MAX754CSE [MAXIM]

CCFL Backlight and LCD Contrast Controllers; CCFL背光和LCD对比度控制器
MAX754CSE
型号: MAX754CSE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

CCFL Backlight and LCD Contrast Controllers
CCFL背光和LCD对比度控制器

控制器 CD
文件: 总16页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0197; Rev 1; 1/95  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Drives Backplane and Backlight  
4V to 30V Battery Voltage Range  
Low 500µA Supply Current  
The MAX753/MAX754 drive cold-cathode fluorescent  
lamps (CCFLs) and provide the LCD backplane bias  
(contrast) power for color or monochrome LCD panels.  
These ICs are designed specifically for backlit note-  
book-computer applications.  
Digital or Potentiometer Control of CCFL  
Brightness and LCD Bias Voltage  
Both the backplane bias and the CCFL supply can be  
shut down independently. When both sections are shut  
down, supply current drops to 25µA. The LCD contrast  
and CCFL brightness can be adjusted by clocking sep-  
arate digital inputs or using external potentiometers.  
LCD contrast and backlight brightness settings are pre-  
served in their respective counters while in shutdown.  
On p owe r-up , the LCD c ontra s t c ounte r a nd CCFL  
brightness counter are set to one-half scale.  
Negative LCD Contrast (MAX753)  
Positive LCD Contrast (MAX754)  
Independent Shutdown of Backlight and  
Backplane Sections  
25µA Shutdown Supply Current  
The ICs are powered from a regulated 5V supply. The  
magnetics are connected directly to the battery, for  
maximum power efficiency.  
______________Ord e rin g In fo rm a t io n  
The CCFL driver uses a Royer-type resonant architec-  
ture. It can provide from 100mW to 6W of power to one  
or two tubes. The MAX753 provides a negative LCD  
bias voltage; the MAX754 provides a positive LCD bias  
voltage.  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 Plastic DIP  
16 Narrow SO  
Dice*  
MAX753CPE  
MAX753CSE  
MAX753C/D  
MAX753EPE  
MAX753ESE  
MAX754CPE  
MAX754CSE  
MAX754C/D  
MAX754EPE  
MAX754ESE  
16 Plastic DIP  
16 Narrow SO  
16 Plastic DIP  
16 Narrow SO  
Dice*  
________________________Ap p lic a t io n s  
Notebook Computers  
Palmtop Computers  
Pen-Based Data Systems  
16 Plastic DIP  
16 Narrow SO  
Personal Digital Assistants  
Portable Data-Collection Terminals  
* Contact factory for dice specifications.  
__________________P in Co n fig u ra t io n  
TOP VIEW  
V
LFB  
DD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LADJ  
LON  
CON  
BATT  
LX  
LDRV  
PGND  
CDRV  
CS  
MAX753  
MAX754  
CADJ  
GND  
REF  
CFB  
CC  
DIP/SO  
Block Diagram located at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND.................................................................-0.3V, +7V  
Operating Temperature Ranges  
PGND to GND.....................................................................±0.3V  
BATT to GND.............................................................-0.3V, +36V  
LX to GND............................................................................±50V  
MAX75_C_ _ ........................................................0°C to +70°C  
MAX75_E_ _......................................................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CS to GND.....................................................-0.6V, (V + 0.3V)  
DD  
Inputs/Outputs to GND (LADJ, CADJ, LON,  
CON, REF, CFB, CC, CDRV, LDRV, LFB) .....-0.3V, (V + 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
Plastic DIP (derate 10.53mW/°C above +70°C) ...........842mW  
Narrow SO (derate 8.70mW/°C above +70°C) .............696mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
3/MAX754  
(V  
= 5V, BATT = 15V, CON = LON = 5V, LX = GND = PGND = 0V, I  
= 0mA, a ll d ig ita l inp ut le ve ls a re 0V or 5V,  
REF  
DD  
T
A
= T  
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY AND REFERENCE  
BATT Input Range  
4
30  
5.5  
1.29  
0.1  
15  
V
V
V
DD  
Supply Range  
4.5  
REF Output Voltage  
REF Line Regulation  
REF Load Regulation  
No external load  
4V < V < 6V  
1.21  
1.25  
V
%/V  
mV  
DD  
0µA < I < 100µA  
5
L
LON = CON = CS = LFB = CFB =  
LADJ = CADJ = 5V  
V
Quiescent Current  
Shutdown Current  
0.5  
2
mA  
µA  
DD  
LON = CON = CS = LFB = CFB = LADJ  
= CADJ = LX = BATT = 0V (Note 1)  
V
DD  
25  
40  
DIGITAL INPUTS AND DRIVER OUTPUTS  
Input Low Voltage  
LON, CON, CADJ, LADJ; V = 4.5V  
0.8  
±1  
V
V
DD  
Input High Voltage  
LON, CON, CADJ, LADJ; V = 5.5V  
2.4  
DD  
Input Leakage Current  
LON, CON, CADJ, LADJ; V = 0V or 5V  
IN  
µA  
A
Driver Sink/Source Current  
LDRV = CDRV = 2V  
0.5  
Output high  
Output low  
10  
7
LDRV, CDRV;  
= 4.5V  
Driver On-Resistance  
V
DD  
CCFT CONTROLLER  
Zero-Crossing-Comparator Threshold Voltage (CS)  
Overcurrent-Comparator Threshold Voltage (CS)  
CS Input Bias Current  
-10  
1.2  
20  
1.3  
-5  
mV  
V
V
CS  
= 0V  
µA  
Minimum, CFB = 5V  
Maximum, CFB = 0V  
32  
85  
5
47  
VCO Frequency  
DAC Resolution  
kHz  
Bits  
115  
Guaranteed monotonic  
2
