MAX8834 [MAXIM]

Adaptive Step-Up Converters with 1.5A Flash Driver;
MAX8834
型号: MAX8834
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Adaptive Step-Up Converters with 1.5A Flash Driver

文件: 总44页 (文件大小:984K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
General Description  
Features  
o 2.5V to 5.5V Operation Range  
o Step-Up DC-DC Converter  
The MAX8834Y/MAX8834Z flash drivers integrate a  
1.5A PWM DC-DC step-up converter and three pro-  
grammable low-side, low-dropout LED current regula-  
tors. The step-up converter features an internal  
switching MOSFET and synchronous rectifier to  
improve efficiency and minimize external component  
1.5A Guaranteed Output Current  
2
Adaptive or I C Programmable Output Voltage  
2MHz and 4MHz Switching Frequency Options  
o Two Flash/Movie LED Current Regulators  
2
count. An I C interface provides flexible control of step-  
2
I C Programmable Flash and Movie Current  
up converter output voltage setting, movie/flash mode  
selection, flash timer duration settings, and current reg-  
ulator settings. The MAX8834Y/MAX8834Z operate  
down to 2.5V, making them future proof for new battery  
technologies.  
Low-Dropout Voltage (110mV max) at 500mA  
o LED Indicator Current Regulator  
2
I C Programmable Output Current  
Ramp and Blink Timers for Indicator Mode  
Low-Dropout Voltage (130mV max) at 16mA  
The MAX8834Y/MAX8834Z consist of two current regula-  
tors for the flash/movie mode. Each current regulator can  
sink 750mA in flash mode and 125mA in movie mode.  
The MAX8834Y/MAX8834Z also integrate a 16mA low-  
current regulator that can be used to indicate camera  
status. The indicator current regulator includes program-  
mable ramp and blink timer settings. A programmable  
input current limit, invoked using the GSMB control,  
reduces the total current drawn from the battery during  
PA transmit events. This ensures the flash current is set  
to the maximum possible for any given operating condi-  
tion. Additionally, the MAX8834Y/MAX8834Z include a  
MAXFLASH function that adaptively reduces flash cur-  
rent during low battery conditions to help prevent system  
undervoltage lockup.  
2
o I C Programmable Safety and Watchdog Timers  
o GSM Blank Logic Input  
o MAXFLASH System Lockup Protection  
o Remote Temperature Sensor Input  
o Open/Short LED Detection  
o Thermal Shutdown Protection  
o < 1µA Shutdown Current  
o 20-Bump, 0.5mm Pitch, 2.5mm x 2.0mm WLP  
Applications  
Cell Phones and Smart Phones  
PDAs, Digital Cameras, and Camcorders  
Other features include an optional NTC input for finger-  
burn protection and open/short LED detection. The  
MAX8834Y switches at 2MHz, providing best overall  
efficiency. The MAX8834Z switches at 4MHz, providing  
smallest overall solution size. The MAX8834Y/  
MAX8834Z are available in a 20-bump, 0.5mm pitch  
WLP package (2.5mm x 2.0mm).  
Typical Operating Circuit  
1µH OR 2.2µH  
PROGRAMMABLE  
OUTPUT  
INPUT  
2.5V TO 5.5V  
3.7V TO 5.2V  
LX  
IN  
OUT  
10µF  
10µF  
Ordering Information  
AGND  
PGND  
SWITCHING  
PIN-PACKAGE FREQUENCY  
(MHz)  
TEMP  
PART  
COMP  
FLED1  
MAX8834Y  
MAX8834Z  
RANGE  
1.5A TOTAL  
FLASH  
-40°C to 20 WLP  
+85°C (2.5mm x 2.0mm)  
FLED2  
MAX8834YEWP+T  
MAX8834ZEWP+T  
2
4
PA_TXON  
GSMB  
LED_EN  
SCL  
-40°C to 20 WLP  
+85°C (2.5mm x 2.0mm)  
INDLED  
16mA INDICATOR  
FLASH ON  
FGND  
NTC  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
2
I C  
SDA  
V
LOGIC  
FINGER-BURN  
PROTECTION  
Pin Configuration appears at end of data sheet.  
V
DD  
0.1µF  
Visit www.maximintegrated.com/products/patents for  
product patent marking information.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-4421; Rev 2; 2/10  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
ABSOLUTE MAXIMUM RATINGS  
IN, OUT, NTC to AGND.........................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
V
to AGND.........................................................-0.3V to +4.0V  
(derate 17.5mW/°C above +70°C).............................1410mW  
DD  
SCL, SDA, LED_EN, GSMB to AGND ........-0.3V to (V  
FLED1, FLED2, INDLED to FGND............-0.3V to (V  
COMP to AGND...........................................-0.3V to (V + 0.3V)  
PGND, FGND to AGND.........................................-0.3V to +0.3V  
+ 0.3V)  
+ 0.3V)  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Bump Temperature* (soldering) ......................................+260°C  
DD  
OUT  
IN  
I
LX  
Current (rms) ......................................................................3A  
*This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board  
level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC 020A, para-  
graph 7.6, Table 3 for IR/VPR and Convection reflow. Preheating is required. Hand or wave soldering is not allowed.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 3.6V, V  
= V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD A  
IN  
AGND  
PGND  
FGND  
T
A
= +25°C.) (Note 1)  
PARAMETER  
IN Operating Voltage  
CONDITIONS  
MIN  
2.5  
TYP  
MAX  
5.5  
UNITS  
V
V
V
DD  
Operating Range  
1.62  
3.6  
V
Undervoltage Lockout  
DD  
V
V
falling  
falling  
1.25  
2.15  
1.4  
1.55  
2.45  
V
DD  
(UVLO) Threshold  
V
DD  
UVLO Hysteresis  
50  
2.3  
50  
mV  
V
IN UVLO Threshold  
IN UVLO Hysteresis  
IN  
mV  
2
IN Standby Supply Current  
V
V
= V  
= V  
= V , V = 5.5V, I C ready  
DD IN  
1
7
µA  
SCL  
SCL  
SDA  
SDA  
V
DD  
Standby Supply Current  
2
2
= V = 3.6V, I C ready  
4
µA  
DD  
(All Outputs Off, I C Enabled)  
LOGIC INTERFACE  
LED_EN, GSMB  
SCL, SDA  
1.4  
Logic Input-High Voltage  
V
V
= 1.62V to 3.6V  
= 1.62V to 3.6V  
V
V
DD  
0.7 x  
V
DD  
LED_EN, GSMB  
SCL, SDA  
0.4  
Logic Input-Low Voltage  
DD  
0.3 x  
V
DD  
LED_EN Minimum High Time  
(LED_EN is Internally Sampled  
by a 1MHz Clock)  
1
µs  
From LED_EN going high to rising edge on current  
regulator  
LED_EN Propagation Delay  
3
µs  
k  
µA  
LED_EN and GSMB Pulldown  
Resistor  
400  
-1  
800  
1600  
+1  
T
T
= +25°C  
= +85°C  
0.01  
0.1  
A
Logic Input Current (SCL, SDA)  
V = 0V or V = 3.6V  
IL IH  
A
2
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.6V, V  
IN  
= V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD A  
AGND  
PGND  
FGND  
T
A
= +25°C.) (Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.01  
0.1  
MAX  
UNITS  
T
T
= +25°C  
= +85°C  
-1  
+1  
IN and V in UVLO,  
A
DD  
Shutdown Leakage Current  
µA  
V
= V  
= 0V  
GSMB  
LED_EN  
A
2
I C INTERFACE  
SDA Output Low Voltage  
I
= 3mA  
0.03  
0.4  
V
SDA  
BUF  
2
I C Clock Frequency  
400  
kHz  
Bus-Free Time Between STOP  
and START  
t
t
1.3  
0.6  
µs  
µs  
Hold Time Repeated START  
Condition  
0.1  
HD_STA  
SCL Low Period  
SCL High Period  
t
t
1.3  
0.6  
0.2  
0.2  
µs  
µs  
LOW  
HIGH  
Setup Time Repeated START  
Condition  
t
0.6  
0.1  
µs  
SU_STA  
SDA Hold Time  
SDA Setup Time  
t
t
t
0
-0.01  
50  
µs  
ns  
µs  
HD_DAT  
SU_DAT  
SU_STO  
100  
0.6  
Setup Time for STOP Condition  
STEP-UP DC-DC CONVERTER  
OUT Voltage Range  
0.1  
100mV steps  
No load, V  
3.7  
-2.75  
5.2  
5.2  
+2.75  
5.5  
V
%
V
OUT Voltage Accuracy  
= 5V  
0.5  
OUT  
OUT Overvoltage Protection  
When running in adaptive mode  
= I = 492.24mA setting, I = 16mA  
INDLED  
5.35  
Adaptive Output Voltage  
Regulation Threshold  
I
150  
mV  
FLED1  
FLED2  
PGOOD Window Comparator  
Line Regulation  
V
V
= 5V, in programmable mode  
-15  
-12.5  
0.1  
-10  
%
%/V  
%/A  
A
OUT  
= 2.5V to 4.2V  
IN  
Load Regulation  
I
= 0mA to 1500mA  
0.5  
OUT  
nFET Current Limit  
3.6  
LX nFET On-Resistance  
LX pFET On-Resistance  
LX to PGND, I = 200mA  
0.055  
0.12  
0.1  
0.130  
0.200  
1
LX  
LX to OUT, I = 200mA  
LX  
T
T
= +25°C  
A
LX Leakage  
V
LX  
= 5.5V  
µA  
= +85°C  
0.1  
A
Input Current Limit Range During  
GSMB Trigger  
50  
800  
mA  
Input Current Limit Step Size  
During GSMB Trigger  
50  
mA  
%
Input Current Limit Accuracy  
I
= 100mA, in dropout mode  
-15  
1.8  
1.6  
3.6  
3.2  
+15  
2.2  
2.4  
4.4  
4.8  
ILIM  
T
A
T
A
T
A
T
A
= +25°C  
2
4
MAX8834Y  
MAX8834Z  
= -40°C to +85°C  
= +25°C  
Operating Frequency, No Load  
MHz  
= -40°C to +85°C  
Maxim Integrated  
3
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.6V, V  
IN  
= V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD A  
AGND  
PGND  
FGND  
T
A
= +25°C.) (Note 1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
75  
MAX  
UNITS  
%
Maximum Duty Cycle  
Minimum Duty Cycle  
V
V
V
= 4.5V  
= 4.5V  
69  
OUT  
7.5  
55  
%
OUT  
COMP Transconductance  
COMP Discharge Resistance  
OUT Discharge Resistance  
= 1.5V  
µS  
COMP  
During shutdown or UVLO, from COMP to AGND  
During shutdown or UVLO, from OUT to LX  
120  
10  
kꢀ  
FLED1/FLED2 CURRENT REGULATOR  
Step-up off, FLED1/FLED2 on, supply current for each  
current source  
IN Supply Current  
0.6  
mA  
Flash  
750  
125  
Maximum Current Setting  
mA  
%
Movie  
23.44mA setting  
T
A
T
A
T
A
T
A
= +25°C  
-5  
-2.5  
-4  
+20  
+2.5  
+4  
= +25°C  
0.5  
Current Accuracy  
492.24mA setting  
%
= -40°C to +85°C  
= -40°C to +85°C  
750mA setting  
-10  
+5  
%
492.24mA setting  
93.75mA setting  
110  
100  
+1  
Current Regulator Dropout  
(Note 2)  
mV  
50  
0.01  
0.1  
T
T
= +25°C  
= +85°C  
-1  
FLED1/FLED2 Leakage in  
Shutdown  
A
V
= V  
= 5.5V  
µA  
FLED1  
FLED2  
A
INDLED CURRENT REGULATOR  
IN Supply Current  
Step-up converter off, INDLED on  
0.6  
16  
mA  
mA  
%
Maximum Current Setting  
0.5mA setting  
T
A
T
A
T
A
= +25°C  
-10  
-3  
+10  
+3  
Current Accuracy  
= +25°C  
0.5  
%
16mA setting  
= -40°C to +85°C  
-5  
+5  
%
Current Regulator Dropout  
16mA setting (Note 2)  
55  
0.01  
0.1  
130  
+1  
mV  
T
T
= +25°C  
= +85°C  
-1  
A
INDLED Leakage in Shutdown  
V
= 5.5V  
µA  
INDLED  
A
PROTECTION CIRCUITS  
NTC BIAS Current  
19.4  
388  
20  
20.6  
412  
µA  
NTC Overtemperature Detection  
Threshold  
V
V
falling, 100mV hysteresis, NTC_CNTL[2:0] = 100  
falling  
400  
100  
mV  
NTC  
NTC Short Detection Threshold  
Flash Duration Timer Range  
mV  
ms  
NTC  
In 50ms steps (Note 3)  
50  
800  
440  
480  
T
A
T
A
= +25°C  
360  
320  
400  
Flash Duration Timer Accuracy  
(400ms Setting)  
ms  
ms  
ms  
s
= -40°C to +85°C  
Minimum Flash Duration  
FLASH_EN[2:0] = 1XX  
2
Flash Safety Timer Reset Inhibit From falling edge of LED_EN until flash safety timer is  
Period  
30  
reset  
