MAX9122EUE+ [MAXIM]

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO16, 4.40 MM, TSSOP-16;
MAX9122EUE+
型号: MAX9122EUE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Receiver, 4 Func, 4 Rcvr, CMOS, PDSO16, 4.40 MM, TSSOP-16

文件: 总12页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1909; Rev 0; 6/01  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
General Description  
____________________________Features  
The MAX9121/MAX9122 quad low-voltage differential sig-  
naling (LVDS) differential line receivers are ideal for appli-  
cations requiring high data rates, low power, and low  
noise. The MAX9121/MAX9122 are guaranteed to receive  
data at speeds up to 500Mbps (250MHz) over controlled-  
impedance media of approximately 100. The transmis-  
sion media may be printed circuit (PC) board traces or  
cables.  
Integrated Termination Eliminates Four External  
Resistors (MAX9122)  
Flow-Through Pinout  
Simplifies PC Board Layout  
Reduces Crosstalk  
Pin Compatible with DS90LV048A  
Guaranteed 500Mbps Data Rate  
300ps Pulse Skew (max)  
The MAX9121/MAX9122 accept four LVDS differential  
inputs and translate them to LVCMOS outputs. The  
MAX9122 features integrated parallel termination resis-  
tors (nominally 107), which eliminate the requirement  
for four discrete termination resistors and reduce stub  
lengths. The MAX9121 inputs are high impedance and  
require an external termination resistor when used in a  
point-to-point connection.  
Conform to ANSI TIA/EIA-644 LVDS Standard  
Single +3.3V Supply  
Fail-Safe Circuit  
Ordering Information  
The devices support a wide common-mode input range of  
0.05V to 2.35V, allowing for ground potential differences  
and common-mode noise between the driver and the  
receiver. A fail-safe feature sets the output high when the  
inputs are open, or when the inputs are undriven and  
shorted or parallel terminated. The EN and EN inputs con-  
trol the high-impedance output. The enables are common  
to all four receivers. Inputs conform to the ANSI TIA/EIA-  
644 LVDS standard. Flow-through pinout simplifies PC  
board layout and reduces crosstalk by separating the  
LVDS inputs and LVCMOS outputs. The MAX9121/  
MAX9122 operate from a single +3.3V supply, and are  
specified for operation from -40°C to +85°C. These  
devices are available in 16-pin TSSOP and SO packages.  
Refer to the MAX9123 data sheet for a quad LVDS line dri-  
ver with flow-through pinout.  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 TSSOP  
16 SO  
16 TSSOP  
16 SO  
MAX9121EUE  
MAX9121ESE  
MAX9122EUE  
MAX9122ESE  
Pin Configuration appears at end of data sheet.  
Typical Application Circuit  
LVDS SIGNALS  
T
T
T
T
107  
107Ω  
107Ω  
107Ω  
R
R
R
R
X
X
X
X
X
X
X
X
Applications  
Digital Copiers  
Laser Printers  
Cellular Phone Base Stations  
Add/Drop Muxes  
LVTTL/LVCMOS  
DATA INPUT  
LVTTL/LVCMOS  
DATA OUTPUT  
Digital Cross-Connects  
DSLAMs  
Network Switches/Routers  
Backplane Interconnect  
Clock Distribution  
MAX9122  
100SHIELDED TWISTED CABLE OR MICROSTRIP PC BOARD TRACES  
MAX9123  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
ABSOLUTE MAXIMUM RATINGS  
CC  
IN_+, IN_- to GND .................................................-0.3V to +4.0V  
EN, EN to GND...........................................-0.3V to (V  
V
