MAX6956ANI+ [MAXIM]

Interface Circuit, CMOS, PDIP28, ROHS COMPLIANT, PLASTIC, DIP-28;
MAX6956ANI+
型号: MAX6956ANI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Interface Circuit, CMOS, PDIP28, ROHS COMPLIANT, PLASTIC, DIP-28

光电二极管
文件: 总24页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2414; Rev 4; 6/10  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
General Description  
Features  
o 400kbps I2C-Compatible Serial Interface  
o 2.5V to 5.5V Operation  
The MAX6956 compact, serial-interfaced LED display  
driver/I/O expander provide microprocessors with up to  
28 ports. Each port is individually user configurable to  
either a logic input, logic output, or common-anode  
(CA) LED constant-current segment driver. Each port  
configured as an LED segment driver behaves as a  
digitally controlled constant-current sink, with 16 equal  
current steps from 1.5mA to 24mA. The LED drivers are  
suitable for both discrete LEDs and CA numeric and  
alphanumeric LED digits.  
o -40°C to +125°C Temperature Range  
o 20 or 28 I/O Ports, Each Configurable as  
Constant-Current LED Driver  
Push-Pull Logic Output  
Schmitt Logic Input  
Schmitt Logic Input with Internal Pullup  
o 11µA (max) Shutdown Current  
o 16-Step Individually Programmable Current  
Each port configured as a general-purpose I/O (GPIO)  
can be either a push-pull logic output capable of sink-  
ing 10mA and sourcing 4.5mA, or a Schmitt logic input  
with optional internal pullup. Seven ports feature config-  
urable transition detection logic, which generates an  
interrupt upon change of port logic level. The MAX6956  
is controlled through an I2C-compatible 2-wire serial  
interface, and uses four-level logic to allow 16 I2C  
addresses from only 2 select pins.  
Control for Each LED  
o Logic Transition Detection for Seven I/O Ports  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
PIN-PACKAGE  
28 DIP  
MAX6956ANI+  
MAX6956AAI+  
MAX6956AAX+  
MAX6956ATL+  
MAX6956AAX/V  
28 SSOP  
36 SSOP  
The MAX6956AAX and MAX6956ATL have 28 ports  
and are available in 36-pin SSOP and 40-pin thin QFN  
packages, respectively. The MAX6956AAI and  
MAX6956ANI have 20 ports and are available in 28-pin  
SSOP and 28-pin DIP packages, respectively.  
For an SPI-interfaced version, refer to the MAX6957  
data sheet. For a lower cost pin-compatible port  
expander without the constant-current LED drive capa-  
bility, refer to the MAX7300 data sheet.  
40 Thin QFN-EP*  
36 SSOP  
MAX6956AAX/V+T -40°C to +125°C  
36 SSOP  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
Pin Configurations  
Applications  
TOP VIEW  
Set-Top Boxes  
Panel Meters  
White Goods  
Automotive  
Bar Graph Displays  
Industrial Controllers  
System Monitoring  
ISET  
GND  
GND  
AD0  
P12  
P13  
P14  
P15  
P16  
1
2
3
4
5
6
7
8
9
28 V+  
27 AD1  
26 SCL  
25 SDA  
24 P31  
23 P30  
22 P29  
21 P28  
20 P27  
19 P26  
18 P25  
17 P24  
16 P23  
15 P22  
MAX6956  
Typical Operating Circuit appears at end of data sheet.  
P17 10  
P18 11  
P19 12  
P20 13  
P21 14  
SSOP/DIP  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
ABSOLUTE MAXIMUM RATINGS  
Voltage (with Respect to GND)  
36-Pin SSOP (derate 11.8mW/°C above T = +70°C)...941mW  
A
V+.............................................................................-0.3V to +6V  
SCL, SDA, AD0, AD1................................................-0.3V to +6V  
All Other Pins................................................-0.3V to (V+ + 0.3V)  
P4–P31 Current ................................................................ 30mA  
GND Current .....................................................................800mA  
Continuous Power Dissipation  
40-Pin TQFN (derate 26.3mW/°C above T = +70°C) 2105mW  
Operating Temperature Range  
A
(T  
to T  
) ...............................................-40°C to +125°C  
MAX  
MIN  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Soldering Temperature (reflow)  
Lead(Pb)-free packages...............................................+260°C  
Packages containing lead(Pb)......................................+240°C  
28-Pin PDIP (derate 14.3mW/°C above T = +70°C) 1143mW  
A
28-Pin SSOP (derate 9.1mW/°C above T = +70°C)...727mW  
A
MAX956  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Typical Operating Circuit, V+ = 2.5V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
2.5  
TYP  
MAX  
5.5  
8
UNITS  
Operating Supply Voltage  
V+  
V
T
A
T
A
T
A
= +25°C  
5.5  
All digital inputs at V+  
or GND  
Shutdown Supply Current  
Operating Supply Current  
I
µA  
µA  
= -40°C to +85°C  
10  
11  
SHDN  
= T  
to T  
MAX  
MIN  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= +25°C  
180  
170  
110  
230  
250  
270  
210  
230  
240  
135  
140  
145  
All ports programmed  
as outputs high, no  
load, all other inputs at  
V+ or GND  
I
= -40°C to +85°C  
= T to T  
GPOH  
MIN  
MAX  
= +25°C  
= -40°C to +85°C  
= T to T  
All ports programmed  
as outputs low, no  
load, all other inputs at  
V+ or GND  
Operating Supply Current  
I
µA  
µA  
GPOL  
MIN  
MAX  
All ports programmed  
as LED outputs, all LEDs  
off, no load, all other  
inputs at V+ or GND  
= +25°C  
= -40°C to +85°C  
= T to T  
Operating Supply Current  
I
LED  
MIN  
MAX  
INPUTS AND OUTPUTS  
Logic-High Input Voltage  
Port Inputs  
0.7  
V
V
V
IH  
V+  
Logic-Low Input Voltage  
Port Inputs  
0.3  
V
IL  
V+  
GPIO inputs without pullup,  
= V+ to GND  
Input Leakage Current  
I
, I  
IH IL  
-100  
1
+100  
nA  
V
PORT  
V+ = 2.5V  
V+ = 5.5V  
12  
80  
19  
120  
0.3  
30  
GPIO Input Internal Pullup to V+  
Hysteresis Voltage GPIO Inputs  
I
µA  
V
PU  
180  
V  
I
GPIO outputs, I  
+85°C  
= 2mA, T = -40°C to  
V+ -  
0.7  
SOURCE  
SOURCE  
A
Output High Voltage  
V
V
OH  
GPIO outputs, I  
= 1mA, T = T  
to  
V+ -  
0.7  
A
MIN  
T
MAX  
(Note 2)  
Port Sink Current  
I
V
= 0.6V  
2
10  
11  
18  
20  
mA  
mA  
OL  
PORT  
Output Short-Circuit Current  
I
Port configured output low, shorted to V+  
2.75  
OLSC  
2
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
ELECTRICAL CHARACTERISTICS (continued)  
(Typical Operating Circuit, V+ = 2.5V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V+ = 2.5V, V  
current  
= 2.3V at maximum LED  
= 2.4V at maximum LED  
= 2.4V at maximum LED  
= 0.6V at maximum sink  
= 0.6V at maximum sink  
LED  
9.5  
18.5  
19  
13.5  
18  
Port Drive LED Sink Current,  
Port Configured as LED Driver  
V+ = 3.3V, V  
current (Note 2)  
V+ = 5.5V, V  
current  
V+ = 2.5V, V  
current  
LED  
24  
25  
23  
24  
27.5  
30  
I
mA  
DIGIT  
LED  
OUT  
OUT  
18.5  
19  
28  
Port Drive Logic Sink Current,  
Port Configured as LED Driver  
