MAX706ATESA [MAXIM]

+3V Voltage Monitoring, Low-Cost uP Supervisory Circuits; + 3V的电压监测,低成本高达监控电路
MAX706ATESA
型号: MAX706ATESA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+3V Voltage Monitoring, Low-Cost uP Supervisory Circuits
+ 3V的电压监测,低成本高达监控电路

监控
文件: 总15页 (文件大小:466K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0099; Rev 5; 4/06  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
General Description  
Features  
The MAX706P/R/S/T, MAX706AP/AR/AS/AT, and  
MAX708R/S/T microprocessor (µP) supervisory circuits  
reduce the complexity and number of components  
required to monitor +3V power-supply levels in +3V to  
+5V µP systems. These devices significantly improve  
system reliability and accuracy compared to separate  
ICs or discrete components.  
µMAX Package, Small 8-Pin SO  
Precision Supply-Voltage Monitors  
2.63V (MAX706P/R, MAX706AP/AR, and MAX708R)  
2.93V (MAX706S, MAX706AS, and MAX708S)  
3.08V (MAX706T, MAX706AT, and MAX708T)  
200ms Reset Time Delay  
The MAX706P/R/S/T and MAX706AP/AR/AS/AT supervi-  
sory circuits provide the following four functions:  
Debounced TTL/CMOS-Compatible Manual Reset  
Input  
1) A reset output during power-up, power-down, and  
brownout conditions.  
100µA Quiescent Current  
2) An independent watchdog output that goes low if the  
watchdog input has not been toggled within 1.6s.  
WDI Disable Feature (MAX706AP/AR/AS/AT)  
Watchdog Timer: 1.6s Timeout  
3) A 1.25V threshold detector for power-fail warning,  
low-battery detection, or for monitoring a power  
supply other than the main supply.  
Reset Output Signal:  
Active-High Only (MAX706P, MAX706AP)  
Active-Low Only (MAX706R/S/T, MAX706AR/AS/AT)  
Active-High and Active-Low (MAX708R/S/T)  
4) An active-low, manual-reset input.  
The only difference between the MAX706R/AR,  
MAX706S/AS, and MAX706T/AT is the reset-threshold  
voltage levels, which are 2.63V, 2.93V, and 3.08V,  
respectively. All have active-low reset output signals.  
The MAX706P/AP are identical to the MAX706R/AR,  
except the reset output signal is active-high. The watch-  
dog timer function for the MAX706AP/AR/AS/AT dis-  
ables when the WDI input is left open or connected to a  
high-impedance state of a low-leakage tri-state output.  
Voltage Monitor for Power-Fail or Low-Battery  
Warning  
8-Pin Surface-Mount Package  
Guaranteed RESET Assertion to V  
= 1V  
CC  
Ordering Information  
TEMP  
RANGE  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
The MAX708R/S/T provide the same functions as the  
MAX706R/S/T and MAX706AR/AS/AT except they do  
not have a watchdog timer. Instead, they provide both  
RESET and RESET outputs. As with the MAX706,  
devices with R, S, and T suffixes have reset thresholds  
of 2.63V, 2.93V, and 3.08V, respectively.  
MAX706PCPA  
MAX706PCSA  
MAX706PCUA  
MAX706PEPA  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
8 PDIP  
8 SO  
P8-1  
S8-2  
U8-1  
P8-1  
8 µMAX  
8 PDIP  
SO, µMAX, and PDIP packages are available in lead-free.  
These devices are available in 8-pin SO, DIP, and  
µMAX® packages and are fully specified over the oper-  
ating temperature range.  
Ordering Information continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
Typical Operating Circuits  
Applications  
UNREGULATED  
Battery-Powered Equipment  
Portable Instruments  
Computers  
DC-DC  
DC  
CONVERTER  
+3V/+3.3V  
MAX639  
V
CC  
µP  
Controllers  
MAX706R/S/T  
MAX706AR/AS/AT  
Intelligent Instruments  
Critical µP Power Monitoring  