to GND...........................................................-0.3V to +4.0V  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Junction Temperature .....................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Lead Temperature (soldering, 10s) .................................+300°C  
ESD Protection  
+ 0.3V)  
+ 0.3V)  
CC  
CC  
OUT_ to GND .............................................-0.3V to (V  
Continuous Power Dissipation (T = +70°C)  
A
(Human Body Model, IN_+, IN_-) .................................... 8ꢀV  
16-Pin TSSOP (derate 9.4mW/°C above +70°C) .........755mW  
16-Pin SO (derate 8.7mW/°C above +70°C)................696mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, differential input voltage |V | = 0.1V to 1.0V, common-mode voltage V  
= |V /2| to 2.4V - |V /2|,  
CC  
ID  
CM  
ID  
ID  
T
A
= -40°C to +85°C. Typical values are at V = +3.3V, T = +25°C, unless otherwise noted.) (Note 1)  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LVDS INPUTS (IN_+, IN_-)  
Differential Input High Threshold  
Differential Input Low Threshold  
V
100  
mV  
mV  
µA  
µA  
µA  
µA  
Ω  
Ω  
TH  
V
-100  
-20  
-25  
-20  
-25  
35  
TL  
0.1V ≤V ≤ 0.6V  
20  
25  
20  
25  
ID  
Input Current (MAX9121)  
I _+, I _-  
IN IN  
0.6V <V ≤ 1.0V  
ID  
0.1V ≤V ≤ 0.6V, V  
= 0  
= 0  
ID  
CC  
Power-Off Input Current  
(MAX9121)  
I
INOFF  
0.6V <V ≤ 1.0V, V  
ID  
CC  
Input Resistor 1  
Input Resistor 2  
R
R
V
V
= 3.6V or 0, Figure 1  
= 3.6V or 0, Figure 1  
IN1  
CC  
CC  
132  
IN2  
Differential Input Resistance  
(MAX9122)  
R
V
= 3.6V or 0, Figure 1  
90  
107  
3.2  
132  
DIFF  
CC  
LVCMOS/LVTTL OUTPUTS (OUT_)  
Open, undriven short, or  
undriven 100parallel  
termination  
2.7  
I
= -4.0mA  
OH  
(MAX9121)  
Output High Voltage (Table 1)  
V
V
OH  
V
= +100mV  
2.7  
2.7  
2.7  
3.2  
3.2  
3.2  
0.1  
ID  
Open or undriven short  
= +100mV  
I
= -4.0mA  
OH  
(MAX9122)  
V
ID  
Output Low Voltage  
V
I
= +4.0mA, V = -100mV  
0.25  
-120  
+10  
V
OL  
OS  
OZ  
OL  
ID  
Output Short-Circuit Current  
Output High-Impedance Current  
I
I
Enabled, V = 0.1V, V  
_ = 0 (Note 2)  
OUT  
-15  
-10  
mA  
µA  
ID  
Disabled, V  
= 0 or V  
CC  
OUT  
2
_______________________________________________________________________________________  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, differential input voltage |V | = 0.1V to 1.0V, common-mode voltage V  
= |V /2| to 2.4V - |V /2|,  
CC  
ID  
CM  
ID  
ID  
T
A
= -40°C to +85°C. Typical values are at V = +3.3V, T = +25°C, unless otherwise noted.) (Note 1)  
CC A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOGIC INPUTS (EN, EN)  
Input High Voltage  
Input Low Voltage  
Input Current  
V
2.0  
0
V
V
V
IH  
CC  
V
0.8  
15  
IL  
I
V
= V or 0  
CC  
-15  
µA  
IN  
IN_  
SUPPLY  
Supply Current  
I
Enabled, inputs open  
Disabled, inputs open  
9
15  
mA  
mA  
CC  
Disabled Supply Current  
I
0.07  
0.5  
CCZ  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +3.0V to +3.6V, C = 15pF, differential input voltage |V | = 0.2V to 1.0V, common-mode voltage V  
= |V /2| to 2.4V -  
CM ID  
CC  
L
ID  
|V /2|, input rise and fall time = 1ns (20% to 80%), input frequency = 100MHz, T = -40°C to +85°C. Typical values are at V  
=
ID  
A
CC  
+3.3V, V  
= 1.2V, |V | = 0.2V, T = +25°C, unless otherwise noted.) (Notes 3, 4)  
CM  
ID A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Propagation Delay  
High to Low  
t
Figures 2 and 3  
Figures 2 and 3  