I
mA  
DIGIT_SC  
V+ = 5.5V, V  
current  
28  
Input High-Voltage SDA, SCL,  
AD0, AD1  
0.7  
V
V
V
IH  
V+  
Input Low-Voltage SDA, SCL,  
AD0, AD1  
0.3  
V
IL  
V+  
Input Leakage Current SDA, SCL  
Input Capacitance  
Output Low-Voltage SDA  
I
, I  
-50  
50  
nA  
pF  
V
IH IL  
(Note 2)  
10  
0.4  
V
I
= 6mA  
OL  
SINK  
TIMING CHARACTERISTICS (Figure 2)  
(V+ = 2.5V to 5.5V, T = T  
A
to T  
, unless otherwise noted.) (Note 1)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Clock Frequency  
f
400  
kHz  
SCL  
Bus Free Time Between a STOP  
and a START Condition  
Hold Time (Repeated) START  
Condition  
Repeated START Condition  
Setup Time  
t
1.3  
0.6  
0.6  
µs  
µs  
µs  
BUF  
t
HD, STA  
t
SU, STA  
STOP Condition Setup Time  
Data Hold Time  
Data Setup Time  
SCL Clock Low Period  
SCL Clock High Period  
Rise Time of Both SDA and SCL  
Signals, Receiving  
Fall Time of Both SDA and SCL  
Signals, Receiving  
t
0.6  
15  
100  
1.3  
0.7  
µs  
ns  
ns  
µs  
µs  
SU, STO  
t
(Note 3)  
900  
HD, DAT  
t
SU, DAT  
t
LOW  
t
HIGH  
20 +  
t
(Notes 2, 4)  
(Notes 2, 4)  
300  
300  
ns  
ns  
R
0.1C  
b
20 +  
0.1C  
t
F
b
20 +  
0.1C  
Fall Time of SDA Transmitting  
t
(Notes 2, 5)  
(Notes 2, 6)  
(Note 2)  
250  
50  
ns  
ns  
pF  
F,TX  
b
Pulse Width of Spike Suppressed  
Capacitive Load for Each Bus  
Line  
t
0
SP  
C
400  
b
Note 1: All parameters tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Guaranteed by design.  
Note 3: A master device must provide a hold time of at least 300ns for the SDA signal (referred to V of the SCL signal) in order to  
IL  
bridge the undefined region of SCL’s falling edge.  
Note 4: C = total capacitance of one bus line in pF. t and t measured between 0.3V+ and 0.7V+.  
b
R
F
Note 5: I  
6mA. C = total capacitance of one bus line in pF. t and t measured between 0.3V+ and 0.7V+.  
SINK  
b R F  
Note 6: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.  
_______________________________________________________________________________________  
3
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
__________________________________________Typical Operating Characteristics  
(R  
= 39k, T = +25°C, unless otherwise noted.)  
ISET  
A
OPERATING SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
OPERATING SUPPLY CURRENT vs. V+  
(NO LOADS)  
0.40  
0.36  
0.32  
0.28  
0.24  
0.20  
0.16  
0.12  
0.08  
0.04  
0
8
100  
10  
V+ = 2.5V TO 5.5V  
NO LOAD  
ALL PORTS LED (ON)  
V+ = 5.5V  
7
MAX956  
ALL PORTS  
V+ = 3.3V  
ALL PORTS  
OUTPUT (0)  
ALL PORTS OUTPUT (1)  
ALL PORTS OUTPUT (0)  
OUTPUT (1)  
6
1
5
V+ = 2.5V  
0.1  
0.01  
4
ALL PORTS LED (OFF)  
ALL PORTS LED (OFF)  
3
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V+ (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GPO SINK CURRENT vs. TEMPERATURE  
(OUTPUT = 0)  
LED DRIVER SINK CURRENT  
LED DRIVER SINK CURRENT  
vs. TEMPERATURE  
vs. V+  
18  
16  
14  
12  
10  
8
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
27  
V
= 2.4V  
V+ = 2.5V TO 5.5V, V  
= 0.6V  
LED  
PORT  
26  
V+ = 5.5V  
25  
LED DROP = 2.4V  
24  
23  
22  
21  
20  
LED DROP = 1.8V  
V+ = 3.3V  
6
4
2
6
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V+ (V)  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GPO SOURCE CURRENT vs. TEMPERATURE  
(OUTPUT = 1)  
GPI PULLUP CURRENT  
vs. TEMPERATURE  
GPO SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
9
8
7
6
5
4
3
2
1000  
100  
10  
100  
V
= 1.4V  
PORT  
V+ = 5.5V  
V+ = 3.3V  
V+ = 2.5V  
V+ = 5.5V  
GPO = 0, PORT  
SHORTED TO V+  
10  
V+ = 3.3V  
V+ = 2.5V  
GPO = 1, PORT  
SHORTED TO GND  
1
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
-40.0 -12.5 15.0 42.5 70.0 97.5 125.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
Pin Description  
PIN  
NAME  
FUNCTION  
SSOP/DIP  
SSOP  
TQFN  
36  
Segment Current Setting. Connect ISET to GND through a resistor (R  
the maximum segment current.  
) to set  
ISET  
1
2, 3  
4
1
2, 3  
4
ISET  
GND  
AD0  
37, 38, 39  
40  
Ground  
Address Input 0. Sets device slave address. Connect to either GND, V+, SCL,  
SDA to give four logic combinations. See Table 3.  
LED Segment Drivers and GPIO. P12 to P31 can be configured as CA LED  
drivers, GPIO outputs, CMOS logic inputs, or CMOS logic inputs with weak  
pullup resistor.  
5–24  
P12–P31  
P4–P31  
1–10,  
12–19,  
21–30  
LED Segment Drivers and GPIO. P4 to P31 can be configured as CA LED  
drivers, GPIO outputs, CMOS logic inputs, or CMOS logic inputs with weak  
pullup resistor.  
5–32  
25  
26  
33  
34  
11, 20, 31  
N.C.  
SDA  
SCL  
No Connection  
32  
33  
I2C-Compatible Serial Data I/O  
I2C-Compatible Serial Clock Input  
Address Input 1. Sets device slave address. Connect to either GND, V+, SCL,  
SDA to give four logic combinations. See Table 3.  
27  
28  
35  
36  
34  
35  
AD1  
V+  
Positive Supply Voltage. Bypass V+ to GND with minimum 0.047µF capacitor.  
Exposed Pad (TQFN Only). Not internally connected. Connect EP to ground  
plane for maximum thermal performance.  
EP  
ment-plus-DP displays, with five ports left available for  
GPIO (P26–P31 of U2).  
Detailed Description  
The MAX6956 LED driver/GPIO peripheral provides up  
to 28 I/O ports, P4 to P31, controlled through an I2C-com-  
patible serial interface. The ports can be configured to  
any combination of constant-current LED drivers, logic  
inputs and logic outputs, and default to logic inputs on  
power-up. When fully configured as an LED driver, the  
MAX6956 controls up to 28 LED segments with individual  
16-step adjustment of the constant current through each  
LED segment. A single resistor sets the maximum seg-  
ment current for all segments, with a maximum of 24mA  
per segment. The MAX6956 drives any combination of  
discrete LEDs and CA digits, including seven-segment  
and starburst alphanumeric types.  
The port configuration registers set the 28 ports, P4 to  
P31, individually as either LED drivers or GPIO. A pair  
of bits in registers 0x09 through 0x0F sets each port’s  
configuration (Tables 1 and 2).  
The 36-pin MAX6956AAX has 28 ports, P4 to P31. The  
28-pin MAX6956ANI and MAX6956AAI make only 20  
ports available, P12 to P31. The eight unused ports  
should be configured as outputs on power-up by writ-  
ing 0x55 to registers 0x09 and 0x0A. If this is not done,  
the eight unused ports remain as unconnected inputs  
and quiescent supply current rises, although there is no  
damage to the part.  
Figure 1 is the MAX6956 functional diagram. Any I/O  
port can be configured as a push-pull output (sinking  
10mA, sourcing 4.5mA), or a Schmitt-trigger logic input.  
Each input has an individually selectable internal pullup  
