MAX6920ATP+T [MAXIM]

Vacuum Fluorescent Driver, 12-Segment, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHC, TQFN-20;
MAX6920ATP+T
型号: MAX6920ATP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Vacuum Fluorescent Driver, 12-Segment, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220-WHHC, TQFN-20

驱动 信息通信管理 接口集成电路
文件: 总10页 (文件大小:1061K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
General Description  
The MAX6920 is a 12-output, 76V, vacuum fluo-  
rescent display (VFD) tube driver that interfaces a  
multiplexed VFD tube to a VFD controller such as the  
Features  
5MHz Industry-Standard 4-Wire Serial Interface  
3V to 5.5V Logic Supply Range  
8V to 76V Grid/Anode Supply Range  
MAX6850–MAX6853 or to  
a microcontroller. The  
Push-Pull CMOS High-Voltage Outputs  
Outputs can Source 40mA, Sink 4mA Continuously  
Outputs can Source 75mA Repetitive Pulses  
Outputs can be Paralleled for Higher Current Drive  
MAX6920 is also ideal for driving either static VFD tubes  
or telecom relays.  
Data is inputted using an industry-standard 4-wire serial  
interface (CLOCK, DATA, LOAD, BLANK) for compatibil-  
ity with both industry-standard drivers and Maxim’s VFD  
controllers.  
Any Output can be Used as a Grid or an Anode  
Driver  
For easy display control, the active-high BLANK input  
forces all driver outputs low, turning the display off, and  
automatically puts the MAX6920 into shutdown mode.  
Display intensity may also be controlled by pulse-width  
modulating the BLANK input.  
Blank Input Simplifies PWM Intensity Control  
Small 20-Pin SO Package  
-40°C to +125°C Temperature Range  
The MAX6920 has a serial interface data output pin,  
DOUT, allowing any number of devices to be cascaded  
on the same serial interface.  
The MAX6920 is available in a 20-pin SO pack-  
age. Maxim also offers VFD drivers with either 20  
(MAX6921/MAX6931) or 32 outputs (MAX6922 and  
MAX6932).  
Applications  
White Goods  
Gaming Machines  
Avionics  
Ordering Information  
Industrial Weighing  
Security  
Telecom  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX6920AWP  
-40°C to +125°C  
20 Wide SO  
Pin Configuration  
Typical Operating Circuit  
+5V  
+60V  
TOP VIEW  
C1  
100nF  
C2  
100nF  
V
1
2
3
4
5
6
7
8
9
20 V  
CC  
BB  
DOUT  
OUT11  
OUT10  
OUT9  
19 DIN  
20  
1
18 OUT0  
17 OUT1  
16 OUT2  
15 OUT3  
14 OUT4  
13 OUT5  
12 LOAD  
11 CLK  
V
V
BB  
CC  
µC  
MAX6920  
OUT0 – OUT11  
12  
MAX6920AWP  
19  
11  
12  
9
VFDOUT  
VFCLK  
DIN  
OUT8  
CLK  
OUT7  
VFLOAD  
LOAD  
BLANK  
OUT6  
VFBLANK  
BLANK  
GND  
10  
GND 10  
19-3061; Rev 1; 8/14  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
Absolute Maximum Ratings  
Voltage (with respect to GND)  
OUT_ Sink Current.............................................................15mA  
V
V
....................................................................-0.3V to +80V  
......................................................................-0.3V to +6V  
CLK, DIN, LOAD, BLANK, DOUT Current ......................±10mA  
Continuous Power Dissipation  
BB  
CC  
OUT_.....................................................-0.3V to (V + 0.3V)  
20-Pin Wide SO (derate 10mW/°C over T = +70°C)....800mW  
A
BB  
All Other Pins....................................... -0.3V to (V  
+ 0.3V)  
Operating Temperature Range (T  
to T  
)-40°C to +125°C  
MAX  
CC  
MIN  
OUT_ Continuous Source Current ...................................-45mA  
OUT_ Pulsed (1ms max, 1/4 max duty) Source Current ....-80mA  
Total OUT_ Continuous Source Current ........................-540mA  
Total OUT_ Continuous Sink Current ................................60mA  
Total OUT_ Pulsed (1ms max, 1/4 max duty)  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Source Current ...........................................................-960mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(Typical Operating Circuit, V = 8V to 76V, V  
= 3V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
BB  
CC  
A
MIN  
PARAMETER  
Logic Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
3
TYP  
MAX  
5.5  
76  
UNITS  
V
V
V
CC  
Tube Supply Voltage  
V
8
BB  
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
= +25°C  
72  
350  
1
170  
200  
650  