_______________________________________________________________________________________  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 5V, BATT = 15V, CON = LON = 5V, LX = GND = PGND = 0V, I  
= 0mA, a ll d ig ita l inp ut le ve ls a re 0V or 5V,  
REF  
DD  
T
A
= T  
to T , unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
At full scale (DAC code = 31)  
1210  
1250  
1290  
At preset DAC, CON = 0V, CADJ = 5V  
(code = 15)  
Feedback Voltage (CFB)  
745  
320  
782  
343  
820  
mV  
At zero scale (code = 0)  
365  
Feedback-Amplifier Input Bias Current  
Feedback-Amplifier Unity-Gain Bandwidth  
Feedback-Amplifier Slew Rate  
±100  
nA  
MHz  
V/µs  
1
0.4  
Source current, CFB = 0V, CC = 2.5V  
Sink current, CFB = 5V, CC = 2.5V  
50  
Feedback-Amplifier Output Current  
LCD CONTROLLER  
µA  
200  
BATT = 4V  
2
0.5  
35  
5
Switch On-Time  
µs  
BATT = 16V  
1.5  
70  
Switching Period  
DAC Resolution  
BATT = 4V, LX = 0V  
Guaranteed monotonic  
At full scale (DAC code = 63)  
µs  
6
Bits  
1200  
1240  
928  
1280  
963  
At preset DAC, LON = 0V, LADJ = 5V  
(code = 31)  
MAX753 Feedback Voltage (REF-LFB)  
MAX754 Feedback Voltage (LFB)  
893  
mV  
mV  
At zero scale (code = 0)  
595  
625  
655  
At full scale (DAC code = 63)  
1210  
1250  
1290  
At preset DAC, LON = 0V, LADJ = 5V  
(code = 31)  
905  
610  
938  
635  
971  
At zero scale (code = 0)  
660  
LFB Input Leakage Current  
BATT Input Current  
±150  
nA  
µA  
LON = CON = CS = LFB = CFB = LADJ =  
CADJ = LX = 0V  
12  
12  
20  
20  
LON = CON = CS = LFB = CFB = LADJ =  
CADJ = 0V, LX = BATT = 15V  
LX Input Current  
µA  
TIMING (Note 2)  
Reset Pulse Width (t )  
110  
0
ns  
ns  
ns  
ns  
ns  
R
Reset Setup Time (t  
)
RS  
Reset Hold Time (t  
)
0
RH  
CADJ, LADJ High Width (t  
)
100  
100  
SH  
CADJ, LADJ Low Width (t  
)
SL  
CADJ Low to CON Low or  
LADJ Low to LON Low (t  
50  
ns  
)
SD  
Note 1: Maximum shutdown current occurs at BATT = LX = 0V.  
Note 2: Timing specifications are guaranteed by design and not production tested.  
_______________________________________________________________________________________  
3
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
______________________________________________________________P in De s c rip t io n  
PIN  
1
NAME  
FUNCTION  
V
DD  
5V Power-Supply Input  
2
LADJ  
LON  
CON  
CADJ  
GND  
REF  
Digital Input for LCD Backplane Bias Adjustment. See Table 1.  
Digital Input to Control LCD Bias Section. See Table 1.  
Digital Input to Control CCFT Section. See Table 1.  
Digital Input for CCFT Brightness Adjustment. See Table 1.  
Analog Ground  
3
4
5
6
7
Reference Voltage Output, 1.25V  
8
CFB  
CC  
Inverting Input for the CCFT Error Amplifier  
Output of the CCFT Error Amplifier  
9
3/MAX754  
10  
11  
12  
13  
14  
15  
16  
CS  
Connect to V  
DD  
CDRV  
PGND  
LDRV  
LX  
Leave unconnected  
Power Ground Connection for LDRV  
Gate-Driver Output. Drives LCD backplane N-channel MOSFET.  
LCD Backplane Inductor Voltage-Sense Pin. Used to sense inductor voltage for on time determination.  
Battery Connection. Used to sense battery voltage for on time determination.  
Voltage Feedback for the LCD Backplane Section  
BATT  
LFB  
D7B, a nd forms a volta g e a c ros s re s is tor R8. The  
_______________Th e o ry o f Op e ra t io n  
MAX753s error amplifier compares the average of this  
voltage to the output of its internal DAC. Adjusting the  
DAC output from zero scale to full scale (digital control)  
causes the error amplifier to vary the tube current from  
a minimum to a maximum. The DACs transfer function  
is shown in Figure 2.  
CCFL In ve rt e r  
The MAX753/MAX754s CCFL inverter is designed to  
d rive one or two c old -c a thod e fluore s c e nt la mp s  
(CCFLs) with power levels from 100mW to 6W. These  
lamps commonly provide backlighting for LCD panels  
in portable computers.  
On power-up or after a reset, the counter sets the DAC  
output to mid scale. Each rising edge of CADJ (with  
CON high) decrements the DAC output. When decre-  
mented beyond full scale, the counter rolls over and  
sets the DAC to the maximum value. In this way, a sin-  
gle pulse applied to CADJ decreases the DAC set-  
point by one step, and 31 pulses increase the set-point  
by one step.  
Drive Requirements for CCFL Tubes  
CCFL backlights require a high-voltage, adjustable AC  
power source. The MAX753/MAX754 generate this AC  
waveform with a self-oscillating, current-fed, parallel  
resonant circuit, also known as a Royer-type oscillator.  
Figure 1 shows one such circuit. The Royer oscillator is  
comprised of T1, C9, the load at the secondary, Q4,  
and Q5. The circuit self-oscillates at a frequency deter-  
mined by the effective primary inductance and capaci-  
tance. Q4 and Q5 are self-driven by the extra winding.  
The current source feeding the Royer oscillator is com-  
prised of L1, D5, and the MAX758A. When current from  
the current source increases, so does the lamp current.  
The error amplifiers output voltage controls the peak  
current output of the MAX758A. The peak switch cur-  
rent is therefore controlled by the output of the error  
amplifier. The lower the error amplifiers output, the  
lower the peak current. Since the current through the  