Watchdog Timer Range  
In 4s steps  
4
16  
4
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.6V, V  
IN  
= V  
= V  
= 0V, V  
= 1.8V, T = -40°C to +85°C, unless otherwise noted. Typical values are at  
DD A  
AGND  
PGND  
FGND  
T
A
= +25°C.) (Note 1)  
PARAMETER  
CONDITIONS  
MIN  
3.6  
3.2  
TYP  
MAX  
4.4  
UNITS  
T
T
= +25°C  
4
Watchdog Timer Accuracy  
(4s setting)  
A
s
mV  
V
= -40°C to +85°C  
4.8  
A
Open LED Detection Threshold  
FLED1, FLED2, INDLED enabled  
100  
V
-
OUT  
1V  
Shorted LED Detection Threshold FLED1, FLED2, INDLED enabled  
From LED open or short detected until LED current  
regulator is disabled  
Open and Short Debounce Timer  
30  
20  
ms  
Thermal-Shutdown Hysteresis  
Thermal Shutdown  
MAXFLASH  
°C  
°C  
+160  
Low-Battery Detect Threshold  
Range  
33mV steps  
2.5  
3.4  
V
Low-Battery Voltage Threshold  
Accuracy  
2.5  
%
Low-Battery Voltage Hysteresis  
Programmable Range  
100  
200  
mV  
mV  
µs  
Low-Battery Voltage Hysteresis  
Step Size  
100  
LB_TMR[1:0] = 00  
LB_TMR[1:0] = 01  
200  
400  
250  
500  
300  
600  
Low-Battery Reset Time  
Note 1: All devices are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by  
A
design.  
Note 2: LED current regulator dropout voltage is defined as the voltage when current drops 10% from the current level measured at  
0.6V.  
Note 3: Flash duration is from rising edge of LED_EN until I  
= 0A (safety time in one-shot mode).  
FLED  
Note 4: The adaptive output voltage regulation threshold is individually set on each device to 75mV above the dropout voltage of  
the LED current regulators. This ensures minimum power dissipation on the IC during a flash event. The dropout voltage  
chosen is the highest measured dropout voltage of FLED1, FLED2, and INDLED.  
Maxim Integrated  
5
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Typical Operating Characteristics  
(Circuit of Figure 1, V = 3.6V, V  
= 3.8V, V  
= 3.0V, T = +25°C, unless otherwise noted.)  
IN  
OUT  
DD  
A
STEP-UP CONVERTER EFFICIENCY  
vs. INPUT VOLTAGE (MAX8834Y)  
STEP-UP CONVERTER EFFICIENCY  
vs. INPUT VOLTAGE (MAX8834Z)  
STEP-UP CONVERTER EFFICIENCY  
vs. OUTPUT CURRENT (MAX8834Y)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
100  
80  
60  
40  
20  
0
V
= 3.6V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.8V  
OUT  
I
= 16mA  
V
OUT  
= 3.8V  
= 750mA  
OUT  
OUT  
V
OUT  
= 5V  
= 750mA  
V
= 3.2V  
= 2.5V  
OUT  
IN  
I
I
V
OUT  
= 3.8V  
= 750mA  
V
OUT  
IN  
V
OUT  
= 5V  
= 16mA  
OUT  
I
I
V
OUT  
= 5V  
= 250mA  
OUT  
V
OUT  
= 5V  
= 250mA  
OUT  
V
OUT  
= 5V  
= 16mA  
OUT  
I
V
OUT  
= 5V  
= 750mA  
OUT  
I
V
= 3.8V  
= 16mA  
I
OUT  
I
V
= 3.8V  
V
= 3.8V  
= 250mA  
OUT  
I
OUT  
OUT  
OUT  
I
= 250mA  
I
OUT  
FOR V > V , V  
INCREASES ABOVE THE  
FOR V > V , V  
INCREASES ABOVE THE  
IN  
OUT OUT  
IN  
OUT OUT  
PROGRAMMED VALUE DUE TO THE MINIMUM  
DUTY CYCLE CONSTRAINT.  
PROGRAMMED VALUE DUE TO THE MINIMUM  
DUTY CYCLE CONSTRAINT.  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1
10  
100  
1000  
10,000  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
STEP-UP CONVERTER EFFICIENCY  
vs. OUTPUT CURRENT (MAX8834Z)  
STEP-UP CONVERTER SUPPLY CURRENT  
vs. TEMPERATURE  
STEP-UP CONVERTER SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
100  
80  
60  
40  
20  
0
20  
15  
10  
5
15  
12  
9
V
= 3.6V  
IN  
V
= 3.8V  
V
OUT  
= 5V  
OUT  
V
= 3.2V  
= 2.5V  
IN  
MAX8834Z  
MAX8834Y  
V
MAX8834Z  
IN  
MAX8834Y  
6
3
0
0
1
10  
100  
1000  
10,000  
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
LED CURRENT ACCURACY  
vs. INPUT VOLTAGE  
LED CURRENT ACCURACY  
vs. TEMPERATURE  
10  
10  
5
8
6
I
= 125mA  
FLED2  
I
= 125mA  
FLED1  
I
= 125mA  
4
FLED1  
I
= 125mA  
I
= 492.19mA  
FLED2  
FLED1  
I
= 492.19mA  
FLED1  
2
0
0
I
= 492.19mA  
FLED2  
I
= 16mA  
I
= 16mA  
-2  
-4  
-6  
-8  
-10  
INDLED  
INDLED  
I
= 750mA  
= 750mA  
FLED1  
I
= 750mA  
FLED1  
-5  
-10  
I
= 750mA  
FLED2  
I
= 492.19mA  
FLED2  
I
FLED2  
V
OUT  
= 5V  
5.0  
V
OUT  
= 5V  
2.5  
3.0  
3.5  
4.0  
4.5  
5.5  
-40  
-15  
10  
35  
60  
85  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
6
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 3.6V, V  
= 3.8V, V  
= 3.0V, T = +25°C, unless otherwise noted.)  
DD A  
IN  
OUT  
OUTPUT VOLTAGE ACCURACY  
vs. TEMPERATURE  
INTERNAL OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
V
= 5V  
OUT  
MAX8834Z, NO LOAD  
MAX8834Z  
MAX8834Y  
MAX8834Y, NO LOAD  
MAX8834Y, I  
= 250mA  
OUT  
-0.2  
-0.4  
-0.6  
MAX8834Z, I  
-15  
= 250mA  
OUT  
-40  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
STARTUP WAVEFORM  
STARTUP WAVEFORM  
(MAX8834Y, V  
= 5V)  
(MAX8834Y, ADAPTIVE MODE)  
OUT  
MAX8834Y/Z toc11  
MAX8834Y/Z toc12  
2V/div  
2V/div  
2V/div  
5V  
V
V
OUT  
OUT  
2V/div  
V
V
LX  
LX  
LX  
LX  
ADAPTIVE MODE  
= 31.25mA  
V
LED1  
= 5V  
= 31.25mA  
OUT  
I
LED1  
I
I
I
500mA/div  
1V/div  
500mA/div  
1V/div  
V
COMP  
V
COMP  
1ms/div  
1ms/div  
STARTUP WAVEFORM  
STARTUP WAVEFORM  
(MAX8834Z, V  
= 5V)  
(MAX8834Z, ADAPTIVE MODE)  
OUT  
MAX8834Y/Z toc13  
MAX8834Y/Z toc14  
2V/div  
2V/div  
2V/div  
2V/div  
5V  
V
OUT  
V
OUT  
V
LX  
LX  
V
LX  
LX  
V
LED1  
= 5V  
= 31.25mA  
ADAPTIVE MODE  
= 31.25mA  
OUT  
I
I
LED1  
I
I
500mA/div  
1V/div  
500mA/div  
1V/div  
V
COMP  
V
COMP  
1ms/div  
1ms/div  
Maxim Integrated  
7
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 3.6V, V  
= 3.8V, V  
= 3.0V, T = +25°C, unless otherwise noted.)  
DD A  
IN  
OUT  
SHUTDOWN WAVEFORM  
(MAX8834Y, V = 5V)  
SHUTDOWN WAVEFORM  
(MAX8834Y, ADAPTIVE MODE)  
OUT  
MAX8834Y/Z toc15  
MAX8834Y/Z toc16  
5V  
V
V
2V/div  
2V/div  
OUT  
OUT  
2V/div  
2V/div  
V
V
LX  
LX  
LX  
ADAPTIVE MODE  
= 31.25mA  
V
LED1  
= 5V  
= 31.25mA  
OUT  
I
I
LED1  
I
500mA/div  
1V/div  
500mA/div  
1V/div  
I
LX  
V
V
COMP  
COMP  
400µs/div  
400µs/div  
SHUTDOWN WAVEFORM  
(MAX8834Z, V = 5V)  
SHUTDOWN WAVEFORM  
(MAX8834Z, ADAPTIVE MODE)  
OUT  
MAX8834Y/Z toc17  
MAX8834Y/Z toc18  
2V/div  
2V/div  
5V  
2V/div  
2V/div  
V
V
OUT  
OUT  
V
V
LX  
LX  
V
LED1  
= 5V  
= 31.25mA  
OUT  
ADAPTIVE MODE  
= 31.25mA  
I
LX  
I
I
LED1  
500mA/div  
1V/div  
500mA/div  
1V/div  
I
LX  
V
COMP  
V
COMP  
400µs/div  
400µs/div  
LIGHT-LOAD SWITCHING WAVEFORMS  
LIGHT-LOAD SWITCHING WAVEFORMS  
(MAX8834Y)  
(MAX8834Z)  
MAX8834Y/Z toc20  
MAX8834Y/Z toc19  
2V/div  
0V  
2V/div  
0V  
V
V
LX  
LX  
0mA  
0mA  
I
LX  
I
LX  
200mA/div  
200mA/div  
V
I
= 5V  
= 16mA  
OUT  
OUT  
V
I
= 5V  
= 16mA  
OUT  
OUT  
V
V
OUT  
AC RIPPLE  
OUT  
20mV/div  
20mV/div  
AC RIPPLE  
400ns/div  
400ns/div  
8
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 3.6V, V  
= 3.8V, V  
= 3.0V, T = +25°C, unless otherwise noted.)  
DD A  
IN  
OUT  
HEAVY-LOAD SWITCHING WAVEFORMS  
HEAVY-LOAD SWITCHING WAVEFORMS  
(MAX8834Y)  
(MAX8834Z)  
MAX8834Y/Z toc21  
MAX8834Y/Z toc22  
2V/div  
0V  
2V/div  
0V  
V
V
LX  
LX  
LX  
500mA/div  
1.5A  
1.5A  
I
I
LX  
500mA/div  
V
I
= 5V  
= 1A  
V
I
= 5V  
= 1A  
OUT  
OUT  
OUT  
OUT  
V
V
OUT  
AC RIPPLE  
OUT  
50mV/div  
50mV/div  
AC RIPPLE  
400ns/div  
400ns/div  
GSMB WAVEFORM  
MAXFLASH FUNCTION  
MAX8834Y/Z toc23  
MAX8834Y/Z toc24  
V
DROPS  
IN  
3.6V  
3.6V  
BELOW THE  
THRESHOLD  
VOLTAGE  
V
= 5V  
= 500mA  
= I  
= 80µs  
OUT  
2V/div  
1A/div  
V
I
I
t
GSMB  
LIM  
200mV/div  
200mV/div  
V
IN  
= 515.63mA  
FLED1 FLED2  
HC_TRM  
I
IN  
V
INCREASES TO  
IN  
THE THRESHOLD  
I
500mA/div  
500mA/div  
FLED1  
V
= 5V  
OUT  
I
= 750mA  
= 3.0V  
FLED1  
I
FLED1  
V
V
LB_TH  
DISABLED  
= 50ms  
LB_HYS  
TMR_DUR  
I
0mA  
FLED2  
t
1ms/div  
10ms/div  
OUTPUT VOLTAGE LINE REGULATION  
(MAX8834Y)  
OUTPUT VOLTAGE LINE REGULATION  
(MAX8834Z)  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
V
= 5V  
V
= 5V  
OUT  
OUT  
I
= 16mA  
OUT  
I
= 16mA  
OUT  
I
= 250mA  
OUT  
I
= 250mA  
I
= 750mA  
OUT  
OUT  
I
= 750mA  
4.0  
OUT  
2.5  
3.0  
3.5  
INPUT VOLTAGE (V)  
4.5  
2.5  
3.0  
3.5  
INPUT VOLTAGE (V)  
4.0  
4.5  
Maxim Integrated  
9
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, V = 3.6V, V  
= 3.8V, V  
= 3.0V, T = +25°C, unless otherwise noted.)  
DD A  
IN  
OUT  
OUTPUT VOLTAGE LOAD REGULATION  
OUTPUT VOLTAGE LOAD REGULATION  
(MAX8834Y)  
(MAX8834Z)  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
V
= 5V  
10  
OUT  
V
= 5V  
OUT  
1
100  
1000  
10,000  
1
10  
100  
1000  
10,000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
INPUT CURRENT LIMIT  
INPUT CURRENT LIMIT  
vs. PROGRAMMED OUTPUT VOLTAGE  
vs. PROGRAMMED VALUE  
580  
570  
560  
550  
540  
530  
520  
510  
500  
1000  
800  
600  
400  
200  
0
I
= 500mA  
LIM  
V
= 5V  
OUT  
IDEAL LINE  
0
200  
400  
600  
800  
3.7  
4.0  
4.3  
4.6  
4.9  
5.2  
PROGRAMMED VALUE (mA)  
PROGRAMMED OUTPUT VOLTAGE (V)  
10  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Pin Description  
PIN  
NAME  
FUNCTION  
Regulator Output. Connect OUT to the anodes of the external LEDs. Bypass OUT to PGND with a 10µF  
ceramic capacitor. OUT is connected to LX through an internal 10kresistor during shutdown.  
A1, B1  
OUT  
Inductor Connection. Connect LX to the switched side of the inductor. LX is internally connected to  
the drains of the internal MOSFETs. LX is connected to OUT through an internal 10kresistor during  
shutdown.  
A2, B2  
LX  
Power Ground. Connect PGND to AGND and to the input capacitor ground. Connect PGND to the PCB  
ground plane.  
A3, B3  
A4  
PGND  
IN  
Analog Supply Voltage Input. The input voltage range is 2.5V to 5.5V. Bypass IN to AGND and PGND  
with a 10µF ceramic capacitor as close as possible to the IC. IN is high impedance during shutdown.  
Logic Input Supply Voltage. Connect V to the logic supply driving SCL, SDA, LED_EN, and GSMB.  
DD  
2
Bypass V to AGND with a 0.1µF ceramic capacitor. When V is below the UVLO, the I C registers  
A5  
V
DD  
DD  
DD  
reset and the step-up converter turns off.  
2
B4  
B5  
SCL  
I C Clock Input. Data is read on the rising edge of SCL.  
Analog Ground. Connect AGND to PGND and to the input capacitor ground. Connect AGND to the PCB  
ground plane.  
AGND  
Compensation Input. See the Compensation Network Selection section for details. COMP is internally  
pulled to AGND through a 180resistor in shutdown.  
C1  
COMP  
FGND  
C2, D2  
FLED1/FLED2 and INDLED Power Ground. Connect FGND to PGND.  
LED Enable Logic Input. LED_EN controls FLED1, FLED2, and INDLED, depending on control bits  