V
CC  
RESET  
RESET  
I/O LINE  
WDI  
WDO  
PFO  
PFI  
MR  
NMI  
PUSHBUTTON  
SWITCH  
INTERRUPT  
GND  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
ABSOLUTE MAXIMUM RATINGS  
Terminal Voltage (with respect to GND)  
........................................................................-0.3V to +6V  
8-Pin SO (derate 5.9mW/°C above +70°C)................470.6mW  
8-Pin µMAX (derate 4.5mW/ C above +70°C)..............362mW  
Operating Temperature Range  
MAX70_C.............................................................0°C to +70°C  
MAX70_E ..........................................................-40°C to +85°C  
MAX70_M .......................................................-55°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
o
V
CC  
All Other Inputs (Note 1)..........................-0.3V to (V  
Input Current  
+ 0.3V)  
CC  
V
..................................................................................20mA  
CC  
GND .................................................................................20mA  
Output Current (all outputs) ................................................20mA  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin CERDIP (derate 8mW/°C above +70°C)..............640mW  
8-Pin PDIP (derate 9.1mW/°C above +70°C).............727.3mW  
Note 1: The input-voltage limits on PFI, WDI, and MR can be exceeded if the input current is less than 10mA.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(MAX70_P/R, MAX706AP/AR: V  
= 2.7V to 5.5V; MAX70_S, MAX706AS: V  
= 3.0V to 5.5V; MAX70_T, MAX706AT: V = 3.15V to  
CC  
CC  
CC  
J
5.5V; T = T = T  
to T  
, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 2)  
J
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.0  
TYP  
MAX  
UNITS  
MAX70_C  
5.5  
5.5  
Supply Voltage Range  
V
V
CC  
MAX70_E/M  
MAX706_C  
MAX706_E/M  
MAX708_C  
MAX708_E/M  
MAX706_C  
MAX706_E/M  
MAX708_C  
MAX708_E/M  
1.2  
90  
90  
200  
300  
200  
300  
350  
500  
350  
500  
2.70  
3.00  
3.15  
V
V
< 3.6V  
< 5.5V  
CC  
CC  
50  
50  
Supply Current  
I
µA  
SUPPLY  
135  
135  
65  
65  
MAX70_P/R/, MAX706AP/AR  
MAX70_S, MAX706AS  
MAX70_T, MAX706AT  
2.55  
2.85  
3.00  
2.63  
2.93  
3.08  
Reset Threshold (Note 3)  
V
V
V
RST  
HYS  
RST  
(V  
CC  
Falling)  
Reset Threshold Hysteresis  
(Note 3)  
20  
mV  
ms  
MAX70_P/R/, MAX706AP/AR V  
= 3.0V  
140  
140  
200  
200  
200  
280  
280  
CC  
Reset Pulse Width (Note 3)  
t
MAX70_S, MAX706AS, V  
= 3.3V  
CC  
V
= 5V  
CC  
RESET OUTPUT  
0.8 x  
V
V
V
< V  
< V  
< 3.6V  
< 3.6V  
I
= 500µA  
SOURCE  
OH  
RST(MAX)  
RST(MAX)  
CC  
CC  
V
CC  
V
I
I
= 1.2mA  
0.3  
OL  
SINK  
Output-Voltage High  
(MAX70_R/S/T)  
=
V
-
CC  
RSOURCE  
V
4.5V < V  
< 5.5V  
CC  
V
OH  
800µA  
1.5  
(MAX706AR/AS/AT)  
V
V
4.5V < V < 5.5V  
I
SINK  
= 3.2mA  
0.4  
0.3  
0.3  
OL  
OL  
CC  
MAX70_C V  
= 1.0V, I  
= 50µA  
CC  
SINK  
MAX70_E/M: V  
= 1.2V, I  
= 100µA  
CC  
SINK  
2
_______________________________________________________________________________________  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(MAX70_P/R, MAX706AP/AR: V  
= 2.7V to 5.5V; MAX70_S, MAX706AS: V  
= 3.0V to 5.5V; MAX70_T, MAX706AT: V = 3.15V to  
CC  
CC  
CC  
J
5.5V; T = T = T  
to T  
, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 2)  
J
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0.6  
-
CC  
V
V
V
< V  
< V  
< 3.6V  
< 3.6V  
I
I
I
= 215µA  
= 800µA  
OH  
RST(MAX)  
RST(MAX)  
CC  
CC  