current source is related to the current through the  
tube, the lower the error amplifiers output, the lower the  
tube current.  
The lamp current is half-wave rectified by D7A and  
4
_______________________________________________________________________________________  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
+5V, ±5%  
UNREGULATED INPUT VOLTAGE  
10  
1
1, 15, 16  
V+  
15  
CS  
BATT  
2
V
DD  
SHDN  
R16  
D1B  
D1A  
C1  
MAX754CSE  
10, 11  
3
GND  
REF  
4
5
3
2
CON  
CADJ  
LON  
C2  
C3  
+5V CMOS  
LOGIC  
CONTROL  
SIGNALS  
D5  
MAX758ACWE  
LADJ  
R17  
12, 13, 14  
7
LX  
SS  
D2B  
D2A  
8
CC  
R2  
R1  
Q2  
Q1  
11  
CDRV  
L1  
POSITIVE  
CONTRAST  
VOLTAGE  
L2  
14  
D3  
LX  
7
REF  
D4  
8
12  
T1  
2
C4  
13  
12  
R5  
R6  
LDRV  
PGND  
5
3,4  
6
1
Q3  
C10  
R3  
R10  
16  
LFB  
C9  
Q5  
C6  
R4  
C8  
Q4  
D7B  
6
9
GND  
CC  
D6A  
D7A  
R8  
D6B  
8
CFB  
C7  
R7  
R18  
C5  
Figure 1. CCFL and Positive LCD Power Supply  
_______________________________________________________________________________________  
5
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
In Figure 1, the MAX758A, L1, and D5 form a voltage-  
controlled switch-mode current source. The current out  
of L1 is proportional to the voltage applied to the SS  
p in. The MAX758A c onta ins a c urre nt-mode p ulse -  
wid th-mod ula ting b uc k re g ula tor tha t s witc he s a t  
170kHz. The voltage on the SS pin sets the switch cur-  
rent limit and thus sets the current out of L1.  
1250  
1221  
1191  
811  
782  
753  
CCFL Current-Regulation Loop  
Figure 3 shows a block diagram of the regulation loop,  
which maintains a fixed CCFL average lamp current  
despite changes in input voltage and lamp impedance.  
This loop regulates the average value of the half-wave  
rectified lamp current. The root mean square lamp cur-  
rent is related to, but not equal to, the average lamp  
current. Assuming a sinusoidal lamp current, select R8  
as follows:  
402  
372  
343  
3/MAX754  
πV  
REF  
R8 =  
0 1  
2
3
14 15 16  
29 30 31  
2 I  
LAMP,RMS  
DAC CODE  
where V  
= 1.25V and I  
is the desired full-  
REF  
LAMP,RMS  
scale root mean square lamp current.  
MID SCALE  
FULL SCALE  
ZERO SCALE  
Figure 2. CCFT DAC Transfer Function  
CON CADJ  
LOGIC AND  
5-BIT COUNTER  
MAX754  
MAX758A  
SWITCH-MODE  
VOLTAGE CONTROLLED  
CURRENT SOURCE  
FULL-SCALE = 1.250V  
HALF-SCALE = 0.782V  
ZERO-SCALE = 0.343V  
SS  
5-BIT VOLTAGE  
OUTPUT DAC  
I
BUCK  
ERROR  
AMPLIFIER  
CC  
CENTER-TAP  
ROYER  
OSCILLATOR  
C10  
CFB  
TRANSISTOR  
EMITTERS  
C5  
R18  
R8  
Figure 3. CCFL Tube Current-Regulation Loop  
6
_______________________________________________________________________________________  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
V
(t)  
TAP  
C10  
V
TAP, PK  
V
SEC  
(t)  
I
(t)  
V
(t)  
LAMP  
LAMP  
t
T
Figure 4. Simple Model of the CCFL  
Figure 5. Voltage at the Center Tap of T1  
The minimum operating input voltage is determined by  
the transformer turns ratio (n), the lamp operating volt-  
pulse-frequency-modulation (PFM) switching regulator.  
The MAX753 adds a simple diode-capacitor voltage  
inverter to the switching regulator.  
age (V  
), and the ballast capactor (C10). Using a  
LAMP  
simple model of the CCFL (see Figure 4) we can calcu-  
late what the T1 center-tap voltage will be at maximum  
lamp current. The voltage on the CCFL is in phase with  
Constant-Current PFM Control Scheme  
The LCD bias generators in these devices use a con-  
stant-peak-current PFM control scheme. Figure 6, which  
shows the MAX754s boost switching regulator, illus-  
trates this control method. When Q3 closes (Q3 “on”) a  
voltage equal to BATT is applied to the inductor, caus-  
ing current to flow from the battery, through the inductor  
and switch, and to ground. This current ramps up linear-  
ly, storing energy in the inductors magnetic field. When  
Q3 opens, the inductor voltage reverses, and current  
flows from the battery, through the inductor and diode,  
and into the output capacitor. The devices regulate the  
output voltage by varying how frequently the switch is  
opened and closed.  
the c urre nt throug h it. Le t us d e fine I  
(t) =  
LAMP  
2I  
c os (ωt) a nd V (t) = 2V  
LAMP LAMP,RMS  
LAMP,RMS  
cos(ωt); then the peak voltage at the center tap will be  
as follows:  
2 I  
LAMP,RMS  
nωC10sin(φ)  
V
= −  
TAP,PK  
where,  
I  
LAMP,RMS  
ωC10V  
1  
φ = tan  
LAMP,RMS  
,
n is the secondary-to-primary turns ratio of T1, and ω is  
the frequency of Royer oscillation in radians per sec-  
ond. The voltage on the center tap of T1 is a full-wave  
rectified sine wave (see Figure 5). The average voltage  
The MAX753/MAX754 not only regulate the output volt-  
age, but also maintain a constant peak inductor cur-  
rent, regardless of the battery voltage. The ICs vary the  
switch on-time to produce the constant peak current,  
and vary its off-time to ensure that the inductor current  
reaches zero at the end of each cycle.  
at V  
must equal the average voltage at the LX node  
TAP  
of the MAX758A, since there cannot be any DC voltage  
