MAX8934AEVKIT+ [MAXIM]

Fully Assembled and Tested;
MAX8934AEVKIT+
型号: MAX8934AEVKIT+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Fully Assembled and Tested

文件: 总15页 (文件大小:499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
General Description  
Features  
S Battery Temperature Monitor Adjusts Charge  
The MAX8934A evaluation kit (EV kit) is a fully assem-  
bled and tested circuit for evaluating the MAX8934A  
dual-input linear charger and Smart Power SelectorK  
with advanced temperature monitoring.  
Current and Termination Voltage Automatically  
Potentiometer Adjustment Available  
0603 Thermistor Footprint Available  
The EV kit charges a single-cell lithium-ion (Li+)  
battery from either a DC input (AC adapter) or a USB  
100mA/500mA source, and provides system power  
from the DC input, USB input, or battery. The DC input  
has a resistor-adjustable current limit up to 2A, while  
the USB input-current limit is logic programmable to  
100mA/500mA. USB suspend mode is also supported.  
The charge current limit is adjustable from 300mA to  
1.5A. The system load has priority over the charger,  
so charge current is reduced as necessary to prevent  
input overload. Charge current is also thermally regu-  
lated. Advanced battery temperature monitoring adjusts  
charge current and termination voltage automatically.  
Advanced Thermistor Configuration Available  
(R21, R22)  
Thermistor Enable Input (THMEN)  
S Adjustable Input-Current Limit and Fast-Charge  
Current Limit  
Fast-Charge Current Limit: 750mA and 1.5A  
(JU5)  
USB Input-Current Limit: 475mA and 95mA  
(PEN1, PEN2)  
DC Input-Current Limit Up to 2A (R2)  
S Status LED Indicators: DOK, UOK, CHG, DONE,  
FLT, and OT  
The EV kit comes standard with the MAX8934A installed,  
but can also be used to evaluate the MAX8934B,  
MAX8934C, MAX8934D, and MAX8934E by replacing  
the MAX8934A (U1) with the MAX8934_. Request a free  
sample of the MAX8934_ when ordering the EV kit.  
S USB Suspend Logic Input  
S 3.3V Always-On LDO  
S Fully Assembled and Tested  
Ordering Information  
PART  
TYPE  
MAX8934AEVKIT+  
EV KIT  
+Denotes lead(Pb)-free and RoHS compliant.  
Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
10FF Q10%, 16V X5R ceramic  
capacitor (0805)  
Taiyo Yuden EMK212BJ106KG  
1FF Q10%, 6.3V X5R ceramic  
capacitor (0402)  
Taiyo Yuden JMK105BJ105KV  
C1  
C2  
1
1
C6  
C7  
1
1
0.1FF Q10%, 10V X5R ceramic  
capacitor (0402)  
4.7FF Q10%, 10V X5R ceramic  
capacitor (0805)  
Taiyo Yuden LMK105BJ104KV  
Taiyo Yuden LMK212BJ475KD  
0.068FF Q10%, 16V X5R ceramic  
capacitor (0402)  
Taiyo Yuden EMK105BJ683KV  
4.7FF Q10%, 6.3V X5R ceramic  
capacitor (0805)  
Taiyo Yuden JMK212BJ475KD  
C3  
1
0
C8  
C9  
1
0
Not installed, ceramic capacitors  
(0402)  
Not installed, ceramic capacitor  
(1206)  
C4, C5, C10  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-5308; Rev 1; 1/14  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
R5, R21  
0
Not installed, resistors (0402)  
10FF Q10%, 6.3V X5R ceramic  
capacitor (0805)  
Taiyo Yuden JMK212BJ106KD  
C11  
1
Not installed, NTC thermistor  
(0603)  
Vishay NTHS0603N01N1003FF  
Murata NCP15WF104F03  
R6  
0
Red LEDs (0603)  
Panasonic LNJ208R8ARA  
or  
Green LEDs  
Avago HSMG-C190  
D1–D6  
J1, J2  
6
100kI Q1% resistors (0402),  
lead free  
R7, R8  
2
6
1MI Q5% resistors (0402), lead  
free  
R14–R19  
USB type-AB mini jacks, right  
angle  
Molex 56579-0576  
2
5
500kI, 25-turn potentiometer  
Bourns 3296Y-1-504 LF  
R20  
R22  
1
1
0I Q1% resistor (0402), lead free  
3-pin headers, 0.1in centers  
Sullins PEC36SAAN  
Digi-Key S1012E-36-ND  
JU1, JU2, JU3,  
JU6, JU8  
Dual-input linear battery charger  
(28 TQFN-EP*)  
U1  
1
Maxim MAX8934AETI+  
2-pin headers, 0.1in centers  
Sullins PEC36SAAN  
Digi-Key S1012E-36-ND  
JU4, JU5, JU7,  
JU9–JU17  
12  
Shunts  
Sullins STC02SYAN,  
Mouser 151-8000, or  
Digi-Key S9000-ND  
14  
1
4.7kI Q5% resistors (0402), lead  
free  
R1, R9–R13  
R2  
6
1
2
PCB: MAX8934A EVALUATION  
KIT+  
1.5kI Q1% resistor (0402), lead  
free  
4kI Q1% resistors (0402), lead  
free  
*EP = Exposed pad.  
R3, R4  
Component Suppliers  
SUPPLIER  
PHONE  
WEBSITE  
Avago Technologies  
Bourns, Inc.  
877-673-9442  
408-496-0706  
800-344-4539  
800-768-6539  
800-346-6873  
770-436-1300  
800-344-2112  
760-744-0125  
800-348-2496  
847-803-6100  
402-563-6866  
www.avagotech.com  
www.bourns.com  
Digi-Key Corp.  
www.digikey.com  
Molex  
www.molex.com  
Mouser Electronics  
Murata Electronics North America, Inc.  
Panasonic Corp.  
Sullins Electronics Corp.  
Taiyo Yuden  
www.mouser.com  
www.murata-northamerica.com  
www.panasonic.com  
www.sullinselectronics.com  
www.t-yuden.com  
TDK Corp.  
www.component.tdk.com  
www.vishay.com  
Vishay  
Note: Indicate that you are using the MAX8934_ when contacting these component suppliers.  
2
Maxim Integrated  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
10) Increase the load current on SYS to 1.5A.  
Quick Start  
Recommended Equipment  
Adjustable DC power supply capable of at least 3A  
at 7V  
11) Verify that the charge current into the battery is  
approximately 0.5A.  
12) Increase the load current on SYS to 2.5A.  
13) Verify that the current out of the battery is approxi-  
mately 0.5A.  
Battery or simulated battery  
1-cell Li+ or Li-Poly battery (Figure 1A)  
Simulated battery; preloaded power supply  
(Figure 1B)  
Detailed Description of Hardware  
Adjusting the EV Kit for  
In-Circuit Evaluation  
Follow the steps below to ensure that the EV kit is config-  
ured for operation in a specific application circuit:  
Two digital multimeters (DMMs)  
Up to 3A adjustable load  
Two 3A ammeters  
1) Verify that the EV kit DC input-current limit setting is  
less than the AC adapter source current limit.  
Procedure  
The MAX8934A EV kit is fully assembled and tested.  
Follow the steps below to verify board operation. Use  
twisted wires of appropriate gauge (20AWG) that are  
as short as possible to connect the battery and power  
sources.  
2) If necessary, replace R2 in the EV kit such that the  
DC input current is less than or equal to the AC  
adapter output-current capability.  
3) Verify that the USB source can supply 100mA or  
500mA.  
1) Ensure that the EV kit has the jumper settings shown  
in Figure 2 and Table 1.  
4) Ensure that the charge-current setting of the EV kit  
does not exceed the battery rating, or replace resis-  
tor R3 and remove the shunt from JU5 as required.  
See the Setting the Input-Current Limit (DC Input  
Path), Setting the Input-Current Limit (USB Input  
Path), and Setting the Fast-Charge Current sections  
for more details.  
2) Preset the adjustable load to 0A.  
3) Preset the DC power supply to 5V. Turn off the  
power supply. Caution: Do not turn on the power  
supply until all connections are completed.  
4) Connect the EV kit to the power supply, battery, or  
preloaded power supply, and meters, as shown in  
Figure 2. Set the ammeters to their largest current  
range (lowest series impedance).  
B. SIMULATED BATTERY  
A. Li+/Li-POLY BATTERY  
(PRELOADED POWER SUPPLY)  
5) Turn on the power supply.  
BAT  
6) Verify that the voltage at SYS is approximately 5V.  
BAT  
0 TO 4.2V  
1I  
R 10W  
MAX8934A EV KIT  
7) If 3V P V  
P 4.1V, verify that the current from  
MAX8934A EV KIT  
BAT  
R 5A  
BATT+ into the battery is approximately 0.75A.  
GND  
GND  
8) Increase the load current on SYS to 1A.  
9) Verify that the charge current into the battery  
remains near 0.75A.  
Figure 1. Battery Options for Evaluating the MAX8934A EV Kit  
Maxim Integrated  
3
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
SYS  
VOLTMETER  
+
-
+
-
JU10  
A
BAT  
+
+
-
BATTERY OR  
SIMULATED  
BATTERY  
-
BAT  
VOLTMETER  
+
-
+
-
A
IN  
POWER  
SUPPLY  
MAX8934A  
GND2  
EVALUATION KIT  
DCGND  
*ALL AMMETERS NEED  
TO BE SET FOR THEIR  
LARGEST CURRENT RANGE  
READINGS. THIS  
JU7  
JU17  
MINIMIZES THE SERIES  
IMPEDANCE OF THE  
AMMETER.  
-
-
-
-
-
Figure 2. Connection Diagram and Default Jumper Connections  
4
Maxim Integrated  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Table 1. Jumper Functions  
JUMPER NODE OR FUNCTION  
POSITION  
FUNCTION  
Charger disabled  
Charger enabled  
See Tables 2 and 3  
See Tables 2 and 3  
Positive (+) to CEN  
Negative (-) to CEN*  
Positive (+) to PEN1*  
Positive (+) to PEN2*  
Open  
JU1  
CEN  
JU2  
JU3  
PEN1  
PEN2  
V
must be powered externally and cannot exceed 5.5V  
LOGIC  
LOGIC  
JU4  
VLOGIC  
Shunt*  
V
= V  
LDO  
Fast-charge current = 750mA, R3 is connected from ISET to  
GND and R4 is not connected  
Open*  
ISET (fast-charge  
current adjustment)  
JU5  
Fast-charge current = 1.5A, R3 and R4 are in parallel from ISET  
to GND  
Shunt  
Positive (+) to USUS  
USB suspend; an external supply is required for V  
LOGIC  
JU6  
JU7  
USUS  
Negative (-) to USUS* Not in USB suspend  
Open*  
Shunt  
THM not connected to GND  
Connects THM to GND; forces a THM “hot” state  
Connects THMEN to the V rail; enables the thermistor  
THM forced “hot”  
LOGIC  
Positive (+) to  
THMEN*  
circuit in discharge mode and enables the internal THMSW  
switch, pulling up R7 to THMSW  
JU8  
THMEN  
Negative (-) to  
THMEN  
Connects THMEN to GND; disables the internal THMSW switch  
in discharge mode and disables the thermistor monitoring circuit  
Open  
Shunt*  
Open  
Shunt*  
Open  
Shunt*  
Open  
Shunt*  
Open  
Shunt*  
Open  
Shunt*  
Open*  
Shunt  
Open  
Disconnects indicator LED D1 from DONE  
Connects indicator LED D1 to DONE  
Disconnects indicator LED D2 from CHG  
Connects indicator LED D2 to CHG  
Disconnects indicator LED D3 from OT  
Connects indicator LED D3 to OT  
JU9  
DONE LED indicator  
CHG LED indicator  
OT LED indicator  
DOK LED indicator  
UOK LED indicator  
FLT LED indicator  
OT pullup resistor  
JU10  
JU11  
JU12  
JU13  
JU14  
JU15  
Disconnects indicator LED D4 from DOK  
Connects indicator LED D4 to DOK  
Disconnects indicator LED D5 from UOK  
Connects indicator LED D5 to UOK  
Disconnects indicator LED D6 from FLT  
Connects indicator LED D6 to FLT  
Disconnects the OT pullup resistor (R16) from V  
LDO  
Connects the OT pullup resistor (R16) to V  
LDO  
Disconnects R8 from THM  
THM to GND fixed  
resistor  
Connects a 500kI resistor (R8) from THM to GND; R8 = R7 and  
sets V = 1/2 x V  
shunted  
JU16  
JU17  
Shunt*  
Open*  
Shunt  
THM  
THMSW; ensures that JU7 and JU17 are not  
Disconnects the 500kI potentiometer (R20) from THM; ensures  
that JU7 and JU16 are not shunted  
THM to GND  
potentiometer  
Connects a 500kI potentiometer (R20) from THM to GND; this  
allows evaluation of battery temperature monitoring thresholds;  
ensures that JU7 and JU16 are not shunted  
*Default position.  
Maxim Integrated  
5
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
between the positive terminal (+) and PEN2 to set the  
Charger Enable Input (CEN)  
Jumper JU1 controls the enable signal for the battery  
charger. Install JU1 between the negative terminal (-)  
and CEN to enable the charger. Install JU1 between the  
positive terminal (+) and CEN to disable the charger.  
Note that if no battery is connected and the charger  
input-current limit to 500mA (max). Install JU3 between  
the negative terminal (-) and PEN2 to set the input-  
current limit to 100mA (max). Jumper JU6 programs the  
state of the USUS input.  
Resistor R2 sets the maximum input current when the  
DC input is configured as an adapter input. The EV kit  
is disabled, V  
, V  
SYS BATT  
, and V  
decay to 0V. If a  
LDO  
battery is connected and the charger is disabled, V  
SYS  
default value of R2, or R  
(1.5kI), programs the  
PSET  
tracks V  
, and V  
BATT  
= 3.3V. If V  
< 3.3V, then  
LDO  
SYS  
input-current limit to 2A. The minimum value of R2  
should be 2kI when evaluating the MAX8934D.  
V
LDO  
tracks V  
.
SYS  
Setting the Input-Current Limit  
(DC Input Path)  
Setting the Input-Current Limit  
(USB Input Path)  
The DC charging path can be programmed either as an  
adapter input or a USB input. Install jumper JU2 between  
the positive terminal (+) and PEN1 to program the DC  
input as an adapter input. Install JU2 between the nega-  
tive terminal (-) and PEN1 to program the DC input as a  
USB input.  
The USB charging path can be programmed only as a  
USB input. Jumper JU3 (PEN2) sets the input-current  
limit for the USB input. Install JU3 between the positive  
terminal (+) and PEN2 to set the USB input-current limit  
to 500mA (max), or between the negative terminal (-) and  
PEN2 to set the USB input-current limit to 100mA (max).  
Jumper JU6 programs the state of the USUS input.  
Jumper JU3 (PEN2) sets the input-current limit when  
the DC input is configured as a USB input. Install JU3  
Table 2. Charger Control Signal Truth Table (MAX8934A/B/C/E)  
(THM Cold Threshold (T2) > THM Hot Threshold (T3))  
POWER  
SOURCE  
PEN1  
(JU2)  
PEN2 USUS  
DC INPUT-  
CURRENT LIMIT  
USB INPUT-  
CURRENT LIMIT  
MAXIMUM CHARGE  
CURRENT**  
DOK  
UOK  
(JU3)  
(JU6)  
AC adapter at  
DC input  
L
X
H*  
X
X
3000V/R  
3000V/R  
ISET  
PSET  
USB input off; DC  
input has priority  
L
L
X
X
X
L
L
L
L
L
L
X
X
X
H*  
L
L*  
L
475mA  
95mA  
475mA  
95mA  
0
USB power at  
DC input  
L
X
H
L
USB suspend  
H
H
H
H
L
475mA  
95mA  
USB power at  
USB input; DC  
unconnected  
3000V/R  
ISET  
L
X
H
No DC input  
USB suspend  
0
0
DC and USB  
unconnected  
H
H
X
X
X
No USB input  
H = A shunt from the positive pin to the center pin of the respective jumper (e.g., H on PEN1 is a jumper from positive to the cen-  
ter pin of PEN1).  
L = A shunt from the negative pin to the center pin of the respective jumper.  
X = Don’t care.  
*Initial position on the EV kit.  
**Charge current cannot exceed the input-current limit. Charge current may be less than the maximum charge current if the total  
SYS and BATT load exceeds the input-current limit.  
6
Maxim Integrated  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Table 3. Charger Control Signal Truth Table (MAX8934D)  
(THM Cold Threshold (T2) > VTHM > THM Hot Threshold (T3))  
FEATURE  
DC INPUT  
USB INPUT  
NOTES  
Absolute maximum rating  
16V  
9V  
Set by R  
, PEN1,  
Set by R  
, PEN1, PEN2,  
PSET  
PSET  
PEN2, and USUS;  
2A (max)  
PSET sets the same input-current  
limit for DC and USB paths  
Input-current limit  
and USUS;  
1.5A (max)  
USB INPUT-  
CURRENT  
LIMIT  
MAXIMUM  
CHARGE  
CURRENT  
PEN1  
(JU2)  
PEN2  
(JU3)  
USUS  
(JU6)  
DC INPUT-  
CURRENT LIMIT  
POWER SOURCE  
DOK  
UOK  
AC adapter at DC  
L
L
X
X
X
X
X
L
L
L
L
L
H
H*  
H
L
X
X
X
X
L*  
L
3000V/R  
3000V/R  
3000V/R  
3000V/R  
PSET  
ISET  
PSET  
ISET  
USB input off;  
DC input has  
priority  
L
H*  
L
475mA  
95mA  
475mA  
95mA  
0
USB power at DC  
L
L
L
L
X
H
L
USB suspend  
H
H
H
H
H
H
H
H
L
H
L
3000V/R  
3000V/R  
PSET  
ISET  
ISET  
L
600V/R  
3000V/R  
PSET  
USB power at  
USB;  
DC open  
H
L
L
475mA  
475mA  
No DC input  
L
L
95mA  
95mA  
X
X
X
H
X
USB suspend  
No USB input  
0
0
DC and USB open  
X
H = A shunt from the positive pin to the center pin of the respective jumper.  
L = A shunt from the negative pin to the center pin of the respective jumper.  
X = Don’t care.  
*Initial position on the EV kit.  
**Charge current cannot exceed the input-current limit. Charge current may be less than the maximum charge current if the total  
SYS and BATT load exceeds the input-current limit.  
A 100kI pullup resistor (R7) to THMSW provides the  
bias to a thermistor (allowing ambient temperature to  
control the charger behavior), a fixed 100kI pulldown  
resistor (JU16, for easiest evaluation of other charger  
functionality), or a potentiometer (JU17, for adjusting  
THM voltage manually).  
Setting the Fast-Charge Current  
Resistors R3 and R4 set the fast-charge current limit for  
the MAX8934A. Installing jumper JU5 connects both  
resistors in parallel, allowing a fast-charge current of  
up to 1.5A (when the DC input is configured for > 1.5A  
input-current limit). Removing JU5 allows a fast-charge  
current of 750mA. Other fast-charge currents can be set  
by changing the R3 and R4 resistances. Use the follow-  
ing equation:  
The THMEN input determines whether the THMSW  
switch is enabled, providing bias to 100kI pullup resis-  
tor R7. If a valid input source is present, the state of the  
THMEN pin is ignored, and the 100kI pullup resistor  
is always biased. If no valid input source is connected,  
and only a battery is present, then jumper JU8 controls  
the state of the thermistor bias. Install JU8 between the  
positive terminal (+) and THMEN to enable the thermis-  
tor bias. Install JU8 between the negative terminal (-)  
and THMEN to disable the thermistor bias when only a  
battery is present.  
I
= 3000V/R3 (JU5 not installed)  
CHGMAX  
Using the Thermistor Monitor  
The MAX8934A provides a thermistor monitor circuit that  
automatically adjusts either the fast-charge current or the  
charge termination voltage, depending on the voltage at  
the THM input. Tables 2 and 3 are true when THM cold  
threshold (T2) > V  
> THM hot threshold (T3). If V  
THM  
THM  
is outside this range, refer to the MAX8934A–MAX8934E  
IC data sheet for additional details.  
Maxim Integrated  
7
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Jumper JU7 allows intentional introduction of a  
Open-Drain Indicators  
temperature fault condition. Install JU7 to force a THM  
“hot” state, where the charger immediately stops charg-  
ing the battery. When the battery is being discharged,  
this is a simple way of evaluating the OT functionality.  
The DONE, CHG, OT, DOK, UOK, and FLT indicators  
all utilize the V  
bias supply for their respective  
LOGIC  
pullup voltages. Jumpers JU9–JU14 connect the LED  
indicators to each of the open-drain flags. JU15 (OT  
only) connects a pullup resistor. Table 1 summarizes the  
functions of each jumper.  
When using alternate resistance and/or beta thermistors  
other than the two shown in the component list, then the  
circuit of Figure 3 might result in temperature trip thresh-  
olds different from the nominal values. In this case, R21  
and R22 of Figure 3 allow for compensating the thermis-  
tor in order to shift the temperature trip thresholds back  
to the nominal value. In general, smaller values of R21  
shift all the temperature trip thresholds down. However,  
the lower-temperature thresholds are affected more then  
the higher-temperature thresholds. Furthermore, larger  
values of R22 shift all the temperature trip thresholds  
up. However, the higher-temperature thresholds are  
affected more than the lower-temperature thresholds.  
For more details, refer to the MAX8934A–MAX8934E IC  
data sheet.  
Charge Timers  
A fault timer prevents the battery from charging  
indefinitely. The prequalification and fast-charge timers  
are controlled by the capacitance at CT (C3) (THM cold  
threshold (T2) < V  
< THM hot threshold (T3)).  
THM  
C3  
PREQUAL : t  
= 30min×  
PQ  
0.068µF  
C3  
FAST CHARGE : t  
= 300min×  
FC  
0.068µF  
The general relation of thermistor resistance to tempera-  
ture is defined by the following equation:  
TOP-OFF:  
t
= 15s (60min for the MAX8934B  
TO  
and MAX8934D)  
1
1
R
= R  
β ×  
THM  
25 ×e  
T + 273°C 298°C  
EV Kit Temperature Range  
where:  
The PCB and components of the EV kit allow operation  
with ambient temperatures from -25°C to +85°C. Remove  
LEDs D1–D6, or open jumpers JU9–JU14, to increase the  
ambient temperature operating range from -30°C to +85°C.  
R
= Resistance in I of the thermistor at  
THM  
temperature T in Celsius.  
R
25  
= Resistance in I of the thermistor at +25°C.  
= Material constant of the thermistor, which  
typically ranges from 3000K to 5000K.  
Evaluating the MAX8934B, MAX8934C,  
MAX8934D, and MAX8934E  
β
The EV kit comes with the MAX8934A installed, but can  
also be used to evaluate the MAX8934B, MAX8934C,  
MAX8934D, and MAX8934E. To evaluate these ICs,  
carefully remove the MAX8934A (U1) from the EV kit  
and replace with the MAX8934_. No other component  
change is required except when using the MAX8934D.  
The MAX8934D requires that R2 be removed and  
replaced with a 2kI(min) resistor. Request a free sample  
of the MAX8934_ when ordering the EV kit.  
T = Temperature of the thermistor in °C.  
Pullup Supply for Logic Inputs and  
Indicators/Fault Flags  
The EV kit provides two options for biasing the logic  
inputs and the open-drain indicators. Either the LDO out-  
put or an external logic supply can be used to provide  
this bias. Install jumper JU4 to use V  
as the bias  
LDO  
source; otherwise, connect an external supply (2.5V to  
5.5V) to V to serve as the bias source.  
LOGIC  
When evaluating the USB suspend behavior with no  
battery connected, it is required that an external V  
supply be used.  
LOGIC  
8
Maxim Integrated  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
DONE  
FLT  
VLOGIC  
VLOGIC  
R14  
1MI  
R19  
1MI  
R1  
R13  
4.7kI  
4.7kI  
J2  
1
JU9  
JU14  
1
28  
DONE  
FLT  
D1  
C1  
10µF  
16V  
D6  
DC  
UOK  
2
3
2
3
4
5
DC  
DC  
VLOGIC  
R18  
1MI  
DCGND  
R12  
4.7kI  
VLOGIC  
JU13  
27  
UOK  
D5  
DOK  
4
5
JU1  
CEN  
VLOGIC  
VLOGIC  
R17  
1MI  
V
LDO  
JU2  
PEN1  
R11  
4.7kI  
JU12  
26  
VLOGIC  
DOK  
R16  
1MI  
D4  
D3  
6
7
JU3  
PEN2  
PSET  
C10  
OPEN  
R2  
1.5kI  
1%  
JU15  
OT  
R10  
4.7kI  
VLOGIC  
JU11  
V
25  
VLOGIC  
LDO  
OT  
24  
23  
VLOGIC  
VL  
SYS  
SYS  
SYS  
JU4  
C11  
10µF  
6.3V  
C9  
OPEN  
8
VL  
CHG  
GND3  
C2  
0.1µF  
10V  
U1  
VLOGIC  
R15  
1MI  
MAX8934A  
GND  
9
GND  
CT  
R9  
4.7kI  
JU10  
22  
CHG  
10  
D2  
C3  
0.068µF  
16V  
21  
20  
BAT  
BAT  
BAT  
C8  
4.7µF  
6.3V  
R3  
4kI  
1%  
GND2  
11  
ISET  
J1  
1
2
3
4
5
R4  
4kI  
1%  
USB  
JU5  
19  
18  
USB  
USB  
C7  
4.7µF  
10V  
GND1  
C4  
OPEN  
R5  
OPEN  
V
LDO  
VLOGIC  
17  
LDO  
LDO  
C6  
1µF  
6.3V  
12  
13  
JU6  
USUS  
GND  
GND5  
16  
15  
THMSW  
THMSW  
THMEN  
THMSW  
VLOGIC  
R22  
R7  
0I  
100kI  
1%  
1%  
BATT_THM  
THM  
14  
JU8  
THM  
JU17  
JU16  
R8  
R6  
NTC  
OPEN  
R21  
OPEN  
C5  
OPEN  
T
JU7  
R20  
500kI  
100kI  
TRIMPOT  
1%  
Figure 3. MAX8934A EV Kit Schematic  
Maxim Integrated  
9
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Figure 4. MAX8934A EV Kit Component Placement Guide—Top Layer  
10  
Maxim Integrated  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Figure 5. MAX8934A EV Kit PCB Layout—Top Layer  
Maxim Integrated  
11  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Figure 6. MAX8934A EV Kit PCB Layout—Inner Layer 2  
12  
Maxim Integrated  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Figure 7. MAX8934A EV Kit PCB Layout—Inner Layer 3  
Maxim Integrated  
13  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Figure 8. MAX8934A EV Kit PCB Layout—Bottom Layer  
14  
Maxim Integrated  
MAX8934A Evaluation Kit  
Evaluates: MAX8934A–MAX8934E  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
6/10  
Initial release  
Added a ground symbol in Figure 3  
9
1/14  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
15  
©
2014 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX8934BETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934BETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934CETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934CETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934DETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934DETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934E

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934EETI+

Dual-Input Linear Chargers, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934EETI+T

Power Management Circuit, BICMOS, PQCC28,
MAXIM

MAX8934G

Dual-Input Linear Charger, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8934GETI+

Dual-Input Linear Charger, Smart Power Selector with Advanced Battery Temperature Monitoring
MAXIM

MAX8939

System Power Management for Mobile Handset
MAXIM