700  
2
All outputs OUT_  
low, CLK = idle  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
= -40°C to +125°C  
= +25°C  
Logic Supply Operating Current  
I
µA  
mA  
CC  
All outputs OUT_  
high, CLK = idle  
= -40°C to +125°C  
= +25°C  
_
All outputs OUT low  
= -40°C to +125°C  
= +25°C  
4.2  
0.85  
0.9  
I
Tube Supply Operating Current  
BB  
0.53  
All outputs OUT_  
high  
= -40°C to +125°C  
= +25°C  
V
- 1.1  
BB  
V
≥ 15V,  
BB  
= -40°C to +85°C  
= -40°C to +125°C  
= -40°C to +85°C  
= -40°C to +125°C  
= +25°C  
V
V
V
V
- 2  
BB  
BB  
BB  
BB  
I
= -25mA  
OUT  
- 2.5  
- 3.5  
- 4.0  
V
V
I
≥ 15V,  
BB  
High-Voltage OUT_  
V
V
H
= -40mA  
OUT  
- 1.2  
BB  
8V < V < 15V,  
BB  
= -40°C to +85°C  
= -40°C to +125°C  
= +25°C  
V
V
- 2.5  
- 3.0  
BB  
I
= -25mA  
OUT  
BB  
0.75  
1
V
≥ 15V,  
BB  
= -40°C to +85°C  
= -40°C to +125°C  
= +25°C  
1.5  
1.9  
1.1  
1.6  
2.0  
I
= 1mA  
OUT  
Low-Voltage OUT_  
V
V
L
0.8  
8V < V < 15V,  
BB  
= -40°C to +85°C  
= -40°C to +125°C  
I
= 1mA  
OUT  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
Electrical Characteristics (continued)  
(Typical Operating Circuit, V = 8V to 76V, V  
= 3V to 5.5V, T = T  
to T  
, unless otherwise noted.) (Note 1)  
MAX  
BB  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
= 60V, C = 50pF, R = 2.3kW  
MIN  
TYP  
0.9  
MAX  
2
UNITS  
µs  
Rise Time OUT_ (20% to 80%)  
Fall Time OUT_ (80% to 20%)  
t
V
V
R
BB  
L
L
t
= 60V, C = 50pF, R = 2.3kW  
0.6  
1.5  
µs  
F
BB  
L
L
SERIAL INTERFACE TIMING CHARACTERISTICS  
LOAD Rising to OUT_ Falling  
(Notes 2, 3)  
(Notes 2, 3)  
(Notes 2, 3)  
(Notes 2, 3)  
0.9  
1.2  
1.8  
2.4  
1.8  
2.5  
10  
µs  
µs  
µs  
µs  
µA  
V
Delay  
LOAD Rising to OUT_ Rising Delay  
BLANK Rising to OUT_ Falling  
Delay  
0.9  
BLANK Falling to OUT_ Rising  
Delay  
1.3  
Input Leakage Current  
I
, I  
0.05  
IH IL  
CLK, DIN, LOAD, BLANK  
Logic-High Input Voltage  
CLK, DIN, LOAD, BLANK  
0.8 x  
V
IH  
V
CC  
Logic-Low Input Voltage  
CLK, DIN, LOAD, BLANK  
0.3 x  
V
V
IL  
V
CC  
Hysteresis Voltage  
DV  
0.6  
V
I
DIN, CLK, LOAD, BLANK  
V
CC  
0.5  
High-Voltage DOUT  
Low-Voltage DOUT  
V
I
I
= -1.0mA  
SOURCE  
V
V
OH  
V
= 1.0mA  
SINK  
0.5  
100  
80  
OL  
3V to 4.5V  
60  
30  
C
= 10pF  
DOUT  
Rise and Fall Time DOUT  
ns  
(Note 2)  
4.5V to 5.5V  
CLK Clock Period  
t
200  
90  
90  
100  
5
ns  
ns  
ns  
ns  
ns  
CP  
CLK Pulse-Width High  
CLK Pulse-Width Low  
CLK Rise to LOAD Rise Hold Time  
DIN Setup Time  
t
CH  
t
CL  
t
(Note 2)  
CSH  
t
DS  
3V to 4.5V  
20  
15  
25  
20  
55  
DIN Hold Time  
t
ns  
DH  
4.5V to 5.5V  
3.0V to 4.5V  
4.5V to 5.5V  
120  
75  
240  
150  
DOUT Propagation Delay  
LOAD Pulse High  
t
C
= 10pF  
ns  
ns  
DO  
DOUT  
t
CSW  
Note 1: All parameters are tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Guaranteed by design.  
Note 3: Delay measured from control edge to when output OUT_ changes by 1V.  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
Typical Operating Characteristics  
(V  
= 5.0V, V = 76V, and T = +25°C, unless otherwise noted.)  
BB A  
CC  
TUBE SUPPLY CURRENT (I  
)
BB  
TUBE SUPPLY CURRENT (I  
)
BB  
LOGIC SUPPLY CURRENT (I  
)
CC  
vs. TEMPERATURE (OUTPUTS LOW)  
vs. TEMPERATURE (OUTPUTS HIGH)  
vs. TEMPERATURE (OUTPUTS LOW)  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
V
= 5V, CLK = 5MHz  
CC  
CC  
V
= 3.3V, CLK = 5MHz  
V
= 76V  
BB  
V
BB  
= 76V  
V
= 40V  
V
= 8V  
BB  
BB  
V
= 5V, CLK = IDLE  
CC  
V
= 3.3V, CLK = IDLE  
CC  
V
BB  
= 40V  
V
= 8V  
BB  
0
-40 -15  
10  
35  
60  
85 110  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT (I  
)
CC  
OUTPUT VOLTAGE (V - V )  
BB H  
vs. TEMPERATURE (OUTPUTS HIGH)  
vs. TEMPERATURE (OUTPUT HIGH)  
600  
550  
500  
450  
400  
350  
300  
250  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V, CLK = 5MHz  
CC  
I
= -40mA  
OUT  
V
BB  
= 8V  
V
V
= 3.3V, CLK = 5MHz  
CC  
= 40V  
BB  
V
= 5V, CLK = IDLE  
V
= 76V  
BB  
CC  
V
= 3.3V, CLK = IDLE  
CC  
-40  
10  
60  
110  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE  
vs. TEMPERATURE (OUTPUT LOW)  
OUTPUT RISE AND  
FALL WAVEFORM  
MAX6920 toc11  
14  
12  
10  
8
I
= 4mA  
OUT  
V
= 76V  
BB  
BLANK  
2V/div  
V
= 40V  
BB  