on inductor L1; thus the minimum operating voltage  
must be greater than the average voltage at V  
.
TAP  
The internal circuitry senses both the output voltage  
and the voltage at the LX node, and turns on the MOS-  
FET only if: 1) The output voltage is out of regulation,  
and 2) the voltage at LX is less than the battery voltage.  
The first condition keeps the output in regulation, and  
the second ensures that the inductor current always  
resets to zero (i.e., the part always operates in discon-  
tinuous-conduction mode).  
LCD Bia s Ge n e ra t o rs  
The MAX753/MAX754s LCD bias generators provide  
adjustable output voltages for powering LCD displays.  
The MAX753s LCD converter generates a negative  
output, while the MAX754s generates a positive output.  
The MAX753/MAX754 employ a constant-peak-current  
_______________________________________________________________________________________  
7
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
BATTERY  
INPUT  
C2  
10µF  
+5V INPUT  
L2  
33µH  
C1  
0.22µF  
POSITIVE  
LCD-BIAS  
OUTPUT  
D3  
1N5819  
2
3
1
15  
BATT  
14  
LX  
LADJ LON  
V
DD  
LDRV  
LFB  
13  
16  
Q3  
ON-TIME  
LOGIC  
OFF-TIME  
LOGIC  
C6  
10µF  
35V  
R3  
R4  
ON/OFF  
CONTROL  
PULSE-SKIP  
COMPARATOR  
PRESET  
6-BIT COUNTER  
3/MAX754  
CLK  
V
DAC  
MAX754  
6-BIT DAC  
FULL-SCALE OUTPUT = 1.250V  
HALF-SCALE OUTPUT = 0.938V  
ZERO-SCALE OUTPUT = 0.635V  
PGND  
12  
GND  
6
Figure 6. MAX754 Positive LCD-Bias Generator  
Table 1. CCFL Circuit Component Descriptions  
ITEM  
DESCRIPTION  
Integrating Capacitor. 1 / (C5 x R18) sets the dominant pole for the feedback loop, which regulates the lamp  
current. Set the dominant pole at least two decades below the Royer frequency to eliminate the AC compo-  
nent of the voltage on R8. For example, if your Royer is oscillating at 50kHz = 314159rad/s, you should set  
1 / (C5 x R18) 3142rad/s.  
C5  
Integrating Resistor. The output source-current capability of the CC pin (50µA) limits how small R18 can be.  
Do not make R18 smaller than 70k, otherwise CC will not be able to servo CFB to the DAC voltage (i.e., the  
integrator will not be able to integrate) and the loop will not be able to regulate.  
R18  
R8  
R8 converts the half-wave rectified lamp current into a voltage. The average voltage on R8 is not equal to the  
root mean square voltage on R8. The accuracy of R8 is important since it, along with the MAX754 reference,  
sets the full-scale lamp current. Use a ±1%-accurate resistor.  
D7A and D7B half-wave rectify the CCFL lamp current. Half-wave rectification of the lamp current and then  
averaging is a simple way to perform AC-to-DC conversion. D7A and D7Bs forward voltage drop and speed  
are unimportant; they do not need to pass currents larger than about 10mA, and their reverse breakdown  
voltage can be as low as 10V.  
D7A, D7B  
CCFL  
The circuit of Figure 1, with the components shown in the bill of materials (Table 4), will drive a 500V  
oper-  
RMS  
ating cold-cathode fluorescent lamp at 6W of power with a +12V input voltage. The lower the input voltage,  
the less power the circuit can deliver.  
8
_______________________________________________________________________________________  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
Table 1. CCFL Circuit Component Descriptions (continued)  
ITEM  
DESCRIPTION  
The ballast capacitor linearizes the CCFL impedance and guarantees no DC current through the lamp. 15pF  
will work with just about any lamp. Depending on the lamp, you can try higher values, but this may cause the  
regulation loop to become unstable. Larger values of C10 allow the circuit to operate with lower input volt-  
ages. Dont forget that C10 must be a high-voltage capacitor and cannot be polarized. A lamp with a  
C10  
1500V  
maximum strike voltage will require C10 to withstand 1500 x 2 = 2121V.  
RMS  
T1 must have high primary inductance (greater than 30µH), otherwise an inflated value of C9 will be required  
in order to keep the Royer frequency below 60kHz (the maximum allowed by most lamps). A higher T1 sec-  
ondary-to-primary turns ratio allows lower-voltage operation, but increases the size of the transformer.  
T1  
You must select a value for C9 high enough to keep the lamp current reasonably sinusoidal and yet low  
enough that T1s core does not saturate. For the Sumida EPS207 with a 171:1 turns ratio, choose a 0.22µF  
L
MAG  
C9  
value for C9. The characteristic impedance of the resonant tank equals  
, where L  
is the mag-  
MAG  
netizing inductance of T1. The characteristic impedance is defined as the ratio of the voltage across the par-  
allel LC circuit divided by the current flowing between the inductor and capacitor. This circulating current is  
not delivered to the load. If C9 has too large a value, it will cause excessive circulating currents, which will in  
turn saturate the core of T1. It’s easy to tell when you have excess circulating current in the resonant tank,  
because when you touch T1 you burn your finger. However, reducing the value of C9 decreases tank Q,  