written into the LED_CNTL register. See the LED_EN Control register description for an explanation of  
this input function. LED_EN has an internal 800kpulldown resistor to AGND.  
C3  
C4  
LED_EN  
GSM Blank Signal. Assert GSMB to reduce the current regulator settings according to the values  
programmed into the GSMB_CUR register. The status of the flash safety timer and the flash/movie  
mode values in the current regulator registers are not affected by the GSMB state. Connect GSMB to  
the PA module enable signal or other suitable logic signal that indicates a GSM transmit is in  
process. Polarity of this signal is set by a bit in the GSMB_CUR register (default is active-high).  
GSMB has an internal 800kpulldown resistor to AGND.  
GSMB  
2
I C Data Input. Data is read on the rising edge of SCL and data is clocked out on the falling edge of  
C5  
D1  
SDA  
SCL.  
2
FLED2 Current Regulator. Current flowing into FLED2 is based on the internal I C registers  
FLASH2_CUR and MOVIE_CUR. Connect FLED2 to the cathode of an external flash LED or LED  
module. FLED2 is high impedance during shutdown. If unused, connect FLED2 to ground.  
FLED2  
2
FLED1 Current Regulator. Current flowing into FLED1 is based on the internal I C registers  
FLASH1_CUR and MOVIE_CUR. Connect FLED1 to the cathode of an external flash LED or LED  
module. FLED1 is high impedance during shutdown. If unused, connect FLED1 to ground.  
D3  
D4  
D5  
FLED1  
INDLED  
NTC  
2
INDLED Current Regulator. Current flowing into INDLED is based on the internal I C registers  
IND_CUR. Connect INDLED to the cathode of an external indicator LED. INDLED is high impedance  
during shutdown. If unused, connect INDLED to ground.  
NTC Bias Output. NTC provides 20µA to bias the NTC thermistor. The NTC voltage is compared to the  
trip threshold programmed by the NTC_CNTL register. NTC is high impedance during shutdown.  
Connect NTC to IN if not used. See the Finger-Burn Protection (NTC) section for details.  
Maxim Integrated  
11  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
see Tables 3 and 4). The movie mode provides continu-  
Detailed Description  
2
ous lighting when enabled through I C or LED_EN.  
The MAX8834Y/MAX8834Z flash drivers integrate an  
adaptive 1.5A PWM step-up DC-DC converter, two  
750mA white LED camera flash/movie current regula-  
tors, and a 16mA indicator LED current regulator. An  
When the flash mode is enabled, a flash safety timer,  
2
programmable from 50ms to 800ms through I C, limits  
the duration of the flash mode. Once the flash safety  
timer expires, the current regulators return to movie  
mode if movie mode was active when a flash event was  
triggered. The flash mode has priority over the movie  
mode.  
2
I C interface controls individual output on/off, the step-  
up output voltage setting, the movie/flash current, and  
the flash timer duration settings.  
Step-Up Converter (LX, OUT, COMP, PGND)  
The MAX8834Y/MAX8834Z include a fixed-frequency,  
PWM step-up converter that supplies power to the flash  
LEDs. The output voltage is programmable from 3.7V to  
Flash Safety Timer  
The flash safety timer is activated any time flash mode is  
2
selected, either with LED_EN or through the I C interface.  
2
The flash safety timer, programmable from 50ms to  
5.2V (in 100mV steps) through the I C interface. The  
2
800ms through I C, limits the duration of the flash mode  
output voltage can also be set adaptively based on the  
LED forward voltage. The step-up converter switches  
an internal power MOSFET and synchronous rectifier at  
a constant 2MHz or 4MHz frequency, with varying duty  
cycle up to 75%, to maintain constant output voltage as  
the input voltage and load vary. Internal circuitry pre-  
vents any unwanted subharmonic switching by forcing  
a minimum 7% (typ) duty cycle.  
2
in case LED_EN is stuck high or the I C command to  
turn off has not been sent within the programmed flash  
safety timer duration. This timer can be configured to  
operate either in one-shot mode or maximum flash  
duration mode (see Table 9). In one-shot mode, the  
flash function is initiated on the rising edge of LED_EN  
2
(or I C bit) and terminated based on the programmed  
value of the safety timer (see Figure 1). In the maximum  
flash timer mode, flash function remains enabled as  
long as LED_EN (or I C bit) is high, unless the prepro-  
grammed safety timer times out (see Figure 2).  
When the step-up converter is set to dropout mode, the  
internal synchronous rectifier is driven fully on, keeping  
the voltage at OUT equal to the LX input. This mode  
provides the lowest current consumption when driving  
LEDs with low forward voltage.  
2
Once the flash mode is disabled, by either LED_EN,  
I C, or flash safety timer, the flash has to be off for a  
minimum time (flash safety timer reset inhibit period),  
before it can be reinitiated (see Figure 3). This prevents  
spurious events from re-enabling the flash mode.  
2
The output voltage is internally monitored for a fault  
condition. If the output voltage drops below 8% (typ) of  
the nominal programmed value, a POK fault is indicat-  
ed in STATUS1 register bit 5. This feature is disabled if  
the step-up converter is set to operate in adaptive  
mode.  
Indicator Current Regulator (INDLED)  
A low-dropout linear current regulator from INDLED to  
FGND sinks current from the cathode terminal of the  
Overvoltage Protection  
2
indicator LED. The INDLED current is regulated to I C  
The MAX8834Y/MAX8834Z include a comparator to  
programmable levels up to 16mA. Programmable con-  
trol is provided for ramp-up (OFF to ON) and ramp-  
down (ON to OFF) times, as well as blink rate and duty  
cycle. The user can choose to enable or disable the  
ramp time and blink rate features. See Tables 6, 7, and  
8 for more information.  
monitor the output voltage (V  
) during adaptive  
OUT  
mode operation of the step-up converter. If at anytime  
the output voltage exceeds a maximum threshold of  
5.5V, the COMP capacitor is discharged until the output  
voltage is reduced by the 200mV (typ) hysteresis. Once  
the output voltage drops below this threshold, normal  
charging of the COMP capacitor is resumed.  
INDLED Blink Function  
INDLED current regulator is able to generate a blink  
function. The OFF and ON time for INDLED are set  
Flash Current Regulator  
(FLED1 and FLED2)  
2
using the I C interface. See Figure 4.  
A low-dropout linear current regulator from FLED1/  
FLED2 to FGND sinks current from the cathode terminal  
of the flash LED(s). The FLED1/FLED2 current is regu-  
INDLED Ramp Function  
The INDLED current regulator output provides ramp-up/  
down for smooth transition between different brightness  
settings. The ramp-up/down times are controlled by the  
2
lated to I C programmable levels for movie mode (up to  
125mA, see Table 5) and flash mode (up to 750mA,  
12  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
ENABLING OF FLASH MODE BY  
2
LED_EN OR I C CONTROL  
ONE-SHOT FLASH TIMER  
ONE-SHOT FLASH TIMER  
Figure 1. One-Shot Flash-Timer Mode  
ENABLING OF FLASH MODE BY  
2
LED_EN OR I C CONTROL  
MAXIMUM FLASH  
SAFETY TIMER  
MAXIMUM FLASH TIMER  
Figure 2. Maximum Flash-Timer Mode  
ENABLING OF FLASH MODE BY  
2
LED_EN OR I C CONTROL  
30ms  
Figure 3. Flash Safety Timer Reset Inhibit Period  
I
IND[4:0]  
t
t
IND_ON  
IND_OFF  
Figure 4. Blink Function Timing  
IND_RU and IND_RD control bits, and the ramp func-  
tion is enabled/disabled by the IND_RP_EN bit. The  
current regulator increases/decreases the current one-  
Combining BLINK Timer and Ramp Function  
When using the ramp function for INDLED together with  
the blink timer, keep the ramp-up timer shorter than the  
ON blink timer and the ramp-down timer shorter than  
the OFF timer. Failing to comply with this results in the  
step every t  
/32 until 0mA or IND[4:0] current is  
RAMP  
reached. See Figures 5 and 6.  
Maxim Integrated  
13  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
128ms  
256ms  
512ms  
1024ms  
I
= FULL SCALE  
INDLED  
I
= 1/2 SCALE  
0mA  
INDLED  
Figure 5. Ramp-Up Behavior  
I
= FULL SCALE  
INDLED  
I
= 1/2 SCALE  
0mA  
INDLED  
128ms  
256ms  
512ms  
1024ms  
Figure 6. Ramp-Down Behavior  
t
t
t
t
t
IND_OFF  
IND_OFF  
IND_ON  
IND_OFF  
IND_ON  
I
= IND_LED[4:0]  
IND_LED  
I
I
= CODE 0111  
= CODE 0011  
IND_LED  
IND_LED  
I
= OFF  
IND_LED  
t
IND_RU  
t
IND_RD  
t =  
t =  
32  
32  
Figure 7. Combining RAMP Function and Blink Timer  
programmed current not being reached during the ON  
time, or the INDLED current not returning to 0mA during  
the OFF time. See Figure 7.  
If FLED1/FLED2 is enabled for both movie and flash  
modes at the same time, flash mode has priority. Once  
the safety timer expires, the current regulator then  
returns to the movie mode.  
t
IND_RU  
32  
Watchdog Timer  
t
(IND_LED +1)  
(IND_LED +1)  
IND_ON  
The MAX8834Y/MAX8834Z include a watchdog timer  
2
function that can be programmed using the I C inter-  
t
IND_RD  
32  
t
face from 4 seconds to 16 seconds with a 4-second  
step. If the watchdog timer expires, the MAX8834Y/  
MAX8834Z interpret it as an indication that the system  
is no longer responding and enters safe mode. In safe  
mode, the MAX8834Y/MAX8834Z disable all current  
regulators and the step-up DC-DC converter to prevent  
IND_OFF  
where IND_LED is the code from 0 to 31 specified in  
the IND_LED[4:0].  
LED Enable Input (LED_EN)  
The LED_EN logic input can enable/disable the FLED1,  
FLED2, and INDLED current regulators. It can be  
programmed to control movie mode, flash mode, and  
indicator mode by using the IND_EN, MOVIE_EN,  
and FLASH_EN bits, respectively. See Table 8 for  
more information.  
2
potential damage to the system. The I C setting for the  
respective registers does not change, therefore, reset-  
ting the watchdog timer reverts the MAX8834Y/  
MAX8834Z back to the state present before entering  
safe mode.  
14  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
WATCHDOG  
TIMEOUT  
SUSPENDING ALL  
WATCHDOG  
WATCHDOG  
WATCHDOG  
WATCHDOG  
CURRENT  
TIMER ENABLED  
TIMER RESET  
TIMER RESET  
TIMER RESET  
REGULATIONS  
WDT_RST IS  
CLEARED  
2
(I C) WDT_EN  
2
(I C) WDT_RST  
WATCHDOG TIMER  
LED_EN  
I
OR  
FLED_  
I
INDLED  
t < WDT_DUR[1:0]  
t < WDT_DUR[1:0]  
t < WDT_DUR[1:0]  
t > WDT_DUR[1:0]  