resistor. Additionally, transition detection allows seven  
ports (P24 through P30) to be monitored in any mask-  
able combination for changes in their logic status. A  
detected transition is flagged through a status register  
bit, as well as an interrupt pin (port P31), if desired.  
Register Control of I/O Ports and LEDs  
Across Multiple Drivers  
The MAX6956 offers 20 or 28 I/O ports, depending on  
package choice. These can be applied to a variety of  
combinations of different display types, for example:  
seven, 7-segment digits (Figure 7). This example  
requires two MAX6956s, with one digit being driven by  
both devices, half by one MAX6956, half by the other  
(digit 4 in this example). The two drivers are static, and  
therefore do not need to be synchronized. The  
MAX6956 sees CA digits as multiple discrete LEDs. To  
The Typical Operating Circuit shows two MAX6956s  
working together controlling three monocolor 16-seg-  
_______________________________________________________________________________________  
5
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
Table 1. Port Configuration Map  
REGISTER DATA  
D4 D3  
ADDRESS  
CODE (HEX)  
REGISTER  
D7  
D6  
D5  
D2  
D1  
D0  
Port Configuration for P7, P6, P5, P4  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
P7  
P6  
P5  
P4  
Port Configuration for P11, P10, P9, P8  
Port Configuration for P15, P14, P13, P12  
Port Configuration for P19, P18, P17, P16  
Port Configuration for P23, P22, P21, P20  
Port Configuration for P27, P26, P25, P24  
Port Configuration for P31, P30, P29, P28  
P11  
P15  
P19  
P23  
P27  
P31  
P10  
P14  
P18  
P22  
P26  
P30  
P9  
P8  
P13  
P17  
P21  
P25  
P29  
P12  
P16  
P20  
P24  
P28  
MAX956  
Table 2. Port Configuration Matrix  
PORT  
CONFIGURATION  
BIT PAIR  
PORT  
REGISTER  
(0x20–0x5F)  
ADDRESS  
CODE (HEX)  
MODE  
FUNCTION  
PIN BEHAVIOR  
UPPER  
LOWER  
Register bit = 0 High impedance  
Open-drain current sink, with sink  
Register bit = 1 current (up to 24mA) determined  
Output  
LED Segment Driver  
GPIO Output  
0x09 to 0x0F  
0
0
by the appropriate current register  
Register bit = 0 Active-low logic output  
Output  
Input  
0x09 to 0x0F  
0x09 to 0x0F  
0x09 to 0x0F  
0
1
1
1
0
1
Register bit = 1 Active-high logic output  
GPIO Input  
Without Pullup  
Schmitt logic input  
Register bit =  
input logic level  
Input  
GPIO Input with Pullup  
Schmitt logic input with pullup  
Note: The logic is inverted between the two output modes; a high makes the output go low in LED segment driver mode (0x00) to  
turn that segment on; in GPIO output mode (0x01), a high makes the output go high.  
simplify access to displays that overlap two MAX6956s,  
the MAX6956 provides four virtual ports, P0 through P3.  
To update an overlapping digit, send the same code  
twice as an eight-port write, once to P28 through P35 of  
the first driver, and again to P0 through P7 of the sec-  
ond driver. The first driver ignores the last 4 bits and  
the second driver ignores the first 4 bits.  
segment digit with DP can be updated in two byte-  
writes, and 16-segment digits with DP can be updated  
in two byte-writes plus a bit write. Also, discrete LEDs  
and GPIO port bits can be lit and controlled individually  
without affecting other ports.  
Shutdown  
When the MAX6956 is in shutdown mode, all ports are  
forced to inputs (which an be read), and the pullup cur-  
rent sources are turned off. Data in the port and control  
registers remain unaltered, so port configuration and  
output levels are restored when the MAX6956 is taken  
out of shutdown. The display driver can still be pro-  
grammed while in shutdown mode. For minimum sup-  
ply current in shutdown mode, logic inputs should be at  
GND or V+ potential. Shutdown mode is exited by set-  
ting the S bit in the configuration register (Table 8).  
Two addressing methods are available. Any single port  
(bit) can be written (set/cleared) at once; or, any  
sequence of eight ports can be written (set/cleared) in  
any combination at once. There are no boundaries; it is  
equally acceptable to write P0 through P7, P1 through  
P8, or P31 through P38 (P32 through P38 are nonexis-  
tent, so the instructions to these bits are ignored).  
Using 8-bit control, a seven-segment digit with a deci-  
mal point can be updated in a single byte-write, a 14-  
6
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
INTENSITY REGISTERS  
TEST REGISTER  
INTENSITY  
TEST  
MAX6956  
CONFIGURATION  
PORT REGISTERS  
MASK REGISTER  
P4 TO P31  
LED DRIVERS  
OR GPIO  
LED DRIVERS AND GPIO  
CONFIGURATION  
REGISTERS  
PORT CHANGE  
DETECTOR  
DATA  
8
CE  
R/W  
SEGMENT OR  
GPIO DATA  
R/W  
8
COMMAND  
REGISTER DECODE  
AD0  
AD1  
ADDRESS  
MATCHER  
7
8
8
DATA BYTE  
COMMAND BYTE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
7
TO/FROM DATA REGISTERS  
DATA BYTE  
TO COMMAND REGISTERS  
7-BIT DEVICE ADDRESS  
R/W  
SDA  
SCL  
COMMAND BYTE  
SLAVE ADDRESS BYTE  
Figure 1. MAX6956 Functional Diagram  
Shutdown mode is temporarily overridden by the dis-  
play test function.  
is required on SDA. The MAX6956 SCL line operates  
only as an input. A pullup resistor, typically 4.7k, is  
required on SCL if there are multiple masters on the 2-  
wire interface, or if the master in a single-master system  
has an open-drain SCL output.  
Serial Interface  
Serial Addressing  
The MAX6956 operates as a slave that sends and  
receives data through an I2C-compatible 2-wire inter-  
face. The interface uses a serial data line (SDA) and a  
serial clock line (SCL) to achieve bidirectional commu-  
nication between master(s) and slave(s). A master (typ-  
ically a microcontroller) initiates all data transfers to and  
from the MAX6956, and generates the SCL clock that  
synchronizes the data transfer (Figure 2).  
Each transmission consists of a START condition  
(Figure 3) sent by a master, followed by the MAX6956  
7-bit slave address plus R/W bit (Figure 6), a register  
address byte, one or more data bytes, and finally a  
STOP condition (Figure 3).  
Start and Stop Conditions  
Both SCL and SDA remain high when the interface is  
not busy. A master signals the beginning of a transmis-  
sion with a START (S) condition by transitioning SDA  
from high to low while SCL is high. When the master  
The MAX6956 SDA line operates as both an input and  
an open-drain output. A pullup resistor, typically 4.7k,  
________________________________________________________________________________________  
7
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
SDA  
t
BUF  
t
t
SU, STA  
SU, DAT  
t
HD, STA  
t
LOW  
t
t
SU, STO  