SOURCE  
V
= 1.2mA  
0.3  
OL  
SINK  
Output-Voltage High  
(MAX706P) (MAX706AP)  
V
V
V
1.5  
-
CC  
V
4.5 < V  
< 5.5V  
OH  
CC  
SOURCE  
V
4.5V < V  
< 5.5V  
I
I
I
= 3.2mA  
0.4  
0.3  
OL  
CC  
SINK  
V
V
V
< V  
< 3.6V  
= 500µA 0.8xV  
SOURCE CC  
OH  
RST(MAX)  
CC  
CC  
V
< V  
< 3.6V  
= 500µA  
SINK  
OL  
RST(MAX)  
Output-Voltage High  
(MAX708_)  
V
1.5  
-
CC  
V
4.5V < V  
4.5V < V  
< 5.5V  
< 5.5V  
I
= 800µA  
OH  
CC  
CC  
SOURCE  
V
I
= 1.2mA  
SINK  
0.4  
OL  
WATCHDOG INPUT  
MAX706P/R, MAX706AP/AR, V  
= 3.0V  
= 3.3V  
1.00  
1.00  
1.60  
1.60  
2.25  
2.25  
CC  
Watchdog Timeout Period  
t
s
WD  
MAX706S/T, MAX706AS/AT, V  
CC  
V
< V  
CC  
RST(MAX)  
V
= 0.4V  
100  
50  
IL  
WDI Pulse Width  
(MAX706_, MAX706A_)  
< 3.6V  
4.5V < V  
5.5V  
t
ns  
WP  
<
CC  
V
V
= 0.8V x V  
IH  
CC  
V
< V  
< V  
< 3.6V  
< 3.6V  
0.6  
0.8  
IL  
RST(MAX)  
CC  
CC  
0.7 x  
V
V
IH  
RST(MAX)  
Watchdog Input Threshold  
(MAX706_, MAX706A_)  
V
CC  
V
V
V
V
= 5.0V  
= 5.0V  
IL  
CC  
CC  
V
3.5  
-1.0  
-5  
IH  
MAX706_  
+0.02  
+1.0  
+5  
WDI Input Current  
WDI = 0V or V  
µA  
CC  
MAX706A_  
_______________________________________________________________________________________  
3
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
ELECTRICAL CHARACTERISTICS (continued)  
(MAX70_P/R, MAX706AP/AR: V  
= 2.7V to 5.5V; MAX70_S, MAX706AS: V  
= 3.0V to 5.5V; MAX70_T, MAX706AT: V = 3.15V to  
CC  
CC  
CC  
J
5.5V; T = T = T  
to T  
, unless otherwise noted. Typical values are at T = T = +25°C.) (Note 2)  
J
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
WATCHDOG OUTPUT  
0.8 x  
V
V
V
< V  
< V  
< 3.6V  
< 3.6V  
I
I
I
I
= 500µA  
= 800µA  
OH  
RST(MAX)  
RST(MAX)  
CC  
CC  
SOURCE  
V
CC  
V
= 500µA  
0.3  
0.4  
OL  
SINK  
WDO Output Voltage  
(MAX706_, MAX706A_)  
V
V
-
CC  
V
4.5V < V  
4.5V < V  
< 5.5V  
< 5.5V  
OH  
CC  
CC  
SOURCE  
1.5  
V
= 1.2mA  
SINK  
OL  
MANUAL RESET INPUT  
V
< V  
CC  
RST(MAX)  
25  
70  
250  
600  
< 3.6V  
MR Pullup Current  
MR = 0  
µA  
ns  
4.5V < V  
5.5V  
<
CC  
100  
250  
V
< V  
< 3.6V  
500  
150  
RST(MAX)  
CC  
MR Pulse Width  
t
MR  
4.5V < V  
< 5.5V  
CC  
V
V
< V  
< 3.6V  
0.6  
0.8  
IL  
RST(MAX)  
CC  
0.7 x  
V
V
< V  
RST(MAX)  
< 3.6V  
IH  
CC  
MR Input Threshold  
V
CC  
V
V
4.5V < V  
4.5V < V  
< 5.5V  
< 5.5V  
IL  
CC  
CC  
V
2.0  
IH  
V
< V  
< 3.6V  
750  
250  
RST(MAX)  
CC  
MR to Reset Output Delay  
t
ns  
MD  
4.5V < V  
< 5.5V  
CC  
POWER-FAILURE COMPARATOR  
(MAX70_P/R, MAX706AP/AR) PFI falling  
= 3.0V  
1.20  
1.20  
1.25  
1.30  
V
CC  
PFI Input Threshold  
PFI Input Current  
V
(MAX70_S/T, MAX706AS/AT) PFI falling,  
1.25  
1.30  
+25  
V
= 3.3V  
CC  
-25  
+0.01  
nA  
0.8 x  
V
V
V
< V  
< 3.6V  
< 3.6V  
I
I
I
I
= 500µA  
= 800µA  
OH  
RST(MAX)  
RST(MAX)  
CC  
CC  
SOURCE  
V
CC  
V
< V  
= 1.2mA  
0.3  
0.4  
OL  
SINK  
PFO Output Voltage  
V
V
-
CC  
V
4.5V < V  
4.5V < V  
< 5.5V  
< 5.5V  
OH  
CC  
SOURCE  
1.5  
V
= 3.2mA  
SINK  
OL  
CC  
Note 2: All devices 100% production tested at T = +85°C. Limits over temperature are guaranteed by design.  
A
Note 3: Applies to both RESET in the MAX70_R/S/T and MAX706AR/AS/AT, and RESET in the MAX706P/MAX706AP.  
4
_______________________________________________________________________________________  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
_______________________________________________________________________________________  
5