Figure 8. Watchdog Timer Timing Diagram 1  
WATCHDOG  
TIMEOUT  
SUSPENDING ALL  
CURRENT  
REGULATIONS  
WATCHDOG  
TIMER ENABLED  
WATCHDOG  
TIMER RESET  
WATCHDOG  
TIMER RESET  
WATCHDOG  
TIMER RESET  
WDT_RST IS  
CLEARED  
2
(I C) WDT_EN  
2
(I C) WDT_RST  
WATCHDOG TIMER  
LED_EN  
I
OR  
FLED_  
I
INDLED  
t < WDT_DUR[1:0]  
t < WDT_DUR[1:0]  
t < WDT_DUR[1:0]  
t > WDT_DUR[1:0]  
Figure 9. Watchdog Timer Timing Diagram 2  
Setting the WDT_EN bit to 1 in the TMR_DUR register  
(Table 9) enables the watchdog timer. Resetting the  
watchdog timer is achieved by the rising or falling edge  
of LED_EN or by setting bit 0 in the WDT_RST register  
(Table 14). See Figures 8 and 9 for two examples of  
watchdog timer timing diagrams.  
Maxim Integrated  
15  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
GSMB EVENT  
GSMB (ACTIVE-HIGH)  
INPUT CURRENT  
PREDEFINED INPUT CURRENT  
LIMIT DURING GSMB  
FLED1/FLED2 DECREASED ONE  
LSB SINCE I > I  
IN LIM[3:0]  
FLED1/FLED2 INCREASED  
ONE LSB SINCE I < I  
IN LIM[3:0]  
FLED2 OUTPUT  
CURRENT  
FLED1 OUTPUT  
CURRENT  
FLASH1_CUR  
SETTING  
TIME  
HC_TMR[1:0]  
1µs AFTER GSMB  
ACTIVATED, FLED_ GOES  
TO THE MINIMUM SETTING  
1µs AFTER GSMB  
DEACTIVATED, FLED_ GOES  
TO THE PREVIOUS SETTING  
Figure 10. Input Current Limit During GSMB Event  
then start increasing the FLED1 and FLED2 current by  
one LSB steps, at a time interval set by HC_TMR[1:0]  
(see Table 11). The increasing continues until either the  
predefined FLED1/FLED2 current setting is reached or  
the input current exceeds the maximum predefined  
input current limit during a GSMB event. When the input  
current exceeds the predefined input current limit, the  
FLED1/FLED2 current is reduced by one LSB. The  
MAX8834Y/MAX8834Z continue to adjust the FLED1  
and FLED2 up and down depending on the input cur-  
rent limit as long as the GSMB event is present. See  
Figure 10 for more detailed information.  
GSM Blank Function (GSMB)  
The GSMB input is provided to allow the flash current to  
be momentarily reduced during a GSM transmit to  
reduce the peak current drawn from the battery. The  
input current limit ensures that the maximum possible  
output current is always provided, regardless of the  
input voltage and the LED forward voltages.  
When a GSMB event is triggered, the FLED1 and  
FLED2 current regulators go to the lowest setting to  
ensure the current drawn from the battery is quickly  
reduced to a safe level. The MAX8834Y/MAX8834Z  
16  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
To use this feature, connect the logic signal used to  
enable the PA, or equivalent, to the GSMB input.  
Assertion of this signal does not change the current sta-  
tus of the flash safety timer or the flash current values  
plus a predefined hysteresis (V  
). If it is still  
LB_HYS  
below V  
+ V  
, the FLED1/FLED2 current  
LB_HYS  
LB_TH  
regulators reduce their output current again to ensure  
that minimum input voltage is available for the system.  
2
stored in the I C registers. Once the signal is deassert-  
If the input voltage is above V  
+ V  
, the cur-  
LB_TH  
LB_HYS  
ed, the current regulators change back to their previ-  
ously programmed values. Polarity of this signal is  
controlled through bit 6 in the GSMB_CUR register  
(Table 11). The default is active-high.  
rent regulator increases the output current by one step  
(if it is less than the user-defined output current). To  
disable the hysteresis, set LB_HYS[1:0] to 11. In this  
case, after the FLED1/FLED2 current is reduced, it  
stays at the current setting. Figures 12, 13, and 14  
show examples of MAXFLASH function operation. See  
Tables 12 and 13 for control register details.  
Finger-Burn Protection (NTC)  
An NTC input is provided for the (optional) finger-burn  
protection feature. To use this feature, connect a 100k  
NTC with B = 4550 between NTC and AGND. NTC  
sources 20µA current and the voltage established by  
this current and the NTC resistance is compared inter-  
nally to a voltage threshold in the range of 200mV to  
550mV, programmed through bits [2:0] of the NTC  
Control register (see Table 10).  
The MAXFLASH function continues for the entire dura-  
tion of the FLASH/MOVIE event to ensure that the  
FLASH/MOVIE output current is always maximized for  
the specific operating conditions.  
Undervoltage Lockout  
The MAX8834Y/MAX8834Z contain undervoltage lock-  
If the voltage on the NTC pin falls below the programmed  
threshold during a flash event, the flash cycle is immedi-  
ately terminated, and an indication is latched through bit 3  
in the STATUS1 register (see Table 15).  
out (UVLO) circuitry that disables the IC until V is  
IN  
greater than 2.3V (typ). Once V rises above 2.3V  
IN  
(typ), the UVLO circuitry does not disable the IC until  
V
falls below the UVLO threshold minus the hysteresis  
IN  
voltage. The MAX8834Y/MAX8834Z also contain a V  
DD  
To disable this function, clear bit 3 (enable bit) in the  
NTC Control register.  
UVLO circuitry that monitors the V  
V
the logic registers are reset to their default states. The  
logic registers are only reset in a V  
and not an IN UVLO condition.  
voltage. When the  
DD  
voltage falls below 1.4V (typ), the contents of all  
DD  
MAXFLASH Function  
During high load currents, the battery voltage momen-  
tarily drops due to its internal ESR, together with the  
serial impedance from the battery to the load. For  
equipment requiring a minimum voltage for stable oper-  
ation, the battery ESR needs to be calculated to esti-  
mate the maximum battery current that maintains the  
battery voltage above the critical threshold. Due to the  
complicated measurement of the battery ESR, the  
MAX8834Y/MAX8834Z feature the MAXFLASH function  
to prevent the battery voltage from dropping below the  
threshold voltage. See Figure 11 for details.  
UVLO condition  
DD  
t
LB_TMR  
I
OUT_MAX  
IN  
DOWN  
V
LB_TH  
CURRENT  
REGULATOR  
The MAX8834Y/MAX8834Z input voltage is monitored  
during a FLASH/MOVIE event. If the input voltage  
UP  
drops below a predefined threshold (V  
), it indi-  
LB_TH  
cates that the FLASH/MOVIE event is drawing more  
current than the battery can support. As a result, the  
FLED1/FLED2 current regulators start decreasing their  
output currents by one step. Therefore, the input cur-  
rent is reduced and the input voltage starts to rise due  
to the internal battery ESR. The input voltage is then  
V
V
LB_HYS  
LB_TH  
sampled again after t  
and compared to V  
LB_TH  
Figure 11. Block Diagram of MAXFLASH Function  
LB_TMR  
Maxim Integrated  
17  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
V
+ V  
LB_HYS  
LB_TH  
V
LB_TH  
t
LB_TMR  
TIME  
Figure 12. Example 1 of MAXFLASH Function Operation  
REDUCTION IN BATTERY CURRENT CAUSED  
BY OTHER SYSTEM  
V
+ V  
LB_HYS  
LB_TH  
V
I
LB_TH  
MAX  
t
LB_TMR  
TIME  
Figure 13. Example 2 of MAXFLASH Function Operation  
REDUCTION IN BATTERY CURRENT  
CAUSED BY OTHER SYSTEM  
FLASH CURRENT IS NOT INCREASED  
AGAIN SINCE LB_HYS = 11  
V
+ V  
LB_HYS  
LB_TH  
V
LB_TH  
I
MAX  
t
LB_TMR  
TIME  
Figure 14. Example 3 of MAXFLASH Function Operation with Hysteresis Disabled  
18  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
2
FLED2 regulators must be disabled through I C to  
avoid a fault detection from an open or short.  
Soft-Start  
The step-up converter implements a soft-start to control  
inrush current when it turns on. It soft-starts by charging  
Open/Short Detection  
The MAX8834Y/MAX8834Z monitor the FLED1, FLED2,  
and INDLED voltage to detect any open or short LEDs.  
A short fault is detected when the voltage rises above  
C
with a 100µA current source. During this time,  
COMP  
the internal MOSFET is switching at the minimum duty  
cycle. Once V rises above 1V, the duty cycle  
COMP  
increases until the output voltage reaches the desired  
regulation level. COMP is pulled to AGND with a 180Ω  
(typ) internal resistor during IN, UVLO, dropout mode,  
or shutdown. See the Typical Operating Characteristics  
for an example of soft-start operation. Soft-start is reini-  
tiated after UVLO or if the step-up converter is re-  
enabled after shutdown or dropout mode.  
V
- 1V (typ), and an open fault is detected when  
OUT  
the voltage falls below 100mV. The fault detection cir-  
cuitry is only activated when the corresponding current  
regulator is enabled and provides a continuous moni-  
tor of the current regulator condition. Once a fault is  
detected, the corresponding current regulator is dis-  
abled and the status is latched into the corresponding  
fault register bit (see Table 15). This allows the proces-  
sor to determine the MAX8834Y/MAX8834Z operating  
condition.  
Shutdown and Standby  
The MAX8834Y/MAX8834Z are in shutdown when either  
V
or V  
are in UVLO. In shutdown, supply current is  
IN  
DD  
reduced to 0.1µA (typ). When V is above its UVLO  
IN  
Thermal Shutdown  
Thermal shutdown limits total power dissipation in the  
MAX8834Y/MAX8834Z. When the junction temperature  
exceeds +160°C (typ), the IC turns off, allowing itself to  
cool. The IC turns on and begins soft-start after the junc-  
tion temperature cools by 20°C. This results in a pulsed  
output during continuous thermal overload conditions.  
threshold, but V  
is below its UVLO threshold, the IC  
DD  
disables its internal reference, keeps all registers reset,  
turns the step-up converter off, and turns the  
FLED1/FLED2 current regulators off (high impedance).  
Once a logic-level voltage is supplied to V , the IC  
DD  
2
enters standby condition and is ready to accept I C  
commands. The internal MOSFET, synchronous rectifi-  
er, and FLED1/FLED2 are also high impedance in  
standby.  
2
I C Serial Interface  
An I C-compatible, 2-wire serial interface controls the  
2
Typical shutdown timing characteristics are shown in  
the Typical Operating Characteristics.  
step-up converter output voltage, flash, movie, and  
indicator current settings, flash duration, and other  
parameters. The serial bus consists of a bidirectional  
serial-data line (SDA) and a serial-clock input (SCL).  
The MAX8834Y/MAX8834Z are slave-only devices, rely-  
ing upon a master to generate a clock signal. The mas-  
ter initiates data transfer to and from the MAX8834Y/  
Parallel Connection of Current Regulators  
The FLED1/FLED2 current regulators can be connected  