Figures 2 and 3  
Figures 2 and 3  
Figures 2 and 3  
Figures 2 and 3  
1.2  
1.93  
2.7  
ns  
PHLD  
Differential Propagation Delay  
Low to High  
t
1.2  
1.79  
140  
2.7  
300  
400  
0.8  
1.5  
ns  
ps  
ps  
ns  
ns  
PLHD  
Differential Pulse Sꢀew [t  
-
PHLD  
t
t
t
t
SKD1  
SKD2  
SKD3  
SKD4  
t
] (Note 5)  
PLHD  
Differential Channel-to-Channel  
Sꢀew (Note 6)  
Differential Part-to-Part Sꢀew  
(Note 7)  
Differential Part-to-Part Sꢀew  
(Note 8)  
Rise-Time  
t
t
Figures 2 and 3  
Figures 2 and 3  
0.55  
0.54  
1.0  
1.0  
14  
14  
70  
70  
ns  
ns  
ns  
ns  
ns  
ns  
TLH  
THL  
PHZ  
Fall-Time  
Disable Time High to Z  
Disable Time Low to Z  
Enable Time Z to High  
Enable Time Z to Low  
t
R = 2ꢀ, Figures 4 and 5  
L
t
R = 2ꢀ, Figures 4 and 5  
L
PLZ  
PZH  
t
R = 2ꢀ, Figures 4 and 5  
L
t
R = 2ꢀ, Figures 4 and 5  
L
PZL  
Maximum Operating Frequency  
(Note 9)  
f
All channels switching  
250  
300  
MHz  
MAX  
_______________________________________________________________________________________  
3
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3.0V to +3.6V, C = 15pF, differential input voltage |V | = 0.2V to 1.0V, common-mode voltage V  
= |V /2| to 2.4V -  
CM ID  
CC  
L
ID  
|V /2|, input rise and fall time = 1ns (20% to 80%), input frequency = 100MHz, T = -40°C to +85°C. Typical values are at V  
=
ID  
A
CC  
+3.3V, V  
= 1.2V, |V | = 0.2V, T = +25°C, unless otherwise noted.) (Notes 3, 4)  
CM  
ID A  
Note 1: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground  
except V , V , and V  
.
ID  
TH TL  
Note 2: Short only one output at a time. Do not exceed the absolute maximum junction temperature specification.  
Note 3: AC parameters are guaranteed by design and characterization.  
Note 4: C includes scope probe and test jig capacitance.  
L
Note 5: t  
Note 6: t  
Note 7: t  
is the magnitude difference of differential propagation delays in a channel. t  
= |t  
- t  
|.  
SKD1  
SKD2  
SKD3  
SKD1  
PHLD PLHD  
is the magnitude difference of the t  
or t  
of one channel and the t  
or t  
of any other channel on the same part.  
PLHD  
PHLD  
PLHD  
PHLD  
is the magnitude difference of any differential propagation delays between parts operating over rated conditions at  
and within 5°C of each other.  
the same V  
CC  
Note 8: t  
Note 9: f  
is the magnitude difference of any differential propagation delays between parts operating over rated conditions.  
SKD4  
MAX  
generator output conditions: rise-time = fall-time = 1ns (0% to 100%), 50% duty cycle, V  
= +1.3V, V = +1.1V,  
OH  
OL  
MAX9121/MAX9122 output criteria: 60% to 40% duty cycle, V = 0.4V (max), V  
= 2.7V (min), load = 15pF.  
OL  
OH  
Typical Operating Characteristics  
(V  
= +3.3V, V  
= +1.2V, |V | = 0.2V, C = 15pF, T = +25°C, unless otherwise noted.) (Figures 2 and 3)  
CM ID L A  
CC  
SUPPLY CURRENT  
vs. FREQUENCY  
SUPPLY CURRENT vs.  
TEMPERATURE  
DIFFERENTIAL THRESHOLD VOLTAGE  
vs. SUPPLY VOLTAGE  
40  
30  
11.00  
10.50  
10.00  
9.50  
9.00  
8.50  
8.00  
7.50  
7.00  
50  
40  
30  
20  
10  
0
ALL  
CHANNELS  
SWITCHING  
20  
10  
ONE  
SWITCHING  
0
0.01  
0.1  
1
10  
100  
1000  
-40  
-15  
10  
35  
60  
85  
3.0  
3.3  
3.6  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OUTPUT HIGH-IMPEDANCE CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT SHORT-CIRCUIT CURRENT  
vs. SUPPLY VOLTAGE  
OUTPUT HIGH VOLTAGE vs.  