which increases the harmonic content of the lamp-current waveform. If the lamp-current waveform does not  
look sinusoidal, then the circuit may not regulate to the right root mean square current.  
C9  
R10 sets the base current for Q4 and Q5. If you choose too large a value for R10, Q4 and Q5 will overheat.  
Too small a value will waste base current and slightly degrade efficiency. The optimal value will depend on  
how much power you are trying to deliver to the lamp. 510is a good always works but may not be the most  
efficient” value for use with the FMMT619 transistors from ZETEX.  
R10  
This resistive divider senses the voltage at the center tap of T1. When the CC pin on the MAX758A rises  
above 1.25V, the internal switch turns off, interrupting power to the Royer oscillator and limiting the open-lamp  
transformer center-tap voltage.  
R5, R6  
D6B, C7, and R7 form a soft-start clamp, which limits the rate-of-rise of the peak current in the MAX758A.  
Make sure R7 is at least 100kso it does not excessively load the CC pin.  
D6B, C7, R7  
D6A, R17  
D6A and R17 are also part of the soft-start clamp. The voltage on the SS pin controls the peak current in the  
MAX758A’s switch. Make sure R17 is at least 100kso it does not excessively load the CC pin.  
L1  
D5  
C2  
Inductor for the Switching-Current Source. Use a 47µH to 150µH inductor with a 1A to 1.5A saturation current.  
Schottky Catch Diode. Use a 1A to 1.5A Schottky diode with low forward-voltage power.  
Supply Bypass Capacitor. Use low-ESR capacitor.  
_______________________________________________________________________________________  
9
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
Table 2. CCFL Circuit Design Example (Note 1)  
PARAMETER  
CCFL Specifications  
Strike Voltage (V )  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
V
S,RMS  
1100  
1500  
V
RMS  
S
Discharging Tube Current (I )  
I
0.001376  
0.005  
A
RMS  
L
LAMP,RMS  
Discharging Tube Voltage (V )  
L
V
435  
V
RMS  
LAMP,RMS  
LCD Contrast Voltage Specifications  
Bias Voltage  
V
16.3  
32.6  
V
A
LCD  
Output Current  
I
0.0245  
LCD  
Royer Specifications  
T1 Turns Ratio (Sec/Pri) (Note 2)  
T1 Resonating Inductance (Note 2)  
C9 Value (Note 3)  
n
171  
L
0.000045  
2.2E-07  
H
F
MAG  
C
RES  
BAL  
w
3/MAX754  
C10 Value  
C
1.5E-11  
F
Royer Frequency  
317820.86  
rad/s  
MAX754 Specifications  
Reference Voltage  
V
REF  
1.25  
V
Second Volts Constant  
CCFL Circuit Calculations  
R8 Current-Sensing Resistor  
Secondary Voltage Phase vs. Tube Voltage  
T1 Center-Tap Peak Voltage  
Secondary Limit Voltage  
T1 Center-Tap Limit Peak Voltage  
R5/R6  
sV  
0.000008  
2.4E-05  
sV  
R8  
555.36037  
-1.1776341  
9.3903817  
1350  
phi  
Radian  
V
V
PEAK  
TAP,PK  
V
LIM  
V
RMS  
11.164844  
0.1341944  
V
PEAK  
R
R
/Ω  
OTP,RATIO  
LCD Circuit Calculations  
V
IN(min)  
Full-Load Switching Period  
T
FL  
1.639E-06  
0.0398724  
s
H
L2 Inductance  
L2  
1.96E-05  
5.978103  
2.4E-05  
1.22704  
L2 Peak Currrent  
R4/R3  
A
/Ω  
LCD,RATIO  
Application Circuit Operating Range  
Input Voltage  
V
IN  
18  
V
Note 1: To perform your own calculations for the parameters given in Table 2 (Design Example), use the equations given in Table  
3 (Design Equations).  
Note 2: T1 = Sumidas EPS207  
Note 3: C9 = Wimas SMD 7.3 __/63  
10 ______________________________________________________________________________________  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
Table 3. Spreadsheet Design Equations  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
CCFL Specifications  
Strike Voltage (V )  
V
S,RMS  
1100  
1500  
S
= 0.28 *  
LAMP,RMS(max)  
Discharging Tube Current (I )  
I
0.005  
L
LAMP,RMS  
I
Discharging Tube Voltage (V )  
L
V
435  
LAMP,RMS  
LCD Contrast Voltage Specifications  
Bias Voltage  
V
LCD  
= V  
/ 2  
32.6  
LCD(max)  
Output Current  
I
0.0245  
LCD  
Royer Specifications  
T1 Turns Ratio (Sec/Pri)  
T1 Resonating Inductance  
C9 Value  
n
171  
L
0.000045  
2.2E-07  
1.5E-11  
MAG  
C
RES  
BAL  
w
C10 Value  
C
Royer Frequency  
= SQRT [1 / (L  
* C  
)]  
RES  
MAG  
MAX754 Specifications  
Reference Voltage  
V
REF  
1.25  
Second Volts Constant  
CCFL Circuit Calculations  
sV  
0.000008  
2.4E-05  
= PI() * V  
* SQRT(2) /  
REF  
R8 Current-Sensing Resistor  
R8  
(2 * I  
)
LAMP,RMS(max)  
Secondary Voltage Phase vs. Tube  
Voltage  
= ATAN (-I  
/
)
LAMP,RMS(max)  
phi  
(C  
* w * + V  
BAL  
LAMP,RMS  
= -SQRT(2) * I  
(C * w * SIN(phi)) / n  
/
LAMP,RMS(max)  
T1 Center-Tap Peak Voltage  
V
TAP,PK  
BAL  
Secondary Limit Voltage  
T1 Center-Tap Limit Peak Voltage  
R5/R6  
V
= V  
* 0.9  
LIM  
S,RMS(max)  
= SQRT(2) * V  
/ n  
LIM  
R
= V  
/ (D25 - 0.6 - V  
)
OTP,RATIO  
REF  
REF  
LCD Circuit Calculations  
= sV(min) / V  
+ sV(min) /  
IN(min)  
V
IN(min)  
Full-Load Switching Period  
T
FL  
(V  
LCD(max)  
- V  
)
IN(min)  
= sV(min) ^ 2 / (2 * T  
*
)
FL  
L2 Inductance  
L2  
= L2(max) * 0.8  
V
* I  
LCD(max) LCD(min)  
L2 Peak Currrent  
= sV(max) / L2(min)  
R4/R3  
R
= V  
/ (V  
- V  
REF  
)
LCD,RATIO  
REF  
LCD(max)  
Application Circuit Operating Range  
Input Voltage  
V
IN  