HD, DAT  
SCL  
MAX956  
t
HIGH  
t
HD, STA  
t
t
F
R
REPEATED START CONDITION  
START CONDITION  
STOP CONDITION START CONDITION  
Figure 2. 2-Wire Serial Interface Timing Details  
SDA  
S
P
SCL  
START  
STOP  
CONDITION  
CONDITION  
Figure 3. Standard Stop Conditions  
SDA  
SCL  
DATA LINE STABLE;  
DATA VALID  
CHANGE OF DATA ALLOWED  
Figure 4. Bit Transfer  
has finished communicating with the slave, it issues a  
STOP (P) condition by transitioning SDA from low to  
high while SCL is high. The bus is then free for another  
transmission (Figure 3).  
Acknowledge  
The acknowledge bit is a clocked 9th bit, which the  
recipient uses to handshake receipt of each byte of  
data (Figure 5). Thus, each byte transferred effectively  
requires 9 bits. The master generates the 9th clock  
pulse, and the recipient pulls down SDA during the  
acknowledge clock pulse, such that the SDA line is sta-  
ble low during the high period of the clock pulse. When  
the master is transmitting to the MAX6956, the  
MAX6956 generates the acknowledge bit because the  
Bit Transfer  
One data bit is transferred during each clock pulse.  
The data on SDA must remain stable while SCL is high  
(Figure 4).  
8
_______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
START CONDITION  
CLOCK PULSE FOR ACKNOWLEDGMENT  
SCL  
1
2
8
9
SDA  
BY TRANSMITTER  
S
SDA  
BY RECEIVER  
Figure 5. Acknowledge  
SDA  
1
MSB  
0
0
A3  
A2  
A1  
A0  
LSB  
R/W  
ACK  
SCL  
Figure 6. Slave Address  
MAX6956 is the recipient. When the MAX6956 is trans-  
mitting to the master, the master generates the  
acknowledge bit because the master is the recipient.  
byte of information is the command byte. The com-  
mand byte determines which register of the MAX6956  
is to be written by the next byte, if received. If a STOP  
condition is detected after the command byte is  
received, then the MAX6956 takes no further action  
(Figure 8) beyond storing the command byte.  
Slave Address  
The MAX6956 has a 7-bit-long slave address (Figure 6).  
The eighth bit following the 7-bit slave address is the  
R/W bit. It is low for a write command, high for a read  
command.  
Any bytes received after the command byte are data  
bytes. The first data byte goes into the internal register of  
the MAX6956 selected by the command byte (Figure 9). If  
multiple data bytes are transmitted before a STOP condi-  
tion is detected, these bytes are generally stored in subse-  
quent MAX6956 internal registers because the command  
byte address generally autoincrements (Table 4).  
The first 3 bits (MSBs) of the MAX6956 slave address  
are always 100. Slave address bits A3, A2, A1, and A0  
are selected by address inputs, AD1 and AD0. These  
two input pins may be connected to GND, V+, SDA, or  
SCL. The MAX6956 has 16 possible slave addresses  
(Table 3) and therefore, a maximum of 16 MAX6956  
devices may share the same interface.  
Message Format for Reading  
The MAX6956 is read using the MAX6956’s internally  
stored command byte as address pointer, the same  
way the stored command byte is used as address  
pointer for a write. The pointer generally autoincre-  
ments after each data byte is read using the same rules  
as for a write (Table 4). Thus, a read is initiated by first  
configuring the MAX6956’s command byte by perform-  
Message Format for Writing  
the MAX6956  
A write to the MAX6956 comprises the transmission of  
the MAX6956’s slave address with the R/W bit set to  
zero, followed by at least 1 byte of information. The first  
_______________________________________________________________________________________  
9
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
V+  
7-SEGMENT DIGIT 1  
7-SEGMENT DIGIT 2  
7-SEGMENT DIGIT 3  
7-SEGMENT DIGIT 4  
MAX956  
VIRTUAL SEGMENTS  
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31  
V+  
7-SEGMENT DIGIT 5  
7-SEGMENT DIGIT 6  
7-SEGMENT DIGIT 7  
VIRTUAL SEGMENTS  
P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31  
Figure 7. Two MAX6956s Controlling Seven 7-Segment Displays  
D15 D14 D13 D12 D11 D10 D9 D8  
COMMAND BYTE IS STORED ON RECEIPT OF STOP CONDITION  
ACKNOWLEDGE FROM MAX6956  
SLAVE ADDRESS  
COMMAND BYTE RECEIVED  
S
0
A
COMMAND BYTE  
A
P
ACKNOWLEDGE FROM MAX6956  
R/W  
Figure 8. Command Byte Received  
ACKNOWLEDGE FROM MAX6956  
ACKNOWLEDGE FROM MAX6956  
HOW COMMAND BYTE AND DATA BYTE MAP INTO MAX6956's REGISTER  
ACKNOWLEDGE FROM MAX6956  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
S
SLAVE ADDRESS  
0
A
A
DATA BYTE  
1 BYTE  
A
P
COMMAND BYTE  
R/W  
Figure 9. Command and Single Data Byte Received  
10 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
ACKNOWLEDGE FROM MAX6956  
ACKNOWLEDGE FROM MAX6956  
HOW COMMAND BYTE AND DATA BYTE MAP INTO MAX6956's REGISTER  
ACKNOWLEDGE FROM MAX6956  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
SLAVE ADDRESS  
COMMAND BYTE  
DATA BYTE  
S
0
A
A
A
P
n BYTES  
R/W  
AUTOINCREMENT MEMORY WORD ADDRESS  
Figure 10. n Data Bytes Received  
Table 3. MAX6956 Address Map  
PIN  
DEVICE ADDRESS  
CONNECTION  
AD1  
GND  
GND  
GND  
GND  
V+  
AD0  
GND  
V+  
A6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SDA  
SCL  
GND  
V+  
V+  
V+  
SDA  
SCL  
GND  
V+  
V+  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SDA  
SCL  
GND  
V+  
SDA  
SCL  
Table 4. Autoincrement Rules  
COMMAND BYTE ADDRESS RANGE  
x0000000 to x1111110  
x1111111  
AUTOINCREMENT BEHAVIOR  
Command address autoincrements after byte read or written  
Command address remains at x1111111 after byte written or read  
ing a write (Figure 8). The master can now read n con-  
secutive bytes from the MAX6956, with the first data  
byte being read from the register addressed by the ini-  
tialized command byte. When performing read-after-  
write verification, remember to reset the command  
byte’s address because the stored control byte  
address generally has been autoincremented after the  
write (Table 4). Table 5 is the register address map.  
Operation with Multiple Masters  
If the MAX6956 is operated on a 2-wire interface with  
multiple masters, a master reading the MAX6956  
should use a repeated start between the write, which  
sets the MAX6956’s address pointer, and the read(s)  
that takes the data from the location(s). This is because  
it is possible for master 2 to take over the bus after  
master 1 has set up the MAX6956’s address pointer but  
before master 1 has read the data. If master 2 subse-  
______________________________________________________________________________________ 11  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
Table 5. Register Address Map  
COMMAND ADDRESS  
REGISTER  
HEX  