SUPPLY VOLTAGE  
-95  
-90  
-85  
-80  
-75  
-70  
-65  
1.30  
1.25  
1.20  
1.15  
1.10  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
3.0  
3.3  
3.6  
3.0  
3.3  
3.6  
3.0  
3.3  
3.6  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
Typical Operating Characteristics (continued)  
(V  
= +3.3V, V  
= +1.2V, |V | = 0.2V, C = 15pF, T = +25°C, unless otherwise noted.) (Figures 2 and 3)  
CC  
CM  
ID  
L
A
OUTPUT LOW VOLTAGE  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL PROPAGATION DELAY  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL PROPAGATION DELAY  
vs. TEMPERATURE  
100  
2.20  
2.10  
2.00  
1.90  
1.80  
1.70  
1.60  
99  
98  
97  
96  
95  
94  
93  
92  
2.10  
1.90  
1.70  
1.50  
t
PHLD  
t
PHLD  
t
PLHD  
t
PLHD  
3.0  
3.3  
3.6  
3.0  
3.3  
SUPPLY VOLTAGE (V)  
3.6  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
DIFFERENTIAL PROPAGATION DELAY  
vs. DIFFERENTIAL INPUT VOLTAGE  
DIFFERENTIAL PULSE SKEW vs.  
SUPPLY VOLTAGE  
DIFFERENTIAL PROPAGATION DELAY  
vs. COMMON-MODE VOLTAGE  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
200  
175  
150  
125  
100  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
t
PHLD  
t
PHLD  
t
PLHD  
t
PLHD  
100  
900  
1700  
2500  
3.0  
3.3  
3.6  
-0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
DIFFERENTIAL INPUT VOLTAGE (mV)  
SUPPLY VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
TRANSITION TIME vs.  
SUPPLY VOLTAGE  
TRANSITION TIME vs.  
TEMPERATURE  
650  
600  
575  
550  
525  
500  
625  
600  
575  
550  
525  
500  
475  
450  
t
TLH  
t
TLH  
t
t
THL  
THL  
3.0  
3.3  
SUPPLY VOLTAGE (V)  
3.6  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
Pin Description  
PIN  
NAME  
IN_-  
FUNCTION  
1, 4, 5, 8  
2, 3, 6, 7  
Inverting Differential Receiver Inputs  
IN_+  
Noninverting Differential Receiver Inputs  
Receiver Enable Inputs. When EN = high and EN = low or open, the outputs are active. For  
other combinations of EN and EN, the outputs are disabled and in high impedance.  
9, 16  
EN, EN  
10, 11, 14, 15  
OUT_  
GND  
LVCMOS/LVTTL Receiver Outputs  
Ground  
12  
13  
V
Power-Supply Input. Bypass V  
to GND with 0.1µF and 0.001µF ceramic capacitors.  
CC  
CC  
Table 1. Input/Output Function Table  
ENABLES  
INPUTS  
(IN_+) - (IN_-)  
OUTPUT  
EN  
EN  
OUT_  
V
+100mV  
-100mV  
H
L
ID  
V
ID  
H
L or open  
Open, undriven short, or undriven  
100parallel termination  
MAX9121  
MAX9122  
H
Z
Open or undriven short  
All other combinations of ENABLE pins  
Dont care  
ences of the transmitter and the receiver, the common-  
mode effects of coupled noise, or both. The LVDS stan-  
dards specify an input voltage range of 0 to +2.4V  
referenced to receiver ground.  
Detailed Description  
The LVDS interface standard is a signaling method  
intended for point-to-point communication over a con-  
trolled-impedance medium as defined by the ANSI  
TIA/EIA-644 and IEEE 1596.3 standards. The LVDS stan-  
dard uses a lower voltage swing than other common  
communication standards, achieving higher data rates  
with reduced power consumption while reducing EMI  
emissions and system susceptibility to noise.  
The MAX9122 has an integrated termination resistor  
that is internally connected across each receiver input.  
The internal termination saves board space, eases lay-  
out, and reduces stub length compared to an external  
termination resistor. In other words, the transmission  
line is terminated on the IC.  