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
Pin Description  
PIN  
MAX706P  
MAX706AP  
MAX706R/S/T,  
MAX706AR/AS/AT  
NAME  
FUNCTION  
MAX708R/S/T  
SO/DIP  
µMAX SO/DIP  
µMAX SO/DIP µMAX  
Active-Low, Manual-Reset Input. Pull MR  below 0.6V to trigger a  
reset pulse. MR  is TTL/CMOS compatible when V = 5V and can  
be shorted to GND with a switch. MR  is internally connected to a  
CC  
1
3
1
3
1
3
MR  
70µA source current. Connect to V or leave unconnected.  
CC  
2
3
4
5
2
3
4
5
2
3
4
5
V
Supply Voltage Input  
CC  
GND Ground  
Adjustable Power-Fail Comparator Input. Connect PFI to a  
resistive divider to set the desired PFI threshold. When PFI is  
less than 1.25V, PFO goes low and sinks current; otherwise,  
PFO remains high. Connect PFI to GND if not used.  
4
5
6
7
4
5
6
7
4
5
6
7
PFI  
Active-Low, Power-Fail Comparator Output. PFO asserts when  
PFI is below the internal 1.25V threshold. PFO deasserts when  
PFI is above the internal 1.25V threshold. Leave PFO  
unconnected if not used.  
PFO  
Watchdog Input. A falling or rising transition must occur at  
WDI within 1.6s to prevent WDO from asserting (see Figure 4).  
The internal watchdog timer is reset to zero when reset is  
asserted or when transition occurs at WDI. The watchdog  
6
8
6
8
WDI function for the MAX706P/R/S/T can not be disabled. The  
watchdog timer for the MAX706AP/AR/AS/AT disables when  
WDI input is left open or connected to a tri-state output in its  
high-impedance state with a leakage current of less than  
600nA.  
Active-High Reset Output. Reset remains high when V  
is  
CC  
below the reset threshold or MR is held low. It remains low for  
200ms after the reset conditions end (Figure 3).  
7
8
1
2
8
2
8
2
RESET  
Active-Low Watchdog Output. WDO goes low when a  
transition does not occur at WDI within 1.6s and remains low  
until a transition occurs at WDI (indicating the watchdog  
WDO  
interrupt has been serviced). WDO also goes low when V  
CC  
falls below the reset threshold; however, unlike the reset  
output signal, WDO goes high as soon as V  
rises above  
CC  
the reset threshold.  
Active-Low Reset Output. RESET remains low when V  
is  
CC  
7
1
7
6
1
8
RESET below the reset threshold or MR is held low. It remains low for  
200ms after the reset conditions end (Figure 3).  
N.C. No Connection. Not internally connected.  
6
_______________________________________________________________________________________  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
WATCHDOG  
TRANSITION  
DETECTOR  
6
WATCHDOG  
8
WDI  
MR  
WDO  
TIMER  
V
CC  
8
7
RESET  
RESET  
V
70µA  
CC  
TIMEBASE FOR  
RESET AND  
WATCHDOG  
1
2
MR  
70µA  
RESET  
GENERATOR  
1
2
V
CC  
7
5
RESET  
GENERATOR  
RESET  
(RESET)  
V
CC  
2.63V MAX708R  
2.93V MAX708S  
3.08V MAX708T  
MAX708R/S/T  
2.63V MAX706P/R  
2.93V MAX706S  
3.08V MAX706T  
4
PFI  
MAX706P/R/S/T  
MAX706AP/AR/AS/AT  
5
PFO  
4
PFI  
PFO  
1.25V  
1.25V  
3
GND  
3
GND  
( ) ARE FOR MAX706P/AP.  
Figure 1. MAX706_ Functional Diagram  
Figure 2. MAX708_ Functional Diagram  
RESET and RESET are guaranteed to be asserted for  
1V.  
RESET and RESET Outputs  
A microprocessor’s (µP’s) reset input starts in a known  
state. When the µP is in an unknown state, it should be  
held in reset. The MAX706P/R/S/T and the MAX706AP/  
V
CC  
The MAX706P/MAX706AP provide a RESET signal, and  
the MAX706R/S/T and MAX706AR/AS/AT provide a  
RESET signal. The MAX708R/S/T provide both RESET  
and RESET.  
