MAX6890ETI-T [MAXIM]

Power Supply Management Circuit, Adjustable, 6 Channel, BICMOS, PQCC28, 5 X 5 MM, TQFN-28;
MAX6890ETI-T
型号: MAX6890ETI-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Adjustable, 6 Channel, BICMOS, PQCC28, 5 X 5 MM, TQFN-28

信息通信管理
文件: 总40页 (文件大小:435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3595; Rev 0; 2/05  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
General Description  
Features  
The MAX6889/MAX6890/MAX6891 EEPROM-config-  
urable, multivoltage supply sequencers/supervisors  
monitor several voltage detector inputs and general-  
purpose logic inputs and feature programmable out-  
puts for highly configurable power-supply sequencing  
applications. The MAX6889 features eight voltage  
detector inputs and ten programmable outputs. The  
MAX6890 features six voltage detector inputs and eight  
programmable outputs, while the MAX6891 features  
four voltage detector inputs and five programmable  
outputs. Manual reset and margin disable inputs offer  
additional flexibility.  
Eight (MAX6889), Six (MAX6890), or Four  
(MAX6891) Configurable Input Voltage Detectors  
High-Voltage Input (1.25V to 7.625V or  
2.5V to 13.2V)  
Six (MAX6889), Five (MAX6890), or Three  
(MAX6891) Voltage Inputs (0.5V to 3.05V or  
1V to 5.5V)  
Additional (MAX6889) High-Voltage Input  
(1.25V to 7.625V or 2.5V to 15.25V)  
Four (MAX6889/MAX6890) or Three (MAX6891)  
General-Purpose Logic Inputs  
All voltage detectors offer a configurable threshold for  
undervoltage detection. High-voltage input IN1 monitors  
voltages from 2.5V to 13.2V in 50mV increments, or from  
1.25V to 7.625V in 25mV increments. Inputs IN2–IN7  
monitor voltages from 1V to 5.5V in 20mV increments or  
from 0.5V to 3.05V in 10mV increments. High-voltage  
input IN8 monitors voltages from 2.5V to 15.25V in 50mV  
increments, or from 1.25V to 7.625V in 25mV increments.  
Configurable Watchdog Timer  
Ten (MAX6889), Eight (MAX6890), or Five  
(MAX6891) Programmable Outputs  
Active-High, Active-Low, Open Drain, Weak  
Pullup  
Timing Delays from 25µs to 1600ms  
Margining Disable and Manual Reset Controls  
Programmable output stages control power-supply  
sequencing or system resets/interrupts. Programmable  
output options include: active-high, active-low, open  
drain, and weak pullup. Programmable timing delay  
blocks configure each output to wait between 25µs and  
1600ms before deasserting.  
512-Bit Internal User EEPROM  
Endurance: 100,000 Erase/Write Cycles  
Data Retention: 10 Years  
2
I C/SMBus-Compatible Serial  
Configuration/Communication Interface  
The MAX6889/MAX6890/MAX6891 feature a watchdog  
timer for added flexibility. Program the watchdog timer  
to assert one or more programmable outputs. The initial  
and normal watchdog timeout periods are indepen-  
dently programmable from 6.25ms to 102.4s.  
An SMBus™/I2C*-compatible, 2-wire serial data inter-  
face programs and communicates with the configura-  
tion EEPROM, the configuration registers, and the  
internal 512-bit user EEPROM.  
1ꢀ Threshold Accuracy  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
MAX6889ETJ  
MAX6890ETI  
-40°C to +85°C  
-40°C to +85°C  
32 Thin QFN  
28 Thin QFN  
20 Thin QFN  
T3255-4  
T2855-8  
T2055-5  
The MAX6889/MAX6890/MAX6891 are available in  
5mm x 5mm x 0.8mm thin QFN packages and are  
specified to operate over the extended temperature  
range (-40°C to +85°C).  
MAX6891ETP -40°C to +85°C  
Pin Configurations and Typical Operating Circuit appear at  
end of data sheet.  
Applications  
Telecommunication/Central Office Systems  
Networking Systems  
Servers/Workstations  
SMBus is a trademark of Intel Corp.  
*Purchase of I2C components from Maxim Integrated Products,  
Inc. or one of its sublicensed Associated Companies, conveys  
a license under the Philips I2C Patent Rights to use these com-  
ponents in an I2C system, provided that the system conforms  
to the I2C Standard Specification as defined by Philips.  
Base Stations  
Storage Equipment  
Multi-Microprocessor/Voltage Systems  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
28-Pin Thin QFN (derate 21.3mW/°C  
IN2–IN7, V , SDA, SCL, A0, A1, GPI_  
above +70°C)..............................................................1702mW  
32-Pin Thin QFN (derate 21.3mW/°C  
above +70°C)..............................................................1702mW  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
MR, MARGIN.........................................................-0.3V to +6V  
IN1, PO_ .................................................................-0.3V to +14V  
IN8..........................................................................-0.3V to +20V  
DBP ..........................................................................-0.3V to +3V  
Input/Output Current (all pins).......................................... 20mA  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin Thin QFN (derate 21.3mW/°C  
above +70°C)..............................................................1702mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 6.5V to 13.2V, V –V  
= 2.7V to 5.5V, V  
= 10V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless other-  
IN1  
IN2 IN7  
IN8 A  
wise noted. Typical values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage on IN1 to ensure the device is fully  
operational, IN2–IN8 = GND  
V
4.0  
13.2  
IN1  
Operating Voltage Range  
(Note 4)  
V
Voltage on any one of IN2–IN5 or V  
to  
CC  
2.7  
5.5  
6.5  
2.5  
ensure the device is fully operational,  
IN1 = GND  
Minimum voltage on IN1 to guarantee that  
the device is powered through IN1  
IN1 Supply Voltage (Note 4)  
V
V
V
IN1P  
Minimum voltage on one of IN2–IN5 to  
guarantee the device is EEPROM  
configured  
Undervoltage Lockout  
Digital Bypass Voltage  
Supply Current  
V
UVLO  
V
No load  
2.48  
2.55  
1
2.67  
1.2  
V
DBP  
V
= 13.2V, IN2–IN8 = GND, no load  
mA  
IN1  
I
CC  
Writing to configuration registers or  
EEPROM, no load  
1.1  
1.5  
mA  
V
V
V
V
V
V
(50mV increments)  
(25mV increments)  
2.5  
1.25  
1.0  
13.2  
7.625  
5.5  
IN1  
IN1  
–V  
(20mV increments)  
(10mV increments)  
IN2 IN7  
–V  
IN2 IN7  
0.50  
2.50  
1.250  
3.05  
Threshold Voltage Range  
V
V
TH  
(50mV increments)  
15.25  
7.625  
IN8  
IN8  
(25mV increments)  
V
–V (high-Z mode in 3.3mV  
IN2 IN8  
0.167  
1.017  
increments)  
2
_______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 6.5V to 13.2V, V –V  
= 2.7V to 5.5V, V  
= 10V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless other-  
IN8 A  
IN1  
IN2 IN7  
wise noted. Typical values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 2.5V to 5.5V  
MIN  
TYP  
MAX  
UNITS  
V
IN_  
-1  
+1  
%
(20mV increments)  
V
= 1V to 2.5V  
IN_  
-25  
-1  
+25  
+1  
mV  
%
T
= +25°C to  
A
(20mV increments)  
+85°C  
(V falling)  
V
= 1.25V to 3.05V  
IN_  
IN_  
(10mV increments)  
V
= 0.5V to 1.25V  
IN_  
-12.5  
-2  
+12.5  
+2  
mV  
%
(10mV increments)  
IN2–IN7 Threshold Accuracy  
V
= 2.5V to 5.5V  
IN_  
(20mV increments)  
V
= 1V to 2.5V  
IN_  
-50  
-2  
+50  
+2  
mV  
%
T
= -40°C to  
A
(20mV increments)  
= 1.25V to 3.05V  
+85°C  
(V falling)  
V
IN_  
IN_  
(10mV increments)  
= 0.5V to 1.25V  
V
IN_  
-25  
+25  
mV  
(10mV increments)  
V
= 6.25V to 13.2V  
IN_  
-1  
+1  
%
(6.25V to 15.25V for IN8)  