= (2 / PI()) * V  
18  
TAP,PK  
______________________________________________________________________________________ 11  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
Table 4. Bill of Materials  
RESISTOR  
R1  
VALUE ()  
100,000  
100,000  
1,000,000  
40,200  
TOLERANCE (%)  
±10  
±10  
±1  
R2  
R3  
R4  
±1  
R5  
100,000  
13,300  
±1  
R6  
±1  
R7  
100,000  
549  
±10  
±1  
R8  
R10  
R16  
R17  
R18  
680  
±5  
100,000  
100,000  
100,000  
±10  
±10  
±5  
3/MAX754  
WORKING  
VOLTAGE (V)  
CAPACITOR  
VALUE (µF)  
CHARACTERISTICS  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
0.1  
22  
6
20  
20  
6
Low ESR  
0.1  
0.1  
0.01  
10  
6
Non-polarized  
50  
6
1
1
30  
63  
3000  
22  
1.5E-5  
High voltage  
SURFACE-  
MOUNT PART  
NUMBER  
OTHER  
COMPONENTS  
BREAKDOWN  
VOLTAGE (V)  
GENERIC  
PART NO.  
PACKAGE  
MANUFACTURER  
Q1  
Q2  
CMPTA06  
CMPT2907A  
MMFT3055ELT1  
FMMT619  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
D-64  
80  
60  
60  
50  
50  
75  
75  
75  
75  
50  
75  
20  
75  
75  
75  
75  
MPSA06  
2N2907  
3055EL  
Central Semi.  
Central Semi.  
Motorola  
Q3  
Q4  
Zetex  
Q5  
FMMT619  
Zetex  
D1A  
D1B  
D2A  
D2B  
D3  
CMPD4150  
CMPD4150  
CMPD4150  
CMPD4150  
EC10QS05  
CMPD4150  
EC10QS02L  
CMPD4150  
CMPD4150  
CMPD4150  
CMPD4150  
1N4150  
1N4150  
1N4150  
1N4150  
1N5819  
1N4150  
1N5817  
1N4150  
1N4150  
1N4150  
1N4150  
Central Semi.  
Central Semi.  
Central Semi.  
Central Semi.  
Nihon  
D4  
SOT-23  
D-64  
Central Semi.  
Nihon  
D5  
D6A  
D6B  
D7A  
D7B  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
Central Semi.  
Central Semi.  
Central Semi.  
Central Semi.  
Note: For T1, Use Sumida EPS207. Request No. USC-145, Special No. 6358-JP5-010.  
12 ______________________________________________________________________________________  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
Positive LCD Bias: MAX754  
The voltage-regulation loop is comprised of resistors R3  
and R4, the pulse-skip comparator, the internal DAC,  
the on-time and off-time logic, and the external power  
components. The comparator compares a fraction of  
the output voltage to the voltage generated by an on-  
chip 6-bit DAC. The part regulates by keeping the volt-  
age at LFB equal to the DACs output voltage. Thus,  
you can set the output to different voltages by varying  
the DACs output.  
1250  
1240  
1230  
947  
938  
928  
Varying the DAC output voltage (digital control) adjusts  
the external voltage from 50% to 100% of full scale. On  
power-up or after a reset, the counter sets the DAC out-  
put to mid scale. Each rising edge of LADJ (with LON  
high) decrements the DAC output. When decremented  
beyond zero scale, the counter rolls over and sets the  
DAC to the maximum value. In this way, a single pulse  
applied to LADJ decreases the DAC set point by one  
step, and 63 pulses increase the set point by one step.  
655  
645  
635  
0 1  
2
30 31 32  
61 62 63  
DAC CODE  
The MAX754s DAC transfer function is shown in Figure 7.  
The following equation relates the switching regulators  
regulated output voltage to the DACs voltage:  
MID SCALE  
FULL SCALE  
ZERO SCALE  
Figure 7. MAX754 LCD DAC Transfer Function  
R3  
V
= V  
1 +  
OUT  
DAC  
R4  
hand side to -V  
. This voltage is more negative than  
HIGH  
the output, forcing D3 to conduct, and transferring  
c ha rge from the flying c a pa c itor C15 to the output  
capacitor C6. This charge transfer happens quickly,  
resulting in a voltage spike at the output due to the  
p roduc t of the outp ut c a pa c itors e quiva le nt se rie s  
resistance (ESR) and the current that flows from C15 to  
C6. To limit this drop, resistor R19 has been placed in  
series with D3. R19 limits the rate of current flow. At the  
end of this cycle, the flying capacitor has been dis-  
charged to 30V + Vd.  
Table 5 is the logic table for the LADJ and LON inputs,  
which control the internal DAC and counter. As long as the  
timing specifications for LADJ and LON are observed, any  
sequence of operations can be implemented.  
Negative LCD Bias: MAX753  
The LCD bias generator of the MAX753 (Figure 8) gen-  
erates its negative output by combining the switching  
regulator of the MAX754 with a simple diode-capacitor  
voltage inverter. To best understand the circuit, look at  
the p a rt in a s te a d y-s ta te c ond ition. As s ume , for  
instance, that the output is being regulated to -30V, and  
that the battery voltage is +10V. When Q3 turns on, two  
things occur: current ramps up in the inductor, just like  
with the boost converter; and the charge on C15 (trans-  
ferred from the inductor on the previous cycle) is trans-  
ferred to C6, boosting the negative output. At the end of  
the cycle, the voltage on C15 is 30V + Vd, where Vd is  
the forward voltage drop of Schottky diode D3, and 30V  
is the magnitude of the output.  
If BATT(MAX) (i.e., either the fully charged battery volt-  
a g e , or the wa ll-c ub e volta g e ) is g re a te r tha n  
|V  
(MIN)|, tie the cathode of D8 to BATT instead of  
OUT  
GND, a s s hown b y the d a s he d line s in Fig ure 8.  