AR/AS/AT assert reset when V  
is low, preventing  
CC  
code execution errors during power-up, power-down,  
or brownout conditions.  
Watchdog Timer  
The MAX706P/R/S/T and the MAX706AP/AR/AS/AT  
watchdog circuit monitor the µP’s activity. If the µP  
does not toggle the watchdog input (WDI) within 1.6s,  
the watchdog output (WDO) goes low (Figure 4). If the  
reset signal is asserted, the watchdog timer will be  
reset to zero and disabled. As soon as reset is  
released, the timer starts counting. WDI can detect puls-  
es as narrow as 100ns with a 2.7V supply and 50ns with a  
4.5V supply. The watchdog timer for the MAX706P/R/S/T  
cannot be disabled. The watchdog timer for the  
MAX706AP/AR/AS/AT operates similarly to the  
MAX706P/R/S/T. However, the watchdog timer for the  
MAX706AP/AR/AS/AT disables when the WDI input is  
left open or connected to a tri-state output in its high-  
impedance state and with a leakage current of less  
than 600nA. The watchdog timer can be disabled any-  
time, provided WDO is not asserted.  
On power-up once V  
reaches 1V, RESET is guaran-  
CC  
teed to be logic-low and RESET is guaranteed to be  
logic-high. As V  
rises, RESET and RESET remain  
CC  
CC  
asserted. Once V  
exceeds the reset threshold, the  
internal timer causes RESET and RESET to be  
deasserted after a time equal to the reset pulse width,  
which is typically 200ms (Figure 3).  
If a power-fail or brownout condition occurs (i.e., V  
drops below the reset threshold), RESET and RESET  
are asserted. As long as V remains below the reset  
CC  
CC  
threshold, the internal timer is continually reset, causing  
the RESET and RESET outputs to remain asserted.  
Thus, a brownout condition that interrupts a previously  
initiated reset pulse causes an additional 200ms delay  
from the time the latest interruption occurred. On  
power-down once V  
drops below the reset threshold,  
CC  
_______________________________________________________________________________________  
7
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
+3.3V  
V
RST  
V
RST  
V
CC  
+1V  
t
t
RST  
RST  
+3V/+3.3V  
+12V  
RESET  
RESET  
(RESET)  
0V  
V
TO µP  
CC  
1M  
1%  
+3.3V  
MAX706_  
MAX708R/S/T  
RESET  
0V  
+3.3V  
0V  
MR  
130kΩ  
1%  
PFI  
PFO  
MR*  
GND  
t
MD  
t
MR  
+3.3V  
0V  
*NOTE: MR EXTERNALLY DRIVEN LOW.  
PARAMETER  
+12V RESET  
THRESHOLD AT +25°C  
( ) ARE FOR MAX706P/AP  
MIN  
TYP MAX UNIT  
WDO*  
WDO TIMING SHOWN FOR MAX706P/R/S/T.  
10.24 10.87 11.50  
V
Figure 3. RESET, RESET, MR, and WDO Timing  
t
WP  
t
t
t
WD  
WD  
WD  
+3V/+3.3V  
WDI  
Figure 5. Monitoring Both +3V/+3.3V and +12V  
0V  
+3V/+3.3V  
WDO  
0V  
+3V/+3.3V  
MAX706R/S/T  
MAX708R/S/T  
MAX706AR/AS/AT  
RESET  
0V  
RESET EXTERNALLY  
TRIGGERED BY MR  
t
RST  
RESET  
Figure 4. MAX706AP/AR/AS/AT Watchdog Timing  
R1  
WDO can be connected to the nonmaskable interrupt  
(NMI) input of a µP. When V drops below the reset  
CC  
threshold, WDO immediately goes low, even if the  
watchdog timer has not timed out (Figure 3). Normally,  
this would trigger an NMI, but since reset is asserted  
simultaneously, the NMI is overridden. The WDO  
should not be connected to RESET directly. Instead,  
connect WDO to MR to generate a reset pulse when it  
times out.  
Figure 6. RESET Valid to GND Circuit  
input pulse width is 500ns when V  
= +3V and 150ns  
CC  
when V  
= +5V. Leave MR unconnected or connect  
CC  
to V  
when not used.  
CC  
Power-Fail Comparator  
The power-fail comparator can be used for various pur-  
poses because its output and noninverting input are  
not internally connected. The inverting input is internally  
connected to a 1.25V reference. The power-fail com-  
parator has 10mV of hysteresis, which prevents repeat-  
ed triggering of the power-fail output (PFO).  
Manual Reset  
The manual reset (MR) input allows RESET and RESET  
to be activated by a pushbutton switch. The switch is  
effectively debounced by the 140ms minimum reset  
pulse width. MR can be driven by an external logic line  
since it is TTL/CMOS compatible. The minimum MR  
8
_______________________________________________________________________________________  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
To build an early-warning power-failure circuit, use the  
V
IN  
power-fail comparator input (PFI) to monitor the unregu-  
lated DC supply voltage (see the Typical Operating  
Circuits). Connect the PFI to a resistive-divider network  
such that the voltage at PFI falls below 1.25V just  
before the regulator drops out. Use PFO to interrupt the  
µP so it can prepare for an orderly power-down.  
+3V/+3.3V  
R1  
V
CC  
PFI  
C1*  
MAX706_  
MAX708R/S/T  
Regulated and unregulated voltages can be monitored  
by simply adjusting the PFI resistive-divider network  
values to the appropriate ratio. In addition, the reset  
R3  
R2  
PFO  
signal can be asserted at voltages other that V  
reset  
CC  
GND  
threshold, as shown in Figure 5. Connect PFO to MR to  
initiate a reset pulse when the 12V supply drops below  
a user-specified threshold (11V in this example) or  
TO µP  
*OPTIONAL  
+3V/+3.3V  
PFO  
when V  
falls below the reset threshold.  
CC  
Operation with +3V and +5V Supplies  
0V  
The MAX706P/R/S/T, the MAX706AP/AR/AS/AT, and the  
MAX708R/S/T provide voltage monitoring at the reset  
threshold (2.63V to 3.08V) when powered from either  
+3V or +5V. These devices are ideal in portable-instru-  
ment applications where power can be supplied from  
either a +3V battery or an AC-DC wall adapter that gen-  
erates +5V (a +5V supply allows a µP or a microcon-  
troller to run faster than a +3V supply). With a +3V  
supply, these ICs consume less power, but output drive  
capability is reduced, the MR to RESET delay time  
increases, and the MR minimum pulse width increases.  
The Electrical Characteristics table provides specifica-  
tions for operation with both +3V and +5V supplies.  
0V  
V
V
V
V
L
TRIP  
IN  
H
-
(R1 + R2)  
R2  
V
V
= 1.25  
TRIP  
R3 + R2  
R2 × R3  
1.25  
R2  
V
- 1.25  
R3  
CC  
= 1.25 (1 +  
R1) V = 1.25 + R1  
L
H
Figure 7. Adding Hysteresis to the Power-Fail Comparator  
+3V/+3.3V  
R1  
Ensuring a Valid RESET Output Down to  
V
CC  
V
= 0V  
CC  
PFO  
PFI  
When V  
falls below 1V, the MAX706R/S/T,  
CC  
MAX706AR/AS/AT, and MAX708R/S/T RESET output no  
longer sinks current; it becomes an open circuit. High-  
impedance, CMOS logic inputs can drift to undeter-  
mined voltages if left as open circuit. If a pulldown  
resistor is added to the RESET pin , as shown in Figure  
6, any stray charge or leakage current will flow to  
ground, holding RESET low. Resistor value R is not criti-  
cal, but it should not load RESET and should be small  
enough to pull RESET and the input it is driving to  
ground. 100kis suggested for R1.  
MAX706_  
MAX708R/S/T  
R2  
GND  
V-  
+3V/+3.3V  
PFO  
0V  
V
TRIP  
V-  
0V  
V
CC  
- 1.25 1.25 - V  
TRIP  
=
R1  
R2  