(50mV increments)  
T
= +25°C to  
A
V
= 2.5V to 6.25V  
IN_  
-62.5  
-1  
+62.5  
+1  
mV  
%
+85°C  
(V falling)  
(50mV increments)  
IN_  
V
= 3.125V to 7.625V  
IN_  
(25mV increments)  
= 1.25V to 3.125V  
V
IN_  
-31.25  
+31.25  
mV  
(25mV increments)  
= 6.25V to 13.2V  
IN1/IN8 Threshold Accuracy  
V
IN_  
-2  
+2  
%
(6.25V to 15.25V for IN8)  
(50mV increments)  
V
= 2.5V to 6.25V  
IN_  
T
= -40°C to  
-125  
-2  
+125  
+2  
mV  
%
A
(50mV increments)  
+85°C  
(V falling)  
IN_  
V
= 3.125V to 7.625V  
IN_  
(25mV increments)  
V
= 1.25V to 3.125V  
IN_  
-62.5  
+62.5  
mV  
%
(25mV increments)  
T
A
A
= +25°C to +85°C  
-1  
-2  
+1  
+2  
IN_ = 0.6V in high-Z  
mode (V falling)  
IN_ Threshold Accuracy  
Threshold Hysteresis  
IN_  
T
= -40°C to 85°C  
V
0.3  
% V  
TH  
TH-HYST  
_______________________________________________________________________________________  
3
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 6.5V to 13.2V, V –V  
= 2.7V to 5.5V, V  
= 10V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless other-  
IN8 A  
IN1  
IN2 IN7  
wise noted. Typical values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
V /°C  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Reset-Threshold Temperature  
Coefficient  
10  
ppm/°C  
TH  
Threshold-Voltage Differential  
Nonlinearity  
V
DNL  
-1  
+1  
LSB  
µA  
TH  
IN1 Input Leakage Current  
I
For V  
< the highest of V –V  
IN2 IN5  
100  
140  
LIN1  
IN1  
IN2–IN7 Input Impedance  
IN8 Input Impedance  
IN2–IN8 Input Leakage Current  
Power-Up Delay  
R
to R  
V > 6.5V  
IN7 IN1  
290  
730  
-50  
400  
555  
1400  
+50  
3
kΩ  
kΩ  
nA  
ms  
µs  
IN2  
R
1000  
IN8  
LIN2-LIN8  
I
IN2–IN8 in high-Z mode, V  
= 1.017V  
IN_  
t
V
V
> V  
UVLO  
PU  
CC  
IN_  
IN_ to PO_ Delay  
t
falling or rising, 100mV overdrive  
20  
25  
DPO  
000  
001  
010  
µs  
1.406 1.5625 1.719  
5.625  
22.5  
45  
6.25  
25  
6.875  
27.5  
55  
011  
100  
101  
110  
111  
Register contents  
(Table 19)  
PO_ Timeout Period  
PO_ Output Low  
t
RP  
50  
ms  
180  
200  
400  
1600  
220  
440  
1760  
0.4  
360  
1440  
V
I
= 4mA, output asserted  
V
OL  
SINK  
PO_ Output Initial Pulldown  
Current  
I
V
< V  
, V = 0.8V  
UVLO PO  
10  
10  
40  
+1  
µA  
PD  
CC  
PO_ Output Open-Drain Leakage  
Current  
I
Output high impedance  
-1  
µA  
kΩ  
V
LKG  
PO_ Output Pullup Resistance  
R
V
= 2V  
6.6  
15.0  
0.6  
PU  
PO_  
V
IL  
MR, MARGIN, GPI_ Input Voltage  
V
1.4  
1
IH  
MR Input Pulse Width  
MR Glitch Rejection  
t
µs  
ns  
MR  
100  
2
MR to PO_ Delay  
t
µs  
DMR  
MR to DBP Pullup Current  
MARGIN to DBP Pullup Current  
GPI_ Input Hysteresis  
GPI_ to PO_ Delay  
I
V
V
= 1.4V  
5
5
10  
15  
15  
µA  
µA  
mV  
ns  
MR  
MARGIN  
MR  
I
= 1.4V  
10  
MARGIN  
100  
200  
10  
t
DGPI_  
GPI_ Pulldown Current  
Watchdog Input Pulse Width  
I
V
= 0.6V  
GPI_  
5
15  
µA  
ns  
GPI_  
t
GPI_ configured as a watchdog input  
50  
WDI  
4
_______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 6.5V to 13.2V, V –V  
= 2.7V to 5.5V, V  
= 10V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless other-  
IN8 A  
IN1  
IN2 IN7  
wise noted. Typical values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
5.625  
22.5  
90  
TYP  
6.25  
25  
MAX  
6.875  
27.5  
110  
UNITS  
000  
001  
010  
ms  
100  
011  
100  
101  
110  
111  
360  
400  
440  
Register contents  
(Table 21)  
Watchdog Timeout Period  
t
WD  
1.44  
5.76  
23.04  
92.16  
1.60  
6.40  
25.60  
1.76  
7.04  
28.16  
s
102.40 112.64  
SERIAL INTERFACE LOGIC (SDA, SCL, A0, A1)  
Logic-Input Low Voltage  
Logic-Input High Voltage  
Input Leakage Current  
Output Low Voltage  
V
0.8  
V
V
IL  
V
2.0  
-1  
IH  
I
+1  
µA  
V
LKG  
V
I
= 3mA  
0.4  
OL  
I/O  
SINK  
Input/Output Capacitance  
C
10  
pF  
SERIAL INTERFACE TIMING CHARACTERISTICS (Figure 3)  
(IN1 = GND, V –V  
= 2.7V to 5.5V, V = 10V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise  
IN8 A  
IN2 IN7  
noted. Typical values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
Serial Clock Frequency  
Clock Low Period  
Clock High Period  
Bus-Free Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
µs  
f
400  
SCL  
t
1.3  
0.6  
1.3  
0.6  
0.6  
0.6  
100  
30  
LOW  
t
µs  
HIGH  
t
µs  
BUF  
START Setup Time  
START Hold Time  
STOP Setup Time  
Data In Setup Time  
Data In Hold Time  
t
µs  
SU:STA  
HD:STA  
SU:STO  
SU:DAT  
HD:DAT  
t
t
t
µs  
µs  
ns  
t
900  
ns  
Receive SCL/SDA Minimum  
Rise Time  
20 + 0.1  
t
t
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
ns  
ns  
ns  
ns  
ns  
R
R
x C  
BUS  
Receive SCL/SDA Maximum  
Rise Time  
300  
Receive SCL/SDA Minimum  
Fall Time  
20 + 0.1  
x C  
t
t
t
F
F
F
BUS  
Receive SCL/SDA Maximum  
Fall Time  
300  
20 + 0.04  
Transmit SDA Fall Time  
C
= 400pF  
300  
BUS  
x C  
BUS  
_______________________________________________________________________________________  
5
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
SERIAL INTERFACE TIMING CHARACTERISTICS (Figure 3) (continued)  
(IN1 = GND, V –V  
= 2.7V to 5.5V, V = 10V, GPI_ = GND, MARGIN = MR = DBP, T = -40°C to +85°C, unless otherwise  
IN8 A  
IN2 IN7  
noted. Typical values are at T = +25°C.) (Notes 1, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
Pulse Width of Spike Suppressed  
EEPROM Byte Write Cycle Time  
t
SP  
(Note 6)  
(Note 7)  
50  
t
11  
ms  
WR  
Note 1: 100% production tested at T = +25°C and T = +85°C. Specifications at T = -40°C are guaranteed by design.  
A
A
A
Note 2: Specifications are guaranteed for the stated global conditions. The device also meets the parameters specified when 0 <  
< 6.5V and at least one of V –V is between 2.7V and 5.5V, while the remaining V –V are between 0 and 5.5V.  
V
IN1  
IN2 IN5  
IN2 IN5  
Specifications are also guaranteed if V  
is externally supplied.  
CC  
Note 3: Device may be supplied from any one of IN1 to IN5, or V (see the Powering the MAX6889/MAX6890/MAX6891 section).  
CC  
Note 4: The internal supply voltage, measured at V , equals the maximum of IN2 to IN5 if V  
= 0V, or equals 5.4V if V  
> 6.5V.  
CC  
IN1  
IN1  
For 4V < V  
< 6.5V and V –V  
> 2.7V, the input that powers the device cannot be determined.  
IN1  
IN2 IN5  
Note 5: C  
= total capacitance of one bus line in pF. Rise and fall times are measured between 0.1 x V  
and 0.9 x V  
BUS BUS  
.
BUS  
Note 6: Input filters on SDA, SCL, A0, and A1 suppress noise spikes < 50ns.  
Note 7: An additional cycle is required when writing to configuration memory for the first time.  
Typical Operating Characteristics  
(V  
= 6.5V to 13.2V, V  
= 10V, V  
= 2.7V to 5.5V, GPI_ = GND, MARGIN = MR = DBP, T = +25°C, unless otherwise noted.)  
IN1  
IN8  
IN_ A  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (IN1)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (IN2–IN5)  
NORMALIZED PO_ TIMEOUT PERIOD  
vs. TEMPERATURE  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
T
= +85°C  
T
= +85°C  
A
A
T
= +25°C  
A
T
= +25°C  
A
T
= -40°C  
A
T
= -40°C  
A
6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5  
SUPPLY VOLTAGE (V)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Typical Operating Characteristics (continued)  
(V  
= 6.5V to 13.2V, V  
= 10V, V  
= 2.7V to 5.5V, GPI_ = GND, MARGIN = MR = DBP, T = +25°C, unless otherwise noted.)  
