MAX793CPE [MAXIM]

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits; 3.0V / 3.3V可调微处理器监控电路
MAX793CPE
型号: MAX793CPE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
3.0V / 3.3V可调微处理器监控电路

微处理器 监控
文件: 总20页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0366; Rev 1; 1/96  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
MAX793/MAX794/MAX795  
The MAX793/MAX794/MAX795 microprocessor (µP)  
supervisory circuits monitor and control the activities of  
+3.0V/+3.3V µPs by providing backup-battery switchover,  
among other features such as low-line indication, µP  
reset, write protection for CMOS RAM, and a watchdog  
(see the Selector Guide below). The backup-battery volt-  
Precision Supply-Voltage Monitor:  
Fixed Reset Trip Voltage (MAX793/MAX795)  
Adjustable Reset Trip Voltage (MAX794)  
Guaranteed Reset Assertion to V  
= 1V  
CC  
Backup-Battery Power Switching—Battery  
Voltage Can Exceed V  
age can exceed V , permitting the use of 3.6V lithium  
CC  
CC  
batteries in systems using 3.0V to 3.3V for V  
.
CC  
On-Board Gating of Chip-Enable Signals—7ns  
The MAX793/MAX795 offer a choice of reset threshold  
voltage range (denoted by suffix letter): 3.00V to 3.15V  
(T), 2.85V to 3.00V (S), and 2.55V to 2.70V (R). The  
MAX794s reset threshold is set externally with a resistor  
divider. The MAX793/MAX794 are available in 16-pin  
DIP and narrow SO packages, and the MAX795 comes  
in 8-pin DIP and SO packages. For similar devices  
d e s ig ne d for 5V s ys te ms , s e e the µP Sup e rvis ory  
Circuits table at the back of this data sheet.  
Max Propagation Delay  
MAX793/MAX794 Only  
Battery Freshness Seal  
Battery OK Output (MAX793)  
Uncommitted Voltage Monitor for Power-Fail or  
Low-Battery Warning  
Independent Watchdog Timer (1.6sec timeout)  
Manual Reset Input  
_____________________S e le c t o r Gu id e  
______________Ord e rin g In fo rm a t io n  
FEATURE  
Active-Low Reset  
Active-High Reset  
MAX793  
MAX794 MAX795  
PART*  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
16 Plastic DIP  
16 Narrow SO  
MAX793_CPE  
MAX793_CSE  
MAX793_EPE  
MAX793_ESE  
0°C to +70°C  
Programmable Reset  
Threshold  
-40°C to +85°C  
-40°C to +85°C  
Low-Line Early Warning  
Output  
Ordering Information continued on last page.  
* The MAX793/MAX795 offer a choice of reset threshold voltage.  
Select the letter corresponding to the desired reset threshold  
voltage range (T = 3.00V to 3.15V, S = 2.85V to 3.00V, R = 2.55V  
to 2.70V) and insert it into the blank to complete the part number.  
The MAX794s reset threshold is adjustable.  
Backup-Battery  
Switchover  
External Switch Driver  
Power-Fail Comparator  
Battery OK Output  
Watchdog Input  
__________Typ ic a l Op e ra t in g Circ u it  
(OPTIONAL)  
Si9433DY  
SILICONIX  
Battery Freshness Seal  
Manual Reset Input  
Chip-Enable Gating  
Pins-Package  
3.0V OR 3.3V  
0.1µF  
0.1µF  
PMOS  
16-DIP/SO 16-DIP/SO 8-DIP/SO  
V
BATT ON OUT  
CC  
CMOS  
RAM  
BATT  
CE OUT  
________________________Ap p lic a t io n s  
Battery-Powered Computers and Controllers  
Embedded Controllers  
0.1µF  
3.6V  
V
CC  
MAX793  
ADDRESS  
DECODER  
A0-A15  
CE IN  
WDO  
MR  
I/O  
NMI  
WDI  
+5V SUPPLY  
FAILURE  
Intelligent Controllers  
LOWLINE  
PFO  
+5V  
V
CC  
µP  
Critical µP Power Monitoring  
Portable Equipment  
PFI  
RESET  
RESET  
BATT OK  
GND  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltage (with respect to GND)  
Continuous Power Dissipation (T = +70°C)  
A
V
........................................................................-0.3V to 6.0V  
.....................................................................-0.3V to 6.0V  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) .....727mW  
8-Pin SO (derate 5.88mW/°C above +70°C)..................471mW  
16-Pin Plastic DIP (derate 10.53mW/°C above +70°C) .842mW  
16-Pin Narrow SO (derate 9.52mW/°C above +70°C) ...696mW  
Operating Temperature Ranges  
CC  
V
BATT  
All Other Inputs ..................-0.3V to the higher of V or V  
CC  
BATT  
Continuous Input Current  
.................................................................................200mA  
V
CC  
V
................................................................................50mA  
MAX793_C_ _/MAX794C_ _/MAX795_C_ _ ......... 0°C to +70°C  
MAX793_E_ _/MAX794E_ _/MAX795_E_ _ ........-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
BATT  
GND ..................................................................................20mA  
Output Current  
V
OUT  
................................................................................200mA  
All Other Outputs ..............................................................20mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
CC  
(V  
= 3.17V to 5.5V for the MAX793T/MAX795T, V  
= 3.02V to 5.5V for the MAX793S/MAX795S, V  
= 2.72V to 5.5V for the  
CC  
CC  
MAX793R/MAX794/MAX795R, V  
= 3.6V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
BATT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.0  
TYP  
MAX  
5.5  
5.5  
60  
UNITS  
MAX79_C  
MAX79_E  
Operating Voltage Range,  
V
V
, V  
CC BATT  
(Note 1)  
1.1  
V
< 3.6V  
< 5.5V  
< 3.6V  
< 5.5V  
46  
62  
35  
49  
CC  
MAX793/MAX794,  
MR = V  
CC  
V
CC  
80  
V
CC  
Supply Current  
I
µA  
SUPPLY  
7
(excluding I  
, I  
)
OUT CE OUT  
V
CC  
50  
MAX795  
V
CC  
70  
V
Supply Current in  
CC  
MAX793/MAX794  
MAX795  
32  
24  
45  
35  
V
V
BATT  
= 2.1V,  
= 2.3V  
CC  
Battery-Backup Mode  
(excluding I  
I
µA  
SUPPLY  
)
OUT  
BATT Supply Current  
(excluding I ) (Note 2)  
1
1
µA  
µA  
µA  
OUT  
BATT Leakage Current,  
Freshness Seal Enabled  
V
CC  
= 0V, V  
= 0V  
OUT  
Battery Leakage Current  
(Note 3)  
0.5  
I
= 75mA  
V
- 0.3  
V
CC  
- 0.125  
- 0.050  
- 0.5mV  
OUT  
CC  
OUT Output Voltage in  
Normal Mode  
V
OUT  
I
= 30mA (Note 4)  
= 250µA (Note 4)  
V
CC  
- 0.12  
V
CC  
V
OUT  
I
V
CC  
- 0.001  
V
CC  
OUT  
I
= 250µA  
= 1mA  
V
BATT  
- 0.1  
V
BATT  
- 0.034  
- 0.14  
OUT  
OUT Output Voltage in  
Battery-Backup Mode  
V
V
= 2.3V  
V
OUT  
BATT  
I
V
OUT  
BATT  
20  
V
-
CC  
V
SW  
> V > 1.75V (Note 5)  
65  
mV  
CC  
V
BATT  
MAX793T/MAX795T  
MAX793S/MAX795S  
2.69  
2.55  
2.82  
2.68  
2.95  
2.80  
Battery Switch Threshold  
(V falling)  
CC  
V
> V  
CC  
BATT  
V
SW  
V
(Note 6)  
MAX793R/MAX795R/  
MAX794  
2.30  
2.41  
2.52  
This value is identical to the reset threshold,  
rising for V > V  
V
CC  
Battery Switch Threshold  
V
CC  
-
BATT  
RST  
(V rising) (Note 7)  
CC  
V
BATT  
V
BATT  
< V  
25  
65  
mV  
RST  
2
_______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.17V to 5.5V for the MAX793T/MAX795T, V  
= 3.02V to 5.5V for the MAX793S/MAX795S, V  
= 2.72V to 5.5V for the  
CC  
CC  
CC  
MAX793R/MAX794/MAX795R, V  
= 3.6V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
BATT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MAX793T/MAX795T  