CODE  
D15  
X
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
No-Op  
0x00  
0x02  
0x04  
0x06  
0x07  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
Global Current  
X
0
0
0
0
0
1
0
Configuration  
X
0
0
0
0
1
0
0
Transition Detect Mask  
Display Test  
X
0
0
0
0
1
1
0
MAX956  
X
0
0
0
0
1
1
1
Port Configuration P7, P6, P5, P4  
Port Configuration P11, P10, P9, P8  
Port Configuration P15, P14, P13, P12  
Port Configuration P19, P18, P17, P16  
Port Configuration P23, P22, P21, P20  
Port Configuration P27, P26, P25, P24  
Port Configuration P31, P30, P29, P28  
Current054  
X
0
0
0
1
0
0
1
X
0
0
0
1
0
1
0
X
0
0
0
1
0
1
1
X
0
0
0
1
1
0
0
X
0
0
0
1
1
0
1
X
0
0
0
1
1
1
0
X
X
X
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
1
1
1
0
1
0x0F  
0x12  
0x13  
Current076  
Current098  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
Current0BA  
Current0DC  
Current0FE  
Current110  
Current132  
Current154  
Current176  
Current198  
Current1BA  
Current1DC  
Current1FE  
Port 0 only (virtual port, no action)  
Port 1 only (virtual port, no action)  
Port 2 only (virtual port, no action)  
Port 3 only (virtual port, no action)  
Port 4 only (data bit D0; D7–D1 read as 0)  
Port 5 only (data bit D0; D7–D1 read as 0)  
Port 6 only (data bit D0; D7–D1 read as 0)  
Port 7 only (data bit D0; D7–D1 read as 0)  
Port 8 only (data bit D0; D7–D1 read as 0)  
Port 9 only (data bit D0; D7–D1 read as 0)  
Port 10 only (data bit D0; D7–D1 read as 0)  
12 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
Table 5. Register Address Map (continued)  
COMMAND ADDRESS  
HEX  
CODE  
REGISTER  
D15  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
D14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D13  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D12  
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
D11  
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D10  
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D9  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D8  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Port 11 only (data bit D0; D7–D1 read as 0)  
Port 12 only (data bit D0; D7–D1 read as 0)  
Port 13 only (data bit D0; D7–D1 read as 0)  
Port 14 only (data bit D0; D7–D1 read as 0)  
Port 15 only (data bit D0; D7–D1 read as 0)  
Port 16 only (data bit D0; D7–D1 read as 0)  
Port 17 only (data bit D0; D7–D1 read as 0)  
Port 18 only (data bit D0; D7–D1 read as 0)  
Port 19 only (data bit D0; D7–D1 read as 0)  
Port 20 only (data bit D0; D7–D1 read as 0)  
Port 21 only (data bit D0; D7–D1 read as 0)  
Port 22 only (data bit D0; D7–D1 read as 0)  
Port 23 only (data bit D0; D7–D1 read as 0)  
Port 24 only (data bit D0; D7–D1 read as 0)  
Port 25 only (data bit D0; D7–D1 read as 0)  
Port 26 only (data bit D0; D7–D1 read as 0)  
Port 27 only (data bit D0; D7–D1 read as 0)  
Port 28 only (data bit D0; D7–D1 read as 0)  
Port 29 only (data bit D0; D7–D1 read as 0)  
Port 30 only (data bit D0; D7–D1 read as 0)  
Port 31 only (data bit D0; D7–D1 read as 0)  
4 ports 4–7 (data bits D0–D3; D4–D7 read as 0)  
5 ports 4–8 (data bits D0–D4; D5–D7 read as 0)  
6 ports 4–9 (data bits D0–D5; D6–D7 read as 0)  
7 ports 4–10 (data bits D0–D6; D7 reads as 0)  
8 ports 4–11 (data bits D0–D7)  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
8 ports 5–12 (data bits D0–D7)  
8 ports 6–13 (data bits D0–D7)  
8 ports 7–14 (data bits D0–D7)  
8 ports 8–15 (data bits D0–D7)  
8 ports 9–16 (data bits D0–D7)  
8 ports 10–17 (data bits D0–D7)  
8 ports 11–18 (data bits D0–D7)  
8 ports 12–19 (data bits D0–D7)  
8 ports 13–20 (data bits D0–D7)  
8 ports 14–21 (data bits D0–D7)  
8 ports 15–22 (data bits D0–D7)  
______________________________________________________________________________________ 13  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
Table 5. Register Address Map (continued)  
COMMAND ADDRESS  
REGISTER  
HEX  
CODE  
D15  
X
D14  
1
D13  
0
D12  
1
D11  
0
D10  
0
D9  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D8  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
8 ports 16–23 (data bits D0–D7)  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
8 ports 17–24 (data bits D0–D7)  
X
1
0
1
0
0
8 ports 18–25 (data bits D0–D7)  
X
1
0
1
0
0
8 ports 19–26 (data bits D0–D7)  
X
1
0
1
0
0
MAX956  
8 ports 20–27 (data bits D0–D7)  
X
1
0
1
0
1
8 ports 21–28 (data bits D0–D7)  
X
1
0
1
0
1
8 ports 22–29 (data bits D0–D7)  
X
1
0
1
0
1
8 ports 23–30 (data bits D0–D7)  
X
1
0
1
0
1
8 ports 24–31 (data bits D0–D7)  
X
1
0
1
1
0
7 ports 25–31 (data bits D0–D6; D7 reads as 0)  
6 ports 26–31 (data bits D0–D5; D6–D7 read as 0)  
5 ports 27–31 (data bits D0–D4; D5–D7 read as 0)  
4 ports 28–31 (data bits D0–D3; D4–D7 read as 0)  
3 ports 29–31 (data bits D0–D2; D3–D7 read as 0)  
2 ports 30–31 (data bits D0–D1; D2–D7 read as 0)  
1 port 31 only (data bit D0; D1–D7 read as 0)  
X
1
0
1
1
0
X
1
0
1
1
0
X
1
0
1
1
0
X
1
0
1
1
1
X
1
0
1
1
1
X
1
0
1
1
1
X
1
0
1
1
1
Note: Unused bits read as 0.  
quently changes, the MAX6956’s address pointer, then  
master 1’s delayed read may be from an unexpected  
location.  
drive of each LED segment driver. Individual/global  
brightness control is selected by setting the configura-  
tion register I bit (Table 9). The global current register  
(0x02) data are then ignored, and segment currents are  
set using register addresses 0x12 through 0x1F (Tables  
12, 13, and 14). Each segment is controlled by a nibble  
of one of the 16 current registers.  
Command Address Autoincrementing  
Address autoincrementing allows the MAX6956 to be  
configured with the shortest number of transmissions  
by minimizing the number of times the command  
address needs to be sent. The command address  
stored in the MAX6956 generally increments after each  
data byte is written or read (Table 4).  
Transition (Port Data Change) Detection  
Port transition detection allows any combination of the  
seven ports P24–P30 to be continuously monitored for  
changes in their logic status (Figure 11). A detected  
change is flagged on the transition detection mask reg-  
ister INT status bit, D7 (Table 15). If port P31 is config-  
ured as an output (Tables 1 and 2), then P31 also  
automatically becomes an active-high interrupt output  
(INT), which follows the condition of the INT status bit.  
Port P31 is set as output by writing bit D7 = 0 and bit  
D6 = 1 to the port configuration register (Table 1). Note  
that the MAX6956 does not identify which specific  
port(s) caused the interrupt, but provides an alert that  
one or more port levels have changed.  
Initial Power-Up  
On initial power-up, all control registers are reset, the  
current registers are set to minimum value, and the  
MAX6956 enters shutdown mode (Table 6).  
LED Current Control  
LED segment drive current can be set either globally or  
individually. Global control simplifies the operation  
when all LEDs are set to the same current level,  
because writing just the global current register sets the  
current for all ports configured as LED segment drivers.  
It is also possible to individually control the current  
14 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
Table 6. Power-Up Configuration  
ADDRESS  
CODE  
(HEX)  
REGISTER DATA  
REGISTER  
FUNCTION  
POWER-UP CONDITION  
D7 D6  
D5 D4  
D3  
D2 D1  
D0  
Port Register  
Bits 4 to 31  
0x24 to  
0x3F  
LED Off; GPIO Output Low  
1/16 (minimum on)  
X
X
X
X
X
X
X
X
X
X
0
X
0
0
Global  
Current  
0x02  
0
X
0
0
Shutdown Enabled  
Current Control = Global  
Transition Detection Disabled  
Configuration  
Register  
0x04  
0
0
X
X
X
X
Input Mask  
Register  
All Clear (Masked Off)  
Normal Operation  
0x06  
0x07  
0x09  
X
X
1
0
X
0
0
X
1
0
X
0
0
X
1
0
X
0
0
X
1
0
0
0
Display Test  
Port  
Configuration  
P7, P6, P5, P4: GPIO Inputs Without Pullup  
Port  
Configuration  
P11, P10, P9, P8: GPIO Inputs Without Pullup  
P15, P14, P13, P12: GPIO Inputs Without Pullup  
P19, P18, P17, P16: GPIO Inputs Without Pullup  
P23, P22, P21, P20: GPIO Inputs Without Pullup  
P27, P26, P25, P24: GPIO Inputs Without Pullup  
P31, P30, P29, P28: GPIO Inputs Without Pullup  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Port  
Configuration  
Current054  
Current076  
Current098  
Current0BA  
Current0DC  
Current0FE  
Current110  
Current132  
Current154  
Current176  
Current198  
Current1BA  
Current1DC  
Current1FE  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
1/16 (minimum on)  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X = unused bits; if read, zero results.  
______________________________________________________________________________________ 15  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
Table 7. Configuration Register Format  
REGISTER DATA  
ADDRESS CODE  
(HEX)  
FUNCTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Configuration Register  
0x04  
M
I
X
X
X
X
X
S
Table 8. Shutdown Control (S Data Bit D0) Format  
MAX956  
REGISTER DATA  
ADDRESS CODE  
FUNCTION  
(HEX)  
D7  
M
D6  
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
0
Shutdown  
0x04  
0x04  
I
I
Normal Operation  
M
X
X
X
X
X
1
Table 9. Global Current Control (I Data Bit D6) Format  
REGISTER DATA  
ADDRESS  
CODE (HEX)  
FUNCTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Global  
Constant-current limits for all digits are  
controlled by one setting in the Global Current  
register, 0x02  
0x04  
0x04  
M
0
1
X
X
X
X
X
X
S
S
Individual Segment  
Constant-current limit for each digit is  
individually controlled by the settings in the  
Current054 through Current1FE registers  
M
X
X
X
X
Table 10. Transition Detection Control (M-Data Bit D7) Format  
REGISTER DATA  
ADDRESS CODE  
(HEX)  
FUNCTION  
D7  
0
D6  
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
S
Disabled  
Enabled  
0x04  
0x04  
I
I
1
X
X
X
X
X
S
The mask register contains 7 mask bits, which select  
which of the seven ports P24–P30 are to be monitored  
(Table 15). Set the appropriate mask bit to enable that  
port for transition detect. Clear the mask bit if transitions  
on that port are to be ignored. Transition detection  
works regardless of whether the port being monitored is  
set to input or output, but generally, it is not particularly  
useful to enable transition detection for outputs.  
M bit in the configuration register (Table 10). Whenever  
the configuration register is written with the M bit set,  
the MAX6956 updates an internal 7-bit snapshot regis-  
ter, which holds the comparison copy of the logic states  
of ports P24 through P30. The update action occurs  
regardless of the previous state of the M bit, so that it is  
not necessary to clear the M bit and then set it again to  
update the snapshot register.  
To use transition detection, first set up the mask register  
and configure port P31 as an output, as described  
above. Then enable transition detection by setting the  
When the configuration register is written with the M bit  
set, transition detection is enabled and remains  
enabled until either the configuration register is written  
16 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
Table 11. Global Segment Current Register Format  
LED DRIVE  
FRACTION  
TYPICAL SEGMENT  
CURRENT (mA)  
ADDRESS  
CODE (HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX CODE  
1/16  
2/16  
1.5  
3
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
0x02  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0xX0  
0xX1  
0xX2  
0xX3  
0xX4  
0xX5  
0xX6  
0xX7  
0xX8  
0xX9  
0xXA  
0xXB  
0xXC  
0xXD  
0xXE  
0xXF  
3/16  
4.5  
6
4/16  
5/16  
7.5  
9
6/16  
7/16  
10.5  
12  
8/16  
9/16  
13.5  
15  
10/16  
11/16  
12/16  
13/16  
14/16  
15/16  
16/16  
16.5  
18  
19.5  
21  
22.5  
24  
X = Don’t care bit.  
with the M bit clear, or a transition is detected. The INT  
status bit (transition detection mask register bit D7)  
goes low. Port P31 (if enabled as INT output) also goes  
low, if it was not already low.  
M bit set, to take a new snapshot of the seven ports  
P24 to P30.  
Display Test Register  
Display test mode turns on all ports configured as LED  
drivers by overriding, but not altering, all controls and  
port registers, except the port configuration register  
(Table 16). Only ports configured as LED drivers are  
affected. Ports configured as GPIO push-pull outputs  
do not change state. In display test mode, each port’s  
current is temporarily set to 1/2 the maximum current  
Once transition detection is enabled, the MAX6956  
continuously compares the snapshot register against  
the changing states of P24 through P31. If a change on  
any of the monitored ports is detected, even for a short  
time (like a pulse), the INT status bit (transition detec-  
tion mask register bit D7) is set. Port P31 (if enabled as  
INT output) also goes high. The INT output and INT sta-  
tus bit are not cleared if more changes occur or if the  
data pattern returns to its original snapshot condition.  
The only way to clear INT is to access (read or write)  
the transition detection mask register (Table 15). So if  
the transition detection mask register is read twice in  
succession after a transition event, the first time reads  
with bit D7 set (identifying the event), and the second  
time reads with bit D7 clear.  
limit as controlled by R  
.
ISET  
Selecting External Component R  