IN1  
IN8  
IN_ A  
IN_ TO PO_ PROPAGATION DELAY  
vs. TEMPERATURE  
NORMALIZED WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED IN_ THRESHOLD  
vs. TEMPERATURE  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
1.020  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
100mV OVERDRIVE  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM IN_ TRANSIENT  
vs. IN_ THRESHOLD OVERDRIVE  
OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
OUTPUT VOLTAGE HIGH  
vs. SOURCE CURRENT  
200  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
WEAK PULLUP  
175  
150  
125  
100  
75  
PO_ ASSERTION OCCURS  
ABOVE THIS LINE  
50  
25  
0
0
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
0.04 0.08 0.12 0.16 0.20 0.24  
(mA)  
IN_ THRESHOLD OVERDRIVE (mV)  
I
(mA)  
I
OUT  
SINK  
MR TO PO_ PROPAGATION DELAY  
vs. TEMPERATURE  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX6889 MAX6890 MAX6891  
Programmable Output 2. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO2 pulls low with a 10µA internal current sink for 1V < V  
CC  
1
2
1
2
1
2
PO2  
< V  
. PO2 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Programmable Output 3. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO3 pulls low with a 10µA internal current sink for 1V < V  
CC  
PO3  
< V  
. PO3 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Programmable Output 4. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO4 pulls low with a 10µA internal current sink for 1V < V  
CC  
3
4
5
3
4
5
3
4
5
PO4  
GND  
PO5  
< V  
. PO4 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Ground  
Programmable Output 5. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO5 pulls low with a 10µA internal current sink for 1V < V  
CC  
< V  
. PO5 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Programmable Output 6. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO6 pulls low with a 10µA internal current sink for 1V < V  
CC  
6
7
6
7
6
PO6  
PO7  
< V  
. PO6 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Programmable Output 7. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO7 pulls low with a 10µA internal current sink for 1V < V  
CC  
< V  
. PO7 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Programmable Output 8. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO8 pulls low with a 10µA internal current sink for 1V < V  
CC  
8
8
PO8  
< V  
. PO8 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Programmable Output 9. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO9 pulls low with a 10µA internal current sink for +1V <  
9
9
PO9  
V
< V  
. PO9 assumes its programmed conditional output state when V  
UVLO CC  
CC  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Programmable Output 10. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO10 pulls low with a 10µA internal current sink for 1V <  
10  
11  
PO10  
MARGIN  
V
< V  
. PO10 assumes its programmed conditional output state when V  
UVLO CC  
CC  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Margin Input. MARGIN holds PO_ in its existing state when MARGIN is driven  
low. Leave MARGIN unconnected or connect to DBP if unused. MARGIN  
overrides MR if both assert at the same time. MARGIN is internally pulled up to  
DBP through a 10µA current source.  
8
_______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6889 MAX6890 MAX6891  
Manual Reset Input. MR is configurable to either assert PO_ into a programmed  
state or to have no effect on PO_ when driving MR low (see Table 6). Leave MR  
unconnected or connect to DBP if unused. MR is internally pulled up to DBP  
through a 10µA current source.  
12  
10  
7
MR  
13  
14  
11  
12  
8
9
SDA  
SCL  
Serial Data Input/Output (Open Drain). SDA requires an external pullup resistor.  
Serial Clock Input. SCL requires an external pullup resistor.  
Address Input 0. Address inputs allow up to four (MAX6889/MAX6890) or two  
(MAX6891) connections on one common bus. Connect A0 to GND or to the  
serial-interface power supply.  
15  
16  
17  
18  
19  
20  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
A0  
Address Input 1. Address inputs allow up to four MAX6889/MAX6890  
connections on one common bus. Connect A1 to GND or to the serial-interface  
power supply.  
A1  
General-Purpose Logic Input 4. An internal 10µA current source pulls GPI4 to  
GND. Configure GPI4 to control watchdog timer functions or the programmable  
outputs.  
GPI4  
GPI3  
GPI2  
GPI1  
General-Purpose Logic Input 3. An internal 10µA current source pulls GPI3 to  
GND. Configure GPI3 to control watchdog timer functions or the programmable  
outputs.  
General-Purpose Logic Input 2. An internal 10µA current source pulls GPI2 to  
GND. Configure GPI2 to control watchdog timer functions or the programmable  
outputs.  
General-Purpose Logic Input 1. An internal 10µA current source pulls GPI1 to  
GND. Configure GPI1 to control watchdog timer functions or the programmable  
outputs.  
Internal Power-Supply Voltage. Bypass V  
to GND with a 1µF ceramic  
CC  
capacitor. V  
supplies power to the internal circuitry. V is internally powered  
CC  
CC  
21  
19  
14  
V
from the highest of the monitored IN1–IN5 voltages. Do not use V  
to supply  
CC  
CC  
power to external circuitry. To externally supply V , see the Powering the  
CC  
MAX6889/MAX6890/MAX6891 section.  
Internal Digital Power-Supply Voltage. Bypass DBP to GND with a 1µF ceramic  
capacitor. DBP supplies power to the EEPROM memory, the internal logic  
circuitry, and the programmable outputs. Do not use DBP to supply power to  
external circuitry.  
22  
23  
20  
15  
DBP  
IN8  
High-Voltage Input 8. Configure IN8 to detect voltage thresholds from 2.5V to  
15.25V in 50mV increments, or 1.25V to 7.625V in 25mV increments. For  
improved noise immunity, bypass IN8 to GND with a 0.1µF capacitor installed as  
close to the device as possible.  
Voltage Input 7. Configure IN7 to detect voltage thresholds between 1V and 5.5V  
in 20mV increments, or 0.5V to 3.05V in 10mV increments. For improved noise  
immunity, bypass IN7 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
24  
IN7  
_______________________________________________________________________________________  
9
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX6889 MAX6890 MAX6891  
Voltage Input 6. Configure IN6 to detect voltage thresholds between 1V and 5.5V  
in 20mV increments, or 0.5V to 3.05V in 10mV increments. For improved noise  
immunity, bypass IN6 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
25  
26  
27  
28  
29  
21  
22  
23  
24  
25  
16  
17  
18  
IN6  
Voltage Input 5. Configure IN5 to detect voltage thresholds between 1V and 5.5V  
in 20mV increments, or 0.5V to 3.05V in 10mV increments. For improved noise  
immunity, bypass IN5 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
IN5  
IN4  
IN3  
IN2  
Voltage Input 4. Configure IN4 to detect voltage thresholds between 1V and 5.5V  
in 20mV increments, or 0.5V to 3.05V in 10mV increments. For improved noise  
immunity, bypass IN4 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
Voltage Input 3. Configure IN3 to detect voltage thresholds between 1V and 5.5V  
in 20mV increments, or 0.5V to 3.05V in 10mV increments. For improved noise  
immunity, bypass IN3 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
Voltage Input 2. Configure IN2 to detect voltage thresholds between 1V and 5.5V  
in 20mV increments, or 0.5V to 3.05V in 10mV increments. For improved noise  
immunity, bypass IN2 to GND with a 0.1µF capacitor installed as close to the  
device as possible.  
High-Voltage Input 1. Configure IN1 to detect voltage thresholds from 2.5V to  
13.2V in 50mV increments, or 1.25V to 7.625V in 25mV increments. For improved  
noise immunity, bypass IN1 to GND with a 0.1µF capacitor installed as close to  
the device as possible.  
30  
31  
32  
26  
27  
28  
19  
20  
IN1  
N.C.  
PO1  
No Connection. Not internally connected.  
Programmable Output 1. Configurable, active-high, active-low, open-drain, or  
weak pullup output. PO1 pulls low with a 10µA internal current sink for 1V < V  
CC  
< V  
. PO1 assumes its programmed conditional output state when V  
CC  
UVLO  
exceeds undervoltage lockout (UVLO) of 2.5V.  
Exposed Paddle. Internally connected to GND. Connect exposed paddle to  
GND or leave floating.  
EP  
EP  
EP  
GND  
10 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Functional Diagram  
2.55V LDO  
OUTPUT  
IN_  
DETECTOR  
IN1  
OPEN-DRAIN OR  
WEAK PULLUP  
SWITCH  
PO_ OUTPUT  
10k  
5.4V  
LDO  
PO1  
LO/  
HI  
10µA POWER-UP  
PULLDOWN  
V
REF  
TIMING BLOCK 1  
TIMING BLOCK 2  
TIMING BLOCK 3  
TIMING BLOCK 4  
TIMING BLOCK 5  
TIMING BLOCK 6  
TIMING BLOCK 7  
IN2  
IN3  
IN2 DETECTOR  
PO2  
PO3  
PO4  
PO5  
PO6*  
PO2 OUTPUT  
PO3 OUTPUT  
IN3 DETECTOR  
IN4 DETECTOR  
IN5 DETECTOR  
IN6 DETECTOR  
IN7 DETECTOR  
IN8 DETECTOR  
IN4  
PO4 OUTPUT  
PO5 OUTPUT  
PO6 OUTPUT  
PO7 OUTPUT  
IN5*  
IN6*  
IN7**  
IN8**  
PO7*  
PO8*  
TIMING BLOCK 8  
TIMING BLOCK 9  
PO8 OUTPUT  
PO9 OUTPUT  
PO9**  
PO10**  
TIMING BLOCK 10  
PO10 OUTPUT  
EEPROM  
CHARGE PUMP  
MAIN  
OSCILLATOR  
CONFIG  
REGISTERS  
CONFIG  
EEPROM  
VIRTUAL  
DIODES  
USER  
EEPROM  
2.55V  
LDO  
SDA  
SCL  
A0  
DBP  
MAX6889  
MAX6890  
MAX6891  
2-WIRE  
INTERFACE  
1µF  
1µF  
V
CC  
A1  
* FOR MAX6889/MAX6890 ONLY.  
** FOR MAX6889 ONLY.  
GND  
______________________________________________________________________________________ 11  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
LOGIC NETWORK  
FOR PO_  
OUTPUT  
STAGES  
COMPARATORS  
PO_  
IN _  
MR, GPI_,  
MARGIN  
WATCHDOG  
TIMER  
GPI_  
SERIAL  
INTERFACE  
SDA,  
SCL  
REGISTER BANK  
EEPROM  
(USER AND CONFIG)  
BOOT  
CONTROLLER  
ANALOG  
BLOCK  
DIGITAL  
BLOCK  
Figure 1. Top-Level Block Diagram  
monitor thresholds from 0.1667V to 1.0167V in 3.3mV  
increments, the respective input voltage detector must  
be programmed for high impedance (high-Z) and an  
external voltage-divider must be connected.  
Detailed Description  
The MAX6889/MAX6890/MAX6891 EEPROM-config-  
urable, multivoltage supply sequencers/supervisors  
monitor several voltage detector inputs and general-  
purpose logic inputs, and feature programmable out-  
puts for highly-configurable power-supply sequencing  
applications. The MAX6889 features eight voltage  
detector inputs and ten programmable outputs. The  
MAX6890 features six voltage detector inputs and eight  
programmable outputs, while the MAX6891 features  
four voltage detector inputs and five programmable  
outputs. Manual reset and margin disable inputs simpli-  
fy board-level testing during the manufacturing  
process.  