Efficiency is lower with this method, so tie the cathode  
of D8 to GND whenever possible.  
The MAX753s regulation loop is similar to that of the  
MAX754. The MAX753, however, uses different power  
components, and its feedback resistors are returned to  
the reference (1.25V) rather than ground.  
When the MOSFET turns off, the inductors energy is  
transferred to capacitor C15, charging the capacitor to  
The MAX753s PFM comparator compares a fraction of  
the output voltage to the voltage generated by the on-  
chip 6-bit DAC. The part regulates by keeping the volt-  
age at LFB equal to the DACs output voltage. Thus,  
you can set the LCD bias voltage to different voltages  
by varying the DACs output.  
a positive voltage (V  
this instance, diode D8 allows current to flow from the  
right-hand side of the flying capacitor (C15) to ground.  
) that is higher than |VOUT|. In  
HIGH  
Whe n the MOSFET turns on, the le ft-ha nd s id e of  
capacitor C15 is clamped to ground, forcing the right-  
______________________________________________________________________________________ 13  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
Table 5. Logic-Signal Truth Table  
CCF CONTROL  
LON  
LADJ  
CON  
CADJ  
CCFT STATUS  
CCFT DAC  
Hold  
X
X
X
X
X
0
0
1
1
0
1
Off  
On  
On  
On  
X
Reset  
Hold  
X
0
01  
X
Dec  
LCD BIAS CONTROL  
LON  
LADJ  
CON  
X
CADJ  
LCD STATUS  
LCD DAC  
Hold  
0
0
1
1
0
1
X
X
X
X
Off  
On  
On  
On  
X
Reset  
Hold  
0
X
3/MAX754  
01  
X
Dec  
Hold = maintain last DAC value in counter  
Reset = set DAC counter to half scale  
Dec = decrement DAC counter one step  
Off = section turned off, sleep state  
On = section turned on  
X = dont care  
Table 6. Component Suppliers  
MANUFACTURER  
ADDRESS  
PHONE  
FAX  
145 Adams Ave.  
Hauppauge, NY 11788  
Central Semiconductor  
(516) 435-1110  
(516) 435-1824  
6000 Park of Commerce Blvd.  
Boca Raton, FL 33287  
Coiltronics  
Maxim  
(407) 241-7876  
(408) 737-7600  
(407) 241-9339  
(408) 737-7194  
120 San Gabriel Dr.  
Sunnyvale, CA 94025  
c/o Quantum Marketing  
12900 Rolling Oaks Rd.  
Twin Oaks, CA 93518  
Nihon (NIEC)*  
Sumida  
(805) 867-2555  
(708) 956-0666  
(914) 347-2474  
(516) 543-7100  
(805) 867-2698  
(708) 956-0702  
(914) 347-7230  
(516) 864-7630  
5999 New Wilke Rd., Suite 110  
Rolling Meadows, IL 60008  
2269 Saw Mill River Rd., Suite 400  
P.O. Box 217  
Elmsford, NY 10523  
Wima  
87 Modular Ave.  
Commack, NY 11725  
Zetex  
* Contact John D. Deith, ask for Maxim Discount” on orders less than 5k units.  
14 ______________________________________________________________________________________  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
3/MAX754  
BATTERY  
INPUT  
ALTERNATE  
D8 CONNECTION  
(SEE TEXT)  
C2  
+5V INPUT  
10µF  
L2  
33µH  
C1  
0.22µF  
NEGATIVE  
LCD-BIAS  
OUTPUT  
C15  
1µF  
R19  
D3  
2
3
1
15  
BATT  
14  
LX  
2.21N5819  
LADJ LON  
V
DD  
D8  
1N5819  
LDRV  
LFB  
13  
16  
ON-TIME  
LOGIC  
OFF-TIME  
LOGIC  
Q3  
C6  
10µF  
35V  
R3  
R4  
ON/OFF  
CONTROL  
PULSE-SKIP  
COMPARATOR  
V
DD  
PRESET  
6-BIT COUNTER  
CLK  
V
DAC  
MAX753  
6-BIT DAC  
7
REF  
GND  
6
PGND  
12  
C4  
0.22µF  
Figure 8. MAX753 Negative LCD-Bias Generator  
The MAX753s DAC transfer function is shown in Figure 9.  
The following equation relates the switching regulators  
regulated output voltage to the DACs voltage (REF - LFB):  
1240  
1230  
1220  
R3  
V
= REF 1 +  
REF LFB  
(
)
OUT  
R4  
937  
928  
918  
The value REF - LFB (and not LFB) is specified in the  
Electrical Characteristics . The most negative output  
voltage occurs for the largest value of REF - LFB.  
The MAX753s c omb ina tion b oos t c onve rte r a nd  
charge-pump inverter was chosen over a conventional  
buck-boost inverter because it allows the use of low-  
cost N-channel MOSFETs instead of more expensive P-  
channel ones. Additionally, its efficiency is 5% to 10%  
better than a standard buck-boost inverter.  
645  
635  
625  
0 1  
2
30 31 32  
61 62 63  
DAC CODE  
MID SCALE  
FULL SCALE  
ZERO SCALE  
* DAC OUTPUT VOLTAGE = REF - LFB  
Figure 9. MAX753 LCD DAC Transfer Function  
______________________________________________________________________________________ 15  
CCFL Ba c k lig h t a n d  
LCD Co n t ra s t Co n t ro lle rs  
_____________________Blo c k Dia g ra m  
___________________Ch ip To p o g ra p h y  
V
DD  
BATT  
LFB  
LX  
2
3
15  
14  
LADJ  
LON  
BATT  
LX  
LADJ  
LDRV  
LFB  
13  
OFF-TIME  
LOGIC  
ON-TIME  
LOGIC  
CONTROL  
LON  
CON  
CLK PRESET  
6-BIT  
COUNTER  
LDRV  
PGND  
PULSE-SKIP  
COMPARATOR  
CADJ  
16  
1
0. 112"  
(2. 845mm)  
CDRV  
6-BIT  
D/A CONVERTER  
V
DD  
3/MAX754  
7
MAX753/MAX754  
REF  
GND  
5-BIT  
D/A CONVERTER  
ERROR  
AMPLIFIER  
11  
CDRV  
CC  
REF  
CS  
CFB  
5-BIT  
COUNTER  
8
CFB  
CC  
CS  
0. 076"  
(1. 930mm)  
9
CLK PRESET  
10  
LOGIC  
TRANSISTOR COUNT: 321;  
SUBSTRATE CONNECTED TO V  
CONTROL  
.
DD  
REF  
CON  
CADJ  
PGND  
12  
GND  
6
4
5
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1995 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX754CSE-T