ISET  
to Set Maximum Segment Current  
The MAX6956 uses an external resistor R to set the  
ISET  
maximum segment current. The recommended value,  
39k, sets the maximum current to 24mA, which makes  
the segment current adjustable from 1.5mA to 24mA in  
1.5mA steps.  
Transition detection is a one-shot event. When INT has  
been cleared after responding to a transition event,  
transition detection is automatically disabled, even  
though the M bit in the configuration register remains  
set (unless cleared by the user). Reenable transition  
detection by writing the configuration register with the  
To set a different segment current, use the formula:  
R
ISET  
= 936k/ I  
SEG  
where I  
is the desired maximum segment current.  
SEG  
______________________________________________________________________________________ 17  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
Table 12. Individual Segment Current Registers  
REGISTER  
FUNCTION  
ADDRESS  
CODE (HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Current054 register  
Current076 register  
Current098 register  
Current0BA register  
Current0DC register  
Current0FE register  
Current110 register  
Current132 register  
Current154 register  
Current176 register  
Current198 register  
Current1BA register  
Current1DC register  
Current1FE register  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
Segment 5  
Segment 4  
Segment 7  
Segment 9  
Segment 6  
Segment 8  
Segment 11  
Segment 13  
Segment 15  
Segment 17  
Segment 19  
Segment 21  
Segment 23  
Segment 25  
Segment 27  
Segment 29  
Segment 31  
Segment 10  
Segment 12  
Segment 14  
Segment 16  
Segment 18  
Segment 20  
Segment 22  
Segment 24  
Segment 26  
Segment 28  
Segment 30  
MAX956  
Table 13. Even Individual Segment Current Format  
SEGMENT  
LED DRIVE  
FRACTION  
CONSTANT  
CURRENT WITH  
ADDRESS  
CODE (HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX CODE  
R
= 39k(mA)  
ISET  
1/16  
2/16  
1.5  
3
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0xX0  
0xX1  
0xX2  
0xX3  
0xX4  
0xX5  
0xX6  
0xX7  
0xX8  
0xX9  
0xXA  
0xXB  
0xXC  
0xXD  
0xXE  
0xXF  
3/16  
4.5  
6
4/16  
5/16  
7.5  
9
6/16  
7/16  
10.5  
12  
See Table 14.  
8/16  
9/16  
13.5  
15  
10/16  
11/16  
12/16  
13/16  
14/16  
15/16  
16/16  
16.5  
18  
19.5  
21  
22.5  
24  
18 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
Table 14. Odd Individual Segment Current Format  
SEGMENT  
LED  
ADDRESS  
CODE (HEX)  
CONSTANT  
DRIVE  
FRACTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
HEX CODE  
CURRENT WITH  
R
= 39k(mA)  
ISET  
1/16  
2/16  
1.5  
3
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0x12 to 0x1F  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0x0X  
0x1X  
0x2X  
0x3X  
0x4X  
0x5X  
0x6X  
0x7X  
0x8X  
0x9X  
0xAX  
0xBX  
0xCX  
0xDX  
0xEX  
0xFX  
3/16  
4.5  
6
4/16  
5/16  
7.5  
9
6/16  
7/16  
10.5  
12  
See Table 13.  
8/16  
9/16  
13.5  
15  
10/16  
11/16  
12/16  
13/16  
14/16  
15/16  
16/16  
16.5  
18  
19.5  
21  
22.5  
24  
The recommended value of R  
is 39k.  
ISET  
Applications Information  
The recommended value of R  
allowed value, since it sets the display driver to the  
maximum allowed segment current. R can be a  
higher value to set the segment current to a lower maxi-  
mum value where desired. The user must also ensure  
that the maximum current specifications of the LEDs  
connected to the driver are not exceeded.  
is the minimum  
ISET  
Driving Bicolor and Tricolor LEDs  
Bicolor digits group a red and a green die together for  
each display element, so that the element can be lit  
red, green (or orange), depending on which die (or  
both) is lit. The MAX6956 allows each segment’s cur-  
rent to be set individually from 1/16th (minimum current  
and LED intensity) to 16/16th (maximum current and  
LED intensity), as well as off (zero current). Thus, a  
bicolor (red-green) segment pair can be set to 289  
color/intensity combinations. A discrete or CA tricolor  
(red-green-yellow or red-green-blue) segment triad can  
be set to 4913 color/intensity combinations.  
ISET  
The drive current for each segment can be controlled  
through programming either the Global Current register  
(Table 11) or Individual Segment Current registers  
(Tables 12, 13, and 14), according to the setting of the  
Current Control bit of the Configuration register (Table 9).  
These registers select the LED’s constant-current drive  
from 16 equal fractions of the maximum segment cur-  
rent. The current difference between successive current  
Power Dissipation Issues  
Each MAX6956 port can sink a current of 24mA into an  
LED with a 2.4V forward-voltage drop when operated  
from a supply voltage of at least 3.0V. The minimum  
voltage drop across the internal LED drivers is there-  
fore (3.0V - 2.4V) = 0.6V. The MAX6956 can sink 28 x  
24mA = 672mA when all outputs are operating as LED  
steps, I , is therefore determined by the formula:  
STEP  
I
= I  
/ 16  
STEP  
SEG  
If I  
= 24mA, then I  
= 24mA / 16 = 1.5mA.  
SEG  
STEP  
______________________________________________________________________________________ 19  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
GPIO INPUT  
GPIO IN  
CONDITIONING  
GPIO/PORT  
GPIO/PORT OUT  
OUTPUT LATCH  
INT STATUS STORED AS MSB OF MASK REGISTER  
P31  
MAX956  
CLOCK PULSE AFTER EACH READ ACCESS TO MASK REGISTER  
R
S
INT  
OUTPUT LATCH  
CONFIGURATION REGISTER M BIT = 1  
GPIO IN  
GPIO INPUT  
D
D
Q
Q
CONDITIONING  
P30  
P29  
GPIO/PORT OUT  
MASK REGISTER BIT 6  
MASK REGISTER BIT 5  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
D
D
Q
Q
P28  
P27  
GPIO/PORT OUT  
MASK REGISTER BIT 4  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
OR  
MASK REGISTER BIT 3  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
D
D
Q
Q
P26  
P25  
GPIO/PORT OUT  
MASK REGISTER BIT 2  
MASK REGISTER BIT 1  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
GPIO/PORT OUT  
GPIO/PORT OUTPUT LATCH  
GPIO IN  
GPIO INPUT  
CONDITIONING  
D
Q
P24  
GPIO/PORT OUT  
MASK REGISTER LSB  
GPIO/PORT OUTPUT LATCH  
CLOCK PULSE WHEN WRITING CONFIGURATION REGISTER WITH M BIT SET  
Figure 11. Maskable GPIO Ports P24 Through P31  
20 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
Table 15. Transition Detection Mask Register  
REGISTER  
ADDRESS  
(HEX)  
REGISTER DATA  
READ/  
WRITE  
FUNCTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Port  
30  
mask  
Port  
29  
mask  
Port  
28  
mask  
Port  
27  
mask  
Port  
26  
mask  
Port  
25  
mask  
Port  
24  
mask  
Read  
Write  
INT Status*  
Unchanged  
Mask  
Register  
0x06  