The host controller communicates with the  
MAX6889/MAX6890/MAX6891s’ internal 512-bit user  
EEPROM, configuration EEPROM, and configuration  
registers through an SMBus/I2C-compatible serial inter-  
face (see Figure 1).  
Programmable output options include active-high, active-  
low, open drain, and weak pullup. Program each output  
to assert on any voltage detector input, general-purpose  
logic input, watchdog timer, or manual reset. Program-  
mable timing delay blocks configure each output to wait  
between 25µs and 1600ms before deasserting.  
All voltage detectors provide configurable thresholds  
for undervoltage detection. The high-voltage input (IN1)  
monitors voltages from 1.25V to 7.625V in 25mV incre-  
ments, or 2.5V to 13.2V in 50mV increments. Inputs  
(IN2–IN7) monitor voltages from 0.5V to 3.05V in 10mV  
increments, or 1.0V to 5.5V in 20mV increments. An  
additional high-voltage input (IN8, MAX6889 only) mon-  
itors voltages from 1.25V to 7.625V in 25mV incre-  
ments, or 2.5V to 15.25V in 50mV increments. To  
The MAX6889/MAX6890/MAX6891 feature a watchdog  
timer for added flexibility. Program the watchdog timer to  
assert one or more programmable outputs. Program the  
watchdog timer to clear on a combination of one GPI_  
input and one programmable output, one of the GPI_  
inputs only, or one of the programmable outputs only.  
The initial and normal watchdog timeout periods are  
independently programmable from 6.25ms to 102.4s.  
12 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 1. Programmable Features  
FEATURE  
DESCRIPTION  
2.5V to 13.2V threshold in 50mV increments.  
1.25V to 7.625V threshold in 25mV increments.  
High-Voltage Input IN1  
Positive Voltage Input  
IN2–IN7 (MAX6889)  
IN2–IN6 (MAX6890)  
IN2–IN4 (MAX6891)  
1V to 5.5V threshold in 20mV increments.  
0.5V to 3.05V threshold in 10mV increments.  
0.1667V to 1.0167V threshold in 3.3mV increments in high-Z mode.  
2.5V to 15.25V threshold in 50mV increments.  
1.25V to 7.625V threshold in 25mV increments.  
0.1667V to 1.0167V threshold in 3.3mV increments in high-Z mode.  
High-Voltage Input IN8  
(MAX6889)  
Active-high or active-low.  
Open-drain or weak pullup output.  
Dependent on MR, MARGIN, IN_, GPI_, and WD.  
Programmable reset timeout periods of 25µs, 1.5625ms, 6.25ms, 25ms, 50ms, 200ms, 400ms,  
or 1.6s.  
Programmable Outputs  
PO1–PO10 (MAX6889)  
PO1–PO8 (MAX6890)  
PO1–PO5 (MAX6891)  
General-Purpose Logic Inputs:  
GPI1–GPI4  
Active-high or active-low logic levels.  
Configure GPI_ as inputs to the watchdog timer or the programmable output stages.  
(MAX6889–MAX6890)  
GPI1–GPI3 (MAX6891)  
Clear dependent on any combination of one GPI_ input and one programmable output, a GPI_  
input only, or a programmable output only.  
Watchdog Timer  
Initial watchdog timeout period of 6.25ms, 25ms, 100ms, 400ms, 1.6s, 6.4s, 25.6s, or 102.4s.  
Normal watchdog timeout period of 6.25ms, 25ms, 100ms, 400ms, 1.6s, 6.4s, 25.6s, or 102.4s.  
Watchdog enable/disable.  
Forces PO_ into the active output state when MR = GND.  
PO_ deassert after MR releases high and the PO_ timeout period expires.  
Manual Reset Input (MR)  
Programs whether the device is powered from the highest IN_ input or from an external supply  
V
Power Mode  
CC  
connected to V  
.
CC  
Write Disable  
Locks user EEPROM based on PO_.  
Configuration Lock  
Locks configuration registers and EEPROM.  
V
–V  
> 2.7V, the input power source cannot be  
Powering the  
IN2 IN5  
determined due to the dropout voltage of the LDO.  
Internal hysteresis ensures that the supply input that ini-  
tially powered the device continues to power the device  
when multiple input voltages are within 50mV of  
each other.  
MAX6889/MAX6890/MAX6891  
The MAX6889/MAX6890/MAX6891 derive power from  
the voltage detector inputs: IN1–IN5 (MAX6889/  
MAX6890), IN1–IN4 (MAX6891), or an external V  
CC  
supply. A virtual diode-ORing scheme selects the posi-  
tive input that supplies power to the device (see the  
Functional Diagram). IN1 must be at least 4V, or one of  
IN2–IN5 (MAX6889/MAX6890)/IN2–IN4 (MAX6891)  
must be at least 2.7V to ensure device operation. An  
internal LDO regulates IN1 down to 5.4V.  
V
powers the analog circuitry. Bypass V  
to GND  
CC  
CC  
with a 1µF ceramic capacitor installed as close to the  
device as possible. The internal supply voltage, mea-  
sured at V , equals the maximum of IN2–IN5 if V  
0V, or equals 5.4V when V  
internally generated V  
circuitry. Power cannot be supplied through high-  
impedance voltage detector inputs. To externally sup-  
ply power through V  
=
CC  
IN1  
> 6.5V. Do not use the  
IN1  
to provide power to external  
The highest input voltage on IN2–IN5 (MAX6889/  
MAX6890)/IN2–IN4 (MAX6891) supplies power to the  
CC  
device, unless V  
> 6.5V, in which case IN1 supplies  
IN1  
:
power to the device. For 4V < V  
< 6.5V and one of  
CC  
IN1  
______________________________________________________________________________________ 13  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
1) Apply a voltage between 2.7V and 5.5V to one of  
or IN2–IN5.  
erwise the threshold exceeds the maximum operating  
voltage of IN1.  
V
CC  
2) Program the internal/external V  
power EEPROM  
CC  
IN2–IN7  
at AEh, Bit[2] = 1 (see Table 22).  
The IN2–IN7 positive voltage detectors monitor volt-  
ages from 1V to 5.5V in 20mV increments, 0.5V to  
3.05V in 10mV increments, or 0.1667V to 1.0167V in  
3.3mV increments in high-Z mode. Use the following  
equations to set the threshold voltages for IN_:  
3) Power down the device.  
Subsequent power-ups and software reboots require  
an externally supplied V  
operational.  
to ensure the device is fully  
CC  
The MAX6889/MAX6890/MAX6891 also generate a dig-  
ital supply voltage (DBP) for the internal logic circuitry  
and the EEPROM. Bypass DBP to GND with a 1µF  
ceramic capacitor installed as close to the device as  
possible. The nominal DBP output voltage is 2.55V. Do  
not use DBP to provide power to external circuitry.  
V
1V  
TH  
x =  
x =  
x =  
for1V to 5.5V range  
0.02V  
0.5V  
V
TH  
for 0.5V to 3.05V range  
0.1V  
0.1667V  
0.0033V  
V
TH  
for 0.1667V to1.0167V highZ range  
Inputs  
The MAX6889/MAX6890/MAX6891 contain multiple  
logic and voltage detector inputs. Each voltage detec-  
tor input is monitored for undervoltage thresholds.  
Table 1 summarizes these various inputs. Set the  
threshold voltage for each voltage detector input with  
registers 00h–07h. Each threshold voltage is an under-  
voltage threshold. Set the threshold range for each volt-  
age detector with register 08h.  
where V is the desired threshold voltage and x is the  
TH  
decimal code for the desired threshold (Table 3). For  
the 1V to 5.5V range, x must equal 225 or less; other-  
wise the threshold exceeds the maximum operating  
voltage of IN2–IN7.  
High-Voltage Input (IN8)  
Configure IN8 to detect positive thresholds from 2.5V to  
15.25V in 50mV increments, 1.25V to 7.625V in 25mV  
increments, or 0.1667V to 1.0167V in 3.3mV increments  
in high-Z mode. Use the following equations to set the  
threshold voltages for IN8:  
High-Voltage Input (IN1)  
IN1 offers threshold voltages of 2.5V to 13.2V in 50mV  
increments, or 1.25V to 7.625V in 25mV increments.  
Use the following equations to set the threshold volt-  
ages for IN1:  
V
2.5V  
0.05V  
1.25V  
0.025V  
0.1667V  
0.0033V  
TH  
x =  
x =  
x =  
for 2.5V to15.25V range  
for1.25V to 7.625V range  
V
V
2.5V  
0.05V  
1.25V  
TH  
TH  
x =  
x =  
for 2.5V to13.2V range  
V
TH  
V
TH  
for 0.1667V to1.0167V highZ range  
for1.25V to 7.625V range  
0.025V  
where V is the desired threshold voltage and x is the  
TH  
decimal code for the desired threshold (Table 4).  
where V is the desired threshold voltage and x is the  
TH  
decimal code for the desired threshold (Table 2). For  
the 2.5V to 13.2V range, x must equal 214 or less; oth-  
Table 2. IN1 Threshold Settings  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
00h  
08h  
09h  
80h  
88h  
89h  
[7:0]  
[0]  
IN1 undervoltage detector threshold (V1) (see equations in the Inputs section)  
IN1 range selection. 0 = 2.5V to 13.2V range in 50mV increments. 1 = 1.25V to 7.625V  
range in 25mV increments.  
