF load  
CCO  
at several switching frequencies with all outputs switch-  
ing in the worst-case switching pattern. The approximate  
Rising- or Falling-Edge Output Strobe  
The MAX9210/MAX9214 have a rising-edge output strobe,  
which latches the parallel output data into the next chip on  
the rising edge of RxCLK OUT. The MAX9220/MAX9222  
have a falling-edge output strobe, which latches the par-  
allel output data into the next chip on the falling edge of  
RxCLK OUT. The deserializer output strobe polarity does  
not need to match the serializer input strobe polarity. A  
deserializer with rising or falling edge output strobe can  
be driven by a serializer with a rising edge input strobe.  
incremental supply current for V  
other than 3.6V  
CCO  
with the same 8pF load and worst-case pattern can be  
calculated using:  
I = C V 0.5f x 21 (data outputs)  
I
T I  
C
+ CTV f x 1 (clock output)  
I C  
where:  
I = incremental supply current.  
I
C = total internal (C ) and external (C ) load capaci-  
T
INT  
L
tance.  
V = incremental supply voltage.  
I
f
C
= output clock switching frequency.  
The incremental current is added to (for V  
> 3.6V)  
CCO  
or subtracted from (for V  
< 3.6V) the DC Electrical  
CCO  
Characteristics table maximum supply current. The inter-  
nal output buffer capacitance is C = 6pF. The worst-  
INT  
case pattern switching frequency of the data outputs is  
half the switching frequency of the output clock.  
In the following example, the incremental supply current is  
calculated for V  
= 5.5V, f = 34MHz, and C = 8pF:  
CCO  
C L  
V = 5.5V - 3.6V = 1.9V  
I
C = C  
+ C = 6pF + 8pF = 14pF  
L
T
INT  
where:  
I = C V 0.5F x 21 (data outputs) + C V f x 1 (clock  
I
T I  
C
T I C  
output).  
I = (14pF x 1.9V x 0.5 x 34MHz x 21) + (14pF x 1.9V x  
I
34MHz).  
I = 9.5mA + 0.9mA = 10.4mA.  
I
Maxim Integrated  
14  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
Functional Diagram  
Pin Configuration  
DATA  
CHANNEL 0  
LVDS DATA  
RECEIVER 0  
TOP VIEW  
RxOUT0–6  
RxOUT7–13  
RxOUT14–20  
RxCLK OUT  
RxIN0+  
SERIAL-TO-  
PARALLEL  
CONVERTER  
STROBE  
RxOUT17  
RxOUT18  
GND  
1
2
3
4
5
6
7
8
9
48 V  
CCO  
RxIN0-  
47 RxOUT16  
46 RxOUT15  
45 RxOUT14  
44 GND  
DATA  
CHANNEL 1  
LVDS DATA  
RECEIVER 1  
RxOUT19  
RxOUT20  
DCB/NC  
RxIN1+  
SERIAL-TO-  
PARALLEL  
CONVERTER  
STROBE  
RxIN1-  
43 RxOUT13  
DATA  
CHANNEL 2  
LVDS DATA  
RECEIVER 2  
LVDS GND  
RxIN0-  
42 V  
CC  
RxIN2+  
SERIAL-TO-  
PARALLEL  
CONVERTER  
41 RxOUT12  
40 RxOUT11  
39 RxOUT10  
38 GND  
STROBE  
RxIN2-  
RxIN0+  
MAX9210  
MAX9214  
MAX9220  
MAX9222  
RxIN1- 10  
RxIN1+ 11  
LVDS CLOCK  
RECEIVER  
RxCLK IN+  
REFERENCE  
CLOCK  
GENERATOR  
LVDS V  
12  
37 RxOUT9  
7x/9x  
PLL  
CC  
RxCLK IN-  
LVDS GND 13  
RxIN2- 14  
36 V  
CCO  
35 RxOUT8  
34 RxOUT7  
33 RxOUT6  
32 GND  
DCB/NC  
RxIN2+ 15  
PWRDWN  
RxCLK IN- 16  
RxCLK IN+ 17  
LVDS GND 18  
PLL GND 19  
31 RxOUT5  
30 RxOUT4  
29 RxOUT3  
Chip Information  
PROCESS: CMOS  
PLL V  
20  
CC  
PLL GND 21  
PWRDWN 22  
RxCLK OUT 23  
RxOUT0 24  
28  
V
CCO  
27 RxOUT2  
26 RxOUT1  
25 GND  
TSSOP  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0155  
LAND PATTERN NO.  
90-0124  
48 TSSOP  
U48-1  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX9210/MAX9214/  
MAX9220/MAX9222  
Programmable DC-Balance  
21-Bit Deserializers  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
4
3/05  
Various changes  
Removed all references to MAX9212/MAX9216 and thin QFN-EP package; various  
style edits; and updated package outline for TSSOP  
5
6
11/07  
5/14  
1–17  
1
Removed automotive references from the Applications section  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
17  

相关型号:

MAX9211ETM

Programmable DC-Balanced 21-Bit Serializers
MAXIM

MAX9211EUM

Programmable DC-Balanced 21-Bit Serializers
MAXIM

MAX9212

Programmable DC-Balance 21-Bit Deserializers
MAXIM

MAX9212ETM

Programmable DC-Balance 21-Bit Deserializers
MAXIM

MAX9212EUM

Programmable DC-Balance 21-Bit Deserializers
MAXIM

MAX9213ETM

Programmable DC-Balanced 21-Bit Serializers
MAXIM

MAX9213ETM+

Programmable DC-Balanced 21-Bit Serializers
MAXIM

MAX9213ETM-T

Line Driver, 3 Func, 3 Driver, CMOS, 7 X 7 MM, 0.80 MM HEIGHT, MO-220, TQFN-48
MAXIM

MAX9213EUM

Programmable DC-Balanced 21-Bit Serializers
MAXIM

MAX9213EUM+

Programmable DC-Balanced 21-Bit Serializers
MAXIM

MAX9213EUM+D

Line Driver, 3 Func, 3 Driver, CMOS, PDSO48, 6.10 MM, MO-153ED, ROHS COMPLIANT, TSSOP-48
MAXIM

MAX9213EUM+T

Line Driver, 3 Func, 3 Driver, CMOS, PDSO48, 6.10 MM, MO-153ED, ROHS COMPLIANT, TSSOP-48
MAXIM