Applications Information  
NOTE: V  
IS NEGATIVE.  
TRIP  
Adding Hysteresis to the Power-Fail  
Comparator  
Hysteresis adds a noise margin to the power-fail com-  
parator and prevents repeated triggering of the PFO  
Figure 8. Monitoring a Negative Voltage  
when V is near the power-fail comparator trip point.  
IN  
Figure 7 shows how to add hysteresis to the power-fail  
comparator. Select the ratio of R1 and R2 such that PFI  
_______________________________________________________________________________________  
9
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
sees 1.25V when V falls to the desired trip point  
TRIP  
Monitoring a Negative Voltage  
The power-fail comparator can be used to monitor a  
negative supply voltage using the circuit of Figure 8.  
When the negative supply is valid, PFO is low. When  
the negative supply voltage drops, PFO goes high. This  
circuit’s accuracy is affected by the PFI threshold toler-  
IN  
(V  
). Resistor R3 adds hysteresis. R3 will typically  
be an order of magnitude greater than R1 and R2. The  
current through R1 and R2 should be at least 1µA to  
ensure that the 25nA (max) PFI input current does not  
shift the trip point significantly. R3 should be larger than  
10kto prevent it from loading down the PFO pin.  
Capacitor C1 adds noise rejection.  
ance, the V  
voltage, and resistors R1 and R2.  
CC  
Bypassing V  
CC  
with a 0.1µF capacitor  
For noisy systems, bypass V  
to GND.  
CC  
Ordering Information (continued)  
TEMP  
RANGE  
PIN-  
PACKAGE  
PKG  
CODE  
TEMP  
RANGE  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
PART†  
MAX706ASESA  
MAX706ASEUA  
MAX706ATEPA  
MAX706ATESA  
MAX706ATEUA  
MAX708RCPA  
MAX708RCSA  
MAX708RCUA  
MAX708REPA  
MAX708RESA  
MAX708REUA  
MAX708RMJA  
MAX708SCPA  
MAX708SCSA  
MAX708SCUA  
MAX708SEPA  
MAX708SESA  
MAX708SEUA  
MAX708SMJA  
MAX708TCPA  
MAX708TCSA  
MAX708TCUA  
MAX708TEPA  
MAX708TESA  
MAX708TEUA  
MAX708TMJA  
-40°C to +85°C 8 SO  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
J8-2  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
J8-2  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
J8-2  
MAX706PEUA  
MAX706PMJA  
MAX706RCPA  
MAX706RCSA  
MAX706RCUA  
MAX706REPA  
MAX706RESA  
MAX706REUA  
MAX706RMJA  
MAX706SCPA  
MAX706SCSA  
MAX706SCUA  
MAX706SEPA  
MAX706SESA  
MAX706SEUA  
MAX706SMJA  
MAX706TCPA  
MAX706TCSA  
MAX706TCUA  
MAX706TEPA  
MAX706TESA  
MAX706TEUA  
MAX706TMJA  
MAX706APEPA  
MAX706APESA  
MAX706APEUA  
-40°C to +85°C 8 µMAX  
U8-1  
J8-2  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
J8-2  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
J8-2  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
J8-2  
P8-1  
S8-2  
U8-1  
P8-1  
S8-2  
U8-1  
P8-1  
-40°C to +85°C 8 µMAX  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
-55°C to +125°C 8 CERDIP*  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
-40°C to +85°C 8 µMAX  
8 µMAX  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
8 µMAX  
-40°C to +85°C 8 µMAX  
-55°C to +125°C 8 CERDIP*  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
-40°C to +85°C 8 µMAX  
-55°C to +125°C 8 CERDIP*  
8 µMAX  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
8 µMAX  
-40°C to +85°C 8 µMAX  
-55°C to +125°C 8 CERDIP*  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
-40°C to +85°C 8 µMAX  
-55°C to +125°C 8 CERDIP*  
8 µMAX  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 Plastic Dip  