MIN  
3.00  
2.85  
2.55  
3.00  
2.85  
TYP  
3.075  
2.925  
2.625  
3.085  
2.935  
MAX  
3.15  
3.00  
2.70  
3.17  
3.02  
UNITS  
V
Falling  
MAX793S/MAX795S  
MAX793R/MAX795R  
MAX793T/MAX795T  
MAX793S/MAX795S  
MAX793R/MAX795R  
CC  
Reset Threshold (Note 8)  
V
RST  
V
V
CC  
Rising  
2.55  
1.212  
1.212  
2.635  
1.240  
1.250  
2.72  
1.262  
1.282  
V
CC  
Falling  
Rising  
RESET IN Threshold  
(MAX794 only)  
V
RST IN  
V
V
CC  
RESET IN Leakage Current  
(MAX794 only)  
-25  
2
25  
nA  
ms  
Reset Timeout Period  
t
RP  
V
CC  
< 3.6V  
140  
200  
280  
LOWLINE-to-Reset  
MAX793  
30  
5
45  
60  
25  
Threshold, (V  
-
V
LR  
mV  
LOWLINE  
V ), V Falling  
RST CC  
MAX794  
MAX793  
MAX794  
15  
10  
10  
mV  
mV  
Low-Line Comparator  
Hysteresis  
MAX793T/MAX795T  
MAX793S/MAX795S  
MAX793R/MAX795R  
MAX794  
3.23  
3.08  
2.78  
LOWLINE Threshold,  
V
V
V
LL  
V
CC  
Rising  
1.317  
1.262  
1.287  
25  
V
falling  
rising  
1.212  
1.212  
-25  
1.240  
1.250  
2
PFI  
PFI Input Threshold  
PFI Input Current  
V
TH  
V
PFI  
nA  
PFI Hysteresis, PFI Rising  
10  
20  
mV  
BATT OK Threshold  
(MAX793)  
V
BOK  
2.00  
2.25  
2.50  
V
INPUT AND OUTPUT LEVELS  
RESET Output Voltage High  
V
I
=300µA, V = V  
min  
max  
max  
0.8V  
0.86V  
CC  
V
V
OH  
SOURCE  
CC  
RST  
CC  
BATT OK, BATT ON, WDO,  
LOWLINE Output Voltage  
High  
V
OH  
I
= 300µA, V = V  
0.8V  
0.86V  
CC  
SOURCE  
CC  
RST  
CC  
PFO Output Voltage High  
V
OH  
I
= 65µA, V = V  
0.8V  
CC  
V
V
SOURCE  
CC  
RST  
BATT ON Output  
Voltage High  
V
OH  
I
= 100µA, V = 2.3V, V  
= 3V 0.8V  
SOURCE  
CC  
BATT BATT  
RESET Output Leakage  
Current (Note 9)  
I
V
= V max  
RST  
-1  
-1  
µA  
µA  
LEAK  
CC  
PFO Output Short to GND  
Current  
I
SC  
V
CC  
= 3.3V, V = 0V  
PFO  
180  
500  
PFO, RESET, RESET, WDO,  
LOWLINE Output Voltage  
Low  
I
= 1.2mA; RESET, LOWLINE tested  
SINK  
V
OL  
with V = V  
WDO tested with V = V  
min; RESET, BATTOK,  
0.08  
0.2V  
CC  
V
CC  
RST  
max  
CC  
RST  
_______________________________________________________________________________________  
3
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.17V to 5.5V for the MAX793T/MAX795T, V  
= 3.02V to 5.5V for the MAX793S/MAX795S, V  
= 2.72V to 5.5V for the  
CC  
CC  
CC  
MAX793R/MAX794/MAX795R, V  
= 3.6V, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
BATT  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= V = 1.0V, I = 40µA  
SINK  
MIN  
TYP  
0.13  
0.17  
MAX  
0.3  
UNITS  
MAX79_C, V  
BATT  
CC  
RESET Output Voltage Low  
V
OL  
V
MAX79_E, V  
= V = 1.2V, I = 200µA  
SINK  
0.3  
BATT  
CC  
BATT ON Output  
Voltage Low  
V
I
= 3.2mA, V = V  
max  
0.2V  
CC  
V
V
OL  
SINK  
CC  
RST  
V
0.7V  
CC  
All Inputs Including PFO  
(Note 10)  
IH  
V
max < V < 5.5V  
CC  
RST  
V
0.3V  
CC  
IL  
MANUAL RESET INPUT  
MR Pulse Width  
t
MAX793/MAX794 only  
MAX793/MAX794 only  
100  
25  
50  
75  
70  
ns  
ns  
MR  
MR-to-Reset Delay  
t
250  
250  
MD  
MR Pull-Up Current  
CHIP-ENABLE GATING  
CE IN Leakage Current  
MAX793/MAX794 only, MR = 0V  
µA  
I
Disable mode  
±10  
46  
nA  
LEAK  
CE IN-to-CE OUT  
Resistance  
Enable mode, V = V  
max  
CC  
RST  
CE IN-to-CE OUT  
Propagation Delay  
V
= V  
max, Figure 9  
2
7
ns  
V
CC  
RST  
V
= V  
max, I  
= -1mA,  
CC  
RST  
OUT  
V
0.8V  
CC  
OH  
V
= V  
CC  
34/MAX795  
CE IN  
CE OUT Drive from CE IN  
Reset to CE OUT High Delay  
V
= V  
max, I  
= 1.6mA,  
CC  
RST  
OUT  
V
OL  
0.2V  
CC  
V
= 0V  
CE IN  
10  
µs  
V
CE OUT Output Voltage  
High (reset active)  
V
OH  
I
OH  
= 500µA, V < 2.3V  
0.8V  
BATT  
CC  
WATCHDOG (MAX793/MAX794 only)  
WDI Input Current  
0V < V < 5.5V  
-1  
0.01  
1.60  
1
µA  
sec  
ns  
CC  
Watchdog Timeout Period  
WDI Pulse Width  
t
1.00  
1.00  
2.25  
WD  
Note 1:  
V
supply current, logic input leakage, watchdog functionality (MAX793/MAX794), MR functionality (MAX793/MAX794),  
CC  
PFI functionality (MAX793/MAX794), state of RESET and RESET (MAX793/MAX794) tested at V  
= 3.6V and V = 5.5V.  
CC  
BATT  
The state of RESET is tested at V = V min.  
CC  
CC  
Note 2: Tested at V  
= 3.6V, V = 3.5V and 0V. The battery current will rise to 10µA over a narrow transition window around  
BATT  
CC  
V
CC  
= 1.9V.  
Note 3: Leakage current into the battery is tested under the worst-case conditions at V = 5.5V, V  
= 1.8V and V = 1.5V,  
CC  
CC  
BATT  
V
BATT  
= 1.0V.  
Note 4: Guaranteed by design.  
Note 5: When V > V > V  
, OUT remains connected to V until V drops below V  
. The V -to-V  
comparator  
SW  
CC  
BATT  
CC  
CC  
BATT  
CC  
BATT  
has a small 15mV typical hysteresis to prevent oscillation. For V < 1.75V (typical), OUT switches to BATT regardless of  
CC  
V
.
BATT  
Note 6: When V  
> V > V , OUT remains connected to V until V drops below the battery switch threshold (V ).  
CC SW CC CC SW  
BATT  
Note 7: OUT switches from BATT to V when V rises above the reset threshold, if V  
> V . In this case, switchover back  
CC  
CC  
BATT  
RST  
to V occurs at the exact voltage that causes reset to be asserted, however switchover occurs 200ms prior to reset. If  
CC  
V
BATT  
< V , OUT switches from BATT to V when V exceeds V  
.
RST  
CC  
CC  
BATT  
Note 8: The reset threshold tolerance is wider for V rising than for V falling to accommodate the 10mV typical hysteresis,  
CC  
CC  
which prevents internal oscillation.  
Note 9: The leakage current into or out of the RESET pin is tested with RESET not asserted (RESET output high impedance).  
Note 10: PFO is normally an output, but is used as an input when activating the battery freshness seal.  
4
_______________________________________________________________________________________  
3 .0 V/3 .3 V/Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
BATT-TO-OUT ON-RESISTANCE  
vs. TEMPERATURE  
V
SUPPLY CURRENT vs. TEMPERATURE  
(NORMAL OPERATING MODE)  
V
-TO-OUT ON-RESISTANCE  
vs. TEMPERATURE  
CC  
CC  
3.0  
2.8  
160  
140  
120  
100  
80  
70  
60  
50  
MAX793/4, V = 5V  
CC  
I
= 30mA  
OUT  
V
= 3.0V  
2.6  
2.4  
2.2  
2.0  
BATT  
MAX795, V = 5V  
CC  
40  
30  
20  
V
= 3.6V  
V
= 3.0V  
MAX793/4, V = 3.3V  
BATT  
CC  
CC  
V
= 3.3V  
CC  
MAX795, V = 3.3V  
CC  
1.8  
1.6  
1.4  
V
= 5V  
CC  
60  
10  
0
I
V
= 250µA  
= 0V  
OUT  
1.2  
1.0  
V
= V = V  
OUT  
V
= 5V  
BATT CC  
BATT  
CC  
40  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
BATTERY SUPPLY CURRENT vs.  
TEMPERATURE (BATTERY-BACKUP MODE)  
RESET COMPARATOR PROPAGATION DELAY  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
vs. TEMPERATURE (V FALLING)  
CC  
0.10  
0.08  
0.06  
0.04  
0.02  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
V
= 0V  
= 3.6V  
CC  
V
BATT  
V
CC  
RISING FROM  
OV TO V MAX  
RST  
0
0
0
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX793  
LOWLINE-TO-RESET THRESHOLD  
vs. TEMPERATURE  
MAX793/MAX794  