OUT_  
20V/div  
6
V
BB  
= 8V  
4
2
0
1µs/div  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
VFD Tube Supply Voltage  
Serial-Clock Output. Data is clocked out of the internal shift register to DOUT on CLK’s rising edge.  
BB  
2
DOUT  
OUT0 to  
OUT11  
3–8, 13–18  
9
VFD Anode and Grid Drivers. OUT0 to OUT11 are push-pull outputs swinging from V to GND.  
BB  
Blanking Input. High forces outputs OUT0 to OUT11 low, without altering the contents of the output  
latches. Low enables outputs OUT0 to OUT11 to follow the state of the output latches.  
BLANK  
10  
11  
GND  
CLK  
Ground  
Serial-Clock Input. Data is loaded into the internal shift register on CLK’s rising edge.  
Load Input. Data is loaded transparently from the internal shift register to the output latch while LOAD  
is high. Data is latched into the output latch on LOAD’s rising edge, and retained while LOAD is low.  
12  
LOAD  
DIN  
19  
20  
Serial-Data Input. Data is loaded into the internal shift register on CLK’s rising edge.  
Logic Supply Voltage  
V
CC  
CLK  
SERIAL-TO-PARALLEL SHIFT REGISTER  
LATCHES  
DIN  
LOAD  
DOUT  
BLANK  
MAX6920  
OUT0 OUT1 OUT2  
OUT11  
Figure 1. MAX6920 Functional Diagram  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
the shift register outputs when LOAD is high, and latches  
the current state on the falling edge of LOAD.  
V
BB  
Each driver output is a slew-rated controlled CMOS push-  
pull switch driving between V and GND. The output rise  
BB  
40  
TYPICAL  
time is always slower than the output fall time to avoid  
shoot-through currents during output transitions. The  
output slew rates are slow enough to minimize EMI, yet  
are fast enough so as not to impact the typical 100µs digit  
multiplex period and affect the display intensity.  
SLEW- RATE  
CONTROL  
OUT_  
750Ω  
TYPICAL  
Initial Power-Up and Operation  
An internal reset circuit clears the internal registers of  
the MAX6920 on power-up. All outputs OUT0 to OUT11  
and the interface output DOUT initialize low regardless  
of the initial logic levels of the CLK, DIN, BLANK, and  
LOAD inputs.  
Figure 2. MAX6920 CMOS Output Driver Structure  
Detailed Description  
The MAX6920 is a VFD tube driver comprising a  
4-wire serial interface driving 12 high-voltage rail-to-rail  
output ports. The driver is suitable for both static and  
multiplexed displays.  
4-Wire Serial Interface  
The MAX6920 uses a 4-wire serial interface with three  
inputs (DIN, CLK, LOAD) and a data output (DOUT).  
This interface is used to write output data to the  
MAX6920 (Figure 3) (Table 1). The serial interface data  
word length is 12 bits, D0–D11.  
The output ports feature high current-sourcing capabili-  
ty to drive current into grids and anodes of static or  
multiplex VFDs. The ports also have active current sink-  
ing for fast discharge of capacitive display electrodes  
in multiplexing applications.  
The functions of the four serial interface pins are:  
CLK input is the interface clock, which shifts data into  
The 4-wire serial interface comprises a 12-bit shift reg-  
ister and a 12-bit transparent latch. The shift register is  
written through a clock input CLK and a data input DIN  
and the data propagates to a data output DOUT. The  
data output allows multiple drivers to be cascaded and  
operated together. The output latch is transparent to  
the MAX6920’s 12-bit shift register on its rising edge.  
LOAD input passes data from the MAX6920’s 12-bit  
shift register to the 12-bit output latch when LOAD  
is high (transparent latch), and latches the data on  
LOAD’s falling edge.  
t
CSW  
LOAD  
t
CSH  
t
CL  
t
CH  
t
CP  
CLK  
DIN  
t
DH  
t
DS  
D11  
D10  
D1  
D0  
t
DO  
DOUT  
D11  
Figure 3. 4-Wire Serial Interface Timing Diagram  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
Table 1. 4-Wire Serial Interface Truth Table  
CLOCK  
LOAD  
BLANKING  
INPUT  
SERIAL  
DATA  
INPUT  
DIN  
SHIFT REGISTER CONTENTS  
LATCH CONTENTS  
OUTPUT CONTENTS  
INPUT  
INPUT  
CLK D0 D1 D2  
Dn-1 Dn LOAD D0 D1 D2 … Dn-1 Dn  
BLANK  
D0 D1 D2  
Dn-1 Dn  
H
L
H
L
R0 R1  
R0 R1  
Rn-2 Rn-1  
Rn-2 Rn-1  
X
R0 R1 R2  
Rn-1  
X
Rn  
X
X
X
X
L
R0 R1 R2 … Rn-1 Rn  
P0 P1 P2  
Pn-1  
Pn  
H
P0 P1 P2  
Pn-1 Pn  
L
P0 P1 P2  
Pn-1 Pn  
X
X
X
X
X
H
L
L
L
L
L
L = Low logic level.  
H = High logic level.  
X = Don’t care.  
P = Present state (shift register).  
R = Previous state (latched).  
DIN is the interface data input, and must be stable  
LOAD may be high or low during a transmission. If  
LOAD is high, then the data shifted into the shift regis-  
ter at DIN appears at the OUT0 to OUT11 outputs.  
when it is sampled on the rising edge of CLK.  
DOUT is the interface data output, which shifts data  
out from the MAX6920’ 12-bit shift register on the fall-  
ing edge of CLK. Data at DIN is propagated through  
the shift register and appears at DOUT (20 CLK cycles  
CLK and DIN may be used to transmit data to other  
peripherals. Activity on CLK always shifts data into the  
MAX6920’s shift register. However, the MAX6920 only  
updates its output latch on the rising edge of LOAD,  
and the last 12 bits of data are loaded. Therefore, multi-  
ple devices can share CLK and DIN as long as they  
have unique LOAD controls.  
+ t ) later.  
DO  
A fifth input pin, BLANK, can be taken high to force out-  
puts OUT0 to OUT11 low, without altering the contents of  
the output latches. When the BLANK input is low, outputs  
OUT0 to OUT11 follow the state of the output latches. A  
common use of the BLANK input is PWM intensity control.  
Determining Driver Output Voltage Drop  
The outputs are CMOS drivers, and have a resis-  
tive characteristic. The typical and maximum sink and  
source output resistances can be calculated from the  
The BLANK input’s function is independent of the oper-  
ation of the serial interface. Data can be shifted into the  
serial interface shift register and latched regardless of the  
state of BLANK.  
V
and V electrical characteristics. Use this calculated  
H
L
resistance to determine the output voltage drop at dif-  
ferent output currents.  
Writing Device Registers Using the 4-Wire  
Serial Interface  
The MAX6920 is written using the following sequence:  
Output Current Ratings  
The continuous current source capability is 40mA per  
output. Outputs may drive up to 75mA as a repetitive  
peak current, subject to the on time (output high) being  
no longer than 1ms, and the duty cycle being such that  
the output power dissipation is no more than the dissipa-  
tion for the continuous case. The repetitive peak rating  
allows outputs to drive a higher current in multiplex grid  
driver applications, where only one grid is on at a time,  
and the multiplex time per grid is no more than 1ms.  
1) Take CLK low.  
2) Clock 12 bits of data in order D11 first to D0 last  
into DIN, observing the data setup and hold times.  
3) Load the 12 output latches with a falling edge  
on LOAD.  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
Since dissipation is proportional to current squared, the  
maximum current that can be delivered for a given mul-  
tiplex ratio is given by:  
higher for multiplexed tubes. When using multiple dri-  
ver devices, try to share the average dissipation evenly  
between the drivers.  
1/2  
I
= (grids x 1600) mA  
Determine the power dissipation (P ) for the MAX6920  
D
PEAK  
for static tube drivers with the following equation:  
where grids is the number of grids in a multiplexed display.  
P
= (V  
x I ) + (V x I ) + ((V - V ) x  
D
CC CC BB BB BB H  
This means that a duplex application (two grids) can use  
a repetitive peak current of 56.5mA, a triplex application  
(three grids) can use a repetitive peak current of 69.2mA,  
and higher multiplex ratios are limited to 75mA.  
I
x A))  
ANODE  
where:  
A = number of anodes driven (a MAX6920 can drive a  
maximum of 12).  
Paralleling Outputs  
I
= maximum anode current.  
ANODE  
Any number of outputs within the same package may be  
paralleled in order to raise the current drive or reduce the  
output resistance. Only parallel outputs directly (by short-  
ing outputs together) if the interface control can be guar-  
anteed to set the outputs to the same level. Although the  
sink output is relatively weak (typically 750W), that resis-  
tance is low enough to dissipate 530mW when shorted to  
(V  
- V ) is the output voltage drop at the given maxi-  
H
BB  
mum anode current I  
.
OUT  
A static tube dissipation example follows:  
= 5V ±5%, V = 10V to 18V, A = 12, I = 2mA  
OUT  
V
CC  
BB  
P
= (5.25V x 0.7mA) + (18V x 0.9mA) + ((2.5V x  
2mA/25mA) x 2mA x 12) = 24.7mW  
D
an opposite level output at a V  
voltage of only 20V. A  
BB  
Determine the power dissipation (P ) for the MAX6920  
D
for multiplex tube drivers with the following equation:  
safe way to parallel outputs is to use diodes to prevent the  
outputs from sinking current (Figure 4). Because the out-  
puts cannot sink current from the VFD tube, an external  
discharge resistor, R, is required. For static tubes, R can  
be a large value such as 100kW. For multiplexed tubes,  
the value of the resistor can be determined by the load  
capacitance and timing characteristics required. Resistor  
Rl discharges tube capacitance C to 10% of the initial volt-  
age in 2.3 x RC seconds. So, for example, a 15kW value  
for R discharges 100pF tube grid or anode from 40V to  
4V in 3.5µs, but draws an additional 2.7mA from the driver  
when either output is high.  
P
= (V x I ) + (V x I ) + ((V - V ) x I  
CC CC BB BB BB H ANODE  
D
x A) + ((V - V ) x I ))  
GRID  
BB  
H
where:  
A = number of anodes driven  
G = number of grids driven  
I
I
= maximum anode current  
ANODE  
= maximum grid current  
GRID  
The calculation presumes all anodes are on but only  
one grid is on. The calculated P is the worst case,  
D
presuming one digit is always being driven with all its  
Power Dissipation  
anodes lit. Actual P can be estimated by multiplying  
D
Take care to ensure that the maximum package dissi-  
pation ratings for the chosen package are not exceed-  
ed. Over dissipation is unlikely to be an issue when  
driving static tubes, but the peak currents are usually  
this P figure by the actual tube drive duty cycle, taking  
D
into account interdigit blanking and any PWM intensity  
control.  
A multiplexed tube dissipation example follows:  
V
= 5V ±5%, V  
= 36V to 42V, A = 6, G = 6,  
= 24mA  
CC  
BB  
I
= 0.4mA, I  
ANODE  
GRID  
P
= (5.25V x 0.7mA)+ (42V x 0.9mA) + ((2.5V x  
0.4mA/25mA) x 0.4mA x 6) +  
D
MAX6920  
D1  
OUT0  
OUTPUT  
((2.5V x 24mA/25mA) x 24mA) = 99mW  
D2  
Thus, for a 20-pin wide SO package (T  
= 1/0.01 =  
OUT1  
JA  
+100°C/W from Absolute Maximum Ratings), the maxi-  
mum allowed ambient temperature T is given by:  
R
A
T
= T + (PD x T ) = +150°C = T + (0.099 x  
J(MAX)  
A
JA  
A
+100°C/W)  
Figure 4. Paralleling Outputs  
So T = +140°C.  
A
Maxim Integrated  
8  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
This means that the driver can be operated in this  
application up to the MAX6920’s +125°C maximum  
operating temperature.  
Typical Application Circuit  
MAX685x  
MAX6920  
Power-Supply Considerations  
VFDOUT  
DIN  
The MAX6920 operates with multiple power-supply volt-  
VFCLK  
VFLOAD  
VFBLANK  
CLK  
ages. Bypass the V  
and V  
power-supply pins to  
CC  
BB  
LOAD  
GND with a 0.1µF capacitor close to the device. For  
multiplex applications, it may be necessary to add an  
additional 1µF bulk electrolytic capacitor, or greater, to  
BLANK  
DOUT  
DOUT  
DOUT  
the V supply.  
BB  
MAX6920  
Power-Supply Sequencing  
The order of the power-supply sequencing is not import-  
ant. The MAX6920 will not be damaged if either V  
DIN  
CLK  
CC  
LOAD  
BLANK  
or V  
is grounded (or maintained at any other voltage  
BB  
below the data sheet minimum), while the other supply  
is maintained up to its maximum rating. However, as with  
any CMOS device, do not drive the MAX6920’s logic  
inputs if the logic supply V  
the input protection diodes clamp the signals.  
is not operational because  
CC  
MAX6920  
DIN  
CLK  
LOAD  
BLANK  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character,  
but the drawing pertains to the package regardless of RoHS  
status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
DOCUMENT  
NO.  
LAND  
PATTERN NO.  
20 SO  
W20-2  
21-0042  
90-0108  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX6920  
12-Output, 76V, Serial-Interfaced VFD Tube Driver  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
10/03  
8/14  
Initial Release  
Removed automotive reference from data sheet  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
10  

相关型号:

MAX6920AWP

12-Output, 76V, Serial-Interfaced VFD Tube Driver
MAXIM

MAX6920AWP+

暂无描述
MAXIM

MAX6920AWP+T

Vacuum Fluorescent Driver, 12-Segment, BICMOS, PDSO20, 0.300 INCH, MS-013AC, SO-20
MAXIM

MAX6920AWP-T

暂无描述
MAXIM

MAX6921

20-Output, 76V, Serial-Interfaced VFD Tube Drivers
MAXIM

MAX6921AQI

20-Output, 76V, Serial-Interfaced VFD Tube Drivers
MAXIM

MAX6921AQI+

Vacuum Fluorescent Driver, 20-Segment, BICMOS, PQCC28, ROHS COMPLIANT, LCC-28
MAXIM

MAX6921AQI+T

Vacuum Fluorescent Driver, 20-Segment, BICMOS, PQCC28, ROHS COMPLIANT, LCC-28
MAXIM

MAX6921AQI-T

暂无描述
MAXIM

MAX6921AUI

20-Output, 76V, Serial-Interfaced VFD Tube Drivers
MAXIM

MAX6921AUI+

暂无描述
MAXIM

MAX6921AUI+T

Vacuum Fluorescent Driver, 20-Segment, BICMOS, PDSO28, ROHS COMPLIANT, TSSOP-28
MAXIM