Fluorescent Light Controller, 80kHz Switching Freq-Max, CMOS, PDSO16, SOP-16
MAXIM

MAX754EPE

CCFL Backlight and LCD Contrast Controllers
MAXIM

MAX754ESE

CCFL Backlight and LCD Contrast Controllers
MAXIM

MAX754ESE+

Fluorescent Light Controller, 80kHz Switching Freq-Max, CMOS, PDSO16, SOP-16
MAXIM

MAX754ESE+T

Fluorescent Light Controller, 80kHz Switching Freq-Max, CMOS, PDSO16, SOIC-16
MAXIM

MAX754ESE-T

Fluorescent Light Controller, 80kHz Switching Freq-Max, CMOS, PDSO16, SOP-16
MAXIM

MAX755

-5V/Adjustable, Negative-Output,Inverting, Current-mode PWM Regulators
MAXIM

MAX755C/D

-5V/Adjustable, Negative-Output,Inverting, Current-mode PWM Regulators
MAXIM

MAX755CPA

-5V/Adjustable, Negative-Output,Inverting, Current-mode PWM Regulators
MAXIM

MAX755CPA

2A SWITCHING REGULATOR, 160kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8
ROCHESTER

MAX755CSA

-5V/Adjustable, Negative-Output,Inverting, Current-mode PWM Regulators
MAXIM

MAX755CSA+

Switching Regulator, Current-mode, 2A, 160kHz Switching Freq-Max, CMOS, PDSO8, PLASTIC, SO-8
MAXIM