The MAX9121/MAX9122 are 500Mbps, four-channel  
LVDS receivers intended for high-speed, point-to-point,  
low-power applications. Each channel accepts an  
LVDS input and translates it to an LVTTL/LVCMOS out-  
put. The receiver is capable of detecting differential  
signals as low as 100mV and as high as 1V within an  
input voltage range of 0 to 2.4V. The 250mV to 400mV  
differential output of an LVDS driver is nominally cen-  
tered around a +1.2V offset. This offset, coupled with  
the receivers 0 to 2.4V input voltage range, allows an  
approximate 1V shift in the signal (as seen by the  
receiver). This allows for a difference in ground refer-  
Fail-Safe  
The fail-safe feature of the MAX9121/MAX9122 sets an  
output high when:  
Inputs are open.  
Inputs are undriven and shorted.  
Inputs are undriven and terminated.  
A fail-safe circuit is important because under these  
conditions, noise at the inputs may switch the receiver  
and it may appear to the system that data is being  
6
_______________________________________________________________________________________  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
V
CC  
V
CC  
R
IN2  
R
IN2  
V
CC  
- 0.3V  
V
CC  
- 0.3V  
IN_+  
IN_-  
IN_+  
R
R
R
R
IN1  
IN1  
OUT_  
OUT_  
R
DIFF  
IN1  
IN1  
IN_-  
MAX9121  
MAX9122  
Figure 1. Input with Fail-Safe Network  
received. Open or undriven terminated input conditions  
can occur when a cable is disconnected or cut, or  
when the LVDS driver outputs are high impedance. A  
short condition can occur because of a cable failure.  
close to the device as possible, with the smaller valued  
capacitor closest to V  
.
CC  
Differential Traces  
Input trace characteristics affect the performance of the  
MAX9121/MAX9122. Use controlled-impedance PC  
board traces to match the cable characteristic imped-  
ance. The termination resistor is also matched to this  
characteristic impedance.  
The fail-safe input networꢀ (Figure 1) samples the input  
common-mode voltage and compares it to V  
- 0.3V  
CC  
(nominal). When the input is driven to levels specified in  
the LVDS standards, the input to the common-mode  
voltage is less than V  
- 0.3V and the fail-safe circuit  
CC  
Eliminate reflections and ensure that noise couples as  
common mode by running the differential traces close  
together. Reduce sꢀew by matching the electrical  
length of the traces. Excessive sꢀew can result in a  
degradation of magnetic field cancellation.  
is not activated. If the inputs are open or if the inputs  
are undriven and shorted or undriven and parallel ter-  
minated, there is no input current. In this case, a pullup  
resistor in the fail-safe circuit pulls both inputs above  
V
- 0.3V, activating the fail-safe circuit and forcing  
CC  
the output high.  
Each channels differential signals should be routed  
close to each other to cancel their external magnetic  
field. Maintain a constant distance between the differ-  
ential traces to avoid discontinuities in differential  
impedance. Avoid 90° turns and minimize the number  
of vias to further prevent impedance discontinuities.  
Applications Information  
Power-Supply Bypassing  
Bypass the V  
pin with high-frequency surface-mount  
CC  
ceramic 0.1µF and 0.001µF capacitors in parallel as  
_______________________________________________________________________________________  
7
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
IN_+  
PULSE  
GENERATOR**  
OUT_  
C
L
IN_-  
50*  
50*  
RECEIVER ENABLED  
1/4 MAX9121/MAX9122  
*50REQUIRED FOR PULSE GENERATOR.  
**WHEN TESTING THE MAX9122, ADJUST THE  
PULSE GENERATOR OUTPUT TO ACCOUNT  
FOR INTERNAL TERMINATION RESISTOR.  
Figure 2. Propagation Delay and Transition Time Test Circuit  
IN_-  
IN_+  
V
ID  
= 0  
V
ID  
V
ID  
= 0  
t
t
PLHD  
PHLD  
V
V
OH  
80%  
50%  
80%  
V
= (V ) - (V  
)
ID  
IN_+  
IN_-  
NOTE: V = (V + V )  
IN+  
CM  
IN-  
2
50%  
20%  
20%  
OUT_  
OL  
t
t
THL  
TLH  
Figure 3. Propagation Delay and Transition Time Waveforms  
value of the integrated resistor is specified in the DC  
characteristics.  