LOWLINE COMPARATOR PROPAGATION DELAY  
vs. TEMPERATURE  
MAX793/MAX794  
PFI THRESHOLD vs. TEMPERATURE  
1.250  
1.245  
100  
90  
10  
V
FALLING  
40mV OVERDRIVE  
CC  
8
6
4
2
80  
70  
60  
50  
V
RISING  
CC  
1.240  
1.235  
40  
30  
20  
V
FALLING  
CC  
10  
0
1.230  
0
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(T = +25°C, unless otherwise noted.)  
A
MAX794  
RESET IN THRESHOLD AND LOWLINE-TO-RESET IN  
THRESHOLD vs. TEMPERATURE  
CE IN-TO-CE OUT ON-RESISTANCE  
vs. TEMPERATURE  
MAX793  
BATT OK THRESHOLD vs. TEMPERATURE  
1.242  
1.241  
1.240  
1.239  
1.238  
1.237  
1.236  
30  
25  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
60  
50  
40  
30  
20  
10  
0
V
RESET IN  
V
- V  
LOWLINE RST  
V
FALLING  
V
FALLING  
V = V MAX  
CC RST  
BATT  
CC  
0
0
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX793/MAX794  
MAX793/MAX794  
RESET THRESHOLD vs.  
TEMPERATURE (NORMALIZED)  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
BATTERY FRESHNESS SEAL  
LEAKAGE CURRENT vs. TEMPERATURE  
1.002  
1.001  
1.70  
1.65  
20  
V
= 5.5V  
= 0V  
= 0V  
BATT  
34/MAX795  
V
CC  
V
OUT  
15  
1.000  
0.999  
0.998  
0.997  
0.996  
1.60  
1.55  
10  
5
V
FALLING  
CC  
1.50  
0
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX793/MAX794  
PFI TO PFO PROPAGATION DELAY  
vs. TEMPERATURE  
10  
8
6
4
2
V
PFI  
FALLING  
20mV OVERDRIVE  
0
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
MAX793/  
MAX794  
MAX795  
Supply Output for CMOS RAM. When V rises above the reset threshold or above  
CC  
1
2
1
2
OUT  
V
V
CC  
, OUT is connected to V through an internal P-channel MOSFET switch. When  
BATT CC  
falls below V and V  
, BATT connects to OUT.  
SW  
BATT  
V
CC  
Main Supply Input  
BATT OK  
(MAX793)  
Battery Status Output. High in normal operating mode when V  
exceeds V  
, other-  
BATT  
BOK  
wise low. V  
is checked continuously. Disabled and logic low while V is below V  
.
BATT  
CC  
SW  
3
4
RESET IN  
(MAX794)  
Reset Input. Connect to an external resistor divider to select the reset threshold. The  
reset threshold can be programmed anywhere in the V to 5.5V range.  
SW  
Power-Fail Comparator Input. When PFI is less than V  
or when V falls below V  
,
PFT  
CC  
SW  
PFI  
PFO goes low; otherwise, PFO remains high (see Power-Fail Comparator section).  
Connect to V if unused.  
CC  
Logic Output/External Bypass Switch-Driver Output. High when OUT switches to BATT.  
Low when OUT switches to V . Connect the base/gate of PNP/PMOS transistor to  
5
6
7
3
4
BATT ON  
GND  
CC  
BATT ON for I  
requirements exceeding 75mA.  
OUT  
Ground  
Power-Fail Comparator Output. When PFI is less than V  
or when V falls below  
CC  
PFT  
PFO  
V , PFO goes low; otherwise, PFO remains high. PFO is also used to enable the bat-  
SW  
tery freshness seal (see Battery Freshness Seal, and Power-Fail Comparator sections).  
Manual Reset Input. A logic low on MR asserts reset. Reset remains asserted as long as  
MR is low and for 200ms after MR returns high. The active-low input has an internal  
70µA pull-up current. In can be driven from a TTL- or CMOS-logic line or shorted to  
ground with a switch. Leave open if unused.  
8
9
MR  
WDO  
WDI  
Watchdog Output. WDO goes low if WDI remains either high or low for longer than the  
watchdog timeout period. WDO returns high on the next transition of WDI. WDO is a  
logic high for V < V < V , and low when V is below V .  
SW  
SW  
CC  
RST  
CC  
Watchdog Input. If WDI remains either high or low for longer than the watchdog timeout  
period, the internal watchdog timer runs out and WDO goes low. WDO returns high on  
the next transition of WDI. Connect WDO to MR to generate a reset due to a watchdog  
fault.  
10  
11  
12  
5
6
CE IN  
Chip-Enable Input. The input to the chip-enable gating circuit. Connect to GND if unused  
Chip-Enable Output. CE OUT goes low only when CE IN is low and reset is not asserted.  
If CE IN is low when reset is asserted, CE OUT will remain low for 10µs or until CE IN  
goes high, whichever occurs first. CE OUT is pulled up to OUT.  
CE OUT  
13  
14  
RESET  
Active-High Reset Output. Sources and sinks current. RESET is the inverse of RESET.  
Early Power-Fail Warning Output. Low when V falls to V . This output can be used to  
CC  
LR  
LOWLINE  
generate an NMI to provide early warning of imminent power-failure.  
Open-Drain, Active-Low Reset Output. Pulses low for 200ms when triggered, and stays  
low whenever V is below the reset threshold or when MR is a logic low. It remains low  
for 200ms after either V rises above the reset threshold, the watchdog triggers a reset  
CC  
(WDO connected to MR), or MR goes low to high.  
CC  
15  
16  
7
8
RESET  
BATT  
Backup-Battery Input. When V falls below V and V  
, OUT switches from V to  
BATT CC  
CC  
SW  
BATT. When V rises above the reset threshold or above V  
, OUT reconnects to  
BATT  
CC  
V
. V  
may exceed V . Connect V , OUT, and BATT together if no battery is  
CC CC  
CC BATT  
used.  
_______________________________________________________________________________________  
7
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
out period (t ), the state of MR is ignored if PFO is exter-  
RP  
_______________De t a ile d De s c rip t io n  
nally forced low, to facilitate enabling the battery fresh-  
ness seal. MR has an internal 70µA pull-up current, so it  
can be left open if it is not used. This input can be driven  
with TTL- or CMOS-logic levels, or with open-drain/collec-  
tor outputs. Connect a normally open momentary switch  
from MR to GND to create a manual-reset function; exter-  
nal debounce circuitry is not required. If MR is driven  
from long cables or the device is used in a noisy environ-  
ment, connect a 0.1µF capacitor from MR to ground to  
provide additional noise immunity.  
Ge n e ra l Tim in g Ch a ra c t e ris t ic s  
The MAX793/MAX794/MAX795 are designed for 3.3V  
and 3V systems, and provide a number of supervisory  
functions (see the Selector Guide on the front page).  
Figures 1 and 2 show the typical timing relationships of  
the various outputs during power-up and power-down  
with typical V rise and fall times.  
CC  
Ma n u a l Re s e t In p u t (MAX7 9 3 /MAX7 9 4 )  
Many microprocessor-based products require manual-  
reset capability, allowing the operator, a test technician,  
or external logic circuitry to initiate a reset. On the  
MAX793/MAX794, a logic low on MR asserts reset. Reset  
Re s e t Ou t p u t s  
A microprocessors (µPs) reset input starts the µP in a  
known s ta te . The s e MAX793/MAX794/MAX795 µP  
supervisory circuits assert a reset to prevent code exe-  
c ution e rrors d uring p owe r-up , p owe r-d own, a nd  
remains asserted while MR is low, and for t (200ms)  
RP  
after it returns high. During the first half of the reset time-  
V
LL  
V
RST  
V
SW  
V
CC  
5µs  
V
(MAX793/MAX794)  