in parallel as long as the system software properly sets  
the current levels for each regulator. Unused current  
regulators may be connected to ground. The FLED1/  
SDA  
t
BUF  
t
SU,STA  
t
SU,DAT  
t
HD,STA  
t
LOW  
t
SU,STO  
t
HD,DAT  
t
SCL  
t
HIGH  
HD,STA  
t
t
F
R
START CONDITION  
REPEATED START CONDITION  
STOP  
CONDITION  
START  
CONDITION  
Figure 15. 2-Wire Serial Interface Timing Detail  
Maxim Integrated  
19  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
SCL  
SDA  
DATA LINE STABLE  
DATA VALID  
DATA ALLOWED TO  
CHANGE  
STOP  
CONDITION  
(P)  
START  
CONDITION  
(S)  
Figure 16. Bit Transfer  
MAX8834Z and generates SCL to synchronize the data  
transfer (Figure 15).  
START and STOP Conditions  
Both SCL and SDA remain high when the bus is not  
busy. The master signals the beginning of a transmis-  
sion with a START (S) condition by transitioning SDA  
from high to low while SCL is high. When the master  
has finished communicating with the MAX8834Y/  
MAX8834Z, it issues a STOP (P) condition by transition-  
ing SDA from low to high while SCL is high. The bus is  
then free for another transmission (Figure 17). Both  
START and STOP conditions are generated by the bus  
master.  
2
I C is an open-drain bus. Both SDA and SCL are bidi-  
rectional lines, connected to a positive supply voltage  
through a pullup resistor. They both have Schmitt trig-  
gers and filter circuits to suppress noise spikes on the  
bus to assure proper device operation.  
A bus master initiates communication with the  
MAX8834Y/MAX8834Z as a slave device by issuing a  
START (S) condition followed by the MAX8834Y/  
MAX8834Z address. The MAX8834Y/MAX8834Z  
address byte consists of 7 address bits and a read/  
write bit (R/W). After receiving the proper address, the  
MAX8834Y/MAX8834Z issue an acknowledge bit by  
pulling SDA low during the ninth clock cycle.  
Acknowledge  
The acknowledge bit is used by the recipient to hand-  
shake the receipt of each byte of data (Figure 18). After  
data transfer, the master generates the acknowledge  
clock pulse and the recipient pulls down the SDA line  
during this acknowledge clock pulse so the SDA line  
stays low during the high duration of the clock pulse.  
When the master transmits the data to the  
MAX8834Y/MAX8834Z, it releases the SDA line and the  
MAX8834Y/MAX8834Z take control of the SDA line and  
generate the acknowledge bit. When SDA remains high  
during this 9th clock pulse, this is defined as the not  
acknowledge signal. The master can then generate  
either a STOP condition to abort the transfer, or a  
repeated START condition to start a new transfer.  
Slave Address  
The MAX8834Y/MAX8834Z act as a slave transmitter/  
receiver. Its slave address is 0x94 for write operations  
and 0x95 for read operations.  
Bit Transfer  
Each data bit, from the most significant bit to the least  
significant bit, is transferred one by one during each  
clock cycle. During data transfer, the SDA signal is  
allowed to change only during the low period of the  
SCL clock and it must remain stable during the high  
period of the SCL clock (Figure 16).  
20  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
SDA BY MASTER  
D0  
D7  
D6  
SDA  
SCL  
NOT ACKNOWLEDGE  
SDA BY SLAVE  
SCL  
ACKNOWLEDGE  
8
1
2
9
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START CONDITION  
START  
STOP  
CONDITION  
CONDITION  
Figure 17. START and STOP Conditions  
Figure 18. Acknowledge  
Write Operations  
Use the following procedure to write to a sequential  
block of registers:  
The MAX8834Y/MAX8834Z recognize the write byte  
protocol as defined in the SMBus™ specification and  
shown in section A of Figure 19. The write byte proto-  
1) The master sends a start command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
2
col allows the I C master device to send 1 byte of data  
to the slave device. The write-byte protocol requires a  
register pointer address for the subsequent write. The  
MAX8834Y/MAX8834Z acknowledge any register  
pointer even though only a subset of those registers  
actually exists in the device. The write byte protocol is  
as follows:  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
4) The master sends the 8-bit register pointer of the  
first register to write.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
1) The master sends a start command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
7) The slave updates with the new data.  
8) The slave acknowledges the data byte.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
9) Steps 6 to 8 are repeated for as many registers in  
the block, with the register pointer automatically  
incremented each time.  
4) The master sends an 8-bit register pointer.  
5) The slave acknowledges the register pointer.  
6) The master sends a data byte.  
10) The master sends a STOP condition.  
Read Operations  
The method for reading a single register (byte) is shown  
in section A of Figure 20. To read a single register:  
7) The slave updates with the new data.  
8) The slave acknowledges the data byte.  
9) The master sends a STOP (P) condition.  
1) The master sends a start command.  
In addition to the write-byte protocol, the MAX8834Y/  
MAX8834Z can write to multiple registers as shown in  
2) The master sends the 7-bit slave address followed  
by a write bit.  
2
section B of Figure 19. This protocol allows the I C  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
master device to address the slave only once and then  
send data to a sequential block of registers starting at  
the specified register pointer.  
4) The master sends an 8-bit register pointer.  
SMBus is a trademark of Intel Corp.  
Maxim Integrated  
21  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
A. WRITING TO A SINGLE REGISTER WITH THE WRITE BYTE PROTOCOL  
1
7
1
0
1
8
1
8
1
1
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
DATA  
A
P
R/W  
B. WRITING TO MULTIPLE REGISTERS  
NUMBER OF BITS  
1
7
1
1
8
1
8
1
8
1
...  
S
SLAVE ADDRESS  
0
A
REGISTER POINTER X  
A
DATA X  
A
DATA X+1  
A
R/W  
NUMBER OF BITS  
8
1
8
1
...  
DATA X+n-1  
A
DATA X+n  
A
P
Figure 19. Writing to the MAX8834Y/MAX8834Z  
5) The slave acknowledges the register pointer.  
3) The addressed slave asserts an acknowledge by  
pulling SDA low.  
6) The master sends a REPEATED START (Sr) condition.  
4) The master sends an 8-bit register pointer of the  
first register in the block.  
7) The master sends the 7-bit slave address followed  
by a read bit.  
5) The slave acknowledges the register pointer.  
6) The master sends a REPEATED START condition.  
8) The slave asserts an acknowledge by pulling SDA  
low.  
9) The slave sends the 8-bit data (contents of the reg-  
ister).  
7) The master sends the 7-bit slave address followed  
by a read bit.  
10) The master asserts an acknowledge by pulling SDA  
low.  
8) The slave asserts an acknowledge by pulling SDA  
low.  
11) The master sends a STOP (P) condition.  
9) The slave sends the 8-bit data (contents of the reg-  
ister).  
In addition, the MAX8834Y/MAX8834Z can read a block  
of multiple sequential registers as shown in section B of  
Figure 20. Use the following procedure to read a  
sequential block of registers:  
10) The master asserts an acknowledge by pulling SDA  
low.  
11) Steps 9 and 10 are repeated for as many registers  
in the block, with the register pointer automatically  
incremented each time.  
1) The master sends a start command.  
2) The master sends the 7-bit slave address followed  
by a write bit.  
12) The master sends a STOP condition.  
22  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
LEGEND  
MASTER TO  
SLAVE  
SLAVE TO  
MASTER  
A. READING A SINGLE REGISTER  
1
7
1
0
1
8
1
1
8
1
1
8
1
1
NUMBER OF BITS  
S
SLAVE ADDRESS  
A
REGISTER POINTER  
A
Sr  
SLAVE ADDRESS  
1
A
DATA  
A
P
R/W  
B. READING MULTIPLE REGISTERS  
NUMBER OF BITS  
1
7
1
1
8
1
1
8
1
8
1
1
1
...  
S
SLAVE ADDRESS  
0
A
REGISTER POINTER X  
A
Sr  
SLAVE ADDRESS  
A
DATA X+1  
A
R/W  
R/W  
8
1
8
1
8
1
1
NUMBER OF BITS  
...  
A
...  
DATA X+1  
DATA X+n-1  
A
DATA X+n  
A
P
Figure 20. Reading from the MAX8834Y/MAX8834Z  
Maxim Integrated  
23  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 1. Register Map  
REGISTER  
ADDRESS (hex)  
NAME  
TABLE  
TYPE  
DESCRIPTION  
Step-up converter control  
BOOST_CNTL  
Table 2  
Table 3  
Table 4  
Table 5  
00  
01  
02  
03  
04  
05  
06  
07  
08  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLASH1_CUR  
FLED1 flash current control  
FLED2 flash current control  
FLED1 and FLED2 movie current control  
Reserved for future use  
FLASH2_CUR  
MOVIE_CUR  
Reserved for future use  
IND_CUR  
Table 6  
Indicator LED current control  
Reserved for future use  
Reserved for future use  
IND_CNTL  
Table 7  
Indicator LED ramp and blink control  
Reserved for future use  
Reserved for future use  
FLED1, FLED2, and INDLED on/off and mode control,  
and definition of LED_EN logic input function  
LED_CNTL  
Table 8  
09  
R/W  
TMR_DUR  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
0A  
0B  
0C  
0D  
0E  
16  
17  
18  
19  
1A  
1B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Watchdog timer and flash safety timer control  
NTC function control  
NTC_CNTL  
GSMB_CUR  
MAXFLASH1  
MAXFLASH2  
WDT_RST  
FLED1 and FLED2 current control during GSM transmit  
MAXFLASH function register 1  
MAXFLASH function register 2  
Watchdog timer reset  
STATUS1  
Status register  
STATUS2  
R
Status register  
Reserved for future use  
CHIP_ID1  
R/W  
R
Reserved for future use  
Table 17  
Table 18  
Die type information  
CHIP_ID2  
R
Die type and mask revision information  
24  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 2. BOOST_CNTL  
This register contains step-up converter control values.  
REGISTER NAME  
Address  
BOOST_CNTL  
0x00  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
B7 (MSB)  
Reserved for future use  
0
0 = Step-up converter off  
1 = Step-up converter on  
B6  
B5  
BOOST_EN  
0
00 = Step-up voltage set adaptively  
01 = Step-up voltage set programmatically according to  
BOOST_CNTL[3:0]  
BOOST_MODE  
00  
10 = Step-up converter runs in dropout  
B4  
B3  
B2  
11 = Step-up converter automatically changes between adaptive  
regulation and dropout mode depending on operating conditions  
0000 = 3.7V  
0001 = 3.8V  
0010 = 3.9V  
0011 = 4.0V  
0100 = 4.1V  
0101 = 4.2V  
0110 = 4.3V  
0111 = 4.4V  
1000 = 4.5V  
1001 = 4.6V  
1010 = 4.7V  
1011 = 4.8V  
1100 = 4.9V  
1101 = 5.0V  
1110 = 5.1V  
1111 = 5.2V  
BOOST_CNTL[3:0]  
0000  
B1  
B0 (LSB)  
Maxim Integrated  
25  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 3. FLASH1_CUR  
This register contains FLED1 flash current control values.  
REGISTER NAME  
Address  
FLASH1_CUR  
0x01  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
FLED1 Flash Mode Current Setting  
00000 = 23.44mA  
00001 = 46.88mA  
00010 = 70.32mA  
B7 (MSB)  
00011 = 93.76mA  
00100 = 117.20mA  
00101 = 140.64mA  
00110 = 164.08mA  
00111 = 187.52mA  
01000 = 210.96mA  
01001 = 234.40mA  
01010 = 257.84mA  
01011 = 281.28mA  
01100 = 304.72mA  
01101 = 328.16mA  
01110 = 351.60mA  
B6  
B5  
B4  
B3  
FLASH1[4:0] 01111 = 375.04mA  
10000 = 398.48mA  
10001 = 421.92mA  
10010 = 445.36mA  
10011 = 468.80mA  
10100 = 492.24mA  
10101 = 515.68mA  
10110 = 539.12mA  
10111 = 562.56mA  
11000 = 586.00mA  
11001 = 609.44mA  
11010 = 632.88mA  
11011 = 656.32mA  
11100 = 679.76mA  
11101 = 703.20mA  
11110 = 726.56mA  
11111 = 750.00mA  
00000  
B2  
B1  
Reserved for future use  
Reserved for future use  
Reserved for future use  
B0 (LSB)  
26  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 4. FLASH2_CUR  
This register contains FLED2 flash current control values.  
REGISTER NAME  
Address  
FLASH2_CUR  
0x02  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
FLED2 Flash Mode Current Setting  
00000 = 23.44mA  
00001 = 46.88mA  
00010 = 70.32mA  
00011 = 93.76mA  
00100 = 117.20mA  
00101 = 140.64mA  
00110 = 164.08mA  
00111 = 187.52mA  
01000 = 210.96mA  
01001 = 234.40mA  
01010 = 257.84mA  
01011 = 281.28mA  
01100 = 304.72mA  
01101 = 328.16mA  
01110 = 351.60mA  
01111 = 375.04mA  
10000 = 398.48mA  
10001 = 421.92mA  
10010 = 445.36mA  
10011 = 468.80mA  
10100 = 492.24mA  
10101 = 515.68mA  
10110 = 539.12mA  
10111 = 562.56mA  
11000 = 586.00mA  
11001 = 609.44mA  
11010 = 632.88mA  
11011 = 656.32mA  
11100 = 679.76mA  
11101 = 703.20mA  
11110 = 726.56mA  
11111 = 750.00mA  
B7 (MSB)  
B6  
B5  
B4  
FLASH2[4:0]  
00000  
B3  
B2  
B1  
Reserved for future use  
Reserved for future use  
Reserved for future use  
B0 (LSB)  
Maxim Integrated  
27  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 5. MOVIE_CUR  
This register contains FLED1 and FLED2 movie current control values.  
REGISTER NAME  
Address  
MOVIE_CUR  
0x03  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT NAME  
B7 (MSB)  
Reserved for future use  
FLED1 Movie Mode Current Setting  
000 = 15.625mA  
B6  
001 = 31.250mA  
010 = 46.875mA  
MOVIE1[2:0]  
011 = 62.500mA  
100 = 78.125mA  
101 = 93.750mA  
110 = 109.375mA  
111 = 125.000mA  
000  
B5  
B4  
B3  
Reserved for future use  
FLED2 Movie Mode Current Setting  
000 = 15.625mA  
001 = 31.250mA  
010 = 46.875mA  
011 = 62.500mA  
B2  
B1  
MOVIE2[2:0]  
000  
100 = 78.125mA  
101 = 93.750mA  
110 = 109.375mA  
111 = 125.000mA  
B0 (LSB)  
28  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 6. IND_CUR  
This register contains indicator LED current control values.  
REGISTER NAME  
Address  
IND_CUR  
0x05  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
B7 (MSB)  
Reserved for future use  
0
INDLED Indicator Blink Timer Enable  
0 = Indicator blink is disabled  
1 = Indicator blink is enabled  
B6  
B5  
IND_BL_EN  
IND_RP_EN  
0
0
INDLED Indicator Ramp-Up/Down Enable  
0 = Indicator ramp-up/down is disabled  
1= Indicator ramp-up/down is enabled  
INDLED Indicator Mode Current Setting  
00000 = 0.5mA  
00001 = 1.0mA  
00010 = 1.5mA  
00011 = 2.0mA  
00100 = 2.5mA  
00101 = 3.0mA  
00110 = 3.5mA  
00111 = 4.0mA  
01000 = 4.5mA  
01001 = 5.0mA  
01010 = 5.5mA  
01011 = 6.0mA  
01100 = 6.5mA  
01101 = 7.0mA  
01110 = 7.5mA  
01111 = 8.0mA  
10000 = 8.5mA  
10001 = 9.0mA  
10010 = 9.5mA  
10011 = 10.0mA  
10100 = 10.5mA  
10101 = 11.0mA  
10110 = 11.5mA  
10111 = 12.0mA  
11000 = 12.5mA  
11001 = 13.0mA  
11010 = 13.5mA  
11011 = 14.0mA  
11100 = 14.5mA  
11101 = 15.0mA  
11110 = 15.5mA  
11111 = 16.0mA  
B4  
B3  
B2  
B1  
IND[4:0]  
00000  
B0 (LSB)  
Maxim Integrated  
29  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 7. IND_CNTL  
This register contains indicator LED ramp and blink timer control.  
REGISTER NAME  
Address  
IND_CNTL  
0x07  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
INDLED Indicator Off Blink Timer Control  
00 = 512ms  
B7 (MSB)  
IND_OFF  
01 = 1024ms  
00  
10 = 2048ms  
11 = 4096ms  
B6  
B5  
B4  
B3  
INDLED Indicator On Blink Timer Control  
00 = 128ms  
01 = 256ms  
10 = 512ms  
11 = 1024ms  
IND_ON  
00  
00  
00  
INDLED Indicator Ramp-Up Timer Control  
00 = 128ms  
01 = 256ms  
10 = 512ms  
11 = 1024ms  
IND_RU[1:0]  
IND_RD[1:0]  
B2  
B1  
INDLED Indicator Ramp-Down Timer Control  
00 = 128ms  
01 = 256ms  
10 = 512ms  
11 = 1024ms  
B0 (LSB)  
30  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 8. LED_CNTL  
This register contains FLED1, FLED2 and INDLED on/off and mode control.  
REGISTER NAME  
Address  
LED_CNTL  
0x09  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
INDLED Indicator Current Regulator Enable  
00 = INDLED indicator LED is disabled  
B7 (MSB)  
IND_EN[1:0]  
00  
01 = INDLED indicator LED is disabled  
10 = INDLED indicator LED is enabled  
B6  
11 = INDLED indicator LED is controlled by LED_EN input  
FLED1/FLED2 MOVIE Mode Current Regulator Enable  
000 = FLED1 and FLED2 movie mode disabled  
B5  
B4  
001 = FLED1 movie mode is enabled, FLED2 movie mode is disabled  
010 = FLED2 movie mode is enabled, FLED1 movie mode is disabled  
011 = FLED1 and FLED2 movie mode is enabled  
101 = FLED1 movie mode is controlled by LED_EN, FLED2 movie mode  
is disabled  
MOVIE_EN[2:0]  
000  
110 = FLED2 movie mode is controlled by LED_EN, FLED1 movie mode  
is disabled  
B3  
111 = FLED1 and FLED2 movie mode is controlled by LED_EN  
FLED1/FLED2 Flash Mode Current Regulator Enable  
000 = FLED1 and FLED2 flash mode disabled  
B2  
001 = FLED1 flash mode is enabled, FLED2 flash mode is disabled  
010 = FLED2 flash mode is enabled, FLED1 flash mode is disabled  
011 = FLED1 and FLED2 flash mode is enabled  
101 = FLED1 flash mode is controlled by LED_EN, FLED2 flash mode is  
disabled  
FLASH_EN[2:0]  
000  
B1  
110 = FLED2 flash mode is controlled by LED_EN, FLED1 flash mode is  
disabled  
B0 (LSB)  
111 = FLED1 and FLED2 flash mode is controlled by LED_EN  
Maxim Integrated  
31  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 9. TMR_DUR  
This register contains watchdog timer and flash safety time-control values.  
REGISTER NAME  
Address  
TMR_DUR  
0x0A  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
B7 (MSB)  
B6  
NAME  
DESCRIPTION  
DEFAULT VALUE  
Enable/Disable Of Watchdog Timer Function  
0 = WDT is disabled  
WDT_EN  
0
1 = WDT is enabled  
Watchdog Timer Duration  
00 = 4s  
WDT_DUR[1:0]  
TMR_MODE  
00  
01 = 8s  
10 = 12s  
11 = 16s  
Safety Timer Control  
B5  
0 = One-shot mode—generates a flash with a duration of TMR_DUR  
2
regardless of LED:EN and I C setting; pulling V low in this  
DD  
B4  
0
condition terminates flash operating and puts the IC into power-down  
mode  
1 = Maximum timer mode—ensures that flash duration does not exceed  
the timer defined in TMR:DUR  
Safety Timer Duration Control  
0000 = 50ms  
0001 = 100ms  
0010 = 150ms  
0011 = 200ms  
B3  
B2  
0100 = 250ms  
0101 = 300ms  
0110 = 350ms  
TMR_DUR [3:0] 0111 = 400ms  
1000 = 450ms  
0000  
1001 = 500ms  
1010 = 550ms  
B1  
1011 = 600ms  
1100 = 650ms  
1101 = 700ms  
1110 = 750ms  
B0 (LSB)  
1111 = 800ms  
32  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 10. NTC_CNTL  
This register contains NTC function control values.  
REGISTER NAME  
Address  
NTC_CNTL  
0x0B  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
Flash Safety Timer Reset Control  
0 = Enable FLASH reset timer, only valid when FLASH mode is  
enabled using the LED_EN; LED_EN needs to be pulled low for  
minimum 30ms (typ) to reset the flash safety  
1 = Disable FLASH reset timer; flash safety timer is reset as soon as  
LED_EN is pulled low  
B7 (MSB)  
FLASH_TMR_CNTL  
0
B6  
B5  
B4  
Reserved for future use  
Reserved for future use  
Reserved for future use  
0
0
0
Finger-Burn Feature Enable  
0 = Disable NTC function  
1 = Enable NTC function  
B3  
B2  
NTC_EN  
0
Finger-Burn Threshold Control  
000 = 200mV  
001 = 250mV  
010 = 300mV  
NTC[2:0]  
011 = 350mV  
000  
B1  
100 = 400mV  
101 = 450mV  
110 = 500mV  
111 = 550mV  
B0 (LSB)  
Maxim Integrated  
33  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 11. GSMB_CUR  
This register contains FLED1 and FLED2 current control values for the GSMB function.  
REGISTER NAME  
Address  
GSMB_CUR  
0x0C  
Reset Value  
Type  
0xC0  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
GSM Blank Enable  
0 = GSMB input is disabled  
1 = GSMB input is enabled  
B7 (MSB)  
B6  
GSMB_EN  
1
GSM Blank Polarity Control  
0 = GSMB is active-low  
1 = GSMB is active-high  
GSMB_POL  
1
Input Current Limit During GSMB  
0000 = 50mA  
B5  
B4  
0001 = 100mA  
0010 = 150mA  
0011 = 200mA  
0100 = 250mA  
0101 = 300mA  
0110 = 350mA  
0111 = 400mA  
1000 = 450mA  
1001 = 500mA  
1010 = 550mA  
1011 = 600mA  
1100 = 650mA  
1101 = 700mA  
1110 = 750mA  
1111 = 800mA  
ILIM[3:0]  
0000  
B3  
B2  
GSMB Reset Timer  
00 = 10µs  
B1  
HC_TMR[1:0] 01 = 20µs  
10 = 40µs  
00  
B0 (LSB)  
11 = 80µs  
34  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 12. MAXFLASH1  
This register contains MAXFLASH control function.  
REGISTER NAME  
Address  
MAXFLASH1  
0x0D  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
MAXFLASH Function Enable  
0 = Disabled  
B7 (MSB)  
LB_EN  
0
1 = Low-battery function is enabled  
Low-Battery Detection Threshold  
00000 = 2.400V [Do not use]  
00001 = 2.433V [Do not use]  
00010 = 2.466V [Do not use]  
00011 = 2.500V  
00100 = 2.533V  
00101 = 2.566V  
00110 = 2.600V  
00111 = 2.633V  
B6  
B5  
01000 = 2.666V  
01001 = 2.700V  
01010 = 2.733V  
01011 = 2.766V  
01100 = 2.800V  
01101 = 2.833V  
01110 = 2.866V  
LB_TH[4:0]  
01111 = 2.900V  
10000 = 2.933V  
10001 = 2.966V  
10010 = 3.000V  
10011 = 3.033V  
10100 = 3.066V  
10101 = 3.100V  
10110 = 3.133V  
10111 = 3.166V  
11000 = 3.200V  
11001 = 3.233V  
11010 = 3.266V  
11011 = 3.300V  
11100 = 3.333V  
11101 = 3.366V  
00000  
B4  
B3  
B2  
11110 = 3.400V  
11111 = 3.400V  
Low-Battery Detection Hysteresis  
00 = 100mV  
B1  
LB_HYS[1:0]  
01 = 200mV  
00  
10 = Reserved for future use  
11 = Hysteresis is disabled—flash current is only reduced  
B0 (LSB)  
Maxim Integrated  
35  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 13. MAXFLASH2  
This register contains MAXFLASH control function.  
REGISTER NAME  
Address  
MAXFLASH2  
0x0E  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
B7 (MSB)  
B6  
NAME  
DESCRIPTION  
DEFAULT VALUE  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
0
0
0
0
0
0
B4  
B3  
B3  
B2  
Low-Battery Reset Timer  
00 = 0.250ms  
B1  
LB_TMR[1:0] 01 = 0.500ms  
10 = Reserved for future use  
11 = Reserved for future use  
00  
B0 (LSB)  
Table 14. WDT_RST  
This register contains watchdog reset function.  
REGISTER NAME  
Address  
WDT_RST  
0x16  
Reset Value  
Type  
0x00  
Read/write  
Special Features  
BIT  
B7 (MSB)  
B6  
NAME  
DESCRIPTION  
DEFAULT VALUE  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
0
0
0
0
0
0
0
B4  
B3  
B3  
B2  
B1  
Watchdog Reset  
0 = Default  
B0 (LSB)  
1 = Writing a 1 resets the watchdog timer; after writing a 1, this bit is cleared  
upon watchdog timer reset  
36  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 15. STATUS1  
This register contains status information.  
REGISTER NAME  
Address  
STATUS1  
0x17  
N/A  
Read  
Reset Value  
Type  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
NTC Status Readback  
0 = NTC status OK  
B7 (MSB)  
NTC_FLT  
0
1 = Fault (short) occurred on NTC  
GSMB Status Readback  
B6  
B5  
GSMB  
0 = No GSMB event has occurred  
1 = GSMB event has occurred  
0
0
0
0
0
0
0
POK Window Cooperator Status Readback  
0 = Output voltage is within POK window  
1 = POK fault has occurred  
POK_FLT  
Die Temperature Overload Condition Status Readback  
0 = Die temp is within spec  
1 = Die overtemp event has occurred  
B4  
OVER_TEMP  
NTC_OVT  
NTC Status Readback  
0 = NTC temperature is within spec  
1 = NTC temperature threshold has tripped  
B3  
INDLED Status Readback  
0 = INDLED status is OK  
1 = Fault (open/short) has occurred on INDLED  
B2  
INDLED_FLT  
FLED2_FLT  
FLED1_FLT  
FLED2 Status Readback  
0 = FLED2 status is OK  
1 = Fault (open/short) has occurred on FLED2  
B1  
FLED1 Status Readback  
0 = FLED1 status is OK  
B0 (LSB)  
1 = Fault (open/short) has occurred on FLED1  
Note: All faults are latched. Bit(s) are cleared after reading register contents. If the fault is still present, the bit is set again.  
Maxim Integrated  
37  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 16. STATUS2  
This register contains status information.  
REGISTER NAME  
Address  
STATUS2  
0x18  
N/A  
Reset Value  
Type  
Read  
Special Features  
BIT  
NAME  
DESCRIPTION  
DEFAULT VALUE  
Indication of if MAXFLASH Function Has Been Triggered Since Last  
Read Operation of This Register  
0 = MAXFLASH event has not occurred  
B7 (MSB)  
B6  
MAXFLASH_STAT  
GSMB_ILIM  
0
1 = MAXFLASH event has occurred  
Indication of if Input Current Limit Has Been Reached During GSMB  
Since Last Read Operation of This Register  
0 = Input current limit not reached  
0
1 = Input current limit reached  
B5  
B4  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
Reserved for future use  
0
0
0
0
0
0
B3  
B2  
B1  
B0 (LSB)  
Note: All faults are latched. Bit(s) are cleared after reading register contents. If the fault is still present, the bit is set again.  
Table 17. CHIP_ID1  
This register contains the MAX8834Y/MAX8834Z die type number.  
REGISTER NAME  
Address  
CHIP_ID1  
0x1A  
N/A  
Reset Value  
Type  
Read  
Special Features  
BIT  
B7 (MSB)  
B6  
NAME  
DESCRIPTION  
DEFAULT VALUE  
DIE_TYPE[7:4]  
BCD Character 1  
[0001]  
B5  
B4  
B3  
B2  
DIE_TYPE[3:0]  
BCD Character 1  
[0001]  
B1  
B0 (LSB)  
Note: This register value is fixed in metal.  
38  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 18. CHIP_ID2  
This register contains the die type dash number (0 = plain) and mask revision level.  
REGISTER NAME  
Address  
CHIP_ID2  
0x1B  
N/A  
Reset Value  
Type  
Read  
Special Features  
BIT  
B7 (MSB)  
B6  
NAME  
DESCRIPTION  
DEFAULT VALUE  
DASH  
BCD Character representing dash number  
B5  
B4  
B3  
B2  
MASK_REV BCD Character representing die revision  
B1  
B0 (LSB)  
Note: This register value is fixed in metal.  
most situations, but a 4.7µF ceramic capacitor is  
acceptable for lower load currents.  
Applications Information  
Inductor Selection  
See Table 19 for a list of recommended inductors. To  
prevent core saturation, ensure that the inductor satura-  
tion current rating exceeds the peak inductor current  
for the application. Calculate the worst-case peak  
inductor current as follows:  
Compensation Network Selection  
The step-up converter is compensated for stability  
through an external compensation network from COMP  
to AGND. See Table 20 for recommended compensa-  
tion networks.  
PCB Layout  
Due to fast-switching waveforms and high-current  
paths, careful PCB layout is required. Connect AGND,  
FGND, and PGND directly to the ground plane. The IN  
bypass capacitor should be placed as close as possi-  
V
×I  
V
IN(MIN)  
OUT OUT(MAX)  
I
=
+
PEAK  
0.9 × V  
2 × f × L  
SW  
IN(MIN)  
where f  
is the switching frequency.  
SW  
ble to the IC. R  
and C  
should be connected  
COMP  
COMP  
Capacitor Selection  
between COMP and AGND as close as possible to the  
IC. Minimize trace lengths between the IC and the  
inductor, the input capacitor, and the output capacitor;  
keep these traces short, direct, and wide. The ground  
Bypass IN to AGND and PGND with a ceramic capaci-  
tor. Ceramic capacitors with X5R and X7R dielectrics are  
recommended for their low ESR and tighter tolerances  
over wide temperature ranges. Place the capacitor as  
close as possible to the IC. The recommended minimum  
value for the input capacitor is 10µF; however, larger  
value capacitors can be used to reduce input ripple at  
the expense of size and higher cost.  
connections of C and C  
should be as close  
OUT  
IN  
together as possible and connected to PGND. The  
traces from the input to the inductor and from the out-  
put capacitor to the LEDs may be longer. Figure 21  
illustrates an example PCB layout and routing scheme.  
Refer to the MAX8834Y/MAX8834Z Evaluation Kit for a  
PCB layout example.  
The output capacitance required depends on the out-  
put current. A 10µF ceramic capacitor works well in  
Maxim Integrated  
39  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Table 19. Suggested Inductors  
DIMENSIONS  
x W x H  
MANUFACTURER  
PART/SERIES  
INDUCTANCE (µH)  
DCR (m) ISAT (A)  
(l  
TYP  
)
MAX  
TYP  
(mm)  
LPS4012-222ML  
LPS4018-222ML  
LPS5030-220ML  
LPS6225-222ML  
LPO3310-102ML  
LPS3015-102ML  
LPO3010-102NLC  
DO3314-102ML  
LPS3314-102ML  
DP1605T-102ML  
LPS4012-102ML  
LPS4018-102ML  
LPS5015-102ML  
NR4018T2R2M  
NR3012T1R0N  
NR4010T1R0N  
NR3015T1R0N  
NR4012T1R0N  
NP03SB1R0M  
2.2  
2.2  
2.2  
2.2  
1
100  
70  
57  
45  
76  
75  
140  
110  
45  
40  
60  
40  
50  
72  
60  
120  
36  
72  
27  
30  
36  
65  
56  
40  
30  
40  
2.3  
2.7  
3.1  
3.9  
1.6  
1.6  
1.7  
2.1  
2.3  
2.5  
2.8  
2.8  
3.8  
2.7  
1.5  
1.8  
2.1  
2.5  
2.6  
4
4 x 4 x 1.1  
4 x 4 x 1.7  
5 x 5 x 2.9  
6.2 x 6.2 x 2.5  
3 x 3 x 1  
1
3 x 3 x 1  
Coilcraft  
1
3 x 3 x 1  
1
3 x 3 x 1.4  
3 x 3 x 1.4  
4 x 4 x 1.8  
4 x 4 x 1.1  
4 x 4 x 1.7  
5 x 5 x 1.5  
4 x 4 x 1.8  
3 x 3 x 1.2  
4 x 4 x 1  
1
1
1
1
1
2.2  
1
1
1
3 x 3 x 1.5  
4 x 4 x 1.2  
4 x 4 x 1.8  
5 x 5 x 2  
Taiyo Yuden  
1
1
NP04SZB1R0N  
NR4018T1R0N  
1117AS-1R2N  
1
1
4
4 x 4 x 1.8  
3 x 3 x 1  
1.2  
1.2  
1
1.2  
1.8  
1.8  
1.95  
2.1  
1098AS-1R2N  
3 x 3 x 1.2  
4 x 4 x 1.8  
3 x 3 x 1.8  
3 x 3 x 1.5  
TOKO  
A997AS-1R0N  
1072AS-1R0N  
1
1071AS-1R0N  
1
Table 20. Suggested Compensation  
Networks  
R
(k)  
C
COMP  
(pF)  
COMP  
INDUCTANCE  
1.0µH Inductor (dynamic loads)  
2.2µH Inductor (dynamic loads)  
4.7µH Inductor (dynamic loads)  
10µH Inductor (dynamic loads)  
Other (non-LED) Loads (1µH to 10µH)  
5.5  
4.3  
3
2200  
2200  
4700  
6800  
22000  
3
0 (short)  
40  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
IN  
L
5mm  
C
OUT  
C
IN  
V
DD  
IN  
LX  
A2  
PGND  
A3  
OUT  
V
DD  
A1  
A4  
A5  
PGND  
B3  
LX  
B2  
SCL  
B4  
AGND  
B5  
OUT  
B1  
GND  
FGND  
C2  
GSMB  
C4  
SDA  
C5  
COMP  
C1  
LED_EN  
C3  
SCL  
SDA  
GSMB  
FGND  
D2  
FLED2  
D1  
FLED1  
D3  
INDLED  
D4  
NTC  
D5  
NTC  
LED_EN  
3.8mm  
Figure 21. Recommended PCB Layout  
Maxim Integrated  
41  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Block Diagram and Typical Application Circuit  
PROGRAMMABLE  
OUTPUT  
3.7V TO 5.2V  
1µH  
LX  
IN  
OUT  
C
OUT  
INPUT  
CURRENT  
LIMIT  
10µF  
V
C
IN  
UVLO AND  
POWER  
IN  
PWM STEP-UP  
CONVERTER  
2.5V TO 5.5V  
10µF  
AGND  
V
REF  
ADAPTIVE/  
FIXED  
PGND  
COMP  
OUTPUT  
SELECT  
SELECT  
MIN  
V
REG  
C
R
COMP  
2MHz OR 4MHz  
COMP  
FLASH  
TIMER  
V
POK  
750mA  
FLED1  
FLED2  
WATCHDOG  
TIMER  
NTC  
750mA  
16mA  
GSMB  
REGISTERS  
R
NTC  
PA_EN  
AND  
CONTROL  
LOGIC  
100kΩ  
1MHz  
V
LOGIC  
1.62V TO 3.6V  
INDLED  
FGND  
LED_EN  
FLASH/MOVIE  
STROBE  
SAMPLING  
LOGIC  
V
DD  
C
VDD  
0.1µF  
2
I C  
INTERFACE  
MAX8834Y  
MAX8834Z  
SDA  
SCL  
2
I C  
INTERFACE  
42  
Maxim Integrated  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Pin Configuration  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
2
3
5
4
MAX8834Y/MAX8834Z  
Package Information  
A
A1  
A2  
LX  
A3  
A4  
IN  
A5  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
V
OUT  
PGND  
DD  
B
B1  
B2  
LX  
B3  
B4  
B5  
AGND  
OUT  
PGND  
SCL  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
20 WLP  
W202A2+2  
21-0059  
C
D
C1  
C2  
C3  
C4  
C5  
SDA  
COMP  
LED_EN  
FGND  
GSMB  
D1  
D2  
D3  
D4  
D5  
NTC  
FLED2  
FLED1  
FGND  
INDLED  
WLP  
(2.5mm ×× 2.0mm)  
Maxim Integrated  
43  
MAX8834Y/MAX8834Z  
Adaptive Step-Up Converters  
with 1.5A Flash Driver  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
4/09  
5/09  
2/10  
Initial release  
38, 39, 41  
28  
Added notes to Tables 16 and 18, and updated Figure 21  
Corrected register value in Table 5  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
44 ________________________________Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
© 2010 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX8834Y

Adaptive Step-Up Converters with 1.5A Flash Driver
MAXIM

MAX8834YEWP+T

Adaptive Step-Up Converters with 1.5A Flash Driver
MAXIM

MAX8834Z

Adaptive Step-Up Converters with 1.5A Flash Driver
MAXIM

MAX8834ZEWP+T

Adaptive Step-Up Converters with 1.5A Flash Driver
MAXIM

MAX8836Z

1.2A PWM Step-Down Converter in 2mm x 2mm WLP/UCSP for PA Power
MAXIM

MAX8836ZEREEE+

Switching Regulator
MAXIM

MAX8836ZEREEE+T

1.2A PWM Step-Down Converter in 2mm x 2mm WLP/UCSP for PA Power
MAXIM

MAX8836ZEWEEE+T

Switching Regulator, Voltage-mode, 1.2A, PBGA16, 2 X 2 MM, 0.70 MM HEIGHT, ROHS COMPLIANT, WLP-16
MAXIM

MAX883C

5V/3.3V or Adjustable, Low-Dropout, Low IQ, 200mA Linear Regulators
MAXIM

MAX883C/D

5V/3.3V or Adjustable, Low-Dropout, Low IQ, 200mA Linear Regulators
MAXIM

MAX883CPA

5V/3.3V or Adjustable, Low-Dropout, Low IQ, 200mA Linear Regulators
MAXIM

MAX883CSA

5V/3.3V or Adjustable, Low-Dropout, Low IQ, 200mA Linear Regulators
MAXIM