8 SO  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
8 µMAX  
-40°C to +85°C 8 µMAX  
-55°C to +125°C 8 CERDIP*  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 Plastic Dip  
-40°C to +85°C 8 SO  
-40°C to +85°C 8 µMAX  
-55°C to +125°C 8 CERDIP*  
-40°C to +85°C 8 µMAX  
SO, µMAX, and PDIP packages are available in lead-free.  
*Contact factory for availability and processing to MIL-STD-883.  
**Future product—contact factory for availability.  
MAX706AREPA -40°C to +85°C 8 Plastic Dip  
MAX706ARESA  
MAX706AREUA  
MAX706ASEPA  
-40°C to +85°C 8 SO  
-40°C to +85°C 8µMAX  
-40°C to +85°C 8 Plastic Dip  
Chip Information  
PROCESS: CMOS  
10 ______________________________________________________________________________________  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
Pin Configurations  
Typical Operating Circuits  
(continued)  
TOP VIEW  
MR  
WDO  
1
2
3
4
UNREGULATED  
DC  
8
DC-DC  
V
RESET  
WDI  
7
6
5
CC  
GND  
PFI  
CONVERTER  
-3V/+3.3V  
MAX639  
MAX706P  
MAX706AP  
µP  
PFO  
V
CC  
V
CC  
DIP/SO  
RESET  
RESET  
PFO  
RESET  
PFI  
INTERRUPT  
MR  
1
2
3
4
WDO  
RESET  
WDI  
8
7
6
5
MR  
PUSHBUTTON  
SWITCH  
GND  
V
CC  
MAX708R/S/T  
MAX706R/S/T  
MAX706AR/AS/AT  
GND  
PFI  
PFO  
DIP/SO  
1
2
3
4
RESET  
RESET  
N.C.  
8
7
6
5
MR  
V
CC  
MAX708R/S/T  
GND  
PFI  
PFO  
DIP/SO  
(RESET) RESET  
1
2
3
4
WDI  
PFO  
PFI  
8
7
6
5
WDO  
MR  
MAX706P/R/S/T  
MAX706AP/AR/  
AS/AT  
V
CC  
GND  
µMAX  
RESET  
RESET  
MR  
N.C.  
PFO  
PFI  
1
2
3
4
8
7
6
5
MAX708R/S/T  
V
CC  
GND  
µMAX  
( ) ARE FOR MAX706P/AP ONLY.  
______________________________________________________________________________________ 11  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
12 ______________________________________________________________________________________  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
Ø0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0°  
0.120  
2.95  
4.78  
0.41  
0°  
3.05  
5.03  
0.66  
6°  
0.198  
0.026  
6°  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
______________________________________________________________________________________ 13  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
MAX  
MAX  
1.75  
0.25  
0.49  
0.25  
DIM  
A
MIN  
MIN  
1.35  
0.10  
0.35  
0.19  
0.053  
0.004  
0.014  
0.007  
0.069  
0.010  
0.019  
0.010  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
MAX  
0.197  
0.344  
0.394  
MAX  
5.00  
DIM  
D
MIN  
MIN  
4.80  
8.55  
9.80  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
14 ______________________________________________________________________________________  
+3V Voltage Monitoring, Low-Cost µP  
Supervisory Circuits  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX706ATESA+

Power Supply Management Circuit, Fixed, 1 Channel, CMOS, PDSO8, 0.150 INCH, LEAD FREE, MS-012AA, SOP-8
MAXIM

MAX706ATESA+T

暂无描述
MAXIM

MAX706ATEUA

+3V Voltage Monitoring, Low-Cost uP Supervisory Circuits
MAXIM

MAX706ATEUA+T

暂无描述
MAXIM

MAX706C

Low-Cost, pervisory Circuit
ARTSCHIP

MAX706C/D

Low-Cost, uP Supervisory Circuits
MAXIM

MAX706CPA

Low-Cost, uP Supervisory Circuits
MAXIM

MAX706CPA

2-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDIP8, PLASTIC, DIP-8
ROCHESTER

MAX706CPA

Low-Cost, pervisory Circuit
ARTSCHIP

MAX706CPA+

Power Supply Management Circuit, Adjustable, 2 Channel, CMOS, PDIP8, LEAD FREE, PLASTIC, DIP-8
MAXIM

MAX706CSA

Low-Cost, uP Supervisory Circuits
MAXIM

MAX706CSA

Low-Cost, pervisory Circuit
ARTSCHIP