LOWLINE  
34/MAX795  
t
RP  
V
RESET  
(PULLED UP TO V )  
CC  
t
RP  
V
RESET  
(MAX793/MAX794)  
V
BATT  
V
CE OUT  
t
/
RP 2  
V
WDO  
25µs  
25µs  
(MAX793/MAX794)  
V
BOK  
(MAX793)  
PFO  
t /  
RP 2  
(MAX793/MAX794)  
25µs  
(PFO FOLLOWS PFI)  
BATT ON  
25µs  
SHOWN FOR V = 0V to 3.3V, V  
= 3.6V, CE IN = GND.  
CC  
BATT  
TYPICAL PROPAGATION DELAYS REFLECT A 40mV OVERDRIVE.  
MAX794: V = V (V / V  
)
RESET IN CC RST IN RST  
Figure 1. Timing Diagram, V Rising  
CC  
8
_______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
brownout conditions. RESET is guaranteed to be a  
If a brownout condition occurs (V  
dips below the  
CC  
log ic low for 0V < V  
greater than 1V. Without a backup battery (V  
< V  
, p rovid e d V  
is  
=
reset threshold), RESET goes low. Each time RESET is  
asserted, it stays low for the reset timeout period. Any  
CC  
RST  
BATT  
BATT  
V
CC  
= V  
), RESET is guaranteed valid for V 1V.  
time V  
goes below the reset threshold, the internal  
OUT  
CC  
CC  
Once V  
exceeds the reset threshold, an internal  
timer restarts.  
CC  
timer keeps RESET low for the reset timeout period  
The watchdog output (WDO) can also be used to initi-  
ate a reset. See the Watchdog Output section.  
(t ); after this interval, RESET becomes high imped-  
RP  
ance (Figure 2). RESET is an open-drain output, and  
The RESET output is the inverse of the RESET output,  
and it can both source and sink current.  
requires a pull-up resistor to V  
(Figure 3). Use a  
CC  
4.7kto 1Mpull-up resistor that will provide sufficient  
current to assure the proper logic levels to the µP.  
V
LL  
V
RST  
V
CC  
V
SW  
V
LOWLINE  
4µs  
(MAX793/MAX794)  
V
RESET  
20µs  
20µs  
(RESET PULLED UP TO V  
)
CC  
V
RESET  
(MAX793/MAX794)  
25µs  
V
CE OUT  
V
BATT  
10µs  
V
WDO  
(MAX793/MAX794)  
25µs  
25µs  
V
BOK  
(MAX793)  
V
PFO  
(MAX793/MAX794)  
25µs  
25µs  
V
BATT  
V
BATT ON  
SHOWN FOR V = 3.3V to 0V, V  
= 3.6V, CE IN = GND, PFI = V .  
CC  
CC  
BATT  
TYPICAL DELAY TIMES REFLECT A 40mV OVERDRIVE  
MAX794: V = V (V / V  
)
RESET IN CC RST IN RST  
Figure 2. Timing Diagram, V Falling  
CC  
_______________________________________________________________________________________  
9
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
(OPTIONAL)  
Si9433DY  
SILICONIX  
V
RST  
V
RST  
3.3V  
D
S
0.1µF  
0.1µF  
V
CC  
PMOS  
R1  
V
CC  
BATT ON OUT  
CMOS  
RAM  
RESET IN  
CE OUT  
t
RP  
R2  
V
CC  
RESET  
PFO  
MAX794  
ADDRESS  
DECODER  
CE IN  
A0-A15  
I/O  
BATT  
0.1µF  
3.6V  
WDI  
PFO STATE LATCHED,  
FRESHNESS SEAL ENABLED.  
WDO  
MR  
(EXTERNALLY HELD AT 0V)  
LOWLINE  
NMI  
V
CC  
+5V SUPPLY  
FAILURE  
RESET PULLED UP TO V  
CC  
4.7k  
PFO  
+5V  
Figure 4. Battery Freshness Seal Enable Timing  
RESET  
RESET  
PFI  
Using the standard application circuit (Figure 3), the  
reset threshold may be programmed anywhere in the  
R1  
GND  
+ 1  
V
= V  
RST RST IN  
(
)
R2  
range of V  
(the battery switch threshold) to 5.5V.  
SW  
Reset is asserted when V falls below V  
.
CC  
SW  
Ba t t e ry Fre s h n e s s S e a l  
The MAX793/MAX794s battery freshness seal discon-  
nects the backup battery from internal circuitry until it is  
needed. This allows an OEM to ensure that the backup  
battery connected to BATT will be fresh when the final  
product is put to use. To enable the freshness seal,  
Figure 3. MAX794 Standard Application Circuit  
34/MAX795  
Re s e t Th re s h o ld  
The MAX793T/MAX795T are intended for 3.3V systems  
with a ±5% power-supply tolerance and a 10% systems  
tolerance. Except when MR is asserted, reset will not  
assert as long as the power supply remains above  
3.15V (3.3V - 5%). Re s e t is g ua ra nte e d to a s s e rt  
before the power supply falls below 3.0V (3.3V - 10%).  
connect a battery to BATT, ground PFO, bring V  
CC  
above the reset threshold and hold it there until reset is  
deasserted following the reset timeout period, then  
bring V  
back down again (Figure 4). Once the bat-  
CC  
The MAX793S/MAX795S are designed for 3.3V ±10%  
power supplies. Except when MR is asserted, they are  
guaranteed not to assert reset as long as the supply  
remains above 3.0V (3.0V is just above 3.3V - 10%).  
Reset is guaranteed to assert before the power supply  
falls below 2.85V (3.3V - 14%).  
tery freshness seal is enabled (disconnecting the back-  
up b a tte ry from the inte rna l c irc uitry a nd a nything  
connected to OUT), it remains enabled until V  
is  
CC  
brought above V . Note that connecting PFO to MR  
RST  
will not interfere with battery freshness seal operation.  
BATT OK Ou t p u t (MAX7 9 3 )  
BATT OK indicates the status of the backup battery.  
When reset is not asserted, the MAX793 checks the  
The MAX793R/MAX795R are optimized to monitor 3.0V  
±10% power supplies. Reset will not occur until V  
CC  
falls below 2.7V (3.0V - 10%), but is guaranteed to  
occur before the supply falls below 2.55V (3.0V - 15%).  
battery voltage continuously. If V  
is below V  
BATT  
BOK  
(2.0V min), BATT OK goes low; otherwise, it remains  
pulled up to V . BATT OK also goes low when V  
Program the MAX794s reset threshold with an external  
voltage divider to RESET IN. The reset-threshold toler-  
ance will be a combination of the RESET IN tolerance  
and the tolerance of the resistors used to make the  
external voltage divider. Calculate the reset threshold  
as follows:  
CC  
CC  
goes below V  
.
SW  
Wa t c h d o g In p u t (MAX7 9 3 /MAX7 9 4 )  
In the MAX793/MAX794, the watchdog circuit monitors  
the µPs activity. If the µP does not toggle the watch-  
dog input (WDI) within 1.6sec, WDO goes low. The  
internal 1.6sec timer is cleared and WDO returns high  
V
RST  
= V  
(R1 / R2 + 1)  
RST IN  
10 ______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
V
RST  
V
CC  
V
CC  
4.7k  
MAX793/MAX794  
t
RP  
WDO  
TO µP  
RESET  
RESET  
WDO  
MR  
V
CC  
t
WD  
WDI  
10µs  
WDO  
RESET  
WDI  
t
RP  
t
WP  
t
RP  
WDO CONNECTED TO µP INTERRUPT  
RESET PULLED UP TO V  
CC  
Figure 5. Watchdog Timing Relationship  
either when a reset occurs or when a transition (low-to-  
high or high-to-low) takes place at WDI. As long as  
reset is asserted, the timer remains cleared and does  
not c ount. As s oon a s re s e t is re le a s e d or WDI  
changes state, the timer starts counting (Figure 5).  
WDI can detect pulses as short as 100ns. Unlike the  
5V MAX690 family, the watchdog function cannot be  
disabled.  
Figure 6. Generating a Reset on Each Watchdog Fault  
Ch ip -En a b le S ig n a l Ga t in g  
Internal gating of chip-enable (CE) signals prevents erro-  
neous data from corrupting CMOS RAM in the event of an  
undervoltage condition. The MAX793/MAX794/MAX795  
use a series transmission gate from CE IN to CE OUT  
(Figure 7). During normal operation (reset not asserted),  
the CE transmission gate is enabled and passes all CE  
transitions. When reset is asserted, this path becomes  
disabled, preventing erroneous data from corrupting the  
CMOS RAM. The short CE propagation delay from CE IN  
to CE OUT enables these µP supervisors to be used with  
most µPs. If CE IN is low when reset asserts, CE OUT  
remains low for typically 10µs to permit completion of the  
current write cycle.  
Wa t c h d o g Ou t p u t (MAX7 9 3 /MAX7 9 4 )  
In the MAX793/MAX794, WDO remains high (WDO is  
pulled up to V ) if there is a transition or pulse at WDI  
CC  
during the watchdog timeout period. WDO goes low if  
no transition occurs at WDI during the watchdog timeout  
period. The watchdog function is disabled and WDO is  
a logic high when reset is asserted if V is above V  
.
CC  
SW  
WDO is a logic low when V is below V  
.
CC  
SW  
Chip-Enable Input  
The CE transmission gate is disabled and CE IN is high  
impedance (disabled mode) while reset is asserted.  
If a system reset is desired on every watchdog fault,  
s imp ly d iod e -OR c onne c t WDO to MR (Fig ure 6).  
When a watchdog fault occurs in this mode, WDO goes  
low, pulling MR low, which causes a reset pulse to be  
issued. Ten microseconds after reset is asserted, the  
watchdog timer clears and WDO returns high. This  
delay results in a 10µs pulse at WDO, allowing external  
During a power-down sequence when V  
passes the  
CC  
reset threshold, the CE transmission gate disables and  
CE IN immediately becomes high impedance if the volt-  
a g e a t CE IN is hig h. If CE IN is low whe n re s e t  
asserts, the CE transmission gate will disable at the  
moment CE IN goes high, or 10µs after reset asserts,  
whichever occurs first (Figure 8). This permits the cur-  
rent write cycle to complete during power-down.  
circuitry to “capture” a watchdog fault indication.  
A
continuous high or low on WDI will cause 200ms reset  
pulses to be issued every 1.6sec.  
______________________________________________________________________________________ 11  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
The propagation delay through the CE transmission  
gate depends on V , the source impedance of the  
CC  
drive connected to CE IN, and the loading on CE OUT  
(see the Chip-Enable Propagation Delay vs. CE OUT  
Loa d Ca p a c ita nc e g ra p h in the Typ ic a l Op e ra ting  
Characteristics). The CE propagation delay is produc-  
tion tested from the 50% point on CE IN to the 50%  
point on CE OUT using a 50driver and 50pF of load  
c a pa c ita nc e (Figure 9). For minimum p ropa ga tion  
delay, minimize the capacitive load at CE OUT, and  
use a low-output-impedance driver.  
MAX793  
MAX794  
MAX795  
OUT  
P
CHIP-ENABLE  
OUTPUT  
CONTROL  
RESET  
GENERATOR  
P
Chip-Enable Output  
When the CE transmission gate is enabled, the imped-  
ance of CE OUT is equivalent to a 46resistor in series  
with the source driving CE IN. In the disabled mode,  
the transmission gate is off and an active pull-up con-  
nects CE OUT to OUT (Figure 8). This pull-up turns off  
when the transmission gate is enabled.  
CE IN  
CE OUT  
N
Ea rly P o w e r-Fa il Wa rn in g  
(MAX7 9 3 /MAX7 9 4 )  
Figure 7. Chip-Enable Transmission Gate  
Critical systems often require an early warning indicat-  
ing that power is failing. This warning provides time for  
the µP to store vital data and take care of any additional  
housekeeping” functions, before the power supply  
gets too far out of tolerance for the µP to operate reli-  
a b ly. The MAX793/MAX794 offe r two me thod s of  
achieving this early warning. If access to the unregu-  
lated supply is feasible, the power-fail comparator input  
(PFI) c a n b e c onne c te d to the unre g ula te d s up p ly  
The CE transmission gate remains disabled and CE IN  
remains high impedance (regardless of CE IN activity)  
for the first half of the reset timeout period (t / 2), any  
time a reset is generated. While disabled, CE IN is  
high impedance. When the CE transmission gate is  
enabled, the impedance of CE IN appears as a 46Ω  
resistor in series with the load at CE OUT.  
34/MAX795  
RP  
V
RST  
V
RST  
V
RST  
V
RST  
V
CC  
V
SW  
V
SW  
CE OUT  
V
BATT  
V
BATT  
10µs  
V
CC  
t
RP  
/2  
t
RP  
RESET  
(PULLED TO V  
)
CC  
CE IN  
V
BATT  
= 3.6V  
RESET PULLED UP TO V  
CC  
Figure 8. Chip-Enable Timing  
12 ______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
pulled to V . Use LOWLINE to provide an NMI to the  
CC  
µP when power begins to fall.  
V
CC  
V
In most battery-operated portable systems, reserve  
energy in the battery provides ample time to complete  
the s hutd own routine onc e the low-line wa rning is  
encountered and before reset asserts. If the system  
CC  
BATT  
3.6V  
MAX793  
MAX794  
MAX795  
must also contend with a more rapid V fall time, such  
CC  
25EQUIVALENT  
SOURCE IMPEDANCE  
as when the main battery is disconnected or a high-  
side switch is opened during normal operation, use  
50CABLE  
capacitance on the V line to provide time to execute  
the shutdown routine (Figure 11).  
CC  
CE OUT  
CE IN  
50Ω  
First, calculate the worst-case time required for the sys-  
tem to perform its shutdown routine. Then, with the worst-  
case shutdown time, the worst-case load current, and the  
50pF  
C *  
50Ω  
L
GND  
minimum low-line to reset threshold (V min), calculate  
LR  
the amount of capacitance required to allow the shut-  
down routine to complete before reset is asserted:  
*C INCLUDES LOAD CAPACITANCE AND SCOPE PROBE CAPACITANCE.  
L
C
> I  
x t  
/ V  
SHDN LR  
HOLD  
LOAD  
Figure 9. CE Propagation Delay Test Circuit  
whe re I  
is the c urre nt b e ing dra ine d from the  
LOAD  
capacitor, V is the low-line to reset threshold differ-  
LR  
through a voltage divider, with the power-fail compara-  
tor output (PFO) providing the NMI to the µP (Figure  
10). If there is no easy access to the unregulated sup-  
ply, the LOWLINE output can be used to generate an  
NMI to the µP (see LOWLINE Output section).  
ence (V - V  
), and t  
RST  
is the time required for  
LL  
SHDN  
the system to complete an orderly shutdown routine.  
Power-Fail Comparator (MAX793/MAX794)  
The MAX793/MAX794s PFI input is compared to an  
internal reference. If PFI is less than the power-fail  
LOWLINE Output (MAX793/MAX794)  
threshold (V ), PFO goes low. The power-fail com-  
PFT  
The low-line comparator monitors V  
with a threshold  
CC  
parator is intended for use as an undervoltage detector  
to signal a failing power supply (Figure 12). However,  
the comparator does not need to be dedicated to this  
function because it is completely separate from the rest  
of the circuitry.  
voltage typically 45mV above the reset threshold (10mV  
of hysteresis) for the MAX793, and 15mV above RESET  
IN (4mV of hysteresis) for the MAX794. For normal  
operation (V above the reset threshold), LOWLINE is  
CC  
UNREGULATED  
3.0V OR 3.3V  
SUPPLY  
REGULATOR  
3.0V OR 3.3V  
REGULATOR  
TO µP NMI  
LOWLINE  
V
CC  
C
HOLD  
V
CC  
MAX793  
MAX794  
MAX793  
MAX794  
R1  
R2  
TO µP NMI  
PFO  
PFI  
C
> I  
x t  
V
LR  
HOLD LOAD SHDN  
GND  
GND  
Figure 10. Using the Power-Fail Comparator to Generate  
Power-Fail Warning  
Figure 11. Using LOWLINE to Provide Power-Fail Warning  
to the µP  
______________________________________________________________________________________ 13  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
V
IN  
3.0V OR 3.3V  
3.0V OR 3.3V  
V
V
CC  
CC  
R1  
R2  
R1  
R2  
MAX793  
MAX794  
MAX793  
MAX794  
PFI  
PFO  
PFI  
PFO  
MR  
GND  
GND  
V
IN  
V
CC  
V
CC  
PFO  
PFO  
V
IN  
V
IN  
V
L
V
TRIP  
V
TRIP  
V
H
0V  
1
1
V
CC  
R1 + R2  
R2  
+
V
= R2 (V + V  
PFT  
)
TRIP  
PFH  
V
= V  
PFT  
(
)
CC  
TRIP  
(
)
R1 R2  
R1  
WHERE V = 1.237V  
PFT  
1
1
V
V
PFH  
= 10mV  
R1 + R2  
+
V = R2 (V  
)
L
PFT  
V = (V + V  
)
(
)
H
PFT PFH  
(
)
R1 R2  
R1  
NOTE: V  
TRIP,  
V ARE NEGATIVE  
L
R2  
(a)  
(b)  
Figure 12. Using the Power-Fail Comparator to Monitor an Additional Power Supply: (a) V Is Negative, (b) V Is Positive  
IN  
IN  
34/MAX795  
The power-fail comparator turns off and PFO goes low  
when V falls below V on power-down. During the  
V
is greater than V , or when V  
falls below  
BATT  
CC  
CC  
1.75V (typ) regardless of the BATT voltage.  
CC  
SW  
first half of the reset timeout period (t ), PFO is forced  
RP  
Switchover at V ensures that battery-backup mode is  
SW  
high, irrespective of V . At the beginning of the sec-  
PFI  
entered before V  
gets too close to the 2.0V mini-  
OUT  
ond half of t , the power-fail comparator is enabled  
RP  
mum required to reliably retain data in most CMOS  
RAM, (s witc hove r a t hig he r V volta g e s would  
and PFO follows PFI. If the comparator is unused, con-  
nect PFI to VCC and leave PFO unconnected. PFO may  
be connected to MR so that a low voltage on PFI will  
generate a reset (Figure 12b). In this configuration,  
when the monitored voltage causes PFI to fall below  
CC  
decrease backup-battery life). When V  
recovers,  
CC  
switchover is deferred either until V crosses V  
if  
CC  
BATT  
V
BATT  
is below V  
, or when V  
rises above the  
RST  
CC  
reset threshold (V  
powe r-up switc hove r te c hnique p re ve nts V  
) if V  
is above V .  
This  
from  
RST  
BATT  
RST  
V , PFO pulls MR low, causing a reset to be assert-  
PFT  
CC  
ed. Reset remains asserted as long as PFO holds MR  
low, and for 200ms after PFO pulls MR high when the  
monitored supply is above the programmed threshold.  
charging the backup battery through OUT when using  
an external transistor driven by BATT ON. OUT con-  
nects to V  
through a 4(max) PMOS power switch  
CC  
when V crosses the reset threshold (Figure 13).  
CC  
Ba c k u p -Ba t t e ry S w it c h o ve r  
In the event of a brownout or power failure, it may be  
necessary to preserve the contents of RAM. With a  
backup battery installed at BATT, the devices automati-  
BATT ON (MAX7 9 3 /MAX7 9 4 )  
BATT ON is high when OUT is connected to BATT.  
Although BATT ON can be used as a logic output to  
indicate the battery switchover status, it is most often  
used as a gate or base drive for an external pass tran-  
sistor for high-c urre nt a pp lic a tions (se e Driving a n  
Exte rna l Switc h with BATT ON in the Ap p lic a tions  
cally switch RAM to backup power when V  
falls. In  
CC  
order to allow the backup battery (e.g., a 3.6V lithium  
cell) to have a higher voltage than V , this family of µP  
CC  
supervisors (designed for 3.3V and 3V systems) does  
not a lwa ys c onne c t BATT to OUT whe n V  
is  
BATT  
Informa tion s e c tion). Whe n V  
e xc e e d s V  
on  
CC  
RST  
greater than V  
.
BATT connects to OUT (through a  
CC  
power-up, BATT ON sinks 3.2mA at 0.4V. In battery-  
backup mode, this terminal sources 100µA from BATT.  
140switch) either when V falls below V and  
CC  
SW  
14 ______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
to V , the collector to OUT, and the base to BATT ON  
CC  
(Figure 14a). No current-limiting resistor is required,  
but a resistor connecting the base of the PNP to BATT  
3.3V  
V
RST  
ON can be used to limit the current drawn from V  
prolonging battery life in portable equipment.  
,
CC  
V
CC  
V
SW  
If you are using a PMOS transistor, however, it must be  
c onne c te d b a c kwa rd s from the tra d itiona l me thod .  
Connect the gate to BATT ON, the drain to V , and  
CC  
the source to OUT (Figure 14b). This method orients  
3.6V  
3.6V  
the body diode from V  
to OUT and prevents the  
3.3V  
CC  
backup battery from discharging through the FET when  
its gate is high. Two PMOS transistors in the Siliconix  
V
OUT  
LITTLE FOOTseries are specified with V down to  
GS  
V
BATT  
= 3.6V  
-2.7V. The Si9433DY has a maximum 100mdrain-  
source on-resistance with 2.7V of gate drive and a 2A  
drain-source current. The Si9434DY specifies a 60mΩ  
drain-source on-resistance with 2.7V of gate drive and  
a 5.1A drain-source current.  
Figure 13. Battery Switchover Timing  
Table 1. Input and Output Status in  
Battery-Backup Mode  
Us in g a S u p e rCa p ™ a s a Ba c k u p  
P o w e r S o u rc e  
PIN NAME  
STATUS  
Connected to BATT through an internal  
Sup e rCa p s ™ a re c a p a c itors with e xtre me ly hig h  
capacitance values (e.g., order of 0.47F) for their size.  
Figure 15 shows two ways to use a SuperCap as a  
backup power source. The SuperCap can be connect-  
ed through a diode to the 3V input (Figure 15a); or, if a  
5V s up p ly is a ls o a va ila b le , the Sup e rCa p c a n b e  
charged up to the 5V supply (Figure 15b), allowing a  
OUT  
140switch  
V
CC  
Disconnected from OUT  
Pulled up to BATT  
Logic low  
BATT ON  
BATT OK  
PFI  
Disabled  
PFO  
Logic low  
longer backup period. Since V  
can exceed V  
BATT  
CC  
MR  
Disabled, but still pulled up to V  
while V  
is above the reset threshold, there are no  
CC  
CC  
special precautions when using these µP supervisors  
with a SuperCap.  
WDO  
Logic low  
Disabled  
Logic low  
WDI  
RESET  
RESET  
BATT  
Op e ra t io n w it h o u t a  
Ba c k u p P o w e r S o u rc e  
The s e µP s up e rvis ors we re d e s ig ne d for b a tte ry-  
backed applications. If a backup battery is not used,  
Pulled up to V  
CC  
Connected to OUT  
Logic low  
LOWLINE  
CE IN  
CE OUT  
connect BATT, OUT, and V together, or use a differ-  
CC  
High impedance  
Pulled to BATT  
ent µP supervisor. See the µP Supervisory Circuits  
table at the end of this data sheet.  
__________Ap p lic a t io n s In fo rm a t io n  
These µP supervisory circuits are not short-circuit pro-  
Re p la c in g t h e Ba c k u p Ba t t e ry  
The backup power source can be removed while V  
CC  
re ma ins va lid , without d a ng e r of trig g e ring a re s e t  
pulse, provided that BATT is decoupled with a 0.1µF  
tected. Shorting V  
to ground, excluding power-up  
OUT  
transients such as charging a decoupling capacitor,  
destroys the device. Decouple both V and BATT  
capacitor to ground. As long as V  
stays above the  
CC  
CC  
re s e t thre s hold , b a tte ry-b a c kup mod e c a nnot b e  
entered.  
pins to ground by placing 0.1µF ceramic capacitors as  
close to the device as possible.  
Drivin g a n Ex t e rn a l S w it c h w it h BATT ON  
BATT ON can be directly connected to the base of a  
PNP transistor or the gate of a PMOS transistor. The  
PNP connection is straightforward: connect the emitter  
™ LITTLE FOOT is a trademark of Siliconix Inc.  
SuperCap is a trademark of Baknor Industries.  
______________________________________________________________________________________ 15  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
PMOS FET  
BODY DIODE  
TO CMOS RAM  
3.0V OR 3.3V  
S
D
G
V
CC  
BATT ON OUT  
V
CC  
BATT ON OUT  
MAX793  
MAX794  
MAX795  
MAX793  
MAX794  
MAX795  
GND  
GND  
(a)  
(b)  
Figure 14. Driving an External Transistor with BATT ON  
3.0V OR 3.3V  
+5V  
3.0V OR  
3.3V  
V
MAX793  
MAX794  
OUT  
TO STATIC  
RAM  
CC  
V
MAX793  
MAX794  
OUT  
TO STATIC  
RAM  
CC  
CC  
34/MAX795  
V
V
CC  
1N4148  
1N4148  
0.47F  
BATT  
RESET  
TO µP  
BATT  
RESET  
TO µP  
0.47F  
GND  
GND  
(a)  
Figure 15. Using a SuperCap™ as a Backup Source  
(b)  
The IC decides whether or not to enter freshness seal  
mode during all reset timeout periods. During a power-  
____________________________Erra t u m  
Initial versions of the MAX793 and MAX794 have a  
logic design error that can cause the loss of output volt-  
up reset timeout period (which occurs when V  
is  
CC  
raised above the MAX793s reset threshold or the volt-  
age on the MAX794s RESET IN pin is raised above the  
RESET IN threshold), the IC momentarily disconnects  
the PFO pin from the comparator output and lightly  
age (OUT) when V  
is absent even though a backup  
CC  
battery is connected to the BATT input. Applications  
that do not use the MR input (including all MAX795  
a p p lic a tions ) a re una ffe c te d b y this p he nome non.  
Also, applications that do not use PFO are unaffected if  
pulls PFO up to V . The voltage level on the PFO pin  
CC  
is then tested and, if it is low, freshness seal mode is  
chosen. (PFO is reconnected to the comparator output  
before the end of the reset timeout period.)  
PFI is tied to V  
.
CC  
The loss of output voltage is caused by the IC incor-  
re c tly e nte ring the b a tte ry “fre s hne s s s e a l” mod e .  
Normally, freshness seal mode is activated by ground-  
ing PFO during a power-up reset timeout period. Then,  
However, when a reset is initiated by MR, the PFO pin  
incorrectly remains connected to the comparator output  
during the entire timeout period and is not pulled up. If  
the comparator is driving PFO low during an MR reset  
the removal of V  
powers the IC down without con-  
CC  
necting the backup battery to OUT.  
16 ______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
V
IN  
V
IN  
R1  
R2  
V
V
CC  
R1  
R2  
CC  
PFI  
MAX793  
MAX794  
MAX793  
MAX794  
PFI  
R3  
R3  
C1*  
C1*  
PFO  
PFO  
GND  
GND  
*OPTIONAL  
*OPTIONAL  
V
TO µP  
TO µP  
PFO  
0V  
PFO  
0V  
V
IN  
IN  
V
TRIP  
V
H
V
L
V
H
0V  
0V  
V
TRIP  
R1 + R2  
V
= V  
(
)
R1 + R2  
R2  
TRIP  
PFT  
R2  
V
= V  
PFT  
(
)
TRIP  
WHERE V = 1.237V  
PFT  
V
1
1
1
D
V
= 10mV  
+
+
PFH  
V = R1 (V + V )  
PFT PFH  
1
1
1
(
)
H
V = (V + V ) (R1)  
H
PFT PFH  
R3  
R1 R2 R3  
+
+
(
)
R1 R2 R3  
WHERE V = 1.237V  
PFT  
1
1
1
V
CC  
+
+
V = R1 V  
PFT  
(
)
L
V
= 10mV  
PFH  
R1 R2 R3  
R3  
V
D
= DIODE FORWARD VOLTAGE DROP  
(a)  
(b)  
V = V  
L
TRIP  
Figure 16. Adding Hysteresis to the Power-Fail Comparator: (a) Symmetrical Hysteresis, (b) Hysteresis Only on Rising V  
IN  
timeout period (because PFI is below the PFI thresh-  
old), the IC will test the voltage level on PFO, find that it  
is low, and incorrectly decide to enter freshness seal  
V
CC  
mode. If V  
is later removed, the backup battery will  
CC  
not be connected to OUT and any devices powered by  
OUT will lose power.  
V
CC  
V
CC  
Applications that do not use the PFO comparator need  
not be affected by this problem. Simply connect PFI to  
RESET  
N
V
CC  
and PFO will be driven high during all reset time-  
RESET  
out periods. Freshness seal mode can be entered only  
when PFO is low.  
RESET  
GENERATOR  
The IC is under revision to correct this problem. The  
revised IC will disable PFO during all reset timeout peri-  
ods including MR-initiated ones. This revision will not  
affect applications that either do not use MR or do not  
use PFO, but could affect applications that require the  
use of the PFO output during MR-initiated reset timeout  
periods. The revised ICs are expected to be available  
in late 1996. For technical assistance, please contact  
Ma xim Ap p lic a tions a t 1-800-998-8800 or a t  
http:// www. maxim-ic.com.  
µP  
MAX793  
MAX794  
MAX795  
GND  
GND  
Figure 17. Interfacing to µPs with Bidirectional Reset I/O  
______________________________________________________________________________________ 17  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
PFI. PFO can be used to generate an interrupt to the  
µP or to cause reset to assert (Figure 12).  
Ad d in g Hys t e re s is t o t h e P o w e r-Fa il  
Co m p a ra t o r (MAX7 9 3 /MAX7 9 4 )  
The power-fail comparator has a typical input hystere-  
sis of 10mV. This is sufficient for most applications  
where a power-supply line is being monitored through  
an external voltage divider (see the section Monitoring  
an Additional Power Supply).  
In t e rfa c in g t o µP s w it h  
Bid ire c t io n a l Re s e t P in s  
Since the RESET output is open drain, the MAX793/  
MAX794/MAX795 interface easily with µPs that have  
bidirectional reset pins, such as the Motorola 68HC11.  
Connecting the RESET output of the µP supervisor  
directly to the RESET input of the microcontroller with a  
single pull-up resistor allows either device to assert  
reset (Figure 17).  
If additional noise margin is desired, connect a resistor  
between PFO and PFI as shown in Figure 16a. Select  
the ratio of R1 and R2 such that PFI sees V  
when  
PFT  
V
IN  
falls to its trip point (V  
). R3 adds the additional  
TRIP  
hysteresis and should typically be more than 10 times  
the value of R1 or R2. The hysteresis window extends  
Ne g a t ive -Go in g V  
Tra n s ie n t s  
CC  
These supervisors are relatively immune to short-dura-  
both above (V ) and below (V ) the original trip point  
H
L
tion negative-going V transients (glitches) while issu-  
CC  
(V  
TRIP  
).  
ing resets to the µP during power-up, power-down, and  
brownout conditions. Therefore, resetting the µP when  
Connecting an ordinary signal diode in series with R3,  
as shown in Figure 16b, causes the lower trip point (V )  
L
V
experiences only small glitches is usually not rec-  
CC  
to coincide with the trip point without hysteresis (V  
),  
TRIP  
ommended.  
so the entire hysteresis window occurs above V  
.
TRIP  
Figure 18 shows maximum transient duration vs. reset-  
comparator overdrive, for which reset pulses are not  
generated. The graph was produced using negative-  
pulses, starting at 3.3V and ending below  
the reset threshold by the magnitude indicated (reset  
comparator overdrive). The graph shows the maximum  
This method provides additional noise margin without  
compromising the accuracy of the power-fail threshold  
when the monitored voltage is falling. It is useful for  
accurately detecting when a voltage falls past a thresh-  
old. The current through R1 and R2 should be at least  
1µA to ensure that the 25nA (max over temperature)  
PFI input current does not shift the trip point. R3 should  
be larger than 82kso it does not load down the PFO  
pin. Capacitor C1 is optional, and adds noise rejection.  
going V  
CC  
34/MAX795  
pulse width a negative-going V transient can typically  
CC  
Mo n it o rin g a n Ad d it io n a l P o w e r S u p p ly  
These µP supervisors can monitor either positive or  
negative supplies using a resistor voltage divider to  
START  
SET WDI  
HIGH  
100  
90  
80  
70  
60  
50  
40  
30  
PROGRAM  
CODE  
Subroutine or  
Program Loop  
SET WDI LOW  
20  
10  
0
10 20 30 40 50 60 70 80 90 100  
RETURN  
RESET COMPARATOR OVERDRIVE, V - V (mV)  
RST  
CC  
Figure 18. Maximum Transient Duration without Causing a  
Reset Pulse vs. Reset Comparator Overdrive  
Figure 19. Watchdog Flow Diagram  
18 ______________________________________________________________________________________  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
34/MAX795  
have without causing a reset pulse to be issued. As  
the amplitude of the transient increases (i.e., goes far-  
ther below the reset threshold), the maximum allowable  
_________________P in Co n fig u ra t io n s  
pulse width decreases. Typically, a V transient that  
goes 40mV below the reset threshold and lasts for  
10µs or less will not cause a reset pulse to be issued.  
CC  
TOP VIEW  
OUT  
BATT  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
RESET  
LOWLINE  
RESET  
CE OUT  
CE IN  
A 0.1µF bypass capacitor mounted close to the V  
CC  
pin provides additional transient immunity.  
CC  
(RESET IN) BATT OK  
PFI  
BATT ON  
GND  
MAX793  
MAX794  
Wa t c h d o g S o ft w a re Co n s id e ra t io n s  
There is a way to help the watchdog timer monitor soft-  
ware execution more closely, which involves setting  
and resetting the watchdog input at different points in  
the program rather than pulsing” the watchdog input  
high-low-high or low-high-low. This technique avoids a  
stuck” loop, in which the watchdog timer would con-  
tinue to be reset within the loop, keeping the watchdog  
from timing out. Figure 19 shows an example of a flow  
diagram where the I/O driving the watchdog input is  
set high at the beginning of the program, set low at the  
beginning of every subroutine or loop, then set high  
again when the program returns to the beginning. If  
the program should “hang” in any subroutine, the prob-  
lem would quickly be corrected, since the I/O is contin-  
ually set low and the watchdog timer is allowed to time  
out, causing a reset or interrupt to be issued.  
PFO  
WDI  
MR  
WDO  
DIP / Narrow SO  
BATT  
RESET  
CE OUT  
CE IN  
OUT  
1
8
7
6
5
V
2
3
4
CC  
MAX795  
BATT ON  
GND  
DIP/SO  
( ) ARE FOR MAX794  
___________________Ch ip In fo rm a t io n  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART*  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
16 Plastic DIP  
16 Narrow SO  
8 Plastic DIP  
8 SO  
TRANSISTOR COUNT: 1271  
MAX794CPE  
MAX794CSE  
MAX794EPE  
MAX794ESE  
MAX795_CPA  
MAX795_CSA  
MAX795_EPA  
MAX795_ESA  
8 Plastic DIP  
8 SO  
* The MAX793/MAX795 offer a choice of reset threshold voltage.  
Select the letter corresponding to the desired reset threshold volt-  
age range (T = 3.00V to 3.15V, S = 2.85V to 3.00V, R = 2.55V  
to 2.70V) and insert it into the blank to complete the part number.  
The MAX794s reset threshold is adjustable.  
______________________________________________________________________________________ 19  
3 .0 V/3 .3 V Ad ju s t a b le Mic ro p ro c e s s o r  
S u p e rvis o ry Circ u it s  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
E
MIN  
MAX  
0.200  
MIN  
MAX  
5.08  
A
E1  
D
A1 0.015  
A2 0.125  
A3 0.055  
0.38  
3.18  
1.40  
0.41  
1.14  
0.20  
0.13  
7.62  
6.10  
2.54  
7.62  
0.175  
0.080  
0.022  
0.065  
0.012  
0.080  
0.325  
0.310  
4.45  
2.03  
0.56  
1.65  
0.30  
2.03  
8.26  
7.87  
A3  
A2  
A1  
A
L
B
0.016  
B1 0.045  
0.008  
D1 0.005  
0.300  
E1 0.240  
0.100  
eA 0.300  
C
0° - 15°  
E
C
e
e
B1  
eA  
eB  
B
eB  
L
0.400  
0.150  
10.16  
3.81  
0.115  
2.92  
D1  
INCHES  
MILLIMETERS  
PKG. DIM  
PINS  
Plastic DIP  
PLASTIC  
DUAL-IN-LINE  
PACKAGE  
(0.300 in.)  
MIN  
MAX MIN  
MAX  
8
P
P
P
P
P
N
D
D
D
D
D
D
0.348 0.390 8.84  
9.91  
14  
16  
18  
20  
24  
0.735 0.765 18.67 19.43  
0.745 0.765 18.92 19.43  
0.885 0.915 22.48 23.24  
1.015 1.045 25.78 26.54  
1.14 1.265 28.96 32.13  
21-0043A  
34/MAX795  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.053  
MAX  
0.069  
0.010  
0.019  
0.010  
0.157  
MIN  
1.35  
0.10  
0.35  
0.19  
3.80  
MAX  
1.75  
0.25  
0.49  
0.25  
4.00  
A
D
A1 0.004  
B
C
E
e
0.014  
0.007  
0.150  
0°-8°  
A
0.101mm  
0.004in.  
0.050  
1.27  
e
H
L
0.228  
0.016  
0.244  
0.050  
5.80  
0.40  
6.20  
1.27  
A1  
C
B
L
INCHES  
MILLIMETERS  
DIM PINS  
Narrow SO  
SMALL-OUTLINE  
PACKAGE  
MIN MAX  
MIN  
MAX  
5.00  
8.75  
8
0.189 0.197 4.80  
D
D
D
E
H
14 0.337 0.344 8.55  
16 0.386 0.394 9.80 10.00  
(0.150 in.)  
21-0041A  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX793CSE

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
MAXIM

MAX793EPE

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
MAXIM

MAX793ESE

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
MAXIM

MAX793R

3.0V/3.3V Adjustable Microprocessor Supervisory Circuits
MAXIM

MAX793RCPE

Power Supply Supervisor
MAXIM

MAX793RCSE

Power Supply Supervisor
MAXIM

MAX793RCSE+T

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, 0.150 INCH, ROHS COMPLIANT, MS-012AC, SOIC-16
MAXIM

MAX793RCSE-T

Power Supply Management Circuit, Fixed, 2 Channel, CMOS, PDSO16, 0.150 INCH, MS-012AC, SOIC-16
MAXIM

MAX793REPE

Power Supply Supervisor
MAXIM

MAX793REPE+

2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP16, 0.300 INCH, LEA FREE, PLASTIC, DIP-16
ROCHESTER

MAX793RESE

Power Supply Supervisor
MAXIM

MAX793RESE+

Power Supply Management Circuit, Fixed, 2 Channel, PDSO16, 0.150 INCH, LEAD FREE, SOIC-16
MAXIM