Cables and Connectors  
Transmission media typically have a controlled differen-  
tial impedance of 100. Use cables and connectors  
that have matched differential impedance to minimize  
impedance discontinuities.  
The MAX9121 requires an external termination resistor.  
The termination resistor should match the differential  
impedance of the transmission line. Termination resis-  
tance values may range between 90to 132,  
depending on the characteristic impedance of the  
transmission medium.  
Avoid the use of unbalanced cables such as ribbon or  
simple coaxial cable. Balanced cables such as twisted  
pair offer superior signal quality and tend to generate  
less EMI due to magnetic field canceling effects.  
Balanced cables picꢀ up noise as common mode,  
which is rejected by the LVDS receiver.  
When using the MAX9121, minimize the distance  
between the input termination resistors and the  
MAX9121 receiver inputs. Use 1% surface-mount resis-  
tors.  
Termination  
The MAX9122 has an integrated termination resistor  
connected across the inputs of each receiver. The  
8
_______________________________________________________________________________________  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
V
CC  
S
1
R
L
IN_+  
IN_-  
DEVICE  
UNDER  
TEST  
OUT_  
GENERATOR  
EN  
EN  
C
L
50Ω  
1/4 MAX9121/MAX9122  
C INCLUDES LOAD AND TEST JIG CAPACITANCE.  
L
S = V FOR t AND t MEASUREMENTS.  
1
CC  
PZL  
PLZ  
S = GND FOR t AND t MEASUREMENTS.  
1
PZH  
PHZ  
Figure 4. High-Impedance Delay Test Circuit  
EN WHEN EN = GND OR OPEN  
3V  
0
1.5V  
1.5V  
1.5V  
3V  
0
1.5V  
EN WHEN EN = V  
CC  
t
PZL  
V
CC  
t
t
PLZ  
50%  
OUTPUT WHEN  
= -100mV  
0.5V  
V
V
OL  
V
ID  
t
PZH  
PHZ  
OUTPUT WHEN  
= +100mV  
OH  
0.5V  
V
ID  
50%  
GND  
Figure 5. High-Impedance Delay Waveforms  
Board Layout  
Because the MAX9121/MAX9122 feature a flow-through  
pinout, no special layout precautions are required.  
Keep the LVDS and any other digital signals separated  
from each other to reduce crosstalꢀ.  
Chip Information  
TRANSISTOR COUNT: 1354  
PROCESS: CMOS  
For LVDS applications, a four-layer PC board that pro-  
vides separate power, ground, LVDS signals, and input  
signals is recommended. Isolate the input LVDS signals  
from each other to prevent coupling. Isolate the output  
LVCMOS/LVTTL signals from each other to prevent  
coupling. Separate the input LVDS signals from the out-  
put signals planes with the power and ground planes  
for best results.  
_______________________________________________________________________________________  
9
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
Functional Diagram  
V
CC  
V
CC  
IN1+  
IN1+  
OUT1  
OUT2  
OUT3  
OUT4  
OUT1  
OUT2  
OUT3  
OUT4  
107Ω  
107Ω  
107Ω  
107Ω  
IN1-  
IN2+  
IN1-  
IN2+  
IN2-  
IN3+  
IN2-  
IN3+  
IN3-  
IN4+  
IN3-  
IN4+  
IN4-  
IN4-  
EN  
EN  
EN  
EN  
MAX9121  
MAX9122  
GND  
GND  
Pin Configuration  
TOP VIEW  
IN1-  
IN1+  
IN2+  
IN2-  
IN3-  
IN3+  
IN4+  
IN4-  
1
2
3
4
5
6
7
8
16 EN  
15 OUT1  
14 OUT2  
MAX9121  
MAX9122  
13 V  
CC  
12 GND  
11 OUT3  
10 OUT4  
9
EN  
TSSOP/SO  
10 ______________________________________________________________________________________  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
Package Information  
______________________________________________________________________________________ 11  
Quad LVDS Line Receivers with  
Integrated Termination and Flow-Through Pinout  
Package Information (continued)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademarꢀ of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY