MAX8903JETI+T [MAXIM]

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 4 X 4 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WGGE, TQFN-28;
MAX8903JETI+T
型号: MAX8903JETI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 4 X 4 MM, 0.75 MM HEIGHT, ROHS COMPLIANT, MO-220WGGE, TQFN-28

文件: 总76页 (文件大小:3906K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4410; Rev 5; 9/11  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
概述  
特性  
S 高效DC-DC转换器,无需散热器  
MAX8903A-MAX8903E/MAX8903G/MAX8903H/  
+
MAX8903J/MAX8903N/MAX8903Y是集成的单节Li 电池  
S 4MHz开关频率,允许使用小尺寸外部元件  
S 立即开启—能够在无电池/低电池电压下工作  
充电器和Smart Power SelectorTM (智能电源选择器),提  
供双电源输入(交流适配器和USB)。开关模式充电器工作  
在较高的开关频率,可以省去散热器并允许使用小尺寸  
外部元件。该器件可采用独立的USB电源或交流适配器供  
电,也可以用一个输入端接收两路电源输入。芯片集成了  
所有充电功能和用于切换电池、外部电源、负载的功率开  
关。无需外部MOSFET、反向保护二极管和检流电阻。  
S 两路限流输入—交流适配器或USB  
适配器/USB/电池供电自动切换,支持瞬变负载  
50mΩ系统至电池开关导通电阻  
支持USB规范  
S 热敏电阻检测  
MAX8903_优化工作于智能化电源管理模式,可充分利用  
有限的USB或适配器电源的供电能力。电池充电电流和  
SYS输出限流均可独立设置。在保证系统供电的前提下  
为电池充电。充电电流和SYS输出限流可设置在最高2A,  
USB输入限流可设置在100mA或500mA。输入选择电路  
能够自动地将系统供电电源从电池切换至外部电源。器件  
工作在4.15V至16V直流输入电压范围,输入端具有高达  
20V的保护;USB输入范围为4.1V至6.3V,输入端具有最  
高8V保护。  
S 集成检流电阻  
S 无需外部MOSFET或二极管  
S 4.1V至16V输入工作电压范围  
定购信息  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
MAX8903AETI+T  
MAX8903BETI+T  
MAX8903CETI+T  
MAX8903DETI+T  
MAX8903EETI+T  
MAX8903GETI+T  
MAX8903HETI+T  
MAX8903JETI+T  
MAX8903NETI+T  
MAX8903YETI+T  
未接输入电源时,MAX8903_内部电路可以阻止电流从电  
池、系统倒灌到直流电源、USB输入。其它功能包括:预  
充检测及定时器、快充定时器、过压保护、充电状态指  
示和故障指示输出、电源就绪监视器以及电池热敏电阻  
检测等。此外,片内热管理电路可以根据需要降低电池  
充电速率或交流适配器的充电电流,以防止充电器过热。  
MAX8903_采用4mm x 4mm、28引脚薄型QFN封装。  
不同版本的MAX8903_提高了设计灵活性,便于选择不  
同的系统电源电压、电池预检验门限和电池满充电压。  
MAX8903B/MAX8903E/MAX8903G的电池检测功能还包  
含供电使能控制,详细信息请参考选型指南部分。  
+表示无铅(Pb)/符合RoHS标准的封装。  
*EP = 裸焊盘。  
T = 卷带包装。  
应用  
典型工作电路  
PDA、掌上电脑和  
无线手持装置  
便携式多媒体播放器  
移动互联网设备  
超便携移动PC  
AC  
ADAPTER  
OR USB  
LX  
CS  
个人导航设备  
智能蜂窝电话  
DC  
SYS  
LOAD  
CURRENT  
CHARGE  
CURRENT  
CHARGE  
AND  
SYSTEM  
LOAD  
SYS LOAD  
SWITCH  
PWM  
STEP-DOWN  
BAT  
BATTERY  
USB  
USB  
MAX8903_  
GND  
选型指南在数据资料的最后给出。  
Smart Power Selector是Maxim Integrated Products, Inc.的商标。  
引脚配置在数据资料的最后给出。  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ Maxim Integrated Products  
1
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。  
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),  
或访问Maxim的中文网站:china.maxim-ic.com。  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
ABSOLUTE MAXIMUM RATINGS  
DC, LX to GND .......................................................-0.3V to +20V  
LX Continuous Current (total in two pins)......................2.4A  
CS Continuous Current (total in two pins) ......................2.4A  
SYS Continuous Current (total in two pins) .......................3A  
BAT Continuous Current (total in two pins) .......................3A  
RMS  
RMS  
RMS  
RMS  
DCM to GND .............................................-0.3V to (V  
+ 0.3V)  
DC  
DC to SYS .................................................................-6V to +20V  
BST to GND ...........................................................-0.3V to +26V  
BST TO LX................................................................-0.3V to +6V  
USB to GND .............................................................-0.3V to +9V  
USB to SYS..................................................................-6V to +9V  
VL to GND ................................................................-0.3V to +6V  
VL Short Circuit to GND .............................................Continuous  
Continuous Power Dissipation (T = +70NC)  
A
28-Pin Thin QFN-EP  
Multilayer (derate 28.6mW/°C above +70NC) ..........2286mW  
28-Pin Thin QFN-EP  
THM, IDC, ISET, CT to GND........................-0.3V to (V + 0.3V)  
DOK, FLT, CEN, UOK, CHG, USUS,  
BAT, SYS, IUSB, CS to GND ................................-0.3V to +6V  
SYS to BAT ..............................................................-0.3V to +6V  
PG, EP (exposed pad) to GND .............................-0.3V to +0.3V  
DC Continuous Current (total in two pins).....................2.4A  
USB Continuous Current......................................................1.6A  
VL  
Single-Layer (derate 20.8mW/°C above +70NC)...1666.7mW  
Operating Temperature Range ...........................-40NC to +85NC  
Junction Temperature Range ............................-40NC to +150NC  
Storage Temperature Range .............................-65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
MX8903A-EGHJN/Y  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC INPUT  
DC Operating Range  
4.15  
3.9  
16  
4.1  
4.4  
V
V
No valid USB input  
Valid USB input  
4.0  
4.3  
When V  
goes low, V  
DC  
DOK  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
rising, 500mV typical hysteresis  
4.0  
When V goes high, V  
hysteresis  
rising, 500mV typical  
DC  
DOK  
16.5  
17  
17.5  
4
V
Charger enabled, no switching, V  
= 5V  
2.3  
15  
SYS  
Charger enabled, f = 3MHz, V  
= 5V  
DC  
DC Supply Current  
mA  
Charger enabled, V  
Charger enabled, V  
= 0V, 100mA USB mode (Note 2)  
= 5V, 100mA USB mode (Note 2)  
1
2
2
CE  N  
CE  N  
1
V
= 0V, V  
= 5V  
USUS  
0.10  
0.15  
0.15  
0.31  
0.25  
DCM  
DC High-Side Resistance  
DC Low-Side Resistance  
DC-to-BAT Dropout Resistance  
Assumes a 40minductor resistance (R )  
L
When SYS regulation and charging stops, V  
200mV hysteresis  
falling,  
DC  
DC-to-BAT Dropout Voltage  
0
15  
30  
mV  
Minimum Off Time (t  
Minimum On Time (t  
)
100  
70  
4
ns  
ns  
OFFMIN  
)
ONMIN  
V
V
V
V
= 8V, V  
= 5V, V  
= 9V, V  
= 9V, V  
= 4V  
= 3V  
= 4V  
= 3V  
DC  
DC  
DC  
DC  
BAT  
BAT  
BAT  
BAT  
MAX8903A/B/C/D/E/H/J/Y  
MAX8903G  
3
Switching Frequency (f  
)
MHz  
SW  
1
1
DC Step-Down Output Current-  
Limit Step Range  
0.5  
2
A
R
R
R
= 3kΩ  
= 6kΩ  
= 12kΩ  
1900  
950  
2000  
1000  
500  
2100  
1050  
550  
IDC  
IDC  
IDC  
DC Step-Down Output Current  
V
= 6V, V  
= 4V  
SYS  
mA  
DC  
Limit (I  
)
SDLIM  
450  
2
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.)  
DC  
USB  
BAT  
A
A
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
ms  
No valid USB input  
DC Soft-Start Time  
Valid USB input before soft-start  
20  
µs  
DC Output Current  
500mA USB Mode (Note 3)  
V
V
V
= 0V, V  
= 0V, V  
= 5V  
= 0V  
= 0V  
450  
90  
475  
95  
500  
100  
mA  
mA  
µA  
DCM  
DCM  
IUSB  
IUSB  
DC Output Current  
100mA USB Mode (Note 2)  
SYS to DC Reverse Current  
Blocking  
= 5.5V, V  
0.01  
SYS  
DC  
USB INPUT  
USB Operating Range  
USB Standoff Voltage  
USB Undervoltage Threshold  
USB Overvoltage Threshold  
4.1  
6.3  
8
V
V
V
V
When V  
When V  
goes low, V  
rising, 500mV hysteresis  
3.95  
6.8  
90  
4.0  
6.9  
95  
4.05  
7.0  
100  
500  
3
UOK  
UOK  
USB  
goes high, V  
rising, 500mV hysteresis  
USB  
V
V
= 0V (100mA setting)  
= 5V (500mA setting)  
IUSB  
IUSB  
USB Current Limit  
mA  
450  
475  
1.3  
0.8  
0.115  
15  
I
I
= I  
= 0mA, V  
= 0mA, V  
= 0V  
SYS  
SYS  
BAT  
BAT  
CEN  
CEN  
USB Supply Current  
mA  
= I  
= 5V  
2
V
= 5V (USB suspend mode)  
0.25  
30  
USUS  
Minimum USB to BAT Headroom  
USB to SYS Dropout Resistance  
0
mV  
0.2  
1
0.35  
V
V
rising  
ms  
µs  
USB  
USB Soft-Start Time  
falling below DC UVLO to initiate USB soft-start  
20  
DC  
SYS OUTPUT  
MAX8903A/B/E/G/Y  
SYSMIN MAX8903C/D/H/J/N  
MAX8903A/C/D/H/N/Y  
3.0  
3.4  
Minimum SYS Regulation Voltage  
I
V
= 1A,  
< V  
BAT  
SYS  
V
V
(V  
SYSMIN  
)
4.3  
4.265  
4.4  
4.4  
4.5  
4.395  
4.55  
Regulation Voltage  
I
= 0A  
MAX8903B/E/G  
MAX8903J  
4.325  
4.5  
SYS  
MAX8903A/C/D/H  
MAX8903B/E/G/J/N/Y  
40  
Load Regulation  
I
= 0 to 2A  
mV/A  
SYS  
25  
CS to SYS Resistance  
SYS to CS Leakage  
V
V
V
= 6V, V  
= 5V, V  
= 4V, I = 1A  
0.07  
0.01  
0.05  
µA  
DC  
SYS  
DC  
DCM  
SYS  
CS  
= 5.5V, V  
= V = 0V  
CS  
DC  
BAT to SYS Resistance  
= V  
= 0V, V  
= 4.2V, I = 1A  
SYS  
0.1  
100  
2.0  
USB  
BAT  
BAT to SYS Reverse Regulation  
Voltage  
V
= 5V, V  
= 0V, V  
= 0V, I = 200mA  
SYS  
50  
75  
mV  
V
USB  
DC  
IUSB  
SYS Undervoltage Threshold  
SYS falling, 200mV hysteresis (Note 4)  
1.8  
1.9  
3
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BATTERY CHARGER  
T
T
T
T
T
T
T
T
= +25°C  
4.179  
4.158  
4.079  
4.059  
4.328  
4.307  
4.129  
4.109  
-150  
4.200  
4.200  
4.100  
4.100  
4.350  
4.350  
4.150  
4.150  
-100  
3.0  
4.221  
4.242  
4.121  
4.141  
4.372  
4.394  
4.171  
4.192  
-60  
A
A
A
A
A
A
A
A
MAX8903A/B/C/G/H  
MAX8903D/E  
MAX8903J  
= -40°C to +85°C  
= +25°C  
= -40°C to +85°C  
= +25°C  
BAT Regulation Voltage  
I
= 0mA  
V
BAT  
(V  
BATREG  
)
= -40°C to +85°C  
= +25°C  
MAX8903Y/N  
= -40°C to +85°C  
Charger Restart Threshold  
BAT Prequal Threshold (V  
Prequal Charge Current  
Change in V  
from DONE to fast-charge  
mV  
V
BAT  
MAX8903A/C/D/H/J/N/Y  
MAX8903B/E/G  
2.9  
3.1  
V
rising 180mV  
BAT  
)
BATPQ  
MX8903A-EGHJN/Y  
hystersis  
2.4  
2.5  
2.6  
Percentage of fast-charge current set at ISET  
10  
%
R
ISET  
R
ISET  
R
ISET  
= 600  
1800  
900  
2000  
1000  
500  
2200  
1100  
550  
Fast-Charge Current  
= 1.2k(MAX8903A/C/D)  
= 2.4kΩ  
mA  
450  
DONE Threshold (I  
)
Percentage of fast-charge, I decreasing  
BAT  
10  
%
kΩ  
TERM  
R
ISET  
Resistor Range  
0.6  
2.4  
ISET Output Voltage  
1.5  
1.25  
0.05  
3
V
ISET Current Monitor Gain  
BAT Leakage Current  
Charger Soft-Start Time  
mA/A  
No DC or USB input  
4
6
µA  
With valid input power, V  
= 5V  
CEN  
1.0  
ms  
°C  
Charger Thermal Limit  
Temperature  
100  
5
Charger Thermal Limit Gain  
CHARGER TIMER  
Charge current = 0 at +120°C  
%/°C  
Prequalification Time  
Fast-Charge Time  
C
C
= 0.15µF  
= 0.15µF  
33  
660  
15  
min  
min  
s
CT  
CT  
MAX8903A/C/D/H/J/N/Y (fixed)  
MAX8903B/E/G, C = 0.15µF  
Top-Off Timer (t  
)
TOP-OFF  
132  
min  
%
CT  
Timer Accuracy  
-15  
40  
+15  
60  
Percentage of fast-charge current below which the timer  
clock operates at half-speed  
Timer Extend Current Threshold  
Timer Suspend Current Threshold  
50  
20  
%
%
Percentage of fast-charge current below which timer  
clock pauses  
16  
24  
4
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
THERMISTOR MONITOR  
0.27 x  
0.28 x 0.29 x  
THM Threshold, Hot  
When charging is suspended, 1% hysteresis  
When charging is suspended, 1% hysteresis  
THM function is disabled below this voltage  
MAX8903B/MAX8903E/MAX8903G  
V
V
V
V
V
V
V
VL  
VL  
VL  
0.73 x  
0.74 x 0.75 x  
THM Threshold, Cold  
V
V
V
VL  
VL  
VL  
0.0254 0.03 x 0.036 x  
x V  
THM Threshold, Disabled  
THM Threshold DC, USB Enable  
V
V
VL  
VL  
VL  
0.83 x  
0.87 x 0.91 x  
V
V
V
VL  
VL  
VL  
THM = GND or VL;  
-0.100  
0.001 +0.200  
0.010  
T
A
= +25°C  
MAX8903A/C/D/H/J/N/Y  
MAX8903B/E/G  
THM = GND or VL;  
THM Input Leakage  
µA  
T
= +85°C  
A
THM = GND or VL;  
= -40°C to +85°C  
-0.200  
0.001 +0.200  
T
A
THERMAL SHUTDOWN, VL, AND LOGIC I/O: CHG, FLT, DOK, UOK, DCM, CEN, USUS, IUSB  
High level  
1.3  
V
Logic-Input Thresholds  
(DCM, CEN, USUS, IUSB)  
Low level  
0.4  
Hysteresis  
50  
mV  
T
T
= +25°C  
= +85°C  
-1.000  
-0.200  
0.001 +1.000  
0.010  
A
V
= 0V to 5.5V  
INPUT  
(MAX8903A/C/D/H/J/N/Y)  
Logic-Input Leakage Current  
(CEN, USUS, IUSB)  
A
µA  
V
= 0V to 5.5V  
INPUT  
T
A
= -40°C to +85°C  
0.001 +0.200  
(MAX8903B/E/G)  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
8
1
50  
1
A
Logic-Input Leakage Current  
(DCM)  
V
V
= 0V to 16V  
DCM  
µA  
mV  
µA  
= 16V  
DC  
A
Sinking 1mA  
Sinking 10mA  
Logic Output Voltage, Low  
(CHG, FLT, DOK, UOK)  
80  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Open-Drain Output Leakage  
Current, High (CHG, FLT, DOK, UOK)  
V
= 5.5V  
OUT  
A
5
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40NC to +85NC, unless otherwise noted. Typical values are at T = +25NC.)  
DC  
USB  
BAT  
A
A
(Note 1)  
PARAMETER  
CONDITIONS  
= 0 to 1mA  
MIN  
TYP  
MAX  
UNITS  
I
VL  
4.6  
5.0  
5.4  
(MAX8903A/C/D/H/J/N/Y)  
VL Output Voltage  
V
V
= V  
= 6V  
USB  
V
DC  
VL  
I
VL  
= 0 to 10mA  
4.6  
5.0  
5.4  
(MAX8903B/E/G)  
VL UVLO Threshold  
falling; 200mV hysteresis  
3.2  
160  
15  
V
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
°C  
°C  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
Note 2: For the 100mA USB mode using the DC input, the step-down regulator is turned off and its high-side switch operates as a  
linear regulator with a 100mA current limit. The linear regulator’s output is connected to LX and its output current flows  
through the inductor into CS and finally to SYS.  
Note 3: For the 500mA USB mode, the actual current drawn from USB is less than the output current due to the input/output current  
ratio of the DC-DC converter.  
MX8903A-EGHJN/Y  
Note 4: For short-circuit protection, SYS sources 25mA below V  
= 400mV, and 50mA for V  
between 400mV and 2V.  
SYS  
SYS  
典型工作特性  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/B/C/D/E/H/J/N/Y  
BATTERY CHARGER EFFICIENCY  
vs. BATTERY VOLTAGE  
MAX8903A/B/C/D/E/H/J/N/Y  
SWITCHING FREQUENCY vs. V  
MAX8903G BATTERY CHARGER  
EFFICIENCY vs. BATTERY VOLTAGE  
DC  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 6V  
80  
DC  
V
= 5V  
DC  
70  
60  
50  
40  
30  
20  
10  
0
V
= 9V  
V
= 3V  
= 4V  
DC  
BAT  
V
DC  
= 8V  
V
BAT  
V
DC  
= 12V  
V
= 12V  
I
DC  
I
= 0.15A  
= 1.5A  
I
= 0.15A  
I
= 1.5A  
BAT  
BATT  
BATT  
BAT  
R
V
= 1.2k  
= 0V  
ISET  
CEN  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
4
6
8
10  
12  
14  
16  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
DC VOLTAGE (V)  
6
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
典型工作特性(续)  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/B/C/D/E/H/J/N/Y  
SYS EFFICIENCY  
MAX8903G SYS EFFICIENCY  
vs. SYS OUTPUT CURRENT  
MAX8903G SWITCHING  
vs. SYS OUTPUT CURRENT  
FREQUENCY vs. V  
DC  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 1V  
= 4.4V  
CEN  
SYS  
V
CEN  
= 1  
V
= 16V  
DC  
V
= 11V  
DC  
V
= 12V  
V
= 4V  
DC  
BAT  
V
= 16V  
DC  
V
= 9V  
V
= 3V  
DC  
BAT  
V
= 6V  
DC  
V
= 6V  
DC  
R
V
= 1.2kI  
= 0V  
ISET  
CEN  
V
= 4.5V  
1000  
DC  
1
10  
100  
10000  
1
10  
100  
1000  
10,000  
4
6
8
10  
12  
14  
16  
SYS OUTPUT CURRENT (mA)  
SYS OUTPUT CURRENT (mA)  
DC VOLTAGE (V)  
USB SUPPLY CURRENT  
vs. USB VOLTAGE  
BATTERY LEAKAGE CURRENT  
vs. BATTERY VOLTAGE  
USB SUPPLY CURRENT  
vs. USB VOLTAGE (SUSPEND)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
CHARGER  
ENABLED  
60  
40  
CHARGER  
DISABLED  
20  
NO DC OR USB INPUT  
USB SUSPEND  
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
USB VOLTAGE (V)  
BATTERY VOLTAGE (V)  
USB VOLTAGE (V)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE—USB MODE  
BATTERY LEAKAGE CURRENT  
vs. AMBIENT TEMPERATURE  
CHARGE CURRENT  
vs. BATTERY VOLTAGE—DC MODE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1200  
1000  
800  
600  
400  
200  
0
CHARGER ENABLED  
CHARGE ENABLED  
I
I
SET TO 1A  
SET TO 2A  
I
SET TO 1.5A  
BAT  
BAT  
MAX8903D  
DC  
MAX8903A/C/H  
RISING  
V
BAT  
RISING  
V
BAT  
V
= V  
USB  
IUSB  
V
IUSB  
= 0V  
NO DC OR USB INPUT  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
-40  
-15  
10  
35  
60  
85  
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
TEMPERATURE (°C)  
7
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
典型工作特性(续)  
(T = +25°C, unless otherwise noted.)  
A
NORMALIZED BATTERY  
REGULATION VOLTAGE  
MAX8903A/C/D/H/N/Y  
SYS VOLTAGE vs. USB VOLTAGE  
NORMALIZED CHARGE CURRENT  
vs. AMBIENT TEMPERATURE  
1.015  
vs. AMBIENT TEMPERATURE  
100.5  
100.4  
100.3  
100.2  
100.1  
100.0  
99.9  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
V
= 5V  
= 0V  
= 0V  
V
USB  
= 5V, V = 4V  
BAT  
CEN  
BAT  
DC  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
V
FALLING  
USB  
V
RISING  
USB  
99.8  
99.7  
99.6  
R
= 1M  
SYS  
22ppm/°C  
60 85  
99.5  
0
1
2
3
4
5
6
7
-40  
-15  
10  
35  
-40  
-15  
10  
35  
60  
85  
MX8903A-EGHJN/Y  
USB VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SYS VOLTAGE  
vs. SYS OUTPUT CURRENT, DC INPUT  
MAX8903A/C/D/H/N/Y  
SYS VOLTAGE vs. DC VOLTAGE  
SYS VOLTAGE  
vs. SYS OUTPUT CURRENT, USB INPUT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
V
= 0V  
MAX8903J, V = 5.75V  
USB  
DC  
V
= 0V, V  
= 4V  
DC  
BATT  
MAX8903J, V  
= 5V  
USB  
V
RISING  
DC  
MAX8903A/C/D/H, MAX8903N/Y,  
MAX8903A/C/D/H, MAX8903N/Y,  
= 5V = 5V  
V
DC  
= 5.75V  
V
= 5.75V  
DC  
V
V
USB  
USB  
MAX8903B/E/G,  
= 5.75V  
MAX8903B/E/G,  
= 5V  
V
FALLING  
DC  
V
DC  
V
USB  
V
CEN  
V
BAT  
V
USB  
= 5V  
= 0V  
= 0V  
MAX8903_, V = 0V  
MAX8903_, V  
= 0V  
DC  
USB  
0
0.5  
1.0  
1.5  
2.0  
0
2
4
6
8
10 12 14 16 18  
0
100  
200  
300  
400  
500  
SYS OUTPUT CURRENT (A)  
DC VOLTAGE (V)  
SYS OUTPUT CURRENT (mA)  
CHARGE PROFILE—1400mAh BATTERY  
VL VOLTAGE vs. DC VOLTAGE  
ADAPTER INPUT—1A CHARGE  
MAX8903A toc17  
6
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
SET TO 1A  
SET TO 2A  
DC  
I
BAT  
5
4
3
2
1
0
V
BAT  
VL WITH  
NO LOAD AND  
DCDC OFF  
VL AND DCDC  
WITH  
FULL LOAD  
(V  
= 5V)  
(V  
= 0V)  
USUS  
USUS  
I
BAT  
V
BAT  
= 3.6V  
V
= 0V  
USB  
MAX8903A/B/C/G/H  
0
2
4
6
8
10 12 14 16 18 20  
0
20  
40  
60  
80  
100 120 140  
DC VOLTAGE (V)  
TIME (min)  
8
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
典型工作特性(续)  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/B/C/G/H  
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING  
CHARGE PROFILE—1400mAh BATTERY  
WAVEFORMS—LIGHT LOAD  
USB INPUT—500mA CHARGE  
MAX8903A toc19  
MAX8903A toc18  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
20mV/div  
AC-COUPLED  
V
OUT  
V
BAT  
5V/div  
0V  
V
LX  
LX  
I
BAT  
I
MAX8903A/MAX8903B/MAX8903C  
SET TO 500mA  
500mA/div  
0A  
I
USB  
R
= 44  
SYS  
I
SET TO 2A  
BAT  
200ns/div  
0
20 40 60 80 100 120 140 160 180 200  
TIME (min)  
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING  
MAX8903G DC SWITCHING  
WAVEFORMS—HEAVY LOAD  
WAVEFORMS—LIGHT LOAD  
MAX8903A toc20  
MAX8903A toc19a  
20mV/div  
50mV/div  
AC-COUPLED  
AC-COUPLED  
V
OUT  
V
SYS  
V
= 9V, L = 2.2µH  
DC  
C
R
= 22µF,  
= 44I  
SYS  
SYS  
5V/div  
0V  
V
I
V
10V/div  
LX  
LX  
0V  
1A/div  
LX  
I
LX  
0A  
500mA/div  
0A  
R
= 5  
SYS  
200ns/div  
1µs/div  
DC CONNECT WITH  
USB CONNECTED (R = 25)  
MAX8903G DC SWITCHING  
WAVEFORMS—HEAVY LOAD  
SYS  
MAX8903A toc21  
MAX8903A toc20a  
3.6V  
2V/div  
V
50mV/div  
SYS  
V
SYS  
AC-COUPLED  
V
= 9V, L = 2.2µH  
I
DC  
DC  
500mA/div  
347mA  
C
= 22µF, R = 5I  
SYS  
SYS  
CEN = 1  
10V/div  
0V  
475mA  
500mA/div  
V
I
LX  
I
USB  
-I = CHARGING  
BAT  
0A  
I
-335mA  
BAT  
500mA/div  
LX  
1A/div  
0A  
200µs/div  
1µs/div  
9
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
典型工作特性(续)  
(T = +25°C, unless otherwise noted.)  
A
DC CONNECT WITH NO USB  
DC DISCONNECT WITH NO USB  
(R = 25)  
(R  
= 25)  
SYS  
SYS  
MAX8903A toc22  
MAX8903A toc23  
3.84V  
3.68V  
3.6V  
3.6V  
3.6V  
3.6V  
2V/div  
5V/div  
2V/div  
5V/div  
V
V
SYS  
SYS  
3.44V  
V
V
BAT  
BAT  
C
DC  
C
SYS  
CHARGING  
CHARGING  
850mA  
1A/div  
1A/div  
1A/div  
1A/div  
I
0A  
0A  
DC  
850mA  
-1A  
I
DC  
-I = CHARGING  
BAT  
I
BAT  
I
144mA  
BAT  
144mA  
-I = CHARGING  
BATTERY  
CHARGER  
SOFT-START  
-1A  
BAT  
400µs/div  
40µs/div  
MX8903A-EGHJN/Y  
MAX8903A/C/D/H SYS LOAD TRANSIENT  
MAX8903B/E SYS LOAD TRANSIENT  
MAX8903A toc24a  
MAX8903A toc24b  
MAX8903B  
V
= 10.5V  
DC  
L = 2.2µH  
4.400V  
C
= 22µF  
SYS  
MAX8903A  
V
4.325V  
R
= 3kI (2A)  
SYS  
IDC  
20mV/div  
AC-COUPLED  
V
= 10.5V  
DCM = HIGH  
CEN = 1  
DC  
V
I
SYS  
4.360V  
1A  
20mV/div  
L = 2.2µH  
4.305V  
C
= 10µF  
SYS  
R
IDC  
= 3kI (2A)  
1A  
DCM = HIGH  
CEN = 1  
I
SYS  
SYS  
500mA/div  
0A  
0A  
500mA/div  
0A  
0A  
100µs/div  
100µs/div  
USB CONNECT WITH NO DC  
(R  
= 25)  
MAX8903G SYS LOAD TRANSIENT  
SYS  
MAX8903A toc25  
MAX8903A toc24c  
3.6V  
3.75V  
2V/div  
5V/div  
4.325V  
= 9V  
V
SYS  
3.5V  
USB  
5V  
4.305V  
50mV/div  
V
SYS  
V
USB  
V
DC  
C
L = 2.2µH  
CHARGING  
475mA  
C
= 22µF  
SYS  
500mA/div  
500mA/div  
R
= 3kI (2A)  
IDC  
1A  
I
USB  
DCM = 1  
CEN = 1  
I
SYS  
I
BAT  
144mA  
BATTERY  
CHARGER  
SOFT-START  
500mA/div  
0A  
0A  
-330mA  
400µs/div  
100µs/div  
10  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
典型工作特性(续)  
(T = +25°C, unless otherwise noted.)  
A
USB DISCONNECT WITH NO DC  
(R  
= 25)  
USB SUSPEND  
USB RESUME  
SYS  
MAX8903A toc26  
MAX8903A toc27  
MAX8903A toc28  
0V  
0V  
3.6V  
3V  
3V  
V
V
2V/div  
5V/div  
5V/div  
5V/div  
USUS  
USUS  
V
SYS  
C
USB  
CHARGING  
500mA/div  
500mA/div  
V
USB  
475mA  
475mA  
3.6V  
5V  
I
0A  
0A  
USB  
I
USB  
475mA  
3.8V  
3.6V  
V
V
SYS  
SYS  
500mA/div  
500mA/div  
2V/div  
2V/div  
3.7V  
I
USB  
I
I
BAT  
BAT  
-330mA  
144mA  
I
BAT  
0A  
-475mA  
-475mA  
0A  
BATTERY  
CHARGER  
500mA/div  
500mA/div  
SOFT-START  
100µs/div  
200µs/div  
200µs/div  
引脚说明  
引脚  
名称  
功能  
1, 2  
PG  
降压低边同步n沟道MOSFET的功率地,两个PG引脚必须在外部连接在一起。  
直流电源输入。DC能够向SYS提供高达2A的电流。DC支持交流适配器和USB输入,DC限流根据所使用的输入  
电源通过DCM、IUSB或IDC设置,请参考表2。两个DC引脚必须在外部连接在一起。请在DC和PG之间连接一  
个至少4.7μF的陶瓷电容。  
3, 4  
DC  
直流电源输入的限流模式设置。置于逻辑高电平时,直流输入电流门限由IDC与GND之间的电阻设置;置于逻  
辑低电平时,直流输入电流门限在内部设置为500mA或100mA,由IUSB的逻辑输入设置。DCM (阳极)与DC  
(阴极)之间接有一个内部二极管,如图1所示。  
5
DCM  
6
7
BST  
高边MOSFET驱动电源。用一个0.1μF陶瓷电容将BST旁路至LX。  
USB限流设置输入。将IUSB驱动至逻辑低电平时,USB电流门限为100mA;将IUSB驱动至逻辑高电平  
时,USB电流门限为500mA。  
IUSB  
直流电源就绪输出。当在DC上检测到有效输入时,将低电平有效的开漏输出拉至低电平。当充电器被禁用  
(CEN为逻辑高电平)时,DOK仍然保持有效输出。  
8
DOK  
逻辑电路LDO输出。VL为LDO输出,该输出向MAX8903_内部电路供电并向BST电容充电。在VL和GND之间连  
接一个1μF的陶瓷电容。  
9
VL  
CT  
10  
11  
12  
充电定时器设置输入。CT和GND之间的电容(CCT)用于设置快充和预充故障定时器,该引脚接GND时禁用定时器。  
直流电源限流设置输入。在IDC和GND之间连接一个电阻(RIDC),当DCM为逻辑高电平时,降压调节器的电流  
门限设置为0.5A至2A。  
IDC  
GND  
地,GND是内部电路的低噪声接地端。  
11  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
引脚说明(续)  
引脚  
名称  
功能  
13  
ISET  
充电电流设置输入。ISET和GND之间的电阻(RISET)用于设置快充电流,最大值为2A。预充电流为快充电流的10%。  
充电器使能输入。CEN接GND时,如果DC或USB连接到有效电源则使能电池充电;接VL时,或将其驱动至逻  
辑高电平,则禁止电池充电。  
14  
15  
CEN  
USB挂起输入。USUS驱动至逻辑高电平时进入USB挂起模式,USB电流降低至115μA,并在内部将SYS短路  
至BAT。  
USUS  
热敏电阻输入。将一个负温度系数(NTC)热敏电阻连接在THM和GND之间。将一个阻值等于+25°C时热敏电阻  
阻值的电阻连接在THM和VL之间。当热敏电阻超出高温、低温门限时,充电器被挂起。将THM连接至GND  
时,禁用热敏电阻温度检测。  
16  
THM  
USB电源输入。USB能够向SYS提供100mA或500mA电流,取决于IUSB逻辑输入的设置。在USB和GND之间  
连接一个4.7μF的陶瓷电容。  
17  
18  
19  
USB  
FLT  
故障指示输出。若电池定时器在快充或预充完成之前超时,低电平有效的开漏输出将被拉至低电平。  
USB电源就绪输出。当在USB上检测到有效输入时,低电平有效的开漏输出被拉至低电平。充电器禁用(CEN  
为逻辑高)时,UOK仍然保持有效。  
UOK  
电池连接端,连接到单节Li+电池。当DC或USB存在有效电源时,电池通过SYS充电。当DC和USB均不存在有效  
电源时,或当SYS负载超过输入电流门限时,BAT向SYS供电。两个BAT引脚必须在外部连接到一起。  
20, 21  
22  
BAT  
MX8903A-EGHJN/Y  
CHG  
充电器状态输出。当电池处于快充或预充电状态时,低电平有效的开漏输出被拉至低电平;否则,CHG为高阻态。  
系统电源输出。当DC或USB无效,或者SYS负载超过输入电流门限时,SYS通过内部50mΩ系统负载开关连接  
至BAT。  
当DC或USB连接有效电源时,SYS电压限制在VSYSREG。系统负载(ISYS)超过DC或USB电流门限时,SYS被调  
节到低于BAT 50mV,输入电源和电池都向SYS供电。  
23, 24  
SYS  
利用X5R或X7R陶瓷电容将SYS旁路至GND,SYS电容(CSYS)的最小推荐值参见表6。两个SYS引脚必须在外部  
连接到一起。  
70mΩ电流检测输入。降压电感连接在LX和CS之间。当降压调节器开启时,CS和SYS之间有一个70mΩ电流  
检测MOSFET;当降压调节器关闭时,内部CS MOSFET断开,防止电流从SYS倒灌至DC。  
25, 26  
CS  
27, 28  
LX  
EP  
电感连接端,将电感连接在LX和CS之间。两个LX引脚必须从外部连接在一起。  
裸焊盘,将裸焊盘连接至GND。裸焊盘连接并不能替代相应引脚的接地要求。  
12  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
PG  
LX  
BST  
CS  
MAX8903_  
DC POWER  
MANAGEMENT  
TO  
SYSTEM  
LOAD  
DC  
SYS  
AC  
ADAPTER  
PWR  
OK  
Li+ BATTERY  
CHARGER  
AND SYS LOAD SWITCH  
ISET  
PWM  
STEP-DOWN  
REGULATOR  
DOK  
CHARGER  
BATTERY  
CONNECTOR  
CURRENT-  
VOLTAGE  
CONTROL  
SET  
BAT  
INPUT  
LIMIT  
BAT+  
BAT-  
+
USB POWER  
MANAGEMENT  
USB  
UOK  
T
USB  
THERMISTOR  
MONITOR  
(SEE FIGURE 7)  
THM  
VL  
NTC  
PWR  
OK  
CURRENT-  
LIMITED  
VOLTAGE  
IC  
THERMAL  
REGULATION  
REGULATOR  
CHG  
CHARGE  
TERMINATION  
AND MONITOR  
SET  
INPUT  
LIMIT  
DC  
DCM  
IUSB  
FLT  
CT  
DC MODE  
500mA  
CHARGE  
TIMER  
INPUT AND  
USB  
CHARGER  
CURRENT-LIMIT  
SET LOGIC  
LIMIT  
100mA  
USUS  
IDC  
USB  
SUSPEND  
CEN  
GND  
DC  
EP  
LIMIT  
图1. 功能框图  
13  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
R
PU  
4 x 100k  
TO VL  
1
PG  
2
PG  
18  
19  
8
FAULT  
FLT  
UOK  
DOK  
CHG  
MAX8903_  
OUTPUT  
C
DC  
4.7µF  
USB PWR OK  
DC PWR OK  
3
DC  
DC  
ADAPTER  
4
6
22  
CHARGE  
INDICATOR  
BST  
C
0.1µF  
BST  
R
R
ISET  
27 LX  
LX  
13  
11  
ISET  
IDC  
28  
IDC  
L1  
1µH  
25 CS  
26 CS  
(SEE TABLE 5 FOR  
INDUCTOR SELECTION)  
SYS 24  
TO SYSTEM  
LOAD  
MX8903A-EGHJN/Y  
C
SYS  
23  
SYS  
(SEE TABLE 6 FOR C SELECTION)  
SYS  
USB  
BAT  
BAT  
21  
20  
17 USB  
VBUS  
C
4.7µF  
C
10µF  
USB  
BAT  
1-CELL  
LI+  
GND  
5
TO DC  
DCM  
9
VL  
14  
OFF  
CHARGE ON  
C
1µF  
VL  
CEN  
R
T
10kΩ  
16  
500mA  
100mA  
7
THM  
IUSB  
NTC  
10kΩ  
USB SUSPEND  
15  
USUS  
12  
10  
CT  
GND  
C
CT  
EP  
0.15µF  
图2.典型应用电路,使用独立的DC和USB连接器  
USB充电输入可以通过USB电源向电池充电并向系统供电。  
当由USB或DC输入供电时,如果系统负载电流峰值超出了  
输入电源的供电能力,不足部分可由电池补充。  
电路说明  
MAX8903_为双输入充电器,输入为16V宽范围直流电源和  
USB电源。IC内部包括一路高压(16V)输入DC-DC降压转  
换器,在保证系统负载供电的同时有效降低充电器功耗。  
降压转换器可向系统、电池或两者组合提供高达2A的电流。  
MAX8903_还利用一个片上50mΩ MOSFET管理负载与电  
池和外部电源之间的切换。该开关在输入电源过载时,能  
够通过电池支持负载的峰值电流。  
14  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
R
PU  
4 x 100k  
TO VL  
1
2
PG  
PG  
18  
19  
8
FAULT  
FLT  
UOK  
DOK  
CHG  
MAX8903_  
OUTPUT  
C
DC  
4.7µF  
USB PWR-OK  
DC PWR-OK  
3
DC  
DC  
VBUS  
4
6
D-  
22  
CHARGE  
INDICATOR  
BST  
D+  
C
0.1µF  
BST  
R
R
ISET  
27 LX  
LX  
13  
11  
ID  
ISET  
IDC  
GND  
28  
IDC  
L1  
1µH  
25 CS  
26 CS  
SYS 24  
TO SYSTEM  
LOAD  
(SEE TABLE 6 FOR C SELECTION)  
499kΩ  
C
SYS  
23  
SYS  
(SEE TABLE 5 FOR  
INDUCTOR VALUE  
SELECTION)  
SYS  
BAT  
BAT  
21  
20  
17 USB  
C
BAT  
1-CELL  
LI+  
USB  
ADAPTER  
DC MODE  
10µF  
5
DCM  
9
VL  
14  
OFF  
CHARGE ON  
C
1µF  
VL  
CEN  
R
T
10kΩ  
16  
500mA  
100mA  
7
THM  
IUSB  
NTC  
10kΩ  
USB SUSPEND  
15  
USUS  
12  
10  
CT  
GND  
C
CT  
EP  
0.15µF  
图3.典型应用电路,使用Mini 5型连接器或其它DC/USB普通连接器  
如图1所示,该IC包括完备的充电器功能,具有热敏电阻  
监测器、故障定时器、充电状态指示和故障指示输出。还  
包括USB和DC电源就绪指示,可灵活调节充电电流、输入  
电流门限和最小系统电压(按比例降低充电电流,以保持系  
统电压正常)。  
DC输入—高速滞回降压调节器  
如果存在有效的DC输入,则关闭USB电源通路,由高频  
降压调节器将DC输入转换成SYS和电池充电的供电电源。  
如果电池电压高于最小系统供电电压(VSYSMIN,图4),电  
池充电器将系统供电电压连接至电池,以获得最低功耗。  
利用三个反馈信号控制降压调节点:IDC设置的最大降压  
输出电流、ISET设置的最大充电电流以及最高管芯温度。  
反馈信号只需最小的电流控制电感的平均输出电流。这种  
机制使电池充电的总功耗最小,电池能够在保持最小系统  
电压波动的前提下化解负载瞬变的影响。  
+
°
当管芯温度超过 100 C时,MAX8903_会限制充电电流,  
从而防止高温环境下出现过热。  
15  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
表1.图2和图3的外部元件列表  
COMPONENT  
FUNCTION  
PART  
(FIGURES 2 AND 3)  
C
, C  
Input filter capacitor  
VL filter capacitor  
4.7µF ceramic capacitor  
1.0µF ceramic capacitor  
DC USB  
C
VL  
10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J) or  
22µF (MAX8903B/MAX8903E/MAX8903G/MAX8903Y) ceramic capacitor  
C
SYS output bypass capacitor  
SYS  
C
Battery bypass capacitor  
Charger timing capacitor  
Logic output pullup resistors  
Negative TC thermistor  
THM pullup resistor  
10µF ceramic capacitor  
BAT  
C
0.15µF low TC ceramic capacitor  
CT  
R
(X4)  
100k  
PU  
THM  
Philips NTC thermistor, P/N 2322-640-63103, 0k5ꢀ at ꢁ25ꢂC  
10kΩ  
R
T
R
DC input current-limit programming resistor 3k1ꢀ, for 2A limit  
IDC  
ISET  
L1  
R
Fast-charge current programming resistor 1.2k1ꢀ, for 1A charging  
DC input step-down inductor  
1µH inductor with I  
> 2A  
SAT  
MX8903A-EGHJN/Y  
如果电池电压低于VSYSMIN充电器不直接将系统供电电压  
连接至电池,系统电压(VSYS)略高于VSYSMIN,如图4所示。  
电池充电器独立控制电池的充电电流。根据MAX8903_版  
本的不同,VSYSMIN设置为3.0V或3.4V,参见表6。  
DC模式(DCM)  
如表2所示,DC输入可接受交流适配器(最高2A)和USB (最  
高500mA)电源。DCM逻辑输入置为高电平时,DC输入处  
于适配器模式,DC输入电流限制由IDC与GND之间的电阻  
(RIDC)设置。根据下式计算RIDC  
:
电池充电至VSYSMIN电压以上50mV后,系统供电电压被连  
接至电池。随后,电池快充电流控制降压转换器建立平均  
电感电流,以满足输入限流和快充电流限制的要求。  
RIDC = 6000V/IDC-MAX  
DCM逻辑输入置为低电平时,DC输入电流限制由IUSB逻  
辑输入在内部设置为500mA或100mA。IUSB逻辑输入为  
高电平时,DC输入电流限制为500mA,DC输入通过降压  
调节器为SYS供电。IUSB逻辑输入为低电平时,DC输入  
电流限制为100mA。在100mA模式下,降压调节器关闭,  
高边开关将构成线性稳压器,具有100mA的限流。线性稳  
压器的输出连接至LX,输出电流经电感流入CS,最终流  
入SYS。  
DC-DC降压控制机制  
专有的滞回电流PWM控制机制可确保工作在较高的开关  
频率,允许使用小尺寸外部元件。反馈控制信号需要最小  
的输入电流,控制电感的峰值和谷值电流的中点。纹波电  
流由内部设置,使转换器工作在4MHz频率。当输入电压  
降至输出电压附近时,工作在非常高的占空比,由于存在  
最小关断时间,达不到4MHz工作频率。控制器提供最小  
关断时间、峰值电流调节。类似地,当输入电压较高时,  
由于存在最小导通时间,不能工作在4MHz频率,此时控  
制器采用最小导通时间、谷电流控制。这种情况下,电感  
的纹波电流始终保持最小,能够在给定电容下有效降低  
SYS的纹波电压。为了避免工作频率波动,纹波电流随输  
入电压、输出电压而变化。然而,频率也会随着工作条件  
的不同而发生变化,请参考典型工作特性部分。  
DCM引脚具有一个内部连接至DC的二极管,如图1所示。  
为防止电流从DCM经内部二极管流至DC输入,DCM的  
驱动电压不能大于DC。图3所示电路中,通过一个简单的  
MOSFET和DCM端的外部电阻即可防止电流从DCM经内  
部二极管流至DC。图3中的电路允许微处理器在任何时候  
将MOSFET的栅极驱动至任何状态。  
16  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
图3中MOSFET和DCM端电阻的一种替代方案是在DCM输  
入与微处理器之间串联一个1MΩ电阻。微处理器监测DOK  
输出,确保在DOK为高电平时DCM仍然为低电平。如果  
DCM的驱动电压高于DC,1MΩ串联电阻把从DCM经内部  
UOK和DOK电路在热过载、USB挂起以及充电器被禁止时  
均保持有效工作状态。也可以将DOK和UOK线或接,  
构成一路电源就绪(POK)输出。  
热保护  
μ
二极管流至DC的电流限制在几个 A。  
+
°
°
当管芯温度超过 100 C时,热保护电路将按照5%/ C降低  
USB输入—线性稳压器  
°
输入电流门限,温度达到+120 C时充电电流为0mA。由于  
如果USB输入有效、DC输入无效,SYS和电池充电电流均  
由连接在USB和SYS之间的低压差线性稳压器提供。SYS  
的稳压特性与DC输入条件下相同(图4所示)。电池充电器  
将从SYS获取所能提供的电流,但不会超出最大允许的  
USB电流。如果USB和DC输入均有效,则由DC输入供电。  
最大USB输入电流由IUSB输入的逻辑状态设置为100mA  
或500mA。  
系统负载供电的优先级高于电池充电,电池充电电流会在  
输入限制器拉低SYS负载电压之前降至0mA。为避免错误  
地结束充电,该模式下的充电终止检测功能被禁用。如果  
结温上升至 120 C以上,不会从DC或USB吸收电流,并  
且VSYS调节到低于VBAT 50mV。  
+
°
系统电压切换  
DC输入  
当由DC输入充电时,如果电池电压高于最小系统电压,SYS  
则被连接至电池。电流供给SYS和电池,可以达到最大设  
置值。降压转换器输出电流检测和充电电流检测所提供的  
反馈确保电流环路需要较低的输入电流。当从DC供电时,  
这种方法的优势在于功耗主要取决于降压调节器的效率,  
因为SYS和BAT之间的压降非常低。此外,电池能够吸收  
负载瞬变的影响,使SYS电压波动最小。若DC和USB输入  
均有效,则DC输入优先级较高,由它提供输入电流,同  
时USB输入被关闭。  
电源监测器输出(UOK、DOK)  
DOK为漏极开路、低电平有效输出,指示DC输入电源的  
状态。若USB引脚没有电源,当4.15V< VDC < 16V时,DC  
电源被认为有效且DOK驱动至逻辑低电平;若USB电源  
也有效,当4.45V < VDC < 16V时,DC电源被认为有效且  
DOK驱动至逻辑低电平。USB输入有效时,如果最小DC  
电压值较高,则有利于输入电源之间的低噪声转换。如果  
不需要DC电源就绪输出,可将DOK连接至地。  
UOK为漏极开路、低电平有效输出,指示USB输入电源的  
状态。USB连接有效电源时,UOK为逻辑低电平;4.1V <  
VUSB < 6.6V时,USB电源有效。如果不需要USB电源就绪  
输出,可将UOK连接至地。  
电池完成充电后,充电器关闭,SYS负载电流由DC输入提  
供,SYS电压稳定在VSYSREG。电池电量下降到重新启动  
充电的门限时,再次打开充电器。如果负载电流超出输  
入门限,SYS电压降至电池电压,并且SYS和BAT之间的  
50mΩ PMOS开关导通,以支持更大的负载电流。一旦负  
载电流低于输入电流门限,SYS和BAT之间的开关被关闭。  
如果撤除有效的DC电源,则50mΩ PMOS也将导通。  
V
V
SYSREG  
BATREG  
MAX8903_  
USB输入  
由USB输入充电时,DC输入降压调节器关闭,连接在USB  
和SYS之间的线性稳压器向系统供电并向电池充电。如果  
电池电压高于最小系统电压,SYS供电电压被连接至电池。  
USB输入向SYS负载供电,并利用额外的电流为电池充电,  
总电流不会超过最大允许的USB电流。电池能够吸收负载  
瞬变的影响,使SYS电压波动最小。电池充电结束或充电  
器被禁止时,SYS电压稳定在VSYSREG。如果USB和DC输  
入均有效,则只从DC输入供电。  
V
SYS  
I
x R  
ON  
BAT  
V
SYSMIN  
V
V
= 0V  
AND/OR V  
CEN  
= 5.0V  
USB  
DC  
V
BAT  
图4.SYS跟随VBAT至最小系统电压  
17  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
表2.输入限制器控制逻辑  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
MAXIMUM  
CHARGE  
CURRENT**  
USB INPUT  
CURRENT LIMIT  
POWER SOURCE  
DOK  
UOK DCM*** IUSB USUS  
Lesser of  
1200V/R  
6000V/R  
and  
AC Adapter at DC Input  
L
L
X
X
H
L
X
L
X
L
6000V/R  
IDC  
ISET  
IDC  
Lesser of  
1200V/R  
100mA  
and  
USB input off. DC  
input has priority.  
ISET  
100mA  
USB Power at DC Input  
Lesser of  
1200V/R  
and  
L
L
X
X
L
L
L
X
H
X
L
L
H
L
500mA  
ISET  
500mA  
USB suspend  
0
Lesser of  
1200V/R  
MX8903A-EGHJN/Y  
H
100mA  
500mA  
and  
ISET  
100mA  
USB Power at USB Input,  
DC Unconnected  
Lesser of  
1200V/R  
ISET  
No DC input  
H
L
X
H
L
and  
500mA  
H
H
L
X
X
X
X
H
X
USB suspend  
No USB input  
0
0
DC and USB Unconnected  
H
**充电电流不能超过输入电流门限,如果总的SYS负载电流超过输入限流,将控制充电电流低于最大充电电流。  
***DCM (阳极)与DC (阴极)之间接有一个内部二极管,如图1所示。如需通过μP设置DCM电平,需采用一个MOSFET进行隔离,如图3  
所示。X = 无关。  
USB挂起  
软启动  
为了防止能够导致USB或交流适配器电源不稳定的输入瞬  
变,输入电流和充电电流的变化率均受限。当一路输入电  
源有效时,SYS电流从零开始上升到所设置的电流门限,  
驱动USUS为逻辑高电平、DCM为逻辑低电平将关闭充电  
器和SYS输出,并将输入电流降至170 A,进入USB挂起  
μ
模式。请参考表2所示的设置。  
μ
通常时间为50 s。这也意味着,如果DC在USB之后有效,  
充电使能(CEN)  
CEN为逻辑低电平时,充电器开启;CEN为逻辑高电平  
时,充电器关闭。CEN不影响SYS输出。许多系统中,不  
需要系统控制器(通常为微处理器)关闭充电器工作,因为  
MAX8903_智能电源选择器能够独立地管理充电和适配器/  
电池电源的关断。这种情况下,CEN可以接地。  
SYS电流将在USB切换到DC输入之前降至零。在某个工作  
点,SYS可能无法支持负载供电,切换至BAT。当VSYS  
VBAT将切换BAT该门限具体取决SYS容和  
SYS负载。SYS电流随后从零上升到所设置的电流,只要  
SYS负载电流小于所设置的电流门限,SYS即可支持负载。  
<
18  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
充电器开启时,充电电流从0A上升到ISET设置的电流,通  
常时间为1.0ms。当从预充进入快充状态、输入电源在USB  
和DC之间切换、IUSB逻辑输入将USB充电电流从100mA  
变为500mA时,充电电流也会进入软启动过程。然而,如  
果RISET通过一个开关突然改变,则没有di/dt限制。  
当VBAT低于VBATPQ时,充电器进入预充模式,以最大快  
充速率的10%为电池充电,直到过放电电池恢复正常。当  
电池电压达到VBATREG时,充电电流下降到最大快充电流  
的10%,充电器进入DONE状态。当电池电压跌落100mV  
时,充电器将重新启动快充过程。  
电池充电器  
存在有效的输入电源时,电池充电器将尝试以快充电流为  
电池充电,电流由ISET与GND之间的电阻确定,根据下式  
计算RISET电阻:  
充电终止  
当充电电流降至终止门限(ITERM)并且充电器处于恒压模式  
时,完成充电。充电过程将持续短暂的15s浮充周期,然  
后进入DONE状态,充电结束。  
R
ISET = 1200V/ICHGMAX  
注意,若充电电流因为输入限流或热保护下降至ITERM,充  
电器不会进入DONE状态。若要充电器进入DONE状态,充  
电电流必须低于ITERM并且充电器必须处于恒压模式、输入  
限流或热保护电路没有降低充电电流。  
监测充电电流  
ISET和GND之间的电压代表电池充电电流,可用于监测电  
池的充电电流。1.5V电压对应于最大快充电流。  
充电状态指示输出  
必要时,充电器可自动降低充电电流,以防SYS电压跌落。  
因此,USB供电时充电器不会以超出100mA或500mA电流  
向电池充电,也不会造成交流适配器过载,请参考图5。  
充电指示输出(CHG)  
CHG为漏极开路电平有效输出于指示充电器状态。  
当电池充电器处于预充和快充状态时,CHG为低电平。如  
果热敏电阻检测使充电器进入热保护状态,CHG将变为高  
阻态。  
MONITORING THE BATTERY  
μ
与微处理器( P)配合使用时,在CHG和逻辑I/O电压之间连  
CHARGE CURRENT WITH V  
ISET  
μ
接一个上拉电阻,为 P提供充电状态指示。此外,CHG可  
吸收最大20mA的电流,能够用于LED充电指示。  
1.5  
ISET  
0
故障指示输出(FLT)  
FLT为漏极开路、低电平有效输出,用于指示充电器状态。  
电池充电器进入故障状态并且充电定时器超时的情况下,  
FLT为低电平。当充电器处于预充状态的时间超过33分钟  
或充电器处于快充状态的时间超过660分钟时,可能发生  
这种情况(图6所示)。为了退出故障状态,可以触发CEN或  
重新接通输入电源。  
V
(V)  
μ
与微处理器( P)配合使用时,在FLT和逻辑I/O电压之间连  
μ
接一个上拉电阻,为 P提供充电状态指示。此外,FLT可吸  
收最大20mA的电流,能够用于LED充电指示。如果不需要  
FLT输出,可将FLT接地或浮空。  
0
BATTERY CHARGING CURRENT (A)  
DISCHARGING  
1200V/R  
ISET  
充电定时器  
故障定时器可避免电池无限制地充电。预充和快充故障定  
时器由CT端的外接电容(CCT)设置。  
图5.利用ISET和GND之间的电压监测电池充电电流  
19  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
CEN = HI OR  
REMOVE AND RECONNECT  
THE INPUT SOURCE(S)  
NOT READY  
UOK AND DOK = HIGH IMPEDANCE  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
ANY STATE  
I
= 0mA  
CHG  
UOK AND/OR DOK = LOW  
CEN = 0  
RESET TIMER  
TOGGLE CEN OR  
REMOVE AND RECONNECT  
THE INPUT SOURCE(S)  
PREQUALIFICATION  
UOK AND/OR DOK = LOW  
CHG = LOW  
TIMER > t  
PREQUAL  
FLT = HIGH IMPEDANCE  
FAULT  
0 < V < V  
BAT  
BATPQ  
UOK AND/OR DOK = LOW  
CHG = HIGH IMPEDANCE  
FLT = LOW  
I
I  
/10  
CHG CHGMAX  
V
BAT  
< V  
BATPQ  
- 180mV  
V
> V  
BAT BATPQ  
I
= 0mA  
CHG  
RESET TIMER = 0  
RESET TIMER  
TIMER > t  
FSTCHG  
(TIMER SLOWED BY 2x IF  
< I /2, AND  
FAST-CHARGE  
UOK AND/OR DOK = LOW  
CHG = LOW  
I
CHG CHGMAX  
V
< V  
- 180mV  
RESET TIMER  
BAT  
BATPQ  
PAUSED IF I  
< I  
/5 WHILE V < V  
)
BATREG  
CHG CHGMAX  
BAT  
MX8903A-EGHJN/Y  
FLT = HIGH IMPEDANCE  
V
< V < V  
BAT BATREG  
BATPQ  
I
I  
CHG CHGMAX  
I
< I  
CHG TERM  
AND V = V  
BAT  
BATREG  
I
> I  
CHG TERM  
AND THERMAL  
OR INPUT LIMIT  
NOT EXCEEDED;  
RESET TIMER  
RESET TIMER  
ANY CHARGING  
STATE  
TOP-OFF  
UOK AND/OR DOK = LOW  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
THM OK  
TIMER RESUME  
THM NOT OK  
TIMER SUSPEND  
V
BAT  
< V  
+ V  
BATREG RSTRT  
RESET TIMER  
V
= V  
BATREG  
BAT  
I
= I  
CHG TERM  
TEMPERATURE SUSPEND  
= 0mA  
UOK OR DOK PREVIOUS STATE  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
I
CHG  
TIMER > t  
TOP-OFF  
DONE  
UOK AND/OR DOK = 0  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
V
+ V < V < V  
RSTRT BAT BATREG  
BATREG  
I
= 0mA  
CHG  
图6.MAX8903A充电状态流程图  
C
快充模式下,较重的系统负载或器件的自发热可能引起  
MAX8903_降低充电电流。这种情况下,如果充电电流下  
降到所设置的快充电流的50%,快充定时器的计时速率将  
降低2倍;如果充电电流下降到所设置的快充电流的20%  
时,定时器进入挂起状态。如果充电器使BAT电压达到  
VBATREG (即充电器进入恒压模式),快充定时器将不受任  
何电流的影响。  
CT  
t
= 33min ×  
PREQUAL  
0.15µF  
C
CT  
t
= 660min×  
FST -CHG  
0.15µF  
t
t
= 15s (MAX8903A/D/H/J/N/Y)  
TOP-OFF  
TOP-OFF  
C
CT  
= 132min×  
(MAX8903B/E/G)  
0.15µF  
20  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
CEN  
VL  
VL  
THERMISTOR  
CIRCUITRY  
MAX8903_  
MAX8903B/MAX8903E/  
MAX8903G ONLY  
THERMISTOR  
DETECTOR  
0.87 VL  
R
TB  
ALTERNATE  
THERMISTOR  
CONNECTION  
0.74 VL  
COLD  
THM  
R
TS  
THM  
OUT OF  
RANGE  
0.28 VL  
HOT  
R
TP  
R
T
DISABLE  
CHARGER  
ENABLE THM  
0.03 VL  
R
T
ALL COMPARATORS  
60mV HYSTERESIS  
GND  
图7.热敏电阻监测电路  
热敏电阻输入(THM)  
表3.不同热敏电阻对应的故障温度  
THM输入在外部连接一个负温度系数(NTC)的热敏电阻,  
用于监测电池或系统温度。当热敏电阻温度超过所限制的  
范围时,充电器处于挂起模式。充电计时器为挂起状态,  
并将保持该状态而不产生故障指示。当热敏电阻恢复到限  
定范围时,重新开始充电,充电定时器从停止处重新开始  
计时。将THM接GND则禁用热敏电阻监测功能,表3所示  
为不同热敏电阻的故障温度。  
Thermistor β (K)  
(k) (Figure 7)  
3000 3250 3500 3750 4250  
R
10  
10  
10  
10  
10  
TB  
Resistance at +25°C  
(k)  
10  
10  
10  
10  
10  
Resistance at +50°C  
(k)  
4.59  
4.30  
4.03  
3.78 3.316  
由于热敏电阻监测电路在THM和VL之间引入了一个外部  
Ω (+25°C时)。  
偏置电阻(RTB,图7),热敏电阻无需局限于10k  
只要偏置电阻等于热敏电阻在 25 C时的阻值,即可使用  
Resistance at 0°C (k) 25.14 27.15 29.32 31.66 36.91  
Nominal Hot Trip  
Temperature (°C)  
+
°
+
55  
-3  
53  
-1  
50  
0
49  
2
46  
°
Ω
任何阻值的热敏电阻。例如,对于 25 C时10k 的热敏电  
Nominal Cold Trip  
Temperature (°C)  
Ω电阻;对于+25°C时100kΩ的热敏  
阻,在RTB处使用10k  
电阻,则使用100kΩ电阻。  
4.5  
+
°
Ω
对于典型的10kΩ ( 25 C时)热敏电阻和10k RTB电阻,当  
热敏电阻下降到3.97kΩ以下(过热)或上升到28.7kΩ以上(过  
冷)时,充电器进入温度挂起状态。相当于使用β为3500的  
VL稳压器  
VL是一个5V线性稳压器,为MAX8903的内部电路供电,  
并为BST电容充电。VL在外部为电池的热敏电阻提供偏  
置。VL由USB或DC输入电源供电,当USB和DC端均连接  
电源时,VL由DC电源供电。当USB或DC的输入电压高于  
1.5V左右时,VL使能。输入电压高于过压门限时,VL不  
会关断。同样,当充电器关闭(CEN = 高电平)时,VL也不  
°
+
°
10kΩ NTC热敏电阻,温度处于0 C至 50 C范围。热敏电  
阻与温度的通用关系式由下式定义:  
1
1
β
T+273°C  
298°C  
R
= R × e  
25  
μ
会关断。在VL与GND之间连接一个1 F电容。  
T
21  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
式中:  
功耗  
RT = 温度为T (摄氏度)时,热敏电阻的阻值(Ω)  
表4. 封装热特性  
+ °  
Ω
= 25 C时,热敏电阻的阻值( )  
R25  
28-PIN 4mm x 4mm THIN QFN  
β = 热敏电阻的材料常数,典型值处于3000K至5000K  
SINGLE-LAYER PCB  
MULTILAYER PCB  
°
T = 热敏电阻的检测温度( C)  
1666.7mW  
2286mW  
Continuous  
Power  
Dissipation  
表3给出了不同热敏电阻材料常数对应的MAX8903_ THM  
温度限制。  
Derate 20.8mW/°C  
above +70°C  
Derate 28.6mW/°C  
above +70°C  
有些设计可能选择其它热敏电阻温度限值。通过改变RTB  
用一个电阻与热敏电阻串联和/或并联,或使用β值不同  
的热敏电阻,都可以调节温度温度门限。例如,使用β值  
为4250的热敏电阻,并联一个120kΩ的电阻,可以得到  
θ
θ
48°C/W  
3°C/W  
35°C/W  
3°C/W  
JA  
JC  
+
°
°
°
+
45 C的高温门限和0 C的低温门限。由于热敏电阻阻值  
最小SYS输出电容  
°
在0 C左右时远远高于 50 C对应的阻值,并联一个大电  
阻可以降低低温门限,而对高温门限的降低很小。相反,  
串联一个小电阻可以提升高温门限,而对低温门限的提升  
很小。加大RTB可降低低温门限和高温门限,减小RTB则会  
提高两个门限。  
根据MAX8903_版本的不同,SYS负载调整率为25mV/A或  
40mV/A。25mV/A版本增大了反馈环路增益,因而具有更  
好的负载调整特性。为确保具有较高增益的反馈环路稳定  
工作,需使用一个较大的SYS输出电容。具有25mV/A SYS  
MX8903A-EGHJN/Y  
μ
负载调整率的器件需要22 F SYS输出电容,而具有40mV/A  
SYS负载调整率的器件仅需要10 F SYS输出电容。关于  
MAX8903_不同版本的更多信息,请参见表6。  
值得注意的是只要有效电源连接至DC或USB,即使禁止  
充电时(CEN = 高电平),由于VL有效,热敏电阻将始终流  
过偏置电流。使用10kΩ热敏电阻,且VL采用10kΩ上拉电  
μ
μ
Ω
DC-DC降压调节器的电感选择  
MAX8903_的控制架构需使用一个1.0μH至10μH外部电感  
(LOUT),以确保正常工作。本节对控制架构和电感选择进  
行了说明。表5给出了典型应用的推荐电感选择。如在针  
对特定应用选择最佳电感的计算过程中需要帮助,请参  
见以下网址的电子表格:china.maxim-ic.com/design/  
tools/calculators/files/MAX8903-INDUCTOR-  
DESIGN.xls。  
阻时,会产生额外的250 A负载。如果选择100k 热敏电  
μ
阻和100kΩ上拉电阻,该负载可降至25 A。  
电池检测的供电使能控制  
电池检测功能的供电使能控制允许MAX8903B/MAX8903E/  
MAX8903G/除电池时自动使/USB和DC  
电源输入。该功能采用电池组的集成热敏电阻作为检测  
判断何时施加或移除电利用该功基于  
MAX8903B/MAX8903E/MAX8903G的系统可在电池移除  
时关断,而与USB或DC电源输入是否有外部电源无关。  
MAX8903 DC-DC降压调节器采用恒定开关频率(fSW)的  
控制架构,当输入电压降低至接近输出电压时,采用高  
占空比工作方式,受最小关断时间(tOFFMIN)的限制,器件  
可以工作在低于fSW的频率。工作在高占空比条件时,调  
节器采用具有最小关断时间tOFFMIN的峰值电流控制架构。  
类似地,当输入电压较大时,受最小导通时间(tONMIN)的  
限制,工作频率无法达到fSW,此时调节器采用最小导通  
时间固定的谷电流控制架构。  
MAX8903B/MAX8903E/MAX8903G在热敏电阻检测比较  
器上使用电池检测供电使能控制的电路如图7所示。如果  
没有链接电池,则不存在热敏电阻,THM将通过RTB上拉  
至VL。当THM的引脚电压上升到VL的87%以上时,则认  
为电池已经被移除,系统关断。也可以完全旁路该热敏电  
阻检测电路,这种情况下,允许系统在电池移除后继续采  
用外部电源供电。如果将THM引脚连接至GND (THM端  
的电压低于VL的3%),则禁用热敏电阻检测功能,系统不  
会响应热敏电阻输入的变化。这种情况下,假定系统自身  
具有温度检测功能,当温度超出安全充电范围时,停止由  
CEN输入引起的充电状态变化。  
fSW = 4MHz的MAX8903器件版本具有最小的LOUT,在输  
入电压较低(5V或9V)时具有较高效率。对于输入电压较高  
(12V)的应用,fSW = 1MHz的MAX8903G因其更高的效率  
而成为最佳选择。  
22  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
对于给定的输出电压最大值,若最小输入电压允许调节器  
保持fSW工作频率,则输入电压最小时电感纹波电流最小。  
如果输入电压最小值限定的开关关断时间小于tOFFMIN则  
调节器在即将进入固定最小关断时间工作模式时具有最小  
的电感纹波电流。为了使工作在电流模式的调节器具有低  
抖动和稳定的占空比系数,在电感纹波电流处于最小值时  
电感的纹波电流最小值(IL_RIPPLE_MIN)应大于150mA。由  
V
1
f
SW  
SYS(MIN)  
(5)  
t
= t  
if  
×
t  
ONMIN  
,
ON  
ONMIN  
V
DC(MAX)  
否则  
V
1
SYS(MIN)  
t
=
×
ON  
V
f
下面的式(1)和式(2)计算所允许的输出电感最大值LOUT_MAX  
DC(MAX)  
SW  
V
1
f
SW  
SYS(MAX)  
电感饱和直流电流额定值(ISAT)必须大于直流降压输出限流  
值(ISDLIM)与二分之一最大纹波电流值之和,如式(6)所示。  
(1) t  
= t  
if 1  
×
t  
,
OFF  
OFFMIN  
OFFMIN  
V
DC(MIN)  
IL  
否则  
RIPPLE _MAX  
(6)  
I
> I  
+
SAT  
SDLIM  
2
V
1
SYS(MAX)  
t
= 1  
×
OFF  
V
f
DC(MIN)  
SW  
其中,ILRIPPLE_MAX为由式(7)和(8)计算得到的纹波电流中  
数值较大的一个。  
其中,tOFF为关断时间,VSYS(MAX)为充电器输出电压最大  
值,VDC(MIN)为最小直流输入电压。  
V
× t  
OFF  
SYS(MAX)  
(7)  
(8)  
IL  
=
RIPPLE_MIN_ T  
OFF  
L
OUT  
V
× t  
SYS(MAX)  
OFF  
L
=
(2)  
OUT _MAX  
I
L _RIPPLE _MIN  
V
V  
× t  
ON  
(
)
DC(MAX)  
SYS(MIN)  
IL  
=
RIPPLE _MIN_ T  
ON  
L
其中,LOUT_MAX为所允许的最大电感值。  
OUT  
为选取一个磁芯损耗符合要求且能够在指定fSW工作频率  
下保证无抖动稳定工作的小尺寸电感,可以首先设置适当  
的纹波系数K,并在式(2)、(3)和(4)给出的范围内选取电感  
值,从而确定实际的输出电感LOUT。LOUT不应低于表6列  
出的最小电感值。对于(2A ≥ ISDLIM ≥ 1A)的工作条件,  
推荐的纹波系数范围为(0.2 ≤ K ≤ 0.45)。  
PCB布局和布线  
良好的布线设计有助于降低地电位的偏差和接地平面的电  
压梯度,这些因素会导致系统不稳定或稳压误差。GND和  
PG仅通过一个点连接至功率地,使功率地电流的影响最  
小。电池地应该直接连接到功率地。ISET和IDC电流设置  
电阻应直接连接到GND,避免电流误差。将GND直接连  
接到IC下方的裸焊盘。在裸焊盘下方使用多个过孔接地,  
有助于IC散热。DC、SYS、BAT及USB至功率地的输入电  
容应尽量靠近IC放置。尽可能采用短而宽的布线作为大电  
流引线如DCSYS和BAT的连线。关于PCB布局实例,  
请参考MAX8903A评估板的数据资料。  
V
× t  
SYS(MAX)  
OFF  
L
=
(3)  
OUT _MIN _ T  
OFF  
K × I  
SDLIM  
其中,tOFF是由式(1)得到的最小关断时间。  
V
V  
SYS(MIN)  
× t  
(
)
DC(MAX)  
ON  
(4)  
L
=
OUT _MIN _ t  
ON  
K × I  
SDLIM  
其中,VDC(MAX)为最大输入电压,VSYS(MIN)为充电器输出  
电压最小值,tON为输入电压较大时的导通时间,可由下  
式计算得出:  
23  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
表5. 推荐电感示例  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
DC INPUT  
VOLTAGE  
RANGE  
PART NUMBER,  
SWITCHING  
FREQUENCY*  
RECOMMENDED INDUCTOR  
(I  
)
SDMAX  
±.1µH, IFSC±118ABER±R1M1±, Vishay  
2.5mm x 2mm x ±.2mm, 43m(max), 2.6A  
or ±.1µH, LQH32PN±R1-NN1, Murata,  
3.2mm x 2.5mm x ±.55mm, 54m(max), 2.3A  
5V ±±10  
5V ±±10  
5V ±±10  
5V ±±10  
9V ±±10  
9V ±±10  
2A  
MAX8913H/J/N/Y, 4MHz  
MAX8913H/J/N/Y, 4MHz  
±.5µH inductor, MDT2521-CN±R5M, TOKO  
2.5mm x 2.1mm x ±.2mm, ±23.5m(max), ±.25A  
or ±.5uH Inductor, IFSC±118ABER±R5M1±, Vishay  
2.5mm x 2mm x ±.2mm, 72m(max), 2.2A  
±A  
2A  
±A  
2A  
±A  
2.2µH inductor, DFE3225±2C-2R2N, TOKO  
3.2mm x 2.5mm x ±.2mm, 9±m(max), 2.4A  
or 2.2µH inductor, IFSC±5±5AHER2R2M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, 45m(max), 3A  
MAX8913A/B/C/D/E,  
4MHz  
MX8903A-EGHJN/Y  
2.2µH inductor, IFSC±118ABER2R2M1±, Vishay  
2.5mm x 2mm x ±.2mm, 91m(max), 2.±5A  
or 2.2µH Inductor, LQH32PN2R2-NN1, Murata  
3.2mm x 2.5mm x ±.55mm, 9±m(max), ±.55A  
MAX8913A/B/C/D/E,  
4MHz  
±.5uH inductor, IFSC±118ABER±R5M1±, Vishay  
2.5mm x 2mm x ±.2mm, 72mW (max), 2.2A  
or ±.5µH Inductor, VLS41±2ET-±R5N, TDK  
4mm x 4mm x ±.2mm, 72mW (max), 2.±A  
MAX8913H/J/N/Y, 4MHz  
MAX8913H/J/N/Y, 4MHz  
2.2µH inductor, IFSC±118ABER2R2M1±, Vishay  
2.5mm x 2mm x ±.2mm, 91m(max), 2.±5A  
or 2.2µH inductor, LQH3NPN2R2NJ1, Murata  
3mm x 3mm x ±.±mm, 83m(max), ±.±5A  
24  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
表5. 推荐电感示例(续)  
DC STEP-DOWN  
DC INPUT  
PART NUMBER,  
SWITCHING  
FREQUENCY*  
OUTPUT  
VOLTAGE  
RECOMMENDED INDUCTOR  
CURRENT LIMIT  
RANGE  
(I  
)
SDMAX  
2.2µH inductor, DFE3225±2C-2R2N, TOKO  
3.2mm x 2.5mm x ±.2mm, 9±m(max), 2.4A  
or 2.2µH Inductor, IFSC±5±5AHER2R2M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, 45m(max), 3A  
MAX8913A/B/C/D/E,  
4MHz  
9V ±±10  
9V ±±10  
9V ±±10  
9V ±±10  
±2V ±±10  
±2V ±±10  
2A  
2.2µH Inductor, IFSC±118ABER2R2M1±, Vishay  
2.5mm x 2mm x ±.2mm, 91m(max), 2.±5A  
or 2.2µH Inductor, LQH3NPN2R2NJ1, Murata  
3mm x 3mm x ±.±mm, 83m(max), ±.±5A  
MAX8913A/B/C/D/E,  
4MHz  
±A  
2A  
±A  
2A  
±A  
4.3uH Inductor, DEM45±8C (±235AS-H-4R3M), TOKO  
4.7mm x 4.5mm x ±.8mm, 84m(max), 2.1A  
or 4.7µH Inductor, IFSC±5±5AHER4R7M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, 91m(max), 2.1A  
MAX8913G, ±MHz  
MAX8913G, ±MHz  
MAX8913G, ±MHz  
MAX8913G, ±MHz  
4.7µH inductor, DEM28±8C (±227AS-H-4R7M), TOKO  
3.2mm x 2.8mm x ±.8mm, 92m(max), ±.±A  
or 4.7µH inductor, IFSC±118ABER4R7M1±, Vishay  
2.5mm x 2mm x ±.2mm, 2±2m(max), ±.2A  
4.3µH inductor, DEM45±8C (±235AS-H-4R3M), TOKO  
4.7mm x 4.5mm x ±.8mm, 84m(max), 2.1A  
or 4.7µH inductor, IFSC±5±5AHER4R7M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, 91m(max), 2.1A  
6.8µH, IFSC±5±5AHER6R8M1±, Vishay  
3.8mm x 3.8mm x ±.8mm, ±±5m(max), ±.5A  
or 6.8µH, LQH44PN6R8MP1, Murata  
4mm x 4mm x ±.65mm, ±44m(max), ±.34A  
*关于器件型号的更多信息,请参见选型指南。  
25  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MAX8903H/MAX8903J/MAX8903N/MAX8903Y的基本架  
构和功能是相同的,不同之处在于具体的电气参数和工作  
参数。表6列出了各器件版本之间的不同之处。  
选型指南  
MAX8903_提供不同版本的器件,采用固定器件型号后的第  
一个字母进行区。MAX8903A-MAX8903E/MAX8903G/  
表6. 选型指南  
PARAMETER MAX8903A MAX8903B MAX8903C MAX8903D MAX8903E MAX8903G MAX8903H MAX8903J MAX8903N MAX8903Y  
Minimum SYS  
Regulation  
3.0V  
3.0V  
3.4V  
3.4V  
3.0V  
3.0V  
3.4V  
3.4V  
3.4V  
3.0V  
Voltage  
(V  
)
SYSMIN  
SYS Regulation  
Voltage  
4.4V  
4.325V  
2.2µH  
4.4V  
4.4V  
4.325V  
2.2µH  
4.325V  
2.2µH  
4.4V  
1µH  
4.5V  
1µH  
4.4V  
1µH  
4.4V  
1µH  
(V  
SYSREG  
)
Minimum  
Allowable  
Inductor  
2.2µH  
2.2µH  
2.2µH  
MX8903A-EGHJN/Y  
Switching  
4MHz  
4MHz  
4MHz  
4MHz  
4MHz  
1MHz  
4MHz  
4MHz  
4MHz  
4MHz  
Frequency  
SYS Load  
Regulation  
40mV/A  
25mV/A  
40mV/A  
40mV/A  
25mV/A  
25mV/A  
40mV/A  
25mV/A  
25mV/A  
25mV/A  
Minimum SYS  
Output  
10µF  
4.2V  
22µF  
4.2V  
10µF  
4.2V  
10µF  
4.1V  
22µF  
4.1V  
22µF  
4.2V  
10µF  
4.2V  
10µF  
22µF  
22µF  
Capacitor (C  
)
SYS  
BAT Regulation  
Voltage  
4.35V  
4.15V  
4.15V  
(V  
BATREG  
)
(Note 5)  
BAT Prequal  
Threshold  
3V  
2.5V  
3V  
3V  
2.5V  
2.5V  
3V  
3V  
3V  
3V  
(V  
BATPQ  
)
(Note 5)  
Top-Off Timer  
(Note 6)  
15s (fixed)  
1mA  
132min  
10mA  
15s (fixed) 15s (fixed)  
132min  
10mA  
132min  
10mA  
15s (fixed) 15s (fixed) 15s (fixed) 15s (fixed)  
VL Output  
Current Rating  
1mA  
1mA  
1mA  
1mA  
1mA  
1mA  
Power-Enable  
On Battery  
Detection  
No  
Yes  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
(Note 7)  
Comments  
(Note 8)  
注5:典型值,最小/最大值参见电气特性表。  
注6:该变化也会更改预均衡和快充定时器的时间设置。  
注7:详细信息请参见电池检测的供电使能控制部分。  
注8:MAX8903H是MAX8903C的新版本,推荐用于新设计。  
26  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
引脚配置  
芯片信息  
PROCESS: BiCMOS  
TOP VIEW  
21 20 19 18 17 16 15  
14  
13  
22  
CEN  
ISET  
CHG  
SYS 23  
12 GND  
24  
25  
26  
27  
28  
SYS  
CS  
CS  
LX  
MAX8903_  
IDC  
CT  
11  
10  
9
VL  
EP  
8
DOK  
LX  
+
1
2
3
4
5
6
7
TQFN  
27  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
封装信息  
如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中+#”-”  
仅表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。  
封装类型  
封装编码  
外形编号  
焊盘布局编号  
21-0139  
90-0035  
28 TQFN-EP  
T2844-1  
MX8903A-EGHJN/Y  
28  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
MX8903A-EGHJN/Y  
封装信息(续)  
如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中+#”-”  
仅表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。  
29  
+
2A单节Li 电池DC-DC充电器,  
用于USB和适配器供电系统  
修订历史  
修订号  
修订日期  
12/08  
8/09  
说明  
修改页  
0
1
2
3
4
5
最初版本。  
在数据资料中增加了MAX8903C/MAX8903D。  
做了多处修正。  
1–20  
11/09  
10/10  
5/11  
1–7, 9, 11–21  
1–29  
增加了MAX8903B、MAX8903E、MAX8903G和MAX8903Y。  
增加了MAX8903H和MAX8903J,更新了元件值。  
增加了MAX8903N,删除了MAX8903J的未来产品标识。  
1–29  
9/11  
1–29  
MX8903A-EGHJN/Y  
Maxim北京办事处  
北京8328信箱 邮政编码100083  
免费电话:800 810 0310  
电话:010-6211 5199  
传真:010-6211 5299  
Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电气  
特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。  
30  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
©
2011 Maxim Integrated Products Maxim是Maxim Integrated Products,Inc.的注册商标。  
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J, MAX8903N, MAX8903Y 2A 1Li+电池DC-DC充电器,用于USB和适配器供电系统 - 概述  
Login Register  
体中  
(
cn)  
产品  
方案  
设计  
销售联络  
技术支持  
公司简介  
我的Maxim  
Maxim > 产品 > 和电池管理 > MAX8903A, MAX8903B, MAX8903C, ...  
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J,  
MAX8903N, MAX8903Y  
2A 1Li+电池DC-DC充电器,用于USB和适配器供电系统  
工作在4MHz开关频率  
概述  
技术文档  
定购相关产品 用户(0) 所有内容  
状况  
数据资料  
状况  
:生产中。  
下载  
英文  
Rev. 5 (PDF, 1.3MB)  
E-Mail  
下载  
中文  
Rev. 5 (PDF, 3MB)  
概述  
E-Mail  
MAX8903A–MAX8903E/MAX8903G/MAX8903H/MAX8903J/MAX8903Y是  
Smart Power Selector™ (智能电选择器),工作于双电输入(适配器和USB)。开关式充电器工作在高  
开关频率,可省去散热器并允许使用小尺寸外部元件。该器件可采用独立的USB或交适配器供电,也可以  
用一个输入端接收两路电输入。芯片集成了所有充电功能和用于切换电池、外部电、负载的功率开关。无需外  
MOSFET、反向保护二极管和检电阻。  
一款集成的单节Li+电池充电器  
MAX8903_具有经过优化的智能功率控制  
SYS输出限均可独立设。在保证系统供电的前提下为电池充电。充电电SYS输出限可设在最  
2AUSB输入限可设100mA500mA。输入选择电路可自动地将系统供电电从电池切换至外部电源  
器件工作在4.15V16V输入电压范 ,输入端具有高达20V的保护;USB输入范 为4.1V6.3V,输入端具  
有最高8V的保护。  
功能,可充分利用有限的USB或适配器电的供电能力。电池充电电流  
未接输入电源  
预充检测及定时器、快充定时器、过压保护、充电状态指示和故障指示输出、电就绪监视器以及电池热敏电阻检  
测。此外,片内热管理电路可以根据需要降低电池充电率或交适配器的充电电,以止充电器过  
热。MAX8903_采用4mm x 4mm28引脚薄型 QFN封装。  
时,MAX8903_内部电路可以阻止电从电池、系统向直USB输入倒灌。其它功能还括  
不同  
版本的MAX8903_提高了设计灵性,便于选择不的系统电电压、电池预检验门限和电池满充电  
压。MAX8903B/MAX8903E/MAX8903G的电池检测功能还含供电使能控,详细息请参考完整数据资料中  
的选型 指南部分。  
http://china.maxim-ic.com/datasheet/index.mvp/id/6019[2012-07-09 8:43:44]  
 
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J, MAX8903N, MAX8903Y 2A 1Li+电池DC-DC充电器,用于USB和适配器供电系统 - 概述  
MAX8903支持低温、快速  
充电  
现备有评估板:MAX8903AEVKIT  
关键特性  
应用/使用  
高效DC-DC转换器,无需散热器  
移动互联网设备  
PDA、掌 上电脑  
个人航设备  
便携式多媒体播放器  
智能蜂窝电话  
50mΩ系统至电池开关导  
4MHz开关频率,允许使用小尺寸外部元件  
立即开启可在无电池或低电池电压下工作  
和无线手持装置  
两路限流  
适配器/USB/电池供电自动切换,支持瞬变负载  
通电阻  
输入适配器或USB  
超便携移动PC  
支持USB规范  
热敏电阻检测  
集成检电阻  
无需外部MOSFET或二极管  
4.1V16V输入工作电压范  
关键特性:  
Battery Chargers  
Smallest  
Available  
Pckg.  
Protected  
IN  
(V)  
Charging  
IN  
(V)  
Max.  
CHG  
(A)  
V
V
I
Budgetary Price  
Lithium  
Ion  
Cells  
Charge  
Rate  
Set by  
Part  
Number  
Cell  
Chemistry  
Charge  
Termination  
Charge  
Regulation  
EV  
Kit  
Oper. Temp.  
(°C)  
Package/Pins  
2
(mm  
)
max  
w/pins  
max  
max  
See Notes  
MAX8903A  
MAX8903B  
MAX8903C  
MAX8903D  
TQFN/28  
TQFN/28  
TQFN/28  
TQFN/28  
$2.74 @1k  
$2.74 @1k  
$2.74 @1k  
$2.74 @1k  
Li-Ion  
Li-Polymer  
Preset  
Resistor  
Min. Charge  
Current  
1
20  
16  
2
Switchmode  
Yes  
-40 to +85  
16.8  
所有Battery Chargers (70)  
Pricing Notes:  
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may  
differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized  
distributor.  
图表  
http://china.maxim-ic.com/datasheet/index.mvp/id/6019[2012-07-09 8:43:44]  
MAX8903A, MAX8903B, MAX8903C, MAX8903D, MAX8903E, MAX8903G, MAX8903H, MAX8903J, MAX8903N, MAX8903Y 2A 1Li+电池DC-DC充电器,用于USB和适配器供电系统 - 概述  
典型 工作电路  
更多信  
新品  
发布  
[ 2009-06-29 ]  
没有找到你需要的产品  
吗?  
应用工程师帮助选型 ,下个工作日回复  
参数搜索  
应用帮助  
息索引  
概述  
技术文档  
定购相关产品  
概述  
数据资料  
技术文档  
评估板  
价格与供货  
样品  
在线订购 评估板  
封装信 类似型 号器件  
无铅信 配合该器件使用的产品  
类似功能器件  
类似应用器件  
关键特性  
应用/使用  
关键指标  
图表  
可靠性报告  
软件/模  
注释、注解  
参考文献: 19-4410 Rev. 5; 2011-10-04  
本页最后一次更新: 2011-10-04  
联络我们:信  
息反馈、提出问题  
|
隐私权政策  
|
法律声明  
|
Distributor Portal  
© 2012 Maxim Integrated Products版权所有  
http://china.maxim-ic.com/datasheet/index.mvp/id/6019[2012-07-09 8:43:44]  
19-4410; Rev 5; 9/11  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
General Description  
Features  
o Efficient DC-DC Converter Eliminates Heat  
The MAX8903A–MAX8903E/MAX8903G/MAX8903H/  
MAX8903J/MAX8903N/MAX8903Y are integrated 1-cell  
Li+ chargers and Smart Power Selectors™ with dual  
(AC adapter and USB) power inputs. The switch mode  
charger uses a high switching frequency to eliminate  
heat and allow tiny external components. It can operate  
with either separate inputs for USB and AC adapter  
power, or from a single input that accepts both. All  
power switches for charging and switching the load  
between battery and external power are included on-  
chip. No external MOSFETs, blocking diodes, or cur-  
rent-sense resistors are required.  
o 4MHz Switching for Tiny External Components  
o Instant On—Works with No/Low Battery  
o Dual Current-Limiting Inputs—AC Adapter or USB  
Automatic Adapter/USB/Battery Switchover to  
Support Load Transients  
50mΩ System-to-Battery Switch  
Supports USB Spec  
o Thermistor Monitor  
o Integrated Current-Sense Resistor  
o No External MOSFETs or Diodes  
o 4.1V to 16V Input Operating Voltage Range  
The MAX8903_ features optimized smart power control  
to make the best use of limited USB or adapter power.  
Battery charge current and SYS output current limit are  
independently set. Power not used by the system  
charges the battery. Charge current and SYS output cur-  
rent limit can be set up to 2A while USB input current can  
be set to 100mA or 500mA. Automatic input selection  
switches the system from battery to external power. The  
DC input operates from 4.15V to 16V with up to 20V pro-  
tection, while the USB input has a range of 4.1V to 6.3V  
with up to 8V protection.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
28 Thin QFN-EP*  
MAX8903AETI+T  
MAX8903BETI+T  
MAX8903CETI+T  
MAX8903DETI+T  
MAX8903EETI+T  
MAX8903GETI+T  
MAX8903HETI+T  
MAX8903JETI+T  
MAX8903NETI+T  
MAX8903YETI+T  
The MAX8903_ internally blocks current from the bat-  
tery and system back to the DC and USB inputs when  
no input supply is present. Other features include pre-  
qual charging and timer, fast charge timer, overvoltage  
protection, charge status and fault outputs, power-OK  
monitors, and a battery thermistor monitor. In addition,  
on-chip thermal limiting reduces battery charge rate  
and AC adapter current to prevent charger overheat-  
ing. The MAX8903_ is available in a 4mm x 4mm, 28-pin  
thin QFN package.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
T = Tape and reel.  
Typical Operating Circuit  
The various versions of the MAX8903_ allow for design  
flexibility to choose key parameters such as system  
regulation voltage, battery prequalification threshold,  
and battery regulation voltage. The MAX8903B/  
MAX8903E/MAX8903G also includes power-enable on  
battery detection. See the Selector Guide section for  
complete details.  
AC  
ADAPTER  
OR USB  
LX  
CS  
DC  
SYS  
LOAD  
CURRENT  
CHARGE  
CURRENT  
CHARGE  
AND  
SYS LOAD  
SWITCH  
SYSTEM  
LOAD  
Applications  
PDAs, Palmtops, and  
Wireless Handhelds  
Portable Multimedia  
Players  
PWM  
STEP-DOWN  
Personal Navigation  
Devices  
Smart Cell Phones  
Mobile Internet Devices  
Ultra Mobile PCs  
BAT  
BATTERY  
USB  
USB  
MAX8903_  
GND  
Selector Guide appears at end of data sheet.  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
ABSOLUTE MAXIMUM RATINGS  
DC, LX to GND .......................................................-0.3V to +20V  
LX Continuous Current (total in two pins).......................2.4A  
RMS  
RMS  
RMS  
RMS  
DCM to GND ..............................................-0.3V to (V  
+ 0.3V)  
CS Continuous Current (total in two pins) ......................2.4A  
SYS Continuous Current (total in two pins) .......................3A  
BAT Continuous Current (total in two pins) .......................3A  
DC  
DC to SYS .................................................................-6V to +20V  
BST to GND ...........................................................-0.3V to +26V  
BST TO LX................................................................-0.3V to +6V  
USB to GND .............................................................-0.3V to +9V  
USB to SYS..................................................................-6V to +9V  
VL to GND ................................................................-0.3V to +6V  
VL Short Circuit to GND .............................................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin Thin QFN-EP  
Multilayer (derate 28.6mW/°C above +70°C) ..........2286mW  
28-Pin Thin QFN-EP  
THM, IDC, ISET, CT to GND........................-0.3V to (V + 0.3V)  
VL  
DOK, FLT, CEN, UOK, CHG, USUS,  
Single-Layer (derate 20.8mW/°C above +70°C)...1666.7mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature Range............................-40°C to +150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
BAT, SYS, IUSB, CS to GND ................................-0.3V to +6V  
SYS to BAT ...............................................................-0.3V to +6V  
PG, EP (exposed pad) to GND .............................-0.3V to +0.3V  
DC Continuous Current (total in two pins)......................2.4A  
USB Continuous Current.......................................................1.6A  
RMS  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MX8903A–EGHJN/Y  
DC INPUT  
DC Operating Range  
4.15  
3.9  
16  
4.1  
4.4  
V
V
No valid USB input  
Valid USB input  
4.0  
4.3  
When V  
goes low, V  
DC  
DOK  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
rising, 500mV typical hysteresis  
4.0  
When V goes high, V  
hysteresis  
rising, 500mV typical  
DC  
DOK  
16.5  
17  
17.5  
4
V
Charger enabled, no switching, V  
= 5V  
2.3  
15  
SYS  
Charger enabled, f = 3MHz, V  
= 5V  
DC  
DC Supply Current  
mA  
Charger enabled, V  
Charger enabled, V  
= 0V, 100mA USB mode (Note 2)  
= 5V, 100mA USB mode (Note 2)  
1
2
2
C EN  
C EN  
1
V
= 0V, V  
= 5V  
USUS  
0.10  
0.15  
0.15  
0.31  
0.25  
DCM  
DC High-Side Resistance  
DC Low-Side Resistance  
DC-to-BAT Dropout Resistance  
Ω
Ω
Ω
Assumes a 40mΩ inductor resistance (R )  
L
When SYS regulation and charging stops, V  
200mV hysteresis  
falling,  
DC  
DC-to-BAT Dropout Voltage  
0
15  
30  
mV  
Minimum Off Time (t  
Minimum On Time (t  
)
100  
70  
4
ns  
ns  
OFFMIN  
)
ONMIN  
V
V
V
V
= 8V, V  
= 5V, V  
= 9V, V  
= 9V, V  
= 4V  
= 3V  
= 4V  
= 3V  
DC  
DC  
DC  
DC  
BAT  
BAT  
BAT  
BAT  
MAX8903A/B/C/D/E/H/J/Y  
MAX8903G  
3
Switching Frequency (f  
)
MHz  
SW  
1
1
DC Step-Down Output Current-  
Limit Step Range  
0.5  
2
A
R
IDC  
R
IDC  
R
IDC  
= 3kΩ  
= 6kΩ  
1900  
950  
2000  
1000  
500  
2100  
1050  
550  
DC Step-Down Output Current  
V
= 6V, V  
= 4V  
SYS  
mA  
DC  
Limit (I  
)
SDLIM  
= 12kΩ  
450  
2
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
DC  
USB  
BAT  
A
A
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
ms  
No valid USB input  
DC Soft-Start Time  
Valid USB input before soft-start  
20  
μs  
DC Output Current  
500mA USB Mode (Note 3)  
V
V
V
= 0V, V  
= 0V, V  
= 5V  
= 0V  
= 0V  
450  
90  
475  
95  
500  
100  
mA  
mA  
μA  
DCM  
DCM  
IUSB  
IUSB  
DC Output Current  
100mA USB Mode (Note 2)  
SYS to DC Reverse Current  
Blocking  
= 5.5V, V  
0.01  
SYS  
DC  
USB INPUT  
USB Operating Range  
USB Standoff Voltage  
USB Undervoltage Threshold  
USB Overvoltage Threshold  
4.1  
6.3  
8
V
V
V
V
When V  
When V  
goes low, V  
rising, 500mV hysteresis  
3.95  
6.8  
90  
4.0  
6.9  
95  
4.05  
7.0  
100  
500  
3
UOK  
UOK  
USB  
goes high, V  
rising, 500mV hysteresis  
USB  
V
V
= 0V (100mA setting)  
= 5V (500mA setting)  
IUSB  
IUSB  
USB Current Limit  
mA  
450  
475  
1.3  
0.8  
0.115  
15  
I
I
= I  
= 0mA, V  
= 0mA, V  
= 0V  
SYS  
SYS  
BAT  
BAT  
CEN  
CEN  
USB Supply Current  
mA  
= I  
= 5V  
2
V
= 5V (USB suspend mode)  
0.25  
30  
USUS  
Minimum USB to BAT Headroom  
USB to SYS Dropout Resistance  
0
mV  
Ω
0.2  
1
0.35  
V
V
rising  
ms  
μs  
USB  
USB Soft-Start Time  
falling below DC UVLO to initiate USB soft-start  
20  
DC  
SYS OUTPUT  
MAX8903A/B/E/G/Y  
SYSMIN MAX8903C/D/H/J/N  
MAX8903A/C/D/H/N/Y  
3.0  
3.4  
Minimum SYS Regulation Voltage  
I
V
= 1A,  
< V  
BAT  
SYS  
V
V
(V  
SYSMIN  
)
4.3  
4.265  
4.4  
4.4  
4.5  
4.395  
4.55  
Regulation Voltage  
I
= 0A  
MAX8903B/E/G  
MAX8903J  
4.325  
4.5  
SYS  
MAX8903A/C/D/H  
MAX8903B/E/G/J/N/Y  
40  
Load Regulation  
I
= 0 to 2A  
mV/A  
SYS  
25  
CS to SYS Resistance  
SYS to CS Leakage  
V
V
V
= 6V, V  
= 5V, V  
= 4V, I = 1A  
0.07  
0.01  
0.05  
Ω
μA  
Ω
DC  
SYS  
DC  
DCM  
SYS  
CS  
= 5.5V, V  
= V = 0V  
CS  
DC  
BAT to SYS Resistance  
= V  
= 0V, V  
= 4.2V, I = 1A  
SYS  
0.1  
100  
2.0  
USB  
BAT  
BAT to SYS Reverse Regulation  
Voltage  
V
= 5V, V  
= 0V, V  
= 0V, I = 200mA  
SYS  
50  
75  
mV  
V
USB  
DC  
IUSB  
SYS Undervoltage Threshold  
SYS falling, 200mV hysteresis (Note 4)  
1.8  
1.9  
_______________________________________________________________________________________  
3
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BATTERY CHARGER  
T
T
T
T
T
T
T
T
= +25°C  
4.179  
4.158  
4.079  
4.059  
4.328  
4.307  
4.129  
4.109  
-150  
4.200  
4.200  
4.100  
4.100  
4.350  
4.350  
4.150  
4.150  
-100  
3.0  
4.221  
4.242  
4.121  
4.141  
4.372  
4.394  
4.171  
4.192  
-60  
A
A
A
A
A
A
A
A
MAX8903A/B/C/G/H  
MAX8903D/E  
MAX8903J  
= -40°C to +85°C  
= +25°C  
= -40°C to +85°C  
= +25°C  
BAT Regulation Voltage  
I
= 0mA  
V
BAT  
(V  
BATREG  
)
= -40°C to +85°C  
= +25°C  
MAX8903Y/N  
= -40°C to +85°C  
Charger Restart Threshold  
BAT Prequal Threshold (V  
Prequal Charge Current  
Change in V  
from DONE to fast-charge  
mV  
V
BAT  
MAX8903A/C/D/H/J/N/Y  
MAX8903B/E/G  
2.9  
3.1  
V
rising 180mV  
BAT  
)
BATPQ  
hystersis  
2.4  
2.5  
2.6  
Percentage of fast-charge current set at ISET  
10  
%
R
ISET  
R
ISET  
R
ISET  
= 600Ω  
1800  
900  
2000  
1000  
500  
2200  
1100  
550  
MX8903A–EGHJN/Y  
Fast-Charge Current  
= 1.2kΩ (MAX8903A/C/D)  
= 2.4kΩ  
mA  
450  
DONE Threshold (I  
)
Percentage of fast-charge, I decreasing  
BAT  
10  
%
kΩ  
TERM  
R
ISET  
Resistor Range  
0.6  
2.4  
ISET Output Voltage  
1.5  
1.25  
0.05  
3
V
ISET Current Monitor Gain  
BAT Leakage Current  
Charger Soft-Start Time  
mA/A  
No DC or USB input  
4
6
μA  
With valid input power, V  
= 5V  
CEN  
1.0  
ms  
°C  
Charger Thermal Limit  
Temperature  
100  
5
Charger Thermal Limit Gain  
CHARGER TIMER  
Charge current = 0 at +120°C  
%/°C  
Prequalification Time  
Fast-Charge Time  
C
C
= 0.15μF  
= 0.15μF  
33  
660  
15  
min  
min  
s
CT  
CT  
MAX8903A/C/D/H/J/N/Y (fixed)  
MAX8903B/E/G, C = 0.15μF  
Top-Off Timer (t  
)
TOP-OFF  
132  
min  
%
CT  
Timer Accuracy  
-15  
40  
+15  
60  
Percentage of fast-charge current below which the timer  
clock operates at half-speed  
Timer Extend Current Threshold  
Timer Suspend Current Threshold  
50  
20  
%
%
Percentage of fast-charge current below which timer  
clock pauses  
16  
24  
4
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BAT A A  
DC  
USB  
(Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
THERMISTOR MONITOR  
0.27 x  
0.28 x 0.29 x  
THM Threshold, Hot  
When charging is suspended, 1% hysteresis  
When charging is suspended, 1% hysteresis  
THM function is disabled below this voltage  
MAX8903B/MAX8903E/MAX8903G  
V
V
V
V
V
V
V
VL  
VL  
VL  
0.73 x  
0.74 x 0.75 x  
THM Threshold, Cold  
V
V
V
VL  
VL  
VL  
0.0254 0.03 x 0.036 x  
x V  
THM Threshold, Disabled  
THM Threshold DC, USB Enable  
V
V
VL  
VL  
VL  
0.83 x  
0.87 x 0.91 x  
V
V
V
VL  
VL  
VL  
THM = GND or VL;  
-0.100  
0.001 +0.200  
0.010  
T
A
= +25°C  
MAX8903A/C/D/H/J/N/Y  
MAX8903B/E/G  
THM = GND or VL;  
THM Input Leakage  
μA  
T
A
= +85°C  
THM = GND or VL;  
= -40°C to +85°C  
-0.200  
0.001 +0.200  
T
A
THERMAL SHUTDOWN, VL, AND LOGIC I/O: CHG, FLT, DOK, UOK, DCM, CEN, USUS, IUSB  
High level  
1.3  
V
Logic-Input Thresholds  
(DCM, CEN, USUS, IUSB)  
Low level  
0.4  
Hysteresis  
50  
mV  
T
T
= +25°C  
= +85°C  
-1.000  
-0.200  
0.001 +1.000  
0.010  
A
V
= 0V to 5.5V  
INPUT  
(MAX8903A/C/D/H/J/N/Y)  
Logic-Input Leakage Current  
(CEN, USUS, IUSB)  
A
μA  
V
= 0V to 5.5V  
INPUT  
T
A
= -40°C to +85°C  
0.001 +0.200  
(MAX8903B/E/G)  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
8
1
50  
1
A
Logic-Input Leakage Current  
(DCM)  
V
V
= 0V to 16V  
DCM  
μA  
mV  
μA  
= 16V  
DC  
A
Sinking 1mA  
Sinking 10mA  
Logic Output Voltage, Low  
(CHG, FLT, DOK, UOK)  
80  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Open-Drain Output Leakage  
Current, High (CHG,  FLT, DOK, UOK)  
V
= 5.5V  
OUT  
A
_______________________________________________________________________________________  
5
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 5V, V  
= 4V, circuit of Figure 2, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
DC  
USB  
BAT  
A
A
(Note 1)  
PARAMETER  
CONDITIONS  
= 0 to 1mA  
MIN  
TYP  
MAX  
UNITS  
I
VL  
4.6  
5.0  
5.4  
(MAX8903A/C/D/H/J/N/Y)  
VL Output Voltage  
V
V
= V  
= 6V  
USB  
V
DC  
VL  
I
= 0 to 10mA  
VL  
4.6  
5.0  
5.4  
(MAX8903B/E/G)  
VL UVLO Threshold  
falling; 200mV hysteresis  
3.2  
160  
15  
V
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
°C  
°C  
Note 1: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
Note 2: For the 100mA USB mode using the DC input, the step-down regulator is turned off and its high-side switch operates as a  
linear regulator with a 100mA current limit. The linear regulator’s output is connected to LX and its output current flows  
through the inductor into CS and finally to SYS.  
Note 3: For the 500mA USB mode, the actual current drawn from USB is less than the output current due to the input/output current  
ratio of the DC-DC converter.  
Note 4: For short-circuit protection, SYS sources 25mA below V  
= 400mV, and 50mA for V  
between 400mV and 2V.  
SYS  
SYS  
MX8903A–EGHJN/Y  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/B/C/D/E/H/J/N/Y  
BATTERY CHARGER EFFICIENCY  
vs. BATTERY VOLTAGE  
MAX8903A/B/C/D/E/H/J/N/Y  
SWITCHING FREQUENCY vs. V  
MAX8903G BATTERY CHARGER  
EFFICIENCY vs. BATTERY VOLTAGE  
DC  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
DC  
= 6V  
80  
V
= 5V  
DC  
70  
60  
50  
40  
30  
20  
10  
0
V
= 9V  
V
= 3V  
= 4V  
DC  
BAT  
V
= 8V  
DC  
V
BAT  
V
= 12V  
V
DC  
= 12V  
I
DC  
I
= 0.15A  
= 1.5A  
I
= 0.15A  
I
= 1.5A  
BAT  
BATT  
BATT  
BAT  
R
V
= 1.2kΩ  
= 0V  
ISET  
CEN  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
4
6
8
10  
12  
14  
16  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
BATTERY VOLTAGE (V)  
DC VOLTAGE (V)  
6
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/B/C/D/E/H/J/N/Y  
MAX8903G SYS EFFICIENCY  
SYS EFFICIENCY  
MAX8903G SWITCHING  
vs. SYS OUTPUT CURRENT  
vs. SYS OUTPUT CURRENT  
FREQUENCY vs. V  
DC  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 1V  
= 4.4V  
CEN  
SYS  
V
= 1  
CEN  
V
= 16V  
DC  
V
= 11V  
DC  
V
= 12V  
V
= 4V  
DC  
BAT  
V
= 16V  
DC  
V
= 9V  
V
= 3V  
DC  
BAT  
V
= 6V  
DC  
V
DC  
= 6V  
R
V
= 1.2kI  
= 0V  
ISET  
CEN  
V
= 4.5V  
1000  
DC  
1
10  
100  
10000  
1
10  
100  
1000  
10,000  
4
6
8
10  
12  
14  
16  
SYS OUTPUT CURRENT (mA)  
SYS OUTPUT CURRENT (mA)  
DC VOLTAGE (V)  
USB SUPPLY CURRENT  
vs. USB VOLTAGE  
BATTERY LEAKAGE CURRENT  
vs. BATTERY VOLTAGE  
USB SUPPLY CURRENT  
vs. USB VOLTAGE (SUSPEND)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
CHARGER  
ENABLED  
60  
40  
CHARGER  
DISABLED  
20  
NO DC OR USB INPUT  
USB SUSPEND  
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
USB VOLTAGE (V)  
BATTERY VOLTAGE (V)  
USB VOLTAGE (V)  
CHARGE CURRENT  
vs. BATTERY VOLTAGE—USB MODE  
BATTERY LEAKAGE CURRENT  
vs. AMBIENT TEMPERATURE  
CHARGE CURRENT  
vs. BATTERY VOLTAGE—DC MODE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1200  
1000  
800  
600  
400  
200  
0
CHARGER ENABLED  
CHARGE ENABLED  
I
I
SET TO 1A  
SET TO 2A  
I
SET TO 1.5A  
BAT  
BAT  
MAX8903D  
DC  
MAX8903A/C/H  
RISING  
V
BAT  
RISING  
V
BAT  
V
= V  
USB  
IUSB  
V
= 0V  
IUSB  
NO DC OR USB INPUT  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
-40  
-15  
10  
35  
60  
85  
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
NORMALIZED BATTERY  
REGULATION VOLTAGE  
MAX8903A/C/D/H/N/Y  
SYS VOLTAGE vs. USB VOLTAGE  
NORMALIZED CHARGE CURRENT  
vs. AMBIENT TEMPERATURE  
1.015  
vs. AMBIENT TEMPERATURE  
100.5  
100.4  
100.3  
100.2  
100.1  
100.0  
99.9  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
V
= 5V  
= 0V  
= 0V  
V
= 5V, V = 4V  
BAT  
CEN  
BAT  
DC  
USB  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
V
FALLING  
USB  
V
RISING  
USB  
99.8  
99.7  
99.6  
R
= 1MΩ  
SYS  
22ppm/°C  
60 85  
99.5  
0
1
2
3
4
5
6
7
-40  
-15  
10  
35  
-40  
-15  
10  
35  
60  
85  
USB VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SYS VOLTAGE  
vs. SYS OUTPUT CURRENT, DC INPUT  
MAX8903A/C/D/H/N/Y  
SYS VOLTAGE vs. DC VOLTAGE  
SYS VOLTAGE  
vs. SYS OUTPUT CURRENT, USB INPUT  
MX8903A–EGHJN/Y  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
V
= 0V  
MAX8903J, V = 5.75V  
DC  
USB  
V
= 0V, V  
= 4V  
BATT  
DC  
MAX8903J, V  
USB  
= 5V  
V
RISING  
DC  
MAX8903A/C/D/H, MAX8903N/Y,  
MAX8903A/C/D/H, MAX8903N/Y,  
= 5V = 5V  
V
= 5.75V  
V
= 5.75V  
DC  
MAX8903B/E/G,  
= 5.75V  
DC  
V
V
USB  
USB  
MAX8903B/E/G,  
= 5V  
V
FALLING  
DC  
V
DC  
V
USB  
V
CEN  
V
BAT  
V
USB  
= 5V  
= 0V  
= 0V  
MAX8903_, V = 0V  
DC  
MAX8903_, V = 0V  
USB  
0
0.5  
1.0  
1.5  
2.0  
0
2
4
6
8
10 12 14 16 18  
0
100  
200  
300  
400  
500  
SYS OUTPUT CURRENT (A)  
DC VOLTAGE (V)  
SYS OUTPUT CURRENT (mA)  
CHARGE PROFILE—1400mAh BATTERY  
VL VOLTAGE vs. DC VOLTAGE  
ADAPTER INPUT—1A CHARGE  
MAX8903A toc17  
6
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
SET TO 1A  
SET TO 2A  
DC  
I
BAT  
5
4
3
2
1
0
V
BAT  
VL WITH  
NO LOAD AND  
DCDC OFF  
VL AND DCDC  
WITH  
FULL LOAD  
(V  
USUS  
= 5V)  
(V  
USUS  
= 0V)  
I
BAT  
V
= 3.6V  
BAT  
V
= 0V  
USB  
MAX8903A/B/C/G/H  
0
2
4
6
8
10 12 14 16 18 20  
0
20  
40  
60  
80  
100 120 140  
DC VOLTAGE (V)  
TIME (min)  
8
_______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX8903A/B/C/G/H  
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING  
CHARGE PROFILE—1400mAh BATTERY  
USB INPUT—500mA CHARGE  
WAVEFORMS—LIGHT LOAD  
MAX8903A toc19  
MAX8903A toc18  
5.0  
0.50  
4.5  
4.0  
3.5  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
20mV/div  
AC-COUPLED  
V
OUT  
V
BAT  
5V/div  
0V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
LX  
LX  
I
BAT  
I
MAX8903A/MAX8903B/MAX8903C  
SET TO 500mA  
500mA/div  
0A  
I
USB  
R
= 44Ω  
SYS  
I
SET TO 2A  
BAT  
200ns/div  
0
20 40 60 80 100 120 140 160 180 200  
TIME (min)  
MAX8903A/B/C/D/E/H/J/N/Y DC SWITCHING  
MAX8903G DC SWITCHING  
WAVEFORMS—HEAVY LOAD  
WAVEFORMS—LIGHT LOAD  
MAX8903A toc20  
MAX8903A toc19a  
20mV/div  
50mV/div  
AC-COUPLED  
AC-COUPLED  
V
V
SYS  
OUT  
V
= 9V, L = 2.2μH  
DC  
C
R
= 22μF,  
= 44I  
SYS  
SYS  
5V/div  
0V  
V
I
V
10V/div  
LX  
LX  
0V  
1A/div  
LX  
I
LX  
0A  
500mA/div  
0A  
R
= 5Ω  
SYS  
200ns/div  
1μs/div  
DC CONNECT WITH  
USB CONNECTED (R = 25Ω)  
MAX8903G DC SWITCHING  
WAVEFORMS—HEAVY LOAD  
SYS  
MAX8903A toc21  
MAX8903A toc20a  
3.6V  
2V/div  
V
SYS  
50mV/div  
V
SYS  
AC-COUPLED  
V
= 9V, L = 2.2μH  
I
DC  
DC  
500mA/div  
347mA  
C
= 22μF, R = 5I  
SYS  
SYS  
CEN = 1  
10V/div  
0V  
475mA  
500mA/div  
V
I
LX  
I
USB  
-I = CHARGING  
BAT  
0A  
I
-335mA  
BAT  
500mA/div  
LX  
1A/div  
0A  
200μs/div  
1μs/div  
_______________________________________________________________________________________  
9
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
DC CONNECT WITH NO USB  
DC DISCONNECT WITH NO USB  
(R = 25Ω)  
(R  
= 25Ω)  
SYS  
SYS  
MAX8903A toc22  
MAX8903A toc23  
3.84V  
3.68V  
3.6V  
3.6V  
3.6V  
3.6V  
2V/div  
5V/div  
2V/div  
5V/div  
V
V
SYS  
SYS  
3.44V  
V
V
BAT  
BAT  
C
DC  
C
SYS  
CHARGING  
CHARGING  
850mA  
1A/div  
1A/div  
1A/div  
1A/div  
I
0A  
0A  
DC  
850mA  
-1A  
I
DC  
-I = CHARGING  
BAT  
I
BAT  
I
144mA  
BAT  
144mA  
-I = CHARGING  
BATTERY  
CHARGER  
SOFT-START  
-1A  
BAT  
400μs/div  
40μs/div  
MX8903A–EGHJN/Y  
MAX8903A/C/D/H SYS LOAD TRANSIENT  
MAX8903B/E SYS LOAD TRANSIENT  
MAX8903A toc24a  
MAX8903A toc24b  
MAX8903B  
V
DC  
= 10.5V  
L = 2.2μH  
4.400V  
C
= 22μF  
SYS  
MAX8903A  
V
4.325V  
R
= 3kI (2A)  
SYS  
IDC  
20mV/div  
AC-COUPLED  
V
= 10.5V  
DCM = HIGH  
CEN = 1  
DC  
V
I
SYS  
4.360V  
1A  
20mV/div  
L = 2.2μH  
4.305V  
C
= 10μF  
SYS  
R
= 3kI (2A)  
IDC  
1A  
DCM = HIGH  
CEN = 1  
I
SYS  
SYS  
500mA/div  
0A  
0A  
500mA/div  
0A  
0A  
100μs/div  
100μs/div  
USB CONNECT WITH NO DC  
(R  
= 25Ω)  
MAX8903G SYS LOAD TRANSIENT  
SYS  
MAX8903A toc25  
MAX8903A toc24c  
3.6V  
3.75V  
2V/div  
5V/div  
V
4.325V  
= 9V  
SYS  
3.5V  
USB  
5V  
4.305V  
50mV/div  
V
SYS  
V
USB  
V
DC  
C
L = 2.2μH  
CHARGING  
475mA  
C
= 22μF  
SYS  
500mA/div  
500mA/div  
R
= 3kI (2A)  
IDC  
1A  
I
USB  
DCM = 1  
CEN = 1  
I
SYS  
I
BAT  
144mA  
BATTERY  
CHARGER  
SOFT-START  
500mA/div  
0A  
0A  
-330mA  
400μs/div  
100μs/div  
10 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
USB DISCONNECT WITH NO DC  
(R  
= 25Ω)  
USB SUSPEND  
USB RESUME  
SYS  
MAX8903A toc26  
MAX8903A toc27  
MAX8903A toc28  
0V  
0V  
3.6V  
3V  
3V  
V
V
2V/div  
5V/div  
5V/div  
5V/div  
USUS  
USUS  
V
SYS  
C
USB  
CHARGING  
500mA/div  
500mA/div  
V
USB  
475mA  
475mA  
3.6V  
5V  
I
0A  
0A  
USB  
I
USB  
475mA  
3.8V  
3.6V  
V
V
SYS  
SYS  
500mA/div  
500mA/div  
2V/div  
2V/div  
3.7V  
I
USB  
I
I
BAT  
BAT  
-330mA  
144mA  
I
BAT  
0A  
-475mA  
-475mA  
0A  
BATTERY  
CHARGER  
500mA/div  
500mA/div  
SOFT-START  
100μs/div  
200μs/div  
200μs/div  
Pin Description  
PIN  
NAME  
FUNCTION  
Power Ground for Step-Down Low-Side Synchronous n-Channel MOSFET. Both PG pins must be  
connected together externally.  
1, 2  
PG  
DC Power Input. DC is capable of delivering up to 2A to SYS. DC supports both AC adapter and USB  
inputs. The DC current limit is set through DCM, IUSB, or IDC depending on the input source used. See  
Table 2. Both DC pins must be connected together externally. Connect at least a 4.7μF ceramic capacitor  
from DC to PG.  
3, 4  
DC  
Current-Limit Mode Setting for the DC Power Input. When logic-high, the DC input current limit is set by  
the resistance from IDC to GND. When logic-low, the DC input current limit is internally programmed to  
500mA or 100mA, as set by the IUSB logic input. There is an internal diode from DCM (anode) to DC  
(cathode) as shown in Figure 1.  
5
DCM  
6
7
BST  
High-Side MOSFET Driver Supply. Bypass BST to LX with a 0.1μF ceramic capacitor.  
USB Current-Limit Set Input. Drive IUSB logic-low to set the USB current limit to 100mA. Drive IUSB logic-  
high to set the USB current limit to 500mA.  
IUSB  
DC Power-OK Output. Active-low open-drain output pulls low when a valid input is detected at DC. DOK  
is still valid when the charger is disabled (CEN high).  
8
9
DOK  
VL  
Logic LDO Output. VL is the output of an LDO that powers the MAX8903_ internal circuitry and charges  
the BST capacitor. Connect a 1μF ceramic capacitor from VL to GND.  
Charge Timer Set Input. A capacitor (C ) from CT to GND sets the fast-charge and prequal fault timers.  
CT  
Connect to GND to disable the timer.  
10  
CT  
DC Current-Limit Set Input. Connect a resistor (R ) from IDC to GND to program the current limit of the  
IDC  
step-down regulator from 0.5A to 2A when DCM is logic-high.  
11  
12  
IDC  
GND  
Ground. GND is the low-noise ground connection for the internal circuitry.  
______________________________________________________________________________________ 11  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Charge Current Set Input. A resistor (R  
The prequal charge current is 10% of the fast-charge current.  
) from ISET to GND programs the fast-charge current up to 2A.  
ISET  
13  
ISET  
Charger Enable Input. Connect CEN to GND to enable battery charging when a valid source is connected  
at DC or USB. Connect to VL, or drive high to disable battery charging.  
14  
15  
CEN  
USB Suspend Input. Drive USUS logic-high to enter USB suspend mode, lowering USB current to 115µA,  
and internally shorting SYS to BAT.  
USUS  
Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor from THM to GND.  
Connect a resistor equal to the thermistor +25°C resistance from THM to VL. Charging is suspended  
when the thermistor is outside the hot and cold limits. Connect THM to GND to disable the thermistor  
temperature sensor.  
16  
THM  
USB Power Input. USB is capable of delivering 100mA or 500mA to SYS as set by the IUSB logic input.  
Connect a 4.7µF ceramic capacitor from USB to GND.  
17  
18  
19  
USB  
FLT  
Fault Output. Active-low, open-drain output pulls low when the battery timer expires before prequal or  
fast-charge completes.  
USB Power-OK Output. Active-low, open-drain output pulls low when a valid input is detected at USB.  
UOK is still valid when the charger is disabled (CEN high).  
UOK  
MX8903A–EGHJN/Y  
Battery Connection. Connect to a single-cell Li+ battery. The battery charges from SYS when a valid  
source is present at DC or USB. BAT powers SYS when neither DC nor USB power is present, or when the  
SYS load exceeds the input current limit. Both BAT pins must be connected together externally.  
20, 21  
22  
BAT  
Charger Status Output. Active-low, open-drain output pulls low when the battery is in fast-charge or  
prequal. Otherwise, CHG is high impedance.  
CHG  
System Supply Output. SYS connects to BAT through an internal 50mΩ system load switch when DC or  
USB are invalid, or when the SYS load is greater than the input current limit.  
When a valid voltage is present at DC or USB, SYS is limited to V . When the system load (I  
SYSREG  
)
SYS  
23, 24  
SYS  
exceeds the DC or USB current limit, SYS is regulated to 50mV below BAT, and both the powered input  
and the battery service SYS.  
Bypass SYS to GND with an X5R or X7R ceramic capacitor. See Table 6 for the minimum recommended  
SYS capacitor (C  
). Both SYS pins must be connected together externally.  
SYS  
70mΩ Current-Sense Input. Connect the step-down inductor from LX to CS. When the step-down  
regulator is on, there is a 70mΩ current-sense MOSFET from CS to SYS. When the step-down regulator is  
off, the internal CS MOSFET turns off to block current from SYS back to DC.  
25, 26  
CS  
Inductor Connection. Connect the inductor between LX and CS. Both LX pins must be connected together  
externally.  
27, 28  
LX  
EP  
Exposed Pad. Connect the exposed pad to GND. Connecting the exposed pad does not remove the  
requirement for proper ground connections to the appropriate pins.  
12 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
PG  
LX  
BST  
CS  
MAX8903_  
DC POWER  
MANAGEMENT  
TO  
SYSTEM  
LOAD  
DC  
SYS  
ISET  
AC  
ADAPTER  
PWR  
OK  
Li+ BATTERY  
CHARGER  
AND SYS LOAD SWITCH  
PWM  
STEP-DOWN  
REGULATOR  
DOK  
CHARGER  
CURRENT-  
VOLTAGE  
CONTROL  
BATTERY  
CONNECTOR  
SET  
INPUT  
LIMIT  
BAT  
BAT+  
+
BAT-  
NTC  
USB POWER  
MANAGEMENT  
USB  
UOK  
T
USB  
THERMISTOR  
MONITOR  
(SEE FIGURE 7)  
THM  
VL  
PWR  
OK  
CURRENT-  
LIMITED  
VOLTAGE  
IC  
THERMAL  
REGULATION  
REGULATOR  
CHG  
CHARGE  
TERMINATION  
AND MONITOR  
SET  
INPUT  
LIMIT  
DC  
DCM  
IUSB  
FLT  
CT  
DC MODE  
500mA  
CHARGE  
TIMER  
INPUT AND  
USB  
CHARGER  
CURRENT-LIMIT  
SET LOGIC  
LIMIT  
100mA  
USUS  
IDC  
USB  
SUSPEND  
CEN  
GND  
DC  
EP  
LIMIT  
Figure 1. Functional Block Diagram  
______________________________________________________________________________________ 13  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
R
PU  
4 x 100kΩ  
TO VL  
1
PG  
2
PG  
18  
FAULT  
OUTPUT  
FLT  
UOK  
DOK  
CHG  
MAX8903_  
C
DC  
19  
8
4.7μF  
USB PWR OK  
DC PWR OK  
3
DC  
DC  
ADAPTER  
4
6
22  
CHARGE  
INDICATOR  
BST  
C
BST  
R
R
ISET  
27 LX  
LX  
0.1μF  
13  
11  
ISET  
IDC  
28  
IDC  
L1  
1μH  
25 CS  
26 CS  
(SEE TABLE 5 FOR  
INDUCTOR SELECTION)  
SYS 24  
TO SYSTEM  
LOAD  
C
SYS  
23  
SYS  
(SEE TABLE 6 FOR C SELECTION)  
SYS  
USB  
MX8903A–EGHJN/Y  
BAT  
BAT  
21  
20  
17 USB  
VBUS  
C
4.7μF  
C
10μF  
USB  
BAT  
1-CELL  
LI+  
GND  
5
TO DC  
DCM  
9
VL  
14  
OFF  
CHARGE ON  
C
1μF  
VL  
CEN  
R
T
10kΩ  
16  
500mA  
100mA  
7
THM  
IUSB  
NTC  
10kΩ  
USB SUSPEND  
15  
USUS  
12  
10  
CT  
GND  
C
CT  
EP  
0.15μF  
Figure 2. Typical Application Circuit Using a Separate DC and USB Connector  
A USB charge input can charge the battery and power  
the system from a USB power source. When powered  
from USB or the DC input, system load current peaks  
that exceed what can be supplied by the input are sup-  
plemented by the battery.  
Circuit Description  
The MAX8903_ is a dual input charger with a 16V input  
for a wide range of DC sources and USB inputs. The IC  
includes a high-voltage (16V) input DC-DC step-down  
converter that reduces charger power dissipation while  
also supplying power to the system load. The step-  
down converter supplies up to 2A to the system, the  
battery, or a combination of both.  
The MAX8903_ also manages load switching from the  
battery to and from an external power source with an  
on-chip 50mΩ MOSFET. This switch also helps support  
load peaks using battery power when the input source  
is overloaded.  
14 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
R
PU  
4 x 100kΩ  
TO VL  
1
2
PG  
PG  
18  
19  
8
FAULT  
FLT  
UOK  
DOK  
CHG  
MAX8903_  
OUTPUT  
C
DC  
4.7μF  
USB PWR-OK  
DC PWR-OK  
3
DC  
DC  
VBUS  
4
6
D-  
22  
CHARGE  
INDICATOR  
BST  
D+  
C
0.1μF  
BST  
R
R
ISET  
27 LX  
LX  
13  
11  
ID  
ISET  
IDC  
GND  
28  
IDC  
L1  
1μH  
25 CS  
26 CS  
SYS 24  
TO SYSTEM  
LOAD  
(SEE TABLE 6 FOR C SELECTION)  
499kΩ  
C
SYS  
23  
SYS  
(SEE TABLE 5 FOR  
INDUCTOR VALUE  
SELECTION)  
SYS  
BAT  
BAT  
21  
20  
17 USB  
C
BAT  
1-CELL  
LI+  
USB  
ADAPTER  
DC MODE  
10μF  
5
DCM  
9
VL  
14  
OFF  
CHARGE ON  
C
1μF  
VL  
CEN  
R
T
10kΩ  
16  
500mA  
100mA  
7
THM  
IUSB  
NTC  
10kΩ  
USB SUSPEND  
15  
USUS  
12  
10  
CT  
GND  
C
CT  
EP  
0.15μF  
Figure 3. Typical Application Circuit Using a Mini 5 Style Connector or Other DC/USB Common Connector  
As shown in Figure 1, the IC includes a full-featured  
charger with thermistor monitor, fault timer, charger  
status, and fault outputs. Also included are power-OK  
signals for both USB and DC. Flexibility is maintained  
with adjustable charge current, input current limit, and  
a minimum system voltage (when charging is scaled  
back to hold the system voltage up).  
DC Input—Fast Hysteretic  
Step-Down Regulator  
If a valid DC input is present, the USB power path is  
turned off and power for SYS and battery charging is  
supplied by the high-frequency step-down regulator  
from DC. If the battery voltage is above the minimum  
system voltage (V  
, Figure 4), the battery charger  
SYSMIN  
connects the system voltage to the battery for lowest  
power dissipation. The step-down regulation point is  
then controlled by three feedback signals: maximum  
step-down output current programmed at IDC, maximum  
charger current programmed at ISET, and maximum  
The MAX8903_ prevents overheating during high ambi-  
ent temperatures by limiting charging current when the  
die temperature exceeds +100°C.  
______________________________________________________________________________________ 15  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
Table 1. External Components List for Figures 2 and 3  
COMPONENT  
FUNCTION  
PART  
(FIGURES 2 AND 3)  
C
, C  
Input filter capacitor  
VL filter capacitor  
4.7µF ceramic capacitor  
1.0µF ceramic capacitor  
DC USB  
C
VL  
10µF (MAX8903A/MAX8903C/MAX8903D/MAX8903H/MAX8903J) or  
22µF (MAX8903B/MAX8903E/MAX8903G/MAX8903Y) ceramic capacitor  
C
SYS output bypass capacitor  
SYS  
C
Battery bypass capacitor  
Charger timing capacitor  
Logic output pullup resistors  
Negative TC thermistor  
10µF ceramic capacitor  
BAT  
C
0.15µF low TC ceramic capacitor  
CT  
R
(X4)  
100kΩ  
PU  
THM  
Philips NTC thermistor, P/N 2322-640-63103, 0kΩ 5ꢀ at ꢁ25ꢂC  
R
THM pullup resistor  
10kΩ  
T
DC input current-limit programming  
Fast-charge current programming  
R
3kΩ 1ꢀ, for 2A limit  
1.2kΩ 1ꢀ, for 1A charging  
IDC  
R
ISET  
L1  
DC input step-down inductor  
1µH inductor with I  
> 2A  
SAT  
die temperature. The feedback signal requiring the  
smallest current controls the average output current in  
the inductor. This scheme minimizes total power dissi-  
pation for battery charging and allows the battery to  
absorb any load transients with minimum system volt-  
age disturbance.  
troller becomes a minimum on-time, valley current regu-  
lator. In this way, ripple current in the inductor is always  
as small as possible to reduce ripple voltage on SYS for  
a given capacitance. The ripple current is made to vary  
with input voltage and output voltage in a way that  
reduces frequency variation. However, the frequency  
still varies somewhat with operating conditions. See the  
Typical Operating Characteristics.  
MX8903A–EGHJN/Y  
If the battery voltage is below V , the charger does  
SYSMIN  
not directly connect the system voltage to the battery  
and the system voltage (V ) is slightly above V  
SYS  
SYSMIN  
DC Mode (DCM)  
As shown in Table 2, the DC input supports both AC  
adapters (up to 2A) and USB (up to 500mA). With the  
DCM logic input set high, the DC input is in adapter  
mode and the DC input current limit is set by the resis-  
as shown in Figure 4. The battery charger independently  
controls the battery charging current. V is set to  
SYSMIN  
either 3.0V or 3.4V based on the version of MAX8903_.  
See Table 6.  
After the battery charges to 50mV above V  
, the  
tance from IDC to GND (R  
). Calculate R  
accord-  
SYSMIN  
IDC  
IDC  
system voltage is connected to the battery. The battery  
fast-charge current then controls the step-down con-  
verter to set the average inductor current so that both  
the programmed input current limit and fast-charge cur-  
rent limit are satisfied.  
ing to the following equation:  
R
= 6000V/I  
IDC  
DC-MAX  
With the DCM logic input set low, the DC input current  
limit is internally programmed to 500mA or 100mA as  
set by the IUSB logic input. With the IUSB logic input  
set high, the DC input current limit is 500mA and the  
DC input delivers current to SYS through the step-down  
regulator. With the IUSB logic input set low, the DC  
input current limit is 100mA. In this 100mA mode, the  
step-down regulator is turned off and its high-side  
switch operates as a linear regulator with a 100mA cur-  
rent limit. The linear regulator’s output is connected to  
LX and its output current flows through the inductor into  
CS and finally to SYS.  
DC-DC Step-Down Control Scheme  
A proprietary hysteretic current PWM control scheme  
ensures fast switching and physically tiny external com-  
ponents. The feedback control signal that requires the  
smallest input current controls the center of the peak  
and valley currents in the inductor. The ripple current is  
internally set to provide 4MHz operation. When the  
input voltage decreases near the output voltage, very  
high duty cycle occurs and, due to minimum off-time,  
4MHz operation is not achievable. The controller then  
provides minimum off-time, peak current regulation.  
Similarly, when the input voltage is too high to allow  
4MHz operation due to the minimum on-time, the con-  
The DCM pin has an internal diode to DC as shown in  
Figure 1. To prevent current from flowing from DCM  
through the internal diode and to the DC input, DCM  
cannot be driven to a voltage higher than DC. The  
16 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
through the internal diode to DC. This circuit of Figure 3  
allows a microprocessor to drive the gate of the MOS-  
FET to any state at any time.  
when 4.1V < V  
< 6.6V. If the USB power-OK output  
USB  
feature is not required, connect UOK to ground.  
Both the UOK and the DOK circuitry remain active in  
thermal overload, USB suspend, and when the charger  
is disabled. DOK and UOK can also be wire-ORed  
together to generate a single power-OK (POK) output.  
An alternative to the simple MOSFET and resistor on  
DCM as shown in Figure 3 is to place a 1MΩ resistor in  
series with the DCM input to the microprocessor. The  
microprocessor can then monitor the DOK output and  
make sure that whenever DOK is high DCM is also low.  
In the event that DCM is driven to a higher voltage than  
DC, the 1MΩ series resistance limits the current from  
DCM through the internal diode to DC to a few μA.  
Thermal Limiting  
When the die temperature exceeds +100°C, a thermal  
limiting circuit reduces the input current limit by 5%/°C,  
bringing the charge current to 0mA at +120°C. Since  
the system load gets priority over battery charging, the  
battery charge current is reduced to 0mA before the  
input limiter drops the load voltage at SYS. To avoid  
false charge termination, the charge termination detect  
function is disabled in this mode. If the junction temper-  
ature rises beyond +120°C, no current is drawn from  
USB Input—Linear Regulator  
If a valid USB input is present with no valid DC input,  
current for SYS and battery charging is supplied by a  
low-dropout linear regulator connected from USB to  
SYS. The SYS regulation voltage shows the same char-  
acteristic as when powering from the DC input (see  
Figure 4). The battery charger operates from SYS with  
any extra available current, while not exceeding the  
maximum-allowed USB current. If both USB and DC  
inputs are valid, power is only taken from the DC input.  
The maximum USB input current is set by the logic  
state of the IUSB input to either 100mA or 500mA.  
DC or USB, and V  
regulates at 50mV below V  
.
SYS  
BAT  
System Voltage Switching  
DC Input  
When charging from the DC input, if the battery is  
above the minimum system voltage, SYS is connected  
to the battery. Current is provided to both SYS and the  
battery, up to the maximum program value. The step-  
down output current sense and the charger current  
sense provide feedback to ensure the current loop  
demanding the lower input current is satisfied. The  
advantage of this approach when powering from DC is  
that power dissipation is dominated by the step-down  
regulator efficiency, since there is only a small voltage  
drop from SYS to BAT. Also, load transients can be  
absorbed by the battery while minimizing the voltage  
disturbance on SYS. If both the DC and USB inputs are  
valid, the DC input takes priority and delivers the input  
current, while the USB input is off.  
Power Monitor Outputs (UOK, DOK)  
DOK is an open-drain, active-low output that indicates  
the DC input power status. With no source at the USB  
pin, the source at DC is considered valid and DOK is  
driven low when: 4.15V < V  
< 16V. When the USB  
DC  
voltage is also valid, the DC source is considered valid  
and DOK is driven low when: 4.45V < V < 16V. The  
DC  
higher minimum DC voltage with USB present helps  
guarantee cleaner transitions between input supplies. If  
the DC power-OK output feature is not required, con-  
nect DOK to ground.  
UOK is an open-drain, active-low output that indicates  
the USB input power status. UOK is low when a valid  
source is connected at USB. The source at USB is valid  
After the battery is done charging, the charger is turned  
off and the SYS load current is supplied from the DC  
input. The SYS voltage is regulated to V  
. The  
SYSREG  
charger turns on again after the battery drops to the  
restart threshold. If the load current exceeds the input  
limiter, SYS drops down to the battery voltage and the  
50mΩ SYS-to-BAT PMOS switch turns on to supply the  
extra load current. The SYS-to-BAT switch turns off again  
once the load is below the input current limit. The 50mΩ  
PMOS also turns on if valid DC input power is removed.  
V
V
SYSREG  
BATREG  
MAX8903_  
V
SYS  
I
x R  
ON  
BAT  
V
SYSMIN  
USB Input  
When charging from the USB input, the DC input step-  
down regulator turns off and a linear regulator from  
USB to SYS powers the system and charges the bat-  
tery. If the battery is greater than the minimum system  
voltage, the SYS voltage is connected to the battery.  
V
V
= 0V  
AND/OR V  
CEN  
= 5.0V  
DC  
USB  
V
BAT  
Figure 4. SYS Tracking V  
to the Minimum System Voltage  
BAT  
______________________________________________________________________________________ 17  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
Table 2. Input Limiter Control Logic  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
MAXIMUM  
CHARGE  
CURRENT**  
USB INPUT  
CURRENT LIMIT  
POWER SOURCE  
DOK  
UOK DCM*** IUSB USUS  
Lesser of  
1200V/R  
6000V/R  
and  
AC Adapter at DC Input  
L
L
X
X
H
L
X
L
X
L
6000V/R  
IDC  
ISET  
IDC  
Lesser of  
1200V/R  
100mA  
and  
USB input off. DC  
input has priority.  
ISET  
100mA  
USB Power at DC Input  
Lesser of  
1200V/R  
and  
L
L
X
X
L
L
L
X
H
X
L
L
H
L
500mA  
ISET  
500mA  
USB suspend  
0
Lesser of  
H
100mA  
500mA  
1200V/R  
and  
ISET  
100mA  
USB Power at USB Input,  
DC Unconnected  
Lesser of  
1200V/R  
ISET  
MX8903A–EGHJN/Y  
No DC input  
H
L
X
H
L
and  
500mA  
H
H
L
X
X
X
X
H
X
USB suspend  
No USB input  
0
0
DC and USB Unconnected  
H
**Charge current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load  
exceeds the input current limit.  
***There is an internal diode from DCM (anode) to DC (cathode) as shown in Figure 1. If the DCM level needs to be set by a μP, use  
a MOSFET for isolation as shown in FIgure 3.  
X = Don’t care.  
The USB input then supplies the SYS load and charges  
the battery with any extra available current, while not  
exceeding the maximum-allowed USB current. Load  
transients can be absorbed by the battery while mini-  
mizing the voltage disturbance on SYS. When battery  
charging is completed, or the charger is disabled, SYS  
circuitry independently manages charging and  
adapter/battery power hand-off. In these situations, CEN  
may be connected to ground.  
Soft-Start  
To prevent input transients that can cause instability in  
the USB or AC adapter power source, the rate of change  
of the input current and charge current is limited. When  
an input source is valid, SYS current is ramped from  
zero to the set current-limit value in typically 50μs. This  
also means that if DC becomes valid after USB, the  
SYS current limit is ramped down to zero before switch-  
ing from the USB to DC input. At some point, SYS is no  
longer able to support the load and may switch over to  
is regulated to V  
. If both USB and DC inputs are  
SYSREG  
valid, power is only taken from the DC input.  
USB Suspend  
Driving USUS high and DCM low turns off charging as  
well as the SYS output and reduces input current to  
170μA to accommodate USB suspend mode. See  
Table 2 for settings.  
BAT. The switchover to BAT occurs when V  
< V  
.
BAT  
SYS  
Charge Enable (CEN)  
When CEN is low, the charger is on. When CEN is high,  
the charger turns off. CEN does not affect the SYS out-  
put. In many systems, there is no need for the system  
controller (typically a microprocessor) to disable the  
charger, because the MAX8903_ smart power selector  
This threshold is a function of the SYS capacitor size  
and SYS load. The SYS current limit then ramps from  
zero to the set current level and SYS supports the load  
again as long as the SYS load current is less than the  
set current limit.  
18 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
When the charger is turned on, the charge current ramps  
from 0A to the ISET current value in typically 1.0ms.  
Charge current also soft-starts when transitioning to fast-  
charge from prequal, when the input power source is  
switched between USB and DC, and when changing the  
USB charge current from 100mA to 500mA with the IUSB  
reaches V  
and the charge current drops to 10%  
BATREG  
of the maximum fast-charge current, the charger enters  
the DONE state. The charger restarts a fast-charge  
cycle if the battery voltage drops by 100mV.  
Charge Termination  
When the charge current falls to the termination thresh-  
logic input. There is no di/dt limiting, however, if R  
changed suddenly using a switch.  
is  
ISET  
old (I  
) and the charger is in voltage mode, charg-  
TERM  
ing is complete. Charging continues for a brief 15s  
top-off period and then enters the DONE state where  
charging stops.  
Battery Charger  
While a valid input source is present, the battery charg-  
er attempts to charge the battery with a fast-charge  
current determined by the resistance from ISET to  
Note that if charge current falls to I  
the input or thermal limiter, the charger does not enter  
DONE. For the charger to enter DONE, charge current  
must be less than I  
age mode, and the input or thermal limiter must not be  
reducing charge current.  
as a result of  
TERM  
GND. Calculate the R  
following equation:  
resistance according to the  
ISET  
, the charger must be in volt-  
TERM  
R
ISET  
= 1200V/I  
CHGMAX  
Monitoring Charge Current  
The voltage from ISET to GND is a representation of the  
battery charge current and can be used to monitor the  
current charging the battery. A voltage of 1.5V repre-  
sents the maximum fast-charge current.  
Charge Status Outputs  
Charge Output (CHG)  
CHG is an open-drain, active-low output that indicates  
charger status. CHG is low when the battery charger is  
in its prequalification and fast-charge states. CHG goes  
high impedance if the thermistor causes the charger to  
go into temperature suspend mode.  
If necessary, the charge current is reduced automati-  
cally to prevent the SYS voltage from dropping.  
Therefore, a battery never charges at a rate beyond the  
capabilities of a 100mA or 500mA USB input, or over-  
loads an AC adapter. See Figure 5.  
When used in conjunction with a microprocessor (μP),  
connect a pullup resistor between CHG and the logic  
I/O voltage to indicate charge status to the μP.  
Alternatively, CHG can sink up to 20mA for an LED  
charge indicator.  
When V  
is below V  
, the charger enters pre-  
BATPQ  
BAT  
qual mode and the battery charges at 10% of the maxi-  
mum fast-charge rate until the voltage of the deeply  
discharged battery recovers. When the battery voltage  
Fault Output (FLT)  
FLT is an open-drain, active-low output that indicates  
charger status. FLT is low when the battery charger has  
entered a fault state when the charge timer expires.  
This can occur when the charger remains in its prequal  
state for more than 33 minutes or if the charger remains  
in fast-charge state for more than 660 minutes (see  
Figure 6). To exit this fault state, toggle CEN or remove  
and reconnect the input source.  
MONITORING THE BATTERY  
CHARGE CURRENT WITH V  
ISET  
1.5  
ISET  
0
V
(V)  
When used in conjunction with a microprocessor (μP),  
connect a pullup resistor between FLT and the logic I/O  
voltage to indicate charge status to the μP.  
Alternatively, FLT can sink up to 20mA for an LED fault  
indicator. If the FLT output is not required, connect FLT  
to ground or leave unconnected.  
Charge Timer  
A fault timer prevents the battery from charging indefi-  
nitely. The fault prequal and fast-charge timers are con-  
0
BATTERY CHARGING CURRENT (A)  
DISCHARGING  
1200V/R  
ISET  
trolled by the capacitance at CT (C ).  
CT  
Figure 5. Monitoring the Battery Charge Current with the  
Voltage from ISET to GND  
______________________________________________________________________________________ 19  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
CEN = HI OR  
REMOVE AND RECONNECT  
THE INPUT SOURCE(S)  
NOT READY  
UOK AND DOK = HIGH IMPEDANCE  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
ANY STATE  
I
= 0mA  
CHG  
UOK AND/OR DOK = LOW  
CEN = 0  
RESET TIMER  
TOGGLE CEN OR  
REMOVE AND RECONNECT  
THE INPUT SOURCE(S)  
PREQUALIFICATION  
UOK AND/OR DOK = LOW  
CHG = LOW  
TIMER > t  
PREQUAL  
FLT = HIGH IMPEDANCE  
FAULT  
0 < V < V  
BAT  
BATPQ  
UOK AND/OR DOK = LOW  
CHG = HIGH IMPEDANCE  
FLT = LOW  
I
I  
/10  
CHG CHGMAX  
V
BAT  
< V  
BATPQ  
- 180mV  
V
> V  
BAT BATPQ  
I
= 0mA  
CHG  
RESET TIMER = 0  
RESET TIMER  
TIMER > t  
FSTCHG  
(TIMER SLOWED BY 2x IF  
< I /2, AND  
FAST-CHARGE  
UOK AND/OR DOK = LOW  
CHG = LOW  
I
CHG CHGMAX  
V
< V  
- 180mV  
RESET TIMER  
BAT  
BATPQ  
PAUSED IF I  
< I  
/5 WHILE V < V  
)
CHG CHGMAX  
BAT  
BATREG  
FLT = HIGH IMPEDANCE  
V
< V < V  
BAT BATREG  
BATPQ  
I
I  
CHG CHGMAX  
I
< I  
CHG TERM  
MX8903A–EGHJN/Y  
AND V = V  
BAT  
BATREG  
I
> I  
CHG TERM  
AND THERMAL  
OR INPUT LIMIT  
NOT EXCEEDED;  
RESET TIMER  
RESET TIMER  
ANY CHARGING  
STATE  
TOP-OFF  
UOK AND/OR DOK = LOW  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
THM OK  
TIMER RESUME  
THM NOT OK  
TIMER SUSPEND  
V
BAT  
< V  
+ V  
BATREG RSTRT  
RESET TIMER  
V
= V  
BATREG  
BAT  
I
= I  
CHG TERM  
TEMPERATURE SUSPEND  
= 0mA  
UOK OR DOK PREVIOUS STATE  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
I
CHG  
TIMER > t  
TOP-OFF  
DONE  
UOK AND/OR DOK = 0  
CHG = HIGH IMPEDANCE  
FLT = HIGH IMPEDANCE  
V
+ V < V < V  
RSTRT BAT BATREG  
BATREG  
I
= 0mA  
CHG  
Figure 6. MAX8903A Charger State Flow Chart  
While in fast-charge mode, a large system load or device  
self-heating may cause the MAX8903_ to reduce charge  
current. Under these circumstances, the fast-charge  
timer is slowed by 2x if the charge current drops below  
50% of the programmed fast-charge level, and suspend-  
ed if the charge current drops below 20% of the pro-  
grammed level. The fast-charge timer is not affected at  
any current if the charger is regulating the BAT voltage  
C
CT  
t
= 33min×  
PREQUAL  
0.15μF  
C
0.15μF  
CT  
t
= 660min×  
FST-CHG  
t
t
= 15s (MAX8903A/D/H/J/N/Y)  
TOP-OFF  
TOP-OFF  
C
CT  
= 132min×  
(MAX8903B/E/G)  
0.15μF  
at V  
(i.e., the charger is in voltage mode).  
BATREG  
20 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
CEN  
VL  
VL  
THERMISTOR  
CIRCUITRY  
MAX8903_  
MAX8903B/MAX8903E/  
MAX8903G ONLY  
THERMISTOR  
DETECTOR  
0.87 VL  
R
TB  
ALTERNATE  
THERMISTOR  
CONNECTION  
0.74 VL  
COLD  
THM  
R
TS  
THM  
OUT OF  
RANGE  
0.28 VL  
HOT  
R
TP  
R
T
DISABLE  
CHARGER  
ENABLE THM  
0.03 VL  
R
T
ALL COMPARATORS  
60mV HYSTERESIS  
GND  
Figure 7. Thermistor Monitor Circuitry  
Thermistor Input (THM)  
Table 3. Fault Temperatures for Different  
Thermistors  
The THM input connects to an external negative tem-  
perature coefficient (NTC) thermistor to monitor battery  
or system temperature. Charging is suspended when  
the thermistor temperature is out of range. The charge  
timers are suspended and hold their state but no fault is  
indicated. When the thermistor comes back into range,  
charging resumes and the charge timer continues from  
where it left off. Connecting THM to GND disables the  
thermistor monitoring function. Table 3 lists the fault  
temperature of different thermistors.  
Thermistor β (K)  
(kΩ) (Figure 7)  
3000 3250 3500 3750 4250  
R
10  
10  
10  
10  
10  
TB  
Resistance at +25°C  
(kΩ)  
10  
10  
10  
10  
10  
Resistance at +50°C  
(kΩ)  
4.59  
4.30  
4.03  
3.78 3.316  
Resistance at 0°C (kΩ) 25.14 27.15 29.32 31.66 36.91  
Since the thermistor monitoring circuit employs an exter-  
Nominal Hot Trip  
Temperature (°C)  
55  
-3  
53  
-1  
50  
0
49  
2
46  
nal bias resistor from THM to VL (R , Figure 7), the ther-  
TB  
mistor is not limited only to 10kΩ (at +25°C). Any  
resistance thermistor can be used as long as the value is  
equivalent to the thermistor’s +25°C resistance. For  
example, with a 10kΩ at +25°C thermistor, use 10kΩ at  
Nominal Cold Trip  
Temperature (°C)  
4.5  
VL Regulator  
R , and with a 100kΩ at +25°C thermistor, use 100kΩ.  
TB  
VL is a 5V linear regulator that powers the MAX8903’s  
internal circuitry and charges the BST capacitor. VL is  
used externally to bias the battery’s thermistor. VL takes  
its input power from USB or DC. When input power is  
available from both USB and DC, VL takes power from  
DC. VL is enabled whenever the input voltage at USB  
or DC is greater than ~1.5V. VL does not turn off when  
the input voltage is above the overvoltage threshold.  
Similarly, VL does not turn off when the charger is dis-  
abled (CEN = high). Connect a 1μF ceramic capacitor  
from VL to GND.  
For a typical 10kΩ (at +25°C) thermistor and a 10kΩ  
resistor, the charger enters a temperature suspend  
R
TB  
state when the thermistor resistance falls below 3.97kΩ  
(too hot) or rises above 28.7kΩ (too cold). This corre-  
sponds to a 0°C to +50°C range when using a 10kΩ  
NTC thermistor with a beta of 3500. The general relation  
of thermistor resistance to temperature is defined by  
the following equation:  
1
1
β
T+273°C  
298°C  
R
= R × e  
25  
T
______________________________________________________________________________________ 21  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
where:  
and let the system continue to operate with external power.  
If the THM pin is tied to GND (voltage at THM is below 3%  
of VL), the thermistor option is disabled and the system  
does not respond to the thermistor input. In those cases, it  
is assumed that the system has its own temperature sens-  
ing, and halts changing through CEN when the tempera-  
ture is outside of the safe charging range.  
R = The resistance in Ω of the thermistor at tempera-  
T
ture T in Celsius  
R
25  
= The resistance in Ω of the thermistor at +25°C  
β = The material constant of the thermistor, which typi-  
cally ranges from 3000K to 5000K  
T = The temperature of the thermistor in °C  
Power Dissipation  
Table 3 shows the MAX8903_ THM temperature limits  
for different thermistor material constants.  
Table 4. Package Thermal Characteristics  
Some designs might prefer other thermistor temperature  
limits. Threshold adjustment can be accommodated by  
28-PIN 4mm x 4mm THIN QFN  
SINGLE-LAYER PCB  
MULTILAYER PCB  
changing R , connecting a resistor in series and/or in  
TB  
1666.7mW  
2286mW  
parallel with the thermistor, or using a thermistor with dif-  
ferent β. For example, a +45°C hot threshold and 0°C  
cold threshold can be realized by using a thermistor  
with a β of 4250 and connecting 120kΩ in parallel. Since  
the thermistor resistance near 0°C is much higher than it  
is near +50°C, a large parallel resistance lowers the  
cold threshold, while only slightly lowering the hot  
threshold. Conversely, a small series resistance raises  
the hot threshold, while only slightly raising the cold  
Continuous  
Power  
Dissipation  
Derate 20.8mW/°C  
above +70°C  
Derate 28.6mW/°C  
above +70°C  
θ
θ
48°C/W  
3°C/W  
35°C/W  
3°C/W  
JA  
JC  
Minimum SYS Output Capacitor  
MX8903A–EGHJN/Y  
Based on the version of the MAX8903_, the SYS load  
regulation is either 25mV/A or 40mV/A. The 25mV/A ver-  
sions achieve better load regulation by increasing the  
feedback loop gain. To ensure feedback stability with  
this higher gain, a larger SYS output capacitor is  
required. Devices with 25m/V SYS load regulation  
require 22μF SYS output capacitor whereas devices  
with 40m/V only require 10μF. See Table 6 for more  
information about the various versions of the  
MAX8903_.  
threshold. Raising R  
lowers both the cold and hot  
TB  
thresholds, while lowering R raises both thresholds.  
TB  
Note that since VL is active whenever valid input power  
is connected at DC or USB, thermistor bias current  
flows at all times, even when charging is disabled (CEN  
= high). When using a 10kΩ thermistor and a 10kΩ  
pullup to VL, this results in an additional 250μA load.  
This load can be reduced to 25μA by instead using a  
100kΩ thermistor and 100kΩ pullup resistor.  
Power Enable on Battery Detection  
The power enabled on battery detection function allows  
the MAX8903B/MAX8903E/MAX8903G to automatically  
enable/disable the USB and DC power inputs when the  
battery is applied/removed. This function utilizes the  
battery pack’s integrated thermistor as a sensing mech-  
anism to determine when the battery is applied or  
removed. With this function, MAX8903B/MAX8903E/  
MAX8903G-based systems shut down when the battery  
is removed regardless of whether external power is  
available at the USB or DC power inputs.  
Inductor Selection for  
Step-Down DC-DC Regulator  
The MAX8903_'s control scheme requires an external  
inductor (L  
) from 1.0μH to 10μH for proper opera-  
OUT  
tion. This section describes the control scheme and the  
considerations for inductor selection. Table 5 shows  
recommended inductors for typical applications. For  
assistance with the calculations needed to select the  
optimum inductor for a given application, refer to the  
spreadsheet at: www.maxim-ic.com/tools/other/soft-  
ware/MAX8903-inductor-design.xls.  
The MAX8903B/MAX8903E/MAX8903G implement the  
power enabled on battery detection function with the ther-  
mistor detector comparator as shown in Figure 7. If no bat-  
The MAX8903 step-down DC-DC regulator implements a  
control scheme that typically results in a constant switch-  
ing frequency (f ). When the input voltage decreases to  
SW  
tery is present, the absence of the thermistor allows R to  
TB  
a value near the output voltage, high duty cycle operation  
pull THM to VL. When the voltage at the THM pin increases  
above 87% of VL, it is assumed that the battery has been  
removed and the system powers down. However, there is  
also the option to bypass this thermistor sensing option  
completely, and so retain the ability to remove the battery  
occurs and the device can operate at less than f  
due  
SW  
to minimum off-time (t  
) constraints. In high duty  
OFFMIN  
cycle operation, the regulator operates with t  
and  
OFFMIN  
a peak current regulation. Similarly, when the input  
voltage is too high to allow f operation due to minimum  
SW  
22 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
on-time constraints (t  
), the regulator becomes a  
ONMIN  
V
V  
SYS(MIN)  
× t  
(
)
DC(MAX)  
ON  
fixed minimum on-time valley current regulator.  
(4)  
L
=
OUT _MIN_ t  
ON  
K × I  
Versions of the MAX8903 with f = 4MHz offer the  
SDLIM  
SW  
smallest L  
while delivering good efficiency with low  
OUT  
where V  
is maximum input voltage, V  
the minimum charger output voltage, and t  
time at high input voltage, as given by the following  
equation:  
is  
DC(MAX)  
SYS(MIN)  
is the on-  
input voltages (5V or 9V). For applications that use high  
ON  
input voltages (12V), the MAX8903G with f  
is the best choice because of its higher efficiency.  
= 1MHz  
SW  
For a given maximum output voltage, the minimum  
inductor ripple current condition occurs at the lowest  
V
1
f
SW  
SYS(MIN)  
(5)  
t
= t  
if  
×
t  
,
input voltage that allows the regulator to maintain f  
SW  
ON  
ONMIN  
ONMIN  
V
DC(MAX)  
operation. If the minimum input voltage dictates an off-  
time less than t  
, then the minimum inductor rip-  
OFFMIN  
otherwise,  
V
1
f
SW  
SYS(MIN)  
ple condition occurs just before the regulator enters  
fixed minimum off-time operation. To allow the current-  
mode regulator to provide a low-jitter, stable duty factor  
operation, the minimum inductor ripple current  
t
=
×
ON  
V
DC(MAX)  
The saturation current DC rating of the inductor (I  
)
SAT  
(I  
) should be greater than 150mA in the  
L_RIPPLE_MIN  
must be greater than the DC step-down output current  
limit (I ) plus one-half the maximum ripple current,  
minimum inductor ripple current condition. The maxi-  
mum allowed output inductance L is therefore  
SDLIM  
OUT_MAX  
as given by equation (6).  
obtained using the equations (1) and (2) below.  
IL  
RIPPLE _MAX  
2
(1)  
I
> I  
+
SAT  
SDLIM  
(6)  
V
1
f
SW  
SYS(MAX)  
t
= t  
if 1  
×
t  
,
OFF  
OFFMIN  
OFFMIN  
V
DC(MIN)  
where IL  
is the greater of the ripple currents  
RIPPLE_MAX  
obtained from (7) and (8).  
otherwise,  
V
1
f
SW  
SYS(MAX)  
V
× t  
OFF  
t
= 1−  
×
SYS(MAX)  
OFF  
(7)  
(8)  
IL  
=
V
RIPPLE _MIN_ T  
OFF  
DC(MIN)  
L
OUT  
where t  
is the off-time, V  
output voltage, and V  
age.  
is maximum charger  
OFF  
SYS(MAX)  
V
V  
× t  
ON  
is minimum DC input volt-  
(
)
DC(MAX)  
SYS(MIN)  
DC(MIN)  
IL  
=
RIPPLE _MIN_ T  
ON  
L
OUT  
V
× t  
SYS(MAX)  
OFF  
L
=
OUT _MAX  
PCB Layout and Routing  
(2)  
I
L _RIPPLE _MIN  
Good design minimizes ground bounce and voltage gra-  
dients in the ground plane, which can result in instability  
or regulation errors. The GND and PGs should connect to  
the power-ground plane at only one point to minimize the  
effects of power-ground currents. Battery ground should  
connect directly to the power-ground plane. The ISET  
and IDC current-setting resistors should connect directly  
to GND to avoid current errors. Connect GND to the  
exposed pad directly under the IC. Use multiple tightly  
spaced vias to the ground plane under the exposed pad  
to help cool the IC. Position input capacitors from DC,  
SYS, BAT, and USB to the power-ground plane as close  
as possible to the IC. Keep high current traces such as  
those to DC, SYS, and BAT as short and wide as possi-  
ble. Refer to the MAX8903A Evaluation Kit for a suitable  
PCB layout example.  
where L  
is the maximum allowed inductance.  
OUT_MAX  
To obtain a small-sized inductor with acceptable core  
loss, while providing stable, jitter-free operation at the  
advertised f , the actual output inductance (L  
), is  
OUT  
SW  
obtained by choosing an appropriate ripple factor K, and  
picking an available inductor in the range inductance  
yielded by equations (2), (3), and (4). L  
should also  
OUT  
not be lower than the minimum allowable inductance as  
shown in Table 6. The recommended ripple factor ranges  
from (0.2 K 0.45) for (2A I  
1A) designs.  
S
DLIM  
(3)  
V
× t  
SYS(MAX)  
OFF  
L
=
OUT _MIN_ T  
OFF  
K × I  
SDLIM  
where t  
is the minimum off-time obtained from (1).  
OFF  
______________________________________________________________________________________ 23  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MAX8903A–MAX8903E/MAX8903G/MAX8903Y are the  
same. Their differences lie in certain electrical and oper-  
ational parameters. Table 6 outlines these differences.  
Selector Guide  
The MAX8903_ is available in several options designat-  
ed by the first letter following the root part number. The  
basic architecture and functionality of the  
Table 5. Recommended Inductor Examples  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
DC INPUT  
VOLTAGE  
RANGE  
PART NUMBER,  
SWITCHING  
FREQUENCY*  
RECOMMENDED INDUCTOR  
(I  
)
SDMAX  
1.0μH, IFSC1008ABER1R0M01, Vishay  
2.5mm x 2mm x 1.2mm, 43mΩ (max), 2.6A  
or 1.0μH, LQH32PN1R0-NN0, Murata,  
3.2mm x 2.5mm x 1.55mm, 54mΩ (max), 2.3A  
5V 10%  
5V 10%  
5V 10%  
5V 10%  
9V 10%  
9V 10%  
2A  
MAX8903H/J/N/Y, 4MHz  
MAX8903H/J/N/Y, 4MHz  
1.5μH inductor, MDT2520-CN1R5M, TOKO  
2.5mm x 2.0mm x 1.2mm, 123.5mΩ (max), 1.25A  
or 1.5uH Inductor, IFSC1008ABER1R5M01, Vishay  
2.5mm x 2mm x 1.2mm, 72mΩ (max), 2.2A  
1A  
2A  
1A  
2A  
1A  
MX8903A–EGHJN/Y  
2.2μH inductor, DFE322512C-2R2N, TOKO  
3.2mm x 2.5mm x 1.2mm, 91mΩ (max), 2.4A  
or 2.2μH inductor, IFSC1515AHER2R2M01, Vishay  
3.8mm x 3.8mm x 1.8mm, 45mΩ (max), 3A  
MAX8903A/B/C/D/E,  
4MHz  
2.2μH inductor, IFSC1008ABER2R2M01, Vishay  
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A  
or 2.2μH Inductor, LQH32PN2R2-NN0, Murata  
3.2mm x 2.5mm x 1.55mm, 91mΩ (max), 1.55A  
MAX8903A/B/C/D/E,  
4MHz  
1.5uH inductor, IFSC1008ABER1R5M01, Vishay  
2.5mm x 2mm x 1.2mm, 72mW (max), 2.2A  
or 1.5μH Inductor, VLS4012ET-1R5N, TDK  
4mm x 4mm x 1.2mm, 72mW (max), 2.1A  
MAX8903H/J/N/Y, 4MHz  
MAX8903H/J/N/Y, 4MHz  
2.2μH inductor, IFSC1008ABER2R2M01, Vishay  
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A  
or 2.2μH inductor, LQH3NPN2R2NJ0, Murata  
3mm x 3mm x 1.1mm, 83mΩ (max), 1.15A  
24 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
Table 5. Recommended Inductor Examples (continued)  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
DC INPUT  
VOLTAGE  
RANGE  
PART NUMBER,  
SWITCHING  
FREQUENCY*  
RECOMMENDED INDUCTOR  
(I  
)
SDMAX  
2.2μH inductor, DFE322512C-2R2N, TOKO  
3.2mm x 2.5mm x 1.2mm, 91mΩ (max), 2.4A  
or 2.2μH Inductor, IFSC1515AHER2R2M01, Vishay  
3.8mm x 3.8mm x 1.8mm, 45mΩ (max), 3A  
MAX8903A/B/C/D/E,  
4MHz  
9V 10%  
9V 10%  
9V 10%  
9V 10%  
12V 10%  
12V 10%  
2A  
2.2μH Inductor, IFSC1008ABER2R2M01, Vishay  
2.5mm x 2mm x 1.2mm, 90mΩ (max), 2.15A  
or 2.2μH Inductor, LQH3NPN2R2NJ0, Murata  
3mm x 3mm x 1.1mm, 83mΩ (max), 1.15A  
MAX8903A/B/C/D/E,  
4MHz  
1A  
2A  
1A  
2A  
1A  
4.3uH Inductor, DEM4518C (1235AS-H-4R3M), TOKO  
4.7mm x 4.5mm x 1.8mm, 84mΩ (max), 2.0A  
or 4.7μH Inductor, IFSC1515AHER4R7M01, Vishay  
3.8mm x 3.8mm x 1.8mm, 90mΩ (max), 2.0A  
MAX8903G, 1MHz  
MAX8903G, 1MHz  
MAX8903G, 1MHz  
MAX8903G, 1MHz  
4.7μH inductor, DEM2818C (1227AS-H-4R7M), TOKO  
3.2mm x 2.8mm x 1.8mm, 92mΩ (max), 1.1A  
or 4.7μH inductor, IFSC1008ABER4R7M01, Vishay  
2.5mm x 2mm x 1.2mm, 212mΩ (max), 1.2A  
4.3μH inductor, DEM4518C (1235AS-H-4R3M), TOKO  
4.7mm x 4.5mm x 1.8mm, 84mΩ (max), 2.0A  
or 4.7μH inductor, IFSC1515AHER4R7M01, Vishay  
3.8mm x 3.8mm x 1.8mm, 90mΩ (max), 2.0A  
6.8μH, IFSC1515AHER6R8M01, Vishay  
3.8mm x 3.8mm x 1.8mm, 115mΩ (max), 1.5A  
or 6.8μH, LQH44PN6R8MP0, Murata  
4mm x 4mm x 1.65mm, 144mΩ (max), 1.34A  
*See the Selector Guide for more information about part numbers.  
______________________________________________________________________________________ 25  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MAX8903A–MAX8903E/MAX8903G/MAX8903Y are the  
Selector Guide  
The MAX8903_ is available in several options designat-  
ed by the first letter following the root part number. The  
basic architecture and functionality of the  
same. Their differences lie in certain electrical and  
operational parameters. Table 6 outlines these differ-  
ences.  
Table 6. Selector Guide  
PARAMETER MAX8903A MAX8903B MAX8903C MAX8903D MAX8903E MAX8903G MAX8903H MAX8903J MAX8903N MAX8903Y  
Minimum SYS  
Regulation  
3.0V  
3.0V  
3.4V  
3.4V  
3.0V  
3.0V  
3.4V  
3.4V  
3.4V  
3.0V  
Voltage  
(V  
)
SYSMIN  
SYS Regulation  
Voltage  
4.4V  
4.325V  
2.2µH  
4.4V  
4.4V  
4.325V  
2.2µH  
4.325V  
2.2µH  
4.4V  
1µH  
4.5V  
1µH  
4.4V  
1µH  
4.4V  
1µH  
(V  
SYSREG  
)
Minimum  
Allowable  
Inductor  
2.2µH  
2.2µH  
2.2µH  
Switching  
Frequency  
4MHz  
4MHz  
4MHz  
4MHz  
4MHz  
1MHz  
4MHz  
4MHz  
4MHz  
4MHz  
MX8903A–EGHJN/Y  
SYS Load  
Regulation  
40mV/A  
25mV/A  
40mV/A  
40mV/A  
25mV/A  
25mV/A  
40mV/A  
25mV/A  
25mV/A  
25mV/A  
Minimum SYS  
Output  
10µF  
4.2V  
22µF  
4.2V  
10µF  
4.2V  
10µF  
4.1V  
22µF  
4.1V  
22µF  
4.2V  
10µF  
4.2V  
10µF  
22µF  
22µF  
Capacitor (C  
)
SYS  
BAT Regulation  
Voltage  
4.35V  
4.15V  
4.15V  
(V  
BATREG  
)
(Note 5)  
BAT Prequal  
Threshold  
3V  
2.5V  
3V  
3V  
2.5V  
2.5V  
3V  
3V  
3V  
3V  
(V  
BATPQ  
)
(Note 5)  
Top-Off Timer  
(Note 6)  
15s (fixed)  
1mA  
132min  
10mA  
15s (fixed) 15s (fixed)  
132min  
10mA  
132min  
10mA  
15s (fixed) 15s (fixed) 15s (fixed) 15s (fixed)  
VL Output  
Current Rating  
1mA  
1mA  
1mA  
1mA  
1mA  
1mA  
Power-Enable  
On Battery  
Detection  
No  
Yes  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
(Note 7)  
Comments  
(Note 8)  
Note 5: Typical values. See the Electrical Characteristics table for min/max values.  
Note 6: Note that this also changes the timing for the prequal and fast-charge timers.  
Note 7: See the Power Enable on Battery Detection section for details.  
Note 8: The MAX8903H is a newer version of the MAX8903C that is a recommended for new designs.  
26 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
Pin Configuration  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
21 20 19 18 17 16 15  
14  
13  
22  
CEN  
ISET  
CHG  
SYS 23  
12 GND  
24  
25  
26  
27  
28  
SYS  
CS  
CS  
LX  
MAX8903_  
IDC  
CT  
11  
10  
9
VL  
EP  
8
DOK  
LX  
+
1
2
3
4
5
6
7
TQFN  
______________________________________________________________________________________ 27  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
LAND  
PATTERN NO.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0139  
90-0035  
28 TQFN-EP  
T2844-1  
MX8903A–EGHJN/Y  
28 ______________________________________________________________________________________  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
MX8903A–EGHJN/Y  
Package Information (continued)  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or  
"-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
______________________________________________________________________________________ 29  
2A 1-Cell Li+ DC-DC Chargers  
for USB and Adapter Power  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
4
5
12/08  
8/09  
Initial release  
1–20  
Added MAX8903C/MAX8903D to data sheet  
Made various corrections  
11/09  
10/10  
5/11  
1–7, 9, 11–21  
1–29  
Added MAX8903B, MAX8903E, MAX8903G, and MAX8903Y  
Added MAX8903H and MAX8903J and updated components  
1–29  
9/11  
Added the MAX8903N, and removed future product designation for MAX8903J  
1–29  
MX8903A–EGHJN/Y  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in  
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  
19-4413; Rev 2; 10/10  
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
General Description  
Features  
The MAX8903A evaluation kit (EV kit) is a fully assem-  
bled and tested circuit board for evaluating the 2A, 1-cell  
Li+ DC-DC battery charger. The EV kit charges a sin-  
gle-cell lithium-ion (Li+) battery from a DC input (AC  
adaptor) or a USB 100mA/500mA source and provides  
system power from the DC input, USB input, or battery.  
Battery charge current and SYS current limit are inde-  
pendently set. Charge current and DC converter output  
current limit can be set up to 2A, respectively. The USB  
input current can be set to 100mA or 500mA and USB  
suspend mode is also supported. Power not used by  
the system is available to charge the battery.  
DC-DC Converter Output Current-Limit  
Adjustment Range of 0.5A to 2A (EV Kit Standard  
Configuration: 2A)  
Battery Charger Current-Limit Adjustment Range  
of 0.5A to 2A (EV Kit Standard Configuration: 1A)  
USB Current Limit of 100mA or 500mA  
Efficient 4MHz Switching DC-DC Converter  
Powers System Load and Charger  
Instant On—Works with No Battery or Low  
Battery  
The EV kit comes standard with the MAX8903A  
installed. However, the EV kit can also be used to evalu-  
ate the MAX8903B–MAX8903E and MAX8903Y by  
replacing the MAX8903A (U1) with the preferred IC.  
28-Pin, 4mm x 4mm Thin QFN Package with  
Exposed Pad  
Fully Assembled and Tested  
Ordering Information  
PART  
TYPE  
MAX8903AEVKIT+  
EV Kit  
+Denotes lead(Pb)-free and RoHS compliant  
Component List  
DESIGNATION QTY  
DESCRIPTION  
2.2μF 10%, 16V X5R ceramic  
capacitor (0805)  
TDK C2012X7R1C225K or  
equivalent  
C1  
C2  
1
1
2
2
1
4.7μF 10%, 25V X5R ceramic  
capacitor (0805)  
Murata GRM21BR61E475KA12L or  
equivalent  
10μF 10%, 10V X5R ceramic  
capacitors (0805)  
Taiyo Yuden LMK212BJ106KG or  
equivalent  
C3A, C4  
C5, C7  
C6  
0.1μF 10%, 10V X7R ceramic  
capacitors (0402)  
TDK C1005X5R1A104K or  
equivalent  
2.2μF 10%, 6.3V X5R ceramic  
capacitor (0603)  
Taiyo Yuden LMK107BJ225MA or  
equivalent  
Figure 1. MAX8903A EV Kit Photo  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX8903A Evaluation Kit  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
C8, C9, C11  
0
Not installed, capacitors (0402)  
1μH, 2.8A, 54mΩ inductor  
(4.1mm x 4.1mm x 1.2mm)  
TOKO A1101AS-1R0 (DEA4012CK  
series)  
4.7μF 10%, 16V X5R ceramic  
capacitor (0805)  
Taiyo Yuden EMK212BJ475K or  
equivalent  
L1  
1
C10  
1
100kΩ NTC thermistor (0402)  
Murata NCP15WF104J03RC  
NTC  
0
Small green LEDs  
Panasonic LNJ308G8PRA  
D1, D3, D4  
D2  
3
1
2
1
R1–R4  
R5  
4
1
2.2kΩ 5% resistors (0402)  
100kΩ 1% resistor (0402)  
Small red LED  
Panasonic LNJ208R8ARA  
R6, R10, R14,  
R17, R18  
0
Not installed, resistors (0402)  
USB type-AB right-angle mini jacks  
Molex 56579-0576  
J1, J2  
J3  
R7, R8  
R9  
2
1
2
1
3.01kΩ 1% resistors (0402)  
6.04kΩ 1% resistor (0402)  
604Ω 1% resistors (0402)  
1.21kΩ 1% resistor (0402)  
2.1mm male power connector  
CUI Inc. PJ-002A-SMT  
R11, R12  
R13  
1.25mm (0.049in) surface-mount,  
right-angle pitch header, lead-free,  
10 circuits  
0.56Ω 1% resistor (0603)  
Panasonic ERJ-3RQJR56V  
J4  
1
R15  
U1  
1
1
Molex 53261-1071  
1-cell Li+ charger (28 TQFN-EP*)  
Maxim MAX8903AETI+  
3-pin headers  
Sullins PEC36SAAN  
Digi-Key S1012E-36-ND  
JU1, JU2, JU3,  
JU8, JU9  
5
6
Shunts (see Table 1)  
Digi-Key S900-ND or equivalent  
10  
1
2-pin headers  
Sullins PEC36SAAN  
Digi-Key S1012E-36-ND  
JU4–JU7,  
JU10, JU11  
PCB: MAX8903A EVALUATION KIT+  
*EP = Exposed pad.  
Component Suppliers  
SUPPLIER  
PHONE  
WEBSITE  
CUI Inc.  
503-612-2300  
800-344-4539  
800-768-6539  
770-436-1300  
800-344-2112  
760-744-0125  
800-348-2496  
847-803-6100  
847-297-0070  
www.cui.com  
Digi-Key Corp.  
Molex  
www.digikey.com  
www.molex.com  
Murata Electronics North America, Inc.  
Panasonic Corp.  
www.murata-northamerica.com  
www.panasonic.com  
www.sullinselectronics.com  
www.t-yuden.com  
Sullins Electronics Corp.  
Taiyo Yuden  
TDK Corp.  
www.component.tdk.com  
www.tokoam.com  
vluates:–E/MAX8903Y  
TOKO America, Inc.  
Note: Indicate that you are using the MAX8903 when contacting these component suppliers.  
2
_______________________________________________________________________________________  
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
7) Remove the shunt from pins 1-2 of jumper JU8 and  
Quick Start  
Recommended Equipment  
place the shunt on pins 2-3 of jumper JU8.  
8) If 3V V  
4.1V for MAX8903A/MAX8903B/  
BAT  
• MAX8903A EV kit  
MAX8903C, or 3V V  
4.0V for MAX8903D/  
BAT  
• Adjustable DC power supply capable of greater than  
6V at 3A  
MAX8903E/MAX8903Y, verify that the current  
from BATT into the battery is approximately 1A.  
• Battery or simulated battery  
9) Increase the load current on SYS to 1A.  
1-cell Li+ or Li-poly battery (Figure 2A)  
10) Verify that the voltage on SYS remains approximate-  
ly equal to V  
.
BATT  
Simulated battery—preloaded power supply  
(Figure 2B)  
11) Verify that the charge current into the battery  
remains near 1A.  
• Two digital multimeters (DMM)  
• Up to 3A adjustable load  
• Three 10A ammeters  
12) Increase the load current on SYS to 1.5A.  
13) Verify that the voltage on SYS remains approximate-  
ly equal to V  
.
BATT  
Procedure  
The EV kit is fully assembled and tested. Follow the  
steps below to verify board operation. Use twisted  
wires of appropriate gauge that are as short as possi-  
ble to connect the battery and power sources.  
14) Verify that the charge current into the battery  
decreased to approximately 0.5A.  
15) Increase the load current on SYS to 2.5A.  
16) Verify that current out of the battery (from the bat-  
tery to SYS) is near 0.5A.  
1) Preset the DC power supply to 6V. Turn off the  
power supply. Caution: Do not turn on the power  
supply until all connections are completed.  
Detailed Description of Hardware  
Adjusting the EV Kit for In-Circuit  
Evaluation  
2) Preset the adjustable load to 0A.  
3) Connect the EV kit to the power supply, battery or  
preloaded power supply, adjustable load, and  
meters, as shown in Figure 3.  
Verify that the AC adapter source current limit is higher  
than the SYS and BAT current requirements. Note that if  
SYS current demand exceeds the DC-DC converter  
output current limit, then the battery will help supply the  
extra current. The DC-DC converter output current limit  
can also be adjusted on the MAX8903A EV kit by  
replacing R7 or adjusting JU4 and JU5. Verify that the  
USB source supplies at least 500mA. Verify the maxi-  
mum charge current rating or desired charge current  
4) Ensure that the EV kit has the jumper settings  
shown in Figure 3 and Table 1.  
5) Turn on the power supply.  
6) Verify that the voltage at SYS is approximately 4.4V  
and that the current from BATT into the battery is 0A.  
A. Li+\Li-POLY BATTERY  
BAT  
B. SIMULATED BATTERY (PRELOADED POWER SUPPLY)  
BAT  
0 TO 4.2V  
2.5A  
2Ω  
10W  
MAX8903A EV KIT  
MAX8903A EV KIT  
GND  
GND  
Figure 2. Battery Options for Evaluating the MAX8903A EV Kit  
_______________________________________________________________________________________  
3
MAX8903A Evaluation Kit  
JU11  
SYS  
A
A
SYS  
VOLTMETER  
ADJUSTABLE  
LOAD  
MAX8903A  
EVALUATION KIT  
1
2
3
A
DC  
JU1  
GND  
BAT  
POWER  
SUPPLY  
GND  
BAT  
BATTERY OR  
VOLTMETER  
SIMULATED BATTERY  
1
2
3
1
2
3
GND  
*ALL AMMETERS NEED TO BE SET FOR 10A READINGS. THIS MINIMIZES THE SERIES IMPEDANCE OF THE AMMETER.  
Figure 3. Connection Diagram and Default Jumper Connections  
Table 1. Jumper Settings (JU1–JU11)  
DESCRIPTION  
DEFAULT  
POSITION  
JUMPER  
JU1  
LABEL  
PINS 1-2  
PINS 2-3  
Pins 2-3 shunted  
Use the DC pad or J2 as the DC input  
Use the DC pad or J3 as the DC input  
Configures DC input as adapter source  
(see Table 2)  
Configures DC input for USB power  
(see Table 2)  
JU2  
DCM  
Pins 1-2 shunted  
With DCM pins 1-2 shunted, IUSB sets  
500mA USB charge current  
With DCM pins 2-3 shunted, IUSB sets  
100mA USB charge current  
JU3  
IUSB  
Pins 1-2 shunted  
JU4  
JU5  
JU6  
JU7  
Shunted  
Shunted  
Open  
Shorts out R8 (see Table 3)  
Shorts out R9 (see Table 3)  
Shunting JU6 shorts out R12 (see Table 4)  
Shorts out R13 (see Table 4)  
Shunted  
Disables the battery charger  
(when the charger is off, SYS remains on)  
Enables the battery charger  
(when the charger is on, SYS remains on)  
JU8  
CEN  
Pins 1-2 shunted  
JU9  
JU10  
JU11  
USUS  
THM  
Pins 2-3  
Shunted  
Shunted  
USB suspend mode  
USB not suspended  
Connects THM to GND to bypass thermistor function  
Indicator LED anodes connected to SYS  
vluates:–E/MAX8903Y  
4
_______________________________________________________________________________________  
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
rating of the battery. Ensure that the charge current set-  
ting of the EV kit does not exceed the battery rating, or  
replace resistor R11 (or adjust JU6 and JU7) as  
required. See the Adjusting the DC-DC Converter  
Output Current Limit and BAT Fast-Charge Current  
Limit section for more details.  
3) When charging the battery with V  
> V  
,
SYSMIN  
BAT  
the SYS voltage is regulated at the battery voltage  
for lowest power dissipation.  
When the input current limit is reached, the first action  
taken by the MAX8903 is to reduce battery charge cur-  
rent. This allows the charging current to be pro-  
grammed for the fastest charge time, without dropping  
the SYS load at load currents that would cause the  
input supply regulation current to be exceeded.  
Adjusting the DC-DC Converter Output  
Current Limit and BAT Fast-Charge  
Current Limit  
If, after the charge current is reduced to 0mA, the load  
at SYS still exceeds the input current limit, the battery  
helps supply power to support the system load.  
Input and charger current limits are set, as shown in  
Table 2. It is often preferable to change the input cur-  
rent limit as the input power source is changed. The  
MAX8903A facilitates this by allowing different input  
current limits for the DC and USB inputs.  
The MAX8903 features flexible input connections (at the  
DC and USB inputs) and current-limit settings (set by  
DCM and IUSB) to accommodate nearly any input power  
configuration. However, it is expected that most systems  
use one of two external power schemes: separate con-  
nections for USB and an AC adapter, or a single connec-  
tor that accepts either USB or the AC adapter output.  
Input and charger current limits are shown in Table 2.  
The SYS voltage regulates to three different regulation  
points depending on the state of the MAX8903:  
1) If CEN is high to disable the charger, or charging is  
done, the SYS voltage regulates to 4.4V.  
2) When charging the battery with V  
< V  
, the  
BAT  
SYSMIN  
SYS voltage regulates to V  
+ 0.2V and stays  
SYSMIN  
above V  
during transient loads.  
SYSMIN  
Table 2. Input Limiter Control Logic  
DC STEP-DOWN  
OUTPUT  
CURRENT LIMIT  
MAXIMUM  
CHARGE  
CURRENT***  
USB INPUT  
CURRENT LIMIT  
POWER SOURCE  
DOK  
UOK  
DCM  
IUSB USUS  
Lesser of  
AC Adapter at DC Input  
L
L
X
H
L
X
L
X
L
6000/R  
1200/R  
and  
ISET  
IDC  
6000/R  
IDC  
Lesser of  
USB input off. DC 1200/R and  
X
100mA  
ISET  
input has priority.  
100mA  
USB Power at DC Input  
Lesser of  
L
L
X
X
L
L
L
X
H
X
L
L
H
L
500mA  
1200/R  
and  
ISET  
500mA  
USB suspend  
0
Lesser of  
1200/R  
H
100mA  
500mA  
and  
ISET  
100mA  
USB Power at USB Input,  
DC Unconnected  
Lesser of  
1200/R  
No DC input  
H
L
X
H
L
and  
ISET  
500mA  
H
H
L
X
X
X
X
H
X
USB suspend  
No USB input  
0
0
DC and USB Unconnected  
H
***Charge current cannot exceed the input current limit. Charge may be less than the maximum charge current if the total SYS load  
exceeds the input current limit.  
X = Don’t care.  
_______________________________________________________________________________________  
5
MAX8903A Evaluation Kit  
EV Kit On-Board Current-Limit Adjustment  
The MAX8903’s DC-DC converter output current limit  
can be adjusted on the EV kit by shunting JU4, JU5, or  
both. See Table 3 for jumper and resistor combinations  
and corresponding current limits. The BAT fast-charge  
current limit can be adjusted by shunting JU6, JU7, or  
both. See Table 4 for jumper and resistor combinations  
and corresponding fast-charge current limits.  
While in fast-charge mode, a large system load or device  
self-heating could cause the MAX8903 to reduce charge  
current. Under these circumstances, the fast-charge  
timer is slowed by 2x if the charge current drops below  
50% of the programmed fast-charge level, and suspend-  
ed if the charge current drops below 20% of the pro-  
grammed level. The fast-charge timer is not affected at  
any current if the charger is regulating the BAT voltage at  
4.2V (i.e., the charger is in voltage mode).  
Thermistor (THM)  
The EV kit comes with a thermistor preinstalled on the  
NTC footprint. To evaluate the MAX8903A with a bat-  
tery-pack thermistor, remove the thermistor and connect  
to the EV kit using the THM pad. Details of thermistors  
are covered in the MAX8903 IC data sheet. To disable  
the thermistor function, shunt jumper JU10.  
Indicator LEDs  
Indicator LEDs are provided for CHG, FLT, DOK, and  
UOK. The CHG LED (D3) is on when the battery charg-  
er is in its prequalification and fast-charge states. The  
FLT LED (D2) is on when the battery charger has  
entered a fault state after the charge timer expires. The  
DOK LED (D1) is on when 4.15V < V  
< 16V. The  
DC  
Charge Timers  
A fault timer prevents the battery from charging indefi-  
nitely. The fault prequalification and fast-charge timers  
are controlled by the capacitance at CT (C5).  
UOK LED (D4) is on when the source at USB is 4.1V <  
V
< 6.6V. Refer to the MAX8903 IC data sheet for  
USB  
more details regarding CHG, FLT, DOK, and UOK.  
Charge Enable (CEN)  
When CEN is low, the charger is on. When CEN is high,  
the charger turns off. CEN does not affect the SYS out-  
put, which remains on. In many systems, there is no  
need for the system controller (typically a microproces-  
sor) to disable the charger, because the MAX8903  
Smart Power Selector™ circuitry independently man-  
ages charging and adapter/battery power hand-off. In  
these situations, CEN may be connected to ground.  
C5  
0.15μF  
t
= 33min ×  
PREQUAL  
(t  
is when V  
< 3V).  
PREQUAL  
BATT  
C5  
0.15μF  
t
= 660min ×  
FST-CHG  
t
t
= 15s(MAX8903A/C/ D/Y)  
TOP-OFF  
TOP-OFF  
C
CT  
= 132min ×  
(MAX8903B/E)  
0.15μF  
Table 3. DC-DC Converter Output Current Limit (JU4, JU5)  
JUMPER  
RESISTORS FROM IDC TO  
GND  
RESISTANCE FROM IDC TO  
SYS CURRENT LIMIT (A)  
GND ()  
JU4  
JU5  
Open  
Open  
Shunt  
Shunt  
Open  
Shunt  
Open  
Shunt  
R7 + R8 + R9  
R7 + R8  
R7 + R9  
R7  
12k  
6k  
0.5  
1
9k  
0.66  
2
3k  
vluates:–E/MAX8903Y  
Table 4. BAT Fast-Charge Current Limit (JU6, JU7)  
JUMPER  
RESISTORS FROM IDC TO  
GND  
RESISTANCE FROM IDC TO  
BAT FAST-CHARGE CURRENT  
LIMIT (A)  
GND ()  
JU6  
JU7  
Open  
Open  
Shunt  
Shunt  
Open  
Shunt  
Open  
Shunt  
R11 + R12 + R13  
R11 + R12  
R11 + R13  
R11  
2.4k  
1.2k  
1.8k  
604  
0.5  
1
0.66  
2
Smart Power Selector is a trademark of Maxim Integrated Products, Inc.  
_______________________________________________________________________________________  
6
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
DC  
DC  
3
4
28  
LX  
1
1
2
3
DC  
DC  
JU1  
27  
LX  
2
3
4
5
C10  
4.7μF  
J2  
L1  
C1  
2.2μF  
1μH  
R15  
0.56Ω  
1%  
LED  
26  
25  
CS  
CS  
GND  
1
2
PG  
PG  
JU11  
DC  
1
3
2
SYS  
24  
23  
SYS  
SYS  
J3  
TP3  
1
2
3
C4  
10μF  
JU2  
5
GND  
DCM  
C7  
0.1μF  
LX  
VL  
U1  
CHG  
6
7
BST  
1
2
3
MAX8903A  
JU3  
R3  
2.2kΩ  
1%  
IUSB  
LED  
R1  
2.2kΩ  
LED  
22  
1%  
CHG  
D3  
8
BATT  
GND  
DOK  
DOK  
21  
20  
D1  
J4  
BAT  
BAT  
VL  
J4-10  
J4-9  
J4-8  
J4-7  
J4-6  
J4-5  
J4-4  
J4-3  
J4-2  
J4-1  
C3A  
10μF  
9
VL  
CT  
C5  
0.1μF  
C6  
2.2μF  
THM  
10  
UOK  
C8  
OPEN  
R10  
OPEN  
TP1  
R4  
2.2kΩ  
1%  
LED  
R17  
OPEN  
19  
UOK  
D4  
D2  
R7  
3.01kΩ  
1%  
FLT  
JU5  
JU4  
11  
12  
R2  
2.2kΩ  
1%  
IDC  
LED  
R9  
6.04kΩ  
1%  
R8  
3.01kΩ  
GND  
18  
17  
FLT  
1%  
C9  
R14  
OPEN  
TP2  
1
2
3
4
OPEN  
USB  
GND  
R18  
OPEN  
USB  
J1  
C2  
4.7μF  
R11  
604Ω  
1%  
JU7  
JU6  
VL  
13  
ISET  
R13  
1.21kΩ  
1%  
R12  
604Ω  
1%  
VL  
R5  
100kΩ  
1%  
THM  
THM  
1
2
3
JU8  
14  
15  
16  
CEN  
THM  
VL  
R6  
OPEN  
JU10  
C11  
OPEN  
1
2
3
NTC  
JU9  
USUS  
EP  
Figure 4. MAX8903A EV Kit Schematic  
_______________________________________________________________________________________  
7
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
Figure 5. MAX8903A EV Kit Component Placement Guide—Top Layer  
8
_______________________________________________________________________________________  
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
Figure 6. MAX8903A EV Kit PCB Layout—Top Layer  
_______________________________________________________________________________________  
9
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
Figure 7. MAX8903A EV Kit PCB Layout—Inner Layer 2  
10 ______________________________________________________________________________________  
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
Figure 8. MAX8903A EV Kit PCB Layout—Inner Layer 3  
______________________________________________________________________________________ 11  
MAX8903A Evaluation Kit  
Figure 9. MAX8903A EV Kit PCB Layout—Bottom Layer  
vluates:–E/MAX8903Y  
12 ______________________________________________________________________________________  
MAX8903A Evaluation Kit  
vluates:–E/MAX8903Y  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
2
1/09  
8/09  
Initial release  
Added MAX8903C and MAX8903D to parts evaluated  
1–12  
1–12  
10/10  
Added MAX8903B, MAX8903E, and MAX8903Y to parts evaluated  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX8903JETIT

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903NETI+T

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power
MAXIM

MAX8903Y

Instant On—Works with No Battery or Low Battery
MAXIM

MAX8903YETI

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX8903YETI+T

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power
MAXIM

MAX8903YETIT

2A 1-Cell Li DC-DC Chargers for USB and Adapter Power Thermistor Monitor
MAXIM

MAX890L

1A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown
MAXIM

MAX890LC

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown
MAXIM

MAX890LC/D

1A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown
MAXIM

MAX890LESA

1A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown
MAXIM

MAX890LESA+

1.2A, Current-Limited, High-Side P-Channel Switch with Thermal Shutdown
MAXIM

MAX890LESA-T

Single Peripheral Driver
MAXIM