[0]  
Must be set to “0” for normal operation  
14 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 3. IN2–IN7 Threshold Settings  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
01h  
02h  
03h  
04h  
05h  
06h  
81h  
82h  
83h  
84h  
85h  
86h  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
IN2 undervoltage detector threshold (V2) (see equations in the Inputs section)  
IN3 undervoltage detector threshold (V3) (see equations in the Inputs section)  
IN4 undervoltage detector threshold (V4) (see equations in the Inputs section)  
IN5 (MAX6889/MAX6890 only) undervoltage detector threshold (V5) (see equations in the Inputs section)  
IN6 (MAX6889/MAX6890 only) undervoltage detector threshold (V6) (see equations in the Inputs section)  
IN7 (MAX6889 only) undervoltage detector threshold (V7) (see equations in the Inputs section)  
IN2 range selection, 0 = 1V to 5.5V range in 20mV increments, 1 = 0.5V to 3.05V range in  
10mV increments  
[1]  
[2]  
[3]  
[4]  
[5]  
IN3 range selection, 0 = 1V to 5.5V range in 20mV increments, 1 = 0.5V to 3.05V range in  
10mV increments  
IN4 range selection, 0 = 1V to 5.5V range in 20mV increments, 1 = 0.5V to 3.05V range in  
10mV increments  
08h  
88h  
IN5 (MAX6889/MAX6890 only) range selection, 0 = 1V to 5.5V range in 20mV increments, 1 =  
0.5V to 3.05V range in 10mV increments  
IN6 (MAX6889/MAX6890 only) range selection, 0 = 1V to 5.5V range in 20mV increments, 1 =  
0.5V to 3.05V range in 10mV increments  
IN7 (MAX6889 only) range selection, 0 = 1V to 5.5V range in 20mV increments, 1 = 0.5V to  
3.05V range in 10mV increments  
[6]  
[7]  
[1]  
Not used  
IN2 input impedance. 0 = normal mode. 1 = high-Z mode, with a 0.1667V to 1.0167V range in  
3.3mV increments.  
IN3 input impedance. 0 = normal mode. 1 = high-Z mode, with a 0.1667V to 1.0167V range in  
3.3mV increments.  
[2]  
[3]  
[4]  
[5]  
[6]  
IN4 input impedance. 0 = normal mode. 1 = high-Z mode, with a 0.1667V to 1.0167V range in  
3.3mV increments.  
09h  
89h  
IN5 input impedance. 0 = normal mode. 1 = high-Z mode, with a 0.1667V to 1.0167V range in  
3.3mV increments.  
IN6 input impedance. 0 = normal mode. 1 = high-Z mode, with a 0.1667V to 1.0167V range in  
3.3mV increments.  
IN7 input impedance. 0 = normal mode. 1 = high-Z mode, with a 0.1667V to 1.0167V range in  
3.3mV increments.  
GPI1–GPI4  
MR  
The manual reset (MR) input initiates a reset condition.  
See Table 6 to program the PO_ outputs to assert when  
MR is low. All affected programmable outputs remain  
asserted (see the Programmable Outputs section) for  
their PO_ timeout periods after MR releases high. An  
internal 10µA current source pulls MR to DBP. Leave  
MR unconnected or connect to DBP if unused.  
The GPI1–GPI4 (General-Purpose Input) programmable  
logic inputs control power-supply sequencing (pro-  
grammable outputs), reset/interrupt signaling, and  
watchdog functions (see the Configuring the Watchdog  
Timer section). Configure GPI1–GPI4 for active-low or  
active-high logic (Table 5). GPI1–GPI4 internally pull  
down to GND through a 10µA current sink.  
______________________________________________________________________________________ 15  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 4. IN8 Threshold Settings  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
07h  
08h  
87h  
[7:0]  
[7]  
IN8 undervoltage detector threshold (V8) (see equations in the Inputs section)  
IN8 range selection.  
0 = 2.5V to 15.25V range in 50mV increments.  
1 = 1.25V to 7.625V range in 25mV increments.  
88h  
IN8 input impedance. 0 = normal mode. 1 = high-Z mode, with a 0.1667V to 1.0167V  
range in 3.3mV increments.  
09h  
89h  
[7]  
Table 5. GPI1–GPI4 Active Logic States  
REGISTER EEPROM  
ADDRESS ADDRESS  
BIT  
RANGE  
DESCRIPTION  
[0]  
[1]  
[2]  
[3]  
GPI1. 0 = active-low, 1 = active-high.  
GPI2. 0 = active-low, 1 = active-high.  
GPI3. 0 = active-low, 1 = active-high.  
28h  
A8h  
GPI4 (MAX6889/MAX6890 only). 0 = active-low, 1 = active-high.  
configured as active-high is considered asserted when  
that output is logic-high.  
MARGIN  
MARGIN allows system-level testing while power sup-  
plies exceed the normal ranges. Driving MARGIN low  
forces the programmable outputs to hold the last state  
while system-level testing occurs. Leave MARGIN  
unconnected or connect to DBP if unused. An internal  
10µA current source pulls MARGIN to DBP. The state of  
each programmable output does not change while  
MARGIN = GND. MARGIN overrides MR if both assert  
at the same time.  
The voltage monitors generate fault signals (logical 0) to  
the MAX6889/MAX6890/MAX6891s’ logic array when an  
input voltage is below the programmed undervoltage  
threshold. For example, the PO3 (Table 9) programmable  
output may depend on the IN1 undervoltage threshold,  
and the state of GPI1. Write “1”s to R10h[0] and R11h[1]  
to configure as indicated. IN1 must be above the under-  
voltage threshold (Table 2) and GPI1 must be inactive  
(Table 5) to be a logic “1,” then PO3 deasserts. The logic  
state of PO3, in this example, is equivalent to the logical  
statement: “V1 · GPI1.”  
Programmable Outputs  
The MAX6889 features ten programmable outputs, the  
MAX6890 features eight programmable outputs, and  
the MAX6891 features five programmable outputs.  
Selectable output stage configurations include: active-  
low or active-high, open drain, or weak pullup. During  
power-up, the programmable outputs pull to GND with  
Registers 0Ah through 27h configure each of the pro-  
grammable outputs. Programmable timing blocks set  
the PO_ timeout period from 25µs to 1600ms for each  
programmable output. See Table 17 to set the active  
state (active-high or active-low) for each programmable  
output and Tables 18 and 19 to select the output stage  
types, and PO_ timeout periods for each output. Each  
programmable output allows a different set of condi-  
tions to assert each output as shown in Tables 7–16.  
an internal 10µA current sink for 1V < V  
< V  
.
UVLO  
CC  
The programmable outputs remain in their active states  
until their respective PO timeout period expires, and all  
of the programmed conditions are met for each output.  
Any output programmed to depend on no condition  
always remains in its active state (Table 17). An output  
16 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 6. Programmable Output Behavior and MR  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
0Bh  
0Eh  
11h  
14h  
17h  
8Bh  
8Eh  
91h  
94h  
97h  
[5]  
[5]  
[5]  
[5]  
[5]  
PO1. 0 = PO1 independent of MR, 1 = PO1 asserts when MR = low.  
PO2. 0 = PO2 independent of MR, 1 = PO2 asserts when MR = low.  
PO3. 0 = PO3 independent of MR, 1 = PO3 asserts when MR = low.  
PO4. 0 = PO4/PO2 independent of MR, 1 = PO4 asserts when MR = low.  
PO5. 0 = PO5 independent of MR, 1 = PO5 asserts when MR = low.  
PO6 (MAX6889/MAX6890 only). 0 = PO6 independent of MR,  
1 = PO6 asserts when MR = low.  
1Ah  
1Dh  
20h  
9Ah  
9Dh  
A0h  
[5]  
[5]  
[5]  
PO7 (MAX6889/MAX6890 only). 0 = PO7 independent of MR,  
1 = PO7 asserts when MR = low.  
PO8 (MAX6889/MAX6890 only). 0 = PO8 independent of MR,  
1 = PO8 asserts when MR = low.  
23h  
26h  
A3h  
A6h  
[5]  
[5]  
PO9 (MAX6889 only). 0 = PO9 independent of MR, 1 = PO9 asserts when MR = low.  
PO10 (MAX6889 only). 0 = PO10 independent of MR, 1 = PO10 asserts when MR = low.  
Table 7. PO1 Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO1 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO1 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO1 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO1 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO1 assertion depends on IN5 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[4]  
[5]  
0Ah  
8Ah  
1 = PO1 assertion depends on IN6 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[6]  
[7]  
1 = PO1 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO1 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO1 assertion depends on watchdog (Table 20)  
1 = PO1 assertion depends on GPI1 (Table 5)  
[0]  
[1]  
[2]  
1 = PO1 assertion depends on GPI2 (Table 5)  
0Bh  
8Bh  
[3]  
1 = PO1 assertion depends on GPI3 (Table 5)  
[4]  
1 = PO1 assertion depends on GPI4 (MAX6889/MAX6890 only) (Table 5)  
1 = PO1 asserts when MR = low (Table 6)  
[5]  
[7:6]  
Not used  
Note: Table 7 only applies to PO1. Write a “0” to a bit to make the PO1 output independent of the respective signal (IN_ thresholds,  
WD, GPI_, or MR).  
______________________________________________________________________________________ 17  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 8. PO2 Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO2 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO2 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO2 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO2 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO2 assertion depends on IN5 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[4]  
[5]  
0Dh  
8Dh  
1 = PO2 assertion depends on IN6 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[6]  
[7]  
1 = PO2 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO2 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO2 assertion depends on watchdog (Table 20)  
1 = PO2 assertion depends on GPI1 (Table 5)  
[0]  
[1]  
[2]  
1 = PO2 assertion depends on GPI2 (Table 5)  
0Eh  
8Eh  
[3]  
1 = PO2 assertion depends on GPI3 (Table 5)  
[4]  
1 = PO2 assertion depends on GPI4 (MAX6889/MAX6890 only) (Table 5)  
1 = PO2 asserts when MR = low (Table 6)  
[5]  
[7:6]  
Not used  
Note: Table 8 only applies to PO2. Write a “0” to a bit to make the PO2 output independent of the respective signal (IN_ thresholds,  
WD, GPI_, or MR).  
18 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 9. PO3 Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO3 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO3 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO3 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO3 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO3 assertion depends on IN5 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[4]  
[5]  
10h  
90h  
1 = PO3 assertion depends on IN6 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[6]  
[7]  
1 = PO3 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO3 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO3 assertion depends on watchdog (Table 20)  
1 = PO3 assertion depends on GPI1 (Table 5)  
[0]  
[1]  
[2]  
1 = PO3 assertion depends on GPI2 (Table 5)  
11h  
11h  
[3]  
1 = PO3 assertion depends on GPI3 (Table 5)  
[4]  
1 = PO3 assertion depends on GPI4 (MAX6889/MAX6890 only) (Table 5)  
1 = PO3 asserts when MR = low (Table 6)  
[5]  
[7:6]  
Not used  
Note: Table 9 only applies to PO3. Write a “0” to a bit to make the PO3 output independent of the respective signal (IN_ thresholds,  
WD, GPI_, or MR).  
______________________________________________________________________________________ 19  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 10. PO4 Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO4 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO4 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO4 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO4 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO4 assertion depends on IN5 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[4]  
[5]  
13h  
93h  
1 = PO4 assertion depends on IN6 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[6]  
[7]  
1 = PO4 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO4 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO4 assertion depends on watchdog (Table 20)  
1 = PO4 assertion depends on GPI1 (Table 5)  
[0]  
[1]  
[2]  
1 = PO4 assertion depends on GPI2 (Table 5)  
14h  
14h  
[3]  
1 = PO4 assertion depends on GPI3 (Table 5)  
[4]  
1 = PO4 assertion depends on GPI4 (MAX6889/MAX6890 only) (Table 5)  
1 = PO4 asserts when MR = low (Table 6)  
[5]  
[7:6]  
Not used  
Note: Table 10 only applies to PO4. Write a “0” to a bit to make the PO4 output independent of the respective signal (IN_ thresholds,  
WD, GPI_, or MR).  
20 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 11. PO5 Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
1 = PO5 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO5 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO5 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO5 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO5 assertion depends on IN5 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[4]  
[5]  
16h  
96h  
1 = PO5 assertion depends on IN6 (MAX6889/MAX6890 only) undervoltage threshold  
(Table 3)  
[6]  
[7]  
1 = PO5 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO5 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO5 assertion depends on watchdog (Table 20)  
1 = PO5 assertion depends on GPI1 (Table 5)  
[0]  
[1]  
[2]  
1 = PO5 assertion depends on GPI2 (Table 5)  
17h  
17h  
[3]  
1 = PO5 assertion depends on GPI3 (Table 5)  
[4]  
1 = PO5 assertion depends on GPI4 (MAX6889/MAX6890 only) (Table 5)  
1 = PO5 asserts when MR = low (Table 6)  
[5]  
[7:6]  
Not used  
Note: Table 11 only applies to PO5. Write a “0” to a bit to make the PO5 output independent of the respective signal (IN_ thresholds,  
WD, GPI_, or MR).  
______________________________________________________________________________________ 21  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 12. PO6 (MAX6889/MAX6890 Only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[7:6]  
1 = PO6 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO6 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO6 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO6 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO6 assertion depends on IN5 undervoltage threshold (Table 3)  
1 = PO6 assertion depends on IN6 undervoltage threshold (Table 3)  
1 = PO6 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO6 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO6 assertion depends on watchdog (Table 20)  
19h  
99h  
1 = PO6 assertion depends on GPI1 (Table 5)  
1 = PO6 assertion depends on GPI2 (Table 5)  
1Ah  
9Ah  
1 = PO6 assertion depends on GPI3 (Table 5)  
1 = PO6 assertion depends on GPI4 (Table 5)  
1 = PO4 asserts when MR = low (Table 6)  
Not used  
Note: Table 12 only applies to PO6 (MAX6889/MAX6890 only). Write a “0” to a bit to make the PO6 output independent of the  
respective signal (IN_ thresholds, WD, GPI_, or MR).  
Table 13. PO7 (MAX6889/MAX6890 Only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[7:6]  
1 = PO7 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO7 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO7 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO7 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO7 assertion depends on IN5 undervoltage threshold (Table 3)  
1 = PO7 assertion depends on IN6 undervoltage threshold (Table 3)  
1 = PO7 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO7 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO7 assertion depends on watchdog (Table 20)  
1Ch  
9Ch  
1 = PO7 assertion depends on GPI1 (Table 5)  
1 = PO7 assertion depends on GPI2 (Table 5)  
1Dh  
9Dh  
1 = PO7 assertion depends on GPI3 (Table 5)  
1 = PO7 assertion depends on GPI4 (Table 5)  
1 = PO7 asserts when MR = low (Table 6)  
Not used  
Note: Table 13 only applies to PO7 (MAX6889/MAX6890 only). Write a “0” to a bit to make the PO7 output independent of the  
respective signal (IN_ thresholds, WD, GPI_, or MR).  
22 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 14. PO8 (MAX6889/MAX6890 Only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[7:6]  
1 = PO8 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO8 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO8 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO8 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO8 assertion depends on IN5 undervoltage threshold (Table 3)  
1 = PO8 assertion depends on IN6 undervoltage threshold (Table 3)  
1 = PO8 assertion depends on IN7 (MAX6890 only) undervoltage threshold (Table 3)  
1 = PO8 assertion depends on IN8 (MAX6890 only) undervoltage threshold (Table 4)  
1 = PO8 assertion depends on watchdog (Table 20)  
1Fh  
9Fh  
1 = PO8 assertion depends on GPI1 (Table 5)  
1 = PO8 assertion depends on GPI2 (Table 5)  
20h  
A0h  
1 = PO8 assertion depends on GPI3 (Table 5)  
1 = PO8 assertion depends on GPI4 (Table 5)  
1 = PO8 asserts when MR = low (Table 6)  
Not used  
Note: Table 14 only applies to PO8 (MAX6889/MAX6890 only). Write a “0” to a bit to make the PO8 output independent of the  
respective signal (IN_ thresholds, WD, GPI_, or MR).  
Table 15. PO9 (MAX6889 Only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[7:6]  
1 = PO9 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO9 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO9 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO9 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO9 assertion depends on IN5 undervoltage threshold (Table 3)  
1 = PO9 assertion depends on IN6 undervoltage threshold (Table 3)  
1 = PO9 assertion depends on IN7 undervoltage threshold (Table 3)  
1 = PO9 assertion depends on IN8 undervoltage threshold (Table 4)  
1 = PO9 assertion depends on watchdog (Table 20)  
1 = PO9 assertion depends on GPI1 (Table 5)  
22h  
A2h  
1 = PO9 assertion depends on GPI2 (Table 5)  
23h  
A3h  
1 = PO9 assertion depends on GPI3 (Table 5)  
1 = PO9 assertion depends on GPI4 (Table 5)  
1 = PO9 asserts when MR = low (Table 6)  
Not used  
Note: Table 15 only applies to PO9 (MAX6889 only). Write a “0” to a bit to make the PO9 output independent of the respective signal  
(IN_ thresholds, WD, GPI_, or MR).  
______________________________________________________________________________________ 23  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 16. PO10 (MAX6889 Only) Output Dependency  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
OUTPUT ASSERTION CONDITIONS  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[7:6]  
1 = PO10 assertion depends on IN1 undervoltage threshold (Table 2)  
1 = PO10 assertion depends on IN2 undervoltage threshold (Table 3)  
1 = PO10 assertion depends on IN3 undervoltage threshold (Table 3)  
1 = PO10 assertion depends on IN4 undervoltage threshold (Table 3)  
1 = PO10 assertion depends on IN5 undervoltage threshold (Table 3)  
1 = PO10 assertion depends on IN6 undervoltage threshold (Table 3)  
1 = PO10 assertion depends on IN7 undervoltage threshold (Table 3)  
1 = PO10 assertion depends on IN8 undervoltage threshold (Table 4)  
1 = PO10 assertion depends on watchdog (Table 20)  
1 = PO10 assertion depends on GPI1 (Table 5)  
25h  
A5h  
1 = PO10 assertion depends on GPI2 (Table 5)  
26h  
A6h  
1 = PO10 assertion depends on GPI3 (Table 5)  
1 = PO10 assertion depends on GPI4 (Table 5)  
1 = PO10 asserts when MR = low (Table 6)  
Not used  
Note: Table 16 only applies to PO10 (MAX6890 only). Write a “0” to a bit to make the PO10 output independent of the respective sig-  
nal (IN_ thresholds, WD, GPI_, or MR).  
Table 17. Programmable Output Active States  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
AFFECTED  
OUTPUT  
DESCRIPTION  
0Ch  
0Fh  
12h  
15h  
18h  
1Bh  
1Eh  
21h  
24h  
27h  
8Ch  
8Fh  
92h  
95h  
98h  
9Bh  
9Eh  
A1h  
A4h  
A7h  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
PO1  
PO2  
PO3  
PO4  
PO5  
PO6  
PO7  
PO8  
PO9  
PO10  
0 = active-low, 1 = active-high  
0 = active-low, 1 = active-high  
0 = active-low, 1 = active-high  
0 = active-low, 1 = active-high  
0 = active-low, 1 = active-high  
MAX6889/MAX6890 only. 0 = active-low, 1 = active-high.  
MAX6889/MAX6890 only. 0 = active-low, 1 = active-high.  
MAX6889/MAX6890 only. 0 = active-low, 1 = active-high.  
MAX6889 only. 0 = active-low, 1 = active-high.  
MAX6889 only. 0 = active-low, 1 = active-high.  
24 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Output Stage Configurations  
Independently configure each programmable output as  
active-high or active-low (Table 17). Additionally, config-  
ure each programmable output as open drain or weak  
pullup (Table 18). Finally, set the PO_ timeout period for  
each programmable output (Table 19). The programma-  
ble outputs can sink up to 4mA.  
form its initialization process. If no pulse occurs during  
the initial watchdog timeout period, the microprocessor  
is taking too long to initialize, indicating a potential  
problem.  
The normal watchdog timeout period applies after the  
initial watchdog timeout period occurs. The normal  
watchdog timeout period monitors a pulsed output of  
the microprocessor that indicates when normal proces-  
sor behavior occurs. If no pulse occurs during the nor-  
mal watchdog timeout period, this indicates that the  
processor has stopped operating or is stuck in an infi-  
nite execution loop.  
Weak Pullup Output Configuration  
The MAX6889/MAX6890/MAX6891s’ programmable outputs  
have a pullup resistance (10k, typ) connected to the inter-  
nal 2.55V LDO output to provide weak pullup outputs.  
Open-Drain Output Configuration  
Connect an external pullup resistor from the program-  
mable output to an external voltage when configured as  
an open-drain output. Open-drain configured outputs  
may be pulled up to 13.2V. Choose the pullup resistor  
depending on the number of devices connected to the  
open-drain output and the allowable current consump-  
tion. The open-drain output configuration allows wire-  
ORed connections, and provides flexibility in setting the  
pullup current.  
Register 2Ah programs the initial and normal watchdog  
timeout periods, and enables or disables the watchdog  
timer. See Tables 20 and 21 for a summary of the  
watchdog behavior.  
Configuration Lock  
Lock the configuration register bank and configuration  
EEPROM contents after initial programming by setting  
the lock bit high (see Table 22). Locking the configura-  
tion prevents write operations to all registers except the  
configuration lock register. Clear the lock bit to reconfig-  
ure the device.  
Configuring the Watchdog Timer  
(Registers 29h–2Ah)  
A watchdog timer monitors microprocessor software  
execution for a stalled condition and resets the micro-  
processor if it stalls. The output of the watchdog timer  
(one of the programmable outputs) connects to the reset  
input or a nonmaskable interrupt of the microprocessor.  
Internal/External V  
Power  
CC  
The MAX6889/MAX6890/MAX6891 can generate an  
internal V , or V can be externally supplied (see  
CC  
CC  
Table 22). To internally generate V  
from the highest  
CC  
voltage on IN1–IN5 set register 2Eh and EEPROM  
address AEh Bit[2] = 0. To use an externally supplied,  
Registers 29h–2Ah configure the watchdog functionali-  
ty of the MAX6889/MAX6890/MAX6891. Program the  
watchdog timer to assert one or more programmable  
outputs (see Tables 7–16). Program the watchdog timer  
to reset on one of the GPI_ inputs, one of the program-  
mable outputs, or a combination of one GPI_ input and  
one programmable output.  
always-on V  
ensure register 2Eh and EEPROM  
CC  
address AEh Bit[2] =1 (see the Powering the MAX6889/  
MAX6890/MAX6891 section).  
Write Disable  
A unique write-disable feature protects the MAX6889/  
MAX6890/MAX6891 from inadvertent user-EEPROM  
writes. As input voltages that power the serial interface,  
a microprocessor, or any other writing-devices fall,  
unintentional data may be written onto the data bus.  
The user-EEPROM write-disable function (see Table 23)  
ensures that unintentional data does not corrupt the  
MAX6889/MAX6890/MAX6891 EEPROM data.  
The watchdog timer features independent initial and  
normal watchdog timeout periods. The initial watchdog  
timeout period applies immediately after power-up,  
after a software reboot, after a reset event takes place,  
or after enabling the watchdog timer. The initial watch-  
dog timeout period allows the microprocessor to per-  
______________________________________________________________________________________ 25  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 18. Programmable Output Stage Options  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
AFFECTED  
OUTPUT  
DESCRIPTION  
0Ch  
0Fh  
12h  
15h  
18h  
1Bh  
1Eh  
21h  
24h  
27h  
8Ch  
8Fh  
92h  
95h  
98h  
9Bh  
9Eh  
A1h  
A4h  
A7h  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
PO1  
PO2  
PO3  
PO4  
PO5  
PO6  
PO7  
PO8  
PO9  
PO10  
0 = weak pullup, 1 = open drain  
0 = weak pullup, 1 = open drain  
0 = weak pullup, 1 = open drain  
0 = weak pullup, 1 = open drain  
0 = weak pullup, 1 = open drain  
MAX6889/MAX6890 only. 0 = weak pullup, 1 = open drain.  
MAX6889/MAX6890 only. 0 = weak pullup, 1 = open drain.  
MAX6889/MAX6890 only. 0 = weak pullup, 1 = open drain.  
MAX6889 only. 0 = weak pullup, 1 = open drain.  
MAX6889 only. 0 = weak pullup, 1 = open drain.  
Table 19. PO_ Timeout Periods  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
AFFECTED OUTPUTS  
DESCRIPTION  
0Ch  
0Fh  
12h  
15h  
18h  
1Bh  
1Eh  
21h  
24h  
27h  
8Ch  
8Fh  
92h  
95h  
98h  
9Bh  
9Eh  
A1h  
A4h  
A7h  
[4:2]  
[4:2]  
[4:2]  
[4:2]  
[4:2]  
[4:2]  
[4:2]  
[4:2]  
[4:2]  
[4:2]  
PO1  
PO2  
PO3  
PO4  
PO5  
000 = 25µs  
001 = 1.5625ms  
010 = 6.25ms  
011 = 25ms  
PO6 (MAX6889/MAX6890)  
PO7 (MAX6889/MAX6890)  
PO8 (MAX6889/MAX6890)  
PO9 (MAX6889 only)  
100 = 50ms  
101 = 200ms  
110 = 400ms  
111 = 1600ms  
PO10 (MAX6889 only)  
26 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 20. Watchdog Inputs  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
Watchdog Input Selection:  
00 = GPI1 input  
[1:0]  
[5:2]  
[7:6]  
01 = GPI2 input  
10 = GPI3 input  
11 = GPI4 input (MAX6889/MAX6890 only). Selects GPI3 on MAX6891.  
Watchdog Internal Input Selection:  
0000 = PO1  
0001 = PO2  
0010 = PO3  
0011 = PO4  
0100 = PO5  
29h  
A9h  
0101 = PO6 (MAX6889/MAX6890 only)  
0110 = PO7 (MAX6889/MAX6890 only)  
0111 = PO8 (MAX6889/MAX6890 only)  
1000 = PO9 (MAX6889 only)  
1001 = PO10 (MAX6889 only)  
[1011] to [1111] = WD is not affected by PO_  
Watchdog Dependency on Inputs:  
00 = Watchdog not dependent on any input  
01 = Watchdog clear depends on selected GPI_ input only  
01 = Watchdog clear depends on selected PO_ input only  
11 = Watchdog clear depends on both selected GPI_ and PO_ inputs  
______________________________________________________________________________________ 27  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 21. Watchdog Timeout Period Selection  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
Normal Watchdog Timeout Period:  
000 = 6.25ms  
001 = 25ms  
010 = 100ms  
[2:0]  
011 = 400ms  
100 = 1.6s  
101 = 6.4s  
110 = 25.6s  
111 = 102.4s  
Initial Watchdog Timeout Period (immediately following power-up, reset event, or enabling  
watchdog):  
000 = 6.25ms  
001 = 25ms  
010 = 100ms  
011 = 400ms  
100 = 1.6s  
2Ah  
AAh  
[5:3]  
101 = 6.4s  
110 = 25.6s  
111 = 102.4s  
Watchdog Enable  
[6]  
[7]  
0 = Disables watchdog timer  
1 = Enables watchdog timer  
Not used  
Table 22. Configuration Lock and Internal/External V  
Power Register  
CC  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
0 = Configuration unlocked  
1 = Configuration locked  
[0]  
[1]  
Not used  
2Eh  
AEh  
Internal/External V  
Power:  
CC  
0 = V  
1 = V  
internally generated  
externally supplied  
[2]  
CC  
CC  
[7:3]  
Not used  
28 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Table 23. Write Disable Register  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
BIT  
RANGE  
DESCRIPTION  
0 = Write is not disabled if PO1 asserts  
1 = Write disabled if PO1 asserts  
[0]  
[1]  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
[0]  
0 = Write is not disabled if PO2 asserts  
1 = Write disabled if PO2 asserts  
0 = Write is not disabled if PO3 asserts  
1 = Write disabled if PO3 asserts  
0 = Write is not disabled if PO4 asserts  
1 = Write disabled if PO4 asserts  
2Ch  
ACh  
0 = Write is not disabled if PO5 asserts  
1 = Write disabled if PO5 asserts  
0 = Write is not disabled if PO6 asserts  
1 = Write disabled if PO6 asserts  
0 = Write is not disabled if PO7 asserts  
1 = Write disabled if PO7 asserts  
0 = Write is not disabled if PO8 asserts  
1 = Write disabled if PO8 asserts  
0 = Write is not disabled if PO9 asserts  
1 = Write disabled if PO9 asserts  
2Dh  
ADh  
0 = Write is not disabled if PO10 asserts  
1 = Write disabled if PO10 asserts  
[1]  
[7:2]  
Not used  
write protocol to write this data to the EEPROM regis-  
Configuring the  
MAX6889/MAX6890/MAX6891  
ters. After completing the EEPROM register configura-  
tion, apply full power to the system to begin normal  
operation. The nonvolatile EEPROM stores the latest  
configuration upon removal of power. Write 0s to all  
EEPROM registers to clear the memory.  
The MAX6889/MAX6890/MAX6891 factory-default con-  
figuration sets all registers to 0h, except bits in Tables  
17 and 18, which are set to 1h. Factory-default configu-  
ration sets all PO_’s as active-high, open drain (all out-  
puts are high impedance until the device is configured  
by the user). Each device requires configuration before  
full power is applied to the system. To configure the  
MAX6889/MAX6890/MAX6891, first apply an input volt-  
Software Reboot  
A software reboot allows the user to restore the EEPROM  
configuration to the volatile registers without cycling the  
power supplies. Use the send byte command with data  
byte C4h to initiate a software reboot. The 3ms (max)  
power-up delay also applies after a software reboot.  
age to IN1, or one of IN2–IN5 or V  
(see the Powering  
CC  
the MAX6889/MAX6890/MAX6891 section). V  
> 4V,  
IN1  
or one of V –V  
or V  
> 2.7V to ensure device  
IN2 IN5  
CC  
operation. Next, transmit data through the serial inter-  
face. Use the block write protocol to quickly configure  
the device. Write to the configuration registers first to  
ensure the device is configured properly. After com-  
pleting the setup procedure, use the read word or  
block read protocol to read back the data from the con-  
figuration registers. Lastly, use the write byte or block  
Configuration EEPROM  
The configuration EEPROM addresses range from 80h  
to AEh. Write data to the configuration EEPROM to auto-  
matically set up the MAX6889/MAX6890/MAX6891 upon  
power-up. Data is transferred from the configuration  
EEPROM to the configuration registers when V  
CC  
exceeds UVLO during power-up or after a software  
______________________________________________________________________________________ 29  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
reboot. After V  
exceeds UVLO, an internal 1MHz  
User EEPROM  
The 512-bit, user-EEPROM addresses range from 40h to  
7Fh (see Figure 2). Store software revision data, board  
revision data, and other data in these registers. The max-  
imum cycle time to write a single byte is 11ms (max).  
CC  
clock starts after a 5µs delay, and data transfer begins.  
Data transfer disables access to the configuration regis-  
ters and EEPROM. The data transfer from EEPROM to  
configuration registers takes 3ms (max). Read configu-  
ration EEPROM data at any time after power-up or soft-  
ware reboot. Write commands to the configuration  
EEPROM are allowed at any time after power-up or soft-  
ware reboot, unless the configuration lock bit is set (see  
Table 22). The maximum cycle time to write a single  
byte is 11ms (max).  
Configuration Register Bank and EEPROM  
The configuration registers can be directly modified  
through the serial interface without modifying the  
EEPROM, after the power-up procedure terminates and  
the configuration EEPROM data has been loaded into the  
configuration register bank. Use the write byte or block  
write protocols to write directly to the configuration regis-  
ters. Changes to the configuration registers take effect  
immediately and are lost upon power removal.  
00h  
At device power-up, the register bank loads configura-  
tion data from the EEPROM. Configuration data may be  
directly altered in the register bank during application  
development, allowing maximum flexibility. Transfer the  
new configuration data byte-by-byte to the configura-  
tion EEPROM with the write byte protocol. The next  
device power-up or software reboot automatically loads  
the new configuration.  
REGISTER BANK  
37h  
RESERVED  
40h  
USER EEPROM  
SMBus/I2C-Compatible Serial Interface  
The MAX6889/MAX6890/MAX6891 feature an I2C/SMBus-  
compatible 2-wire serial interface consisting of a serial  
data line (SDA) and a serial clock line (SCL). SDA and  
SCL facilitate bidirectional communication between the  
MAX6889/MAX6890/MAX6891 and the master device at  
clock rates up to 400kHz. Figure 3 shows the 2-wire inter-  
face timing diagram. The MAX6889/MAX6890/MAX6891  
are transmit/receive slave-only devices, relying upon a  
7Fh  
80h  
CONFIGURATION  
EEPROM  
AEh  
Figure 2. Memory Map  
SDA  
t
BUF  
t
SU:DAT  
t
SU:STA  
t
t
SU:STO  
HD:DAT  
t
t
LOW  
HD:STA  
SCL  
t
HIGH  
t
HD:STA  
t
t
F
R
START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
REPEATED START  
CONDITION  
Figure 3. Serial-Interface Timing Details  
30 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
master device to generate a clock signal. The master  
device (typically a microcontroller) generates SCL and ini-  
tiates data transfer on the bus.  
Early STOP Conditions  
The MAX6889/MAX6890/MAX6891 recognize a STOP  
condition at any point during transmission except if a  
STOP condition occurs in the same high pulse as a  
START condition. This condition is not a legal I2C for-  
mat. At least one clock pulse must separate any START  
and STOP condition.  
A master device communicates to the MAX6889/  
MAX6890/MAX6891 by transmitting the proper address  
followed by command and/or data words. Each trans-  
mit sequence is framed by a START (S) or REPEATED  
START (SR) condition and a STOP (P) condition. Each  
word transmitted over the bus is 8 bits long and is  
always followed by an acknowledge pulse.  
Repeated START Conditions  
A REPEATED START (SR) condition may indicate a  
change of data direction on the bus. Such a change  
occurs when a command word is required to initiate a  
read operation (see Figure 8). SR may also be used  
when the bus master is writing to several I2C devices  
and does not want to relinquish control of the bus. The  
MAX6889/MAX6890/MAX6891 serial interface supports  
continuous write operations with or without an SR condi-  
tion separating them. Continuous read operations  
require SR conditions because of the change in direction  
of data flow.  
SCL is a logic input, while SDA is an open-drain  
input/output. SCL and SDA both require external pullup  
resistors to generate the logic-high voltage. Use 4.7kΩ  
resistors for most applications.  
Bit Transfer  
Each clock pulse transfers one data bit. The data on  
SDA must remain stable while SCL is high (Figure 4),  
otherwise the MAX6889/MAX6890/MAX6891 register a  
START or STOP condition (Figure 5) from the master.  
SDA and SCL idle high when the bus is not busy.  
Acknowledge  
The acknowledge bit (ACK) is the 9th bit attached to any  
8-bit data word. The receiving device always generates  
an ACK. The MAX6889/MAX6890/MAX6891 generate an  
ACK when receiving an address or data by pulling SDA  
low during the 9th clock period (Figure 6). When trans-  
mitting data, such as when the master device reads data  
back from the MAX6889/MAX6890/MAX6891, the  
MAX6889/MAX6890/MAX6891 wait for the master device  
to generate an ACK. Monitoring ACK allows for detection  
of unsuccessful data transfers. An unsuccessful data  
transfer occurs if the receiving device is busy or if a sys-  
tem fault has occurred. In the event of an unsuccessful  
Start and Stop Conditions  
A master device signals the beginning of a transmission  
with a START (S) condition (Figure 5) by transitioning  
SDA from high to low while SCL is high. The master  
device issues a STOP (P) condition (Figure 5) by transi-  
tioning SDA from low to high while SCL is high. A STOP  
condition frees the bus for another transmission. The bus  
remains active if a REPEATED START condition is gener-  
ated, such as in the read byte or block read protocol  
(see Figure 8). Both SCL and SDA are high when the bus  
is not busy.  
SDA  
SCL  
SDA  
S
P
SCL  
START  
CONDITION  
STOP  
CONDITION  
CHANGE OF  
DATA ALLOWED  
DATA LINE STABLE,  
DATA VALID  
Figure 5. Start and Stop Conditions  
______________________________________________________________________________________ 31  
Figure 4. Bit Transfer  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
data transfer, the bus master should reattempt communi-  
cation at a later time. The MAX6889/MAX6890/  
MAX6891 generate a NACK after the command byte  
during a software reboot, while writing to the EEPROM,  
or when receiving an illegal memory address.  
nect to one bus. Connect A0 and A1 to GND or to the  
2-wire serial-interface power supply (see Figure 7).  
The MAX6889/MAX6890 slave address conforms to the  
following table:  
SA7 (MSB) SA6 SA5 SA4 SA3 SA2 SA1 SA0 (LSB)  
Slave Address  
SA7 through SA4 represent the standard 2-wire inter-  
face address (1010) for devices with EEPROM. SA3  
and SA2 correspond to the A1 and A0 address inputs  
of the MAX6889/MAX6890/MAX6891 (hardwired as  
logic-low or logic-high). SA0 is a read/write flag bit (0 =  
write, 1 = read).  
1
0
1
0
A1  
A0  
X
R/W  
X = Don’t Care  
The MAX6891 slave address conforms to the following  
table:  
SA7 (MSB) SA6 SA5 SA4 SA3 SA2 SA1 SA0 (LSB)  
The A0 and A1 address inputs allow up to four  
MAX6889/MAX6890 to connect to one bus, while the  
A0