*INT is automatically cleared after it is read.  
Table 16. Display Test Register  
REGISTER DATA  
ADDRESS CODE  
(HEX)  
MODE  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
0
Normal Operation  
Display Test Mode  
0x07  
0x07  
X
X
X
X
X
X
X
1
X = Don’t care bit  
segment drivers at full current. On a 3.3V supply, a  
MAX6956 dissipates (3.3V - 2.4V) 672mA = 0.6W  
when driving 28 of these 2.4V forward-voltage drop  
LEDs at full current. This dissipation is within the ratings  
of the 36-pin SSOP package with an ambient tempera-  
ture up to +98°C. If a higher supply voltage is used or  
the LEDs used have a lower forward-voltage drop than  
2.4V, the MAX6956 absorbs a higher voltage, and the  
MAX6956’s power dissipation increases.  
Low-Voltage Operation  
The MAX6956 operates down to 2V supply voltage  
(although the sourcing and sinking currents are not guar-  
anteed), providing that the MAX6956 is powered up ini-  
tially to at least 2.5V to trigger the device’s internal reset.  
Serial Interface Latency  
When a MAX6956 register is written through the I2C inter-  
face, the register is updated on the rising edge of SCL  
during the data byte’s acknowledge bit (Figure 5). The  
delay from the rising edge of SCL to the internal register  
being updated can range from 50ns to 350ns.  
If the application requires high drive current and high  
supply voltage, consider adding a series resistor to  
each LED to drop excessive drive voltage off-chip. For  
example, consider the requirement that the MAX6956  
must drive LEDs with a 2.0V to 2.4V specified forward-  
voltage drop, from an input supply range is 5V 5ꢀ  
with a maximum LED current of 20mA. Minimum input  
supply voltage is 4.75V. Maximum LED series resistor  
value is (4.75V - 2.4V - 0.6V)/0.020A = 87.5. We  
choose 822ꢀ. Worst-case resistor dissipation is at  
maximum toleranced resistance, i.e., (0.020A)2 (82Ω  
1.02) = 34mW. The maximum MAX6956 dissipation  
per LED is at maximum input supply voltage, minimum  
toleranced resistance, minimum toleranced LED for-  
ward-voltage drop, i.e., 0.020 x (5.25V - 2.0V - (0.020A  
82x 0.98)) = 32.86mW. Worst-case MAX6956 dissi-  
pation is 920mW driving all 28 LEDs at 20mA full cur-  
rent at once, which meets the 941mW dissipation  
ratings of the 36-pin SSOP package.  
PC Board Layout Considerations  
Ensure that all of the MAX6956 GND connections are  
used. A ground plane is not necessary, but may be useful  
to reduce supply impedance if the MAX6956 outputs are  
to be heavily loaded. Keep the track length from the ISET  
resistor as short as possible, and take the  
GND end of the resistor either to the ground plane or  
directly to the GND pins.  
pin to the R  
ISET  
Power-Supply Considerations  
The MAX6956 operates with power-supply voltages of  
2.5V to 5.5V. Bypass the power supply to GND with a  
0.047µF capacitor as close to the device as possible.  
Add a 1µF capacitor if the MAX6956 is far away from  
the board’s input bulk decoupling capacitor.  
______________________________________________________________________________________ 21  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
Typical Operating Circuit  
3V  
3V  
36  
32  
30  
28  
26  
5
V+  
P4  
P5  
a1  
a2  
b
LED1  
U1  
47nF  
3
2
1
GND  
GND  
ISET  
P6  
MAX6956AAX  
P7  
c
P8  
d1  
d2  
e
7
39k  
P9  
MAX956  
9
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
35  
4
11  
6
AD1  
AD0  
SDA  
SCL  
f
g1  
g2  
h
33  
34  
8
DATA  
10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CLOCK  
i
31  
29  
27  
25  
24  
23  
22  
21  
P31  
P30  
P29  
P28  
P27  
P26  
P25  
P24  
j
k
l
m
dp  
ca  
a1  
a2  
b
LED2  
c
d1  
d2  
e
f
g1  
g2  
h
i
3V  
j
k
32  
30  
36  
P4  
P5  
V+  
l
U2  
47nF  
m
dp  
ca  
28  
26  
5
3
2
1
P6  
GND  
GND  
ISET  
MAX6956AAX  
P7  
P8  
7
39kΩ  
P9  
9
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
a1  
a2  
b
LED3  
35  
4
11  
6
AD1  
AD0  
SDA  
SCL  
33  
34  
8
c
10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
d1  
d2  
e
31  
29  
27  
25  
24  
23  
22  
21  
P31  
P30  
P29  
P28  
P27  
P26  
P25  
P24  
IRQ OUT  
f
g1  
g2  
h
i
1
2
j
k
l
m
dp  
ca  
SW1 SW2  
SW3  
22 ______________________________________________________________________________________  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
MAX956  
Pin Configurations (continued)  
TOP VIEW  
ISET  
GND  
GND  
AD0  
P8  
1
2
3
4
5
6
7
8
9
36 V+  
35 AD1  
34 SCL  
33 SDA  
32 P4  
MAX6956  
P8  
P12  
P9  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P4  
P12  
P9  
31 P31  
30 P5  
P31  
P5  
3
P13  
P10  
P30  
29  
P13  
P10  
P14  
P11  
P15  
P16  
P17  
4
P30  
P6  
5
28 P6  
MAX6956  
6
P29  
P7  
P14 10  
P11 11  
P15 12  
P16 13  
P17 14  
P18 15  
P19 16  
P20 17  
P21 18  
27 P29  
26 P7  
7
P28  
P27  
P26  
8
25 P28  
24 P27  
23 P26  
22 P25  
21 P24  
20 P23  
19 P22  
9
10  
TQFN  
SSOP  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: CMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
28 DIP  
28 SSOP  
N28+2  
A28+1  
21-0043  
21-0056  
21-0040  
21-0141  
90-0095  
90-0098  
90-0055  
36 SSOP  
A36+4  
40 Thin QFN-EP  
T4066+5  
______________________________________________________________________________________ 23  
2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or  
28-Port LED Display Driver and I/O Expander  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
2
3
4
11/03  
3/09  
6/10  
1, 2, 5, 23  
1
Added exposed pad information and updated packaging information  
Added lead-free and automotive qualified parts to Ordering Information  
MAX956  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX6956ATL

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port LED Display Driver and I/O Expander
MAXIM

MAX6956ATL+

Interface Circuit, CMOS, ROHS COMPLIANT, TQFN-40
MAXIM

MAX6956ATL+GH7

Interface Circuit, CMOS, ROHS COMPLIANT, TQFN-40
MAXIM

MAX6956ATL+TGH7

Interface Circuit, CMOS, ROHS COMPLIANT, TQFN-40
MAXIM

MAX6956ATL-T

Interface Circuit, CMOS, TQFN-40
MAXIM

MAX6956ATL/V+

Interface Circuit, CMOS, ROHS COMPLIANT, TQFN-40
MAXIM

MAX6956ATL/V+T

Interface Circuit, CMOS, ROHS COMPLIANT, TQFN-40
MAXIM

MAX6956_09

2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port LED Display Driver and I/O Expander
MAXIM

MAX6957

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port LED Display Driver and I/O Expander
MAXIM

MAX6957AAI

4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port LED Display Driver and I/O Expander
MAXIM

MAX6957AAI+

LED Driver, 20-Segment, CMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MAX6957AAI+T

LED Driver, 20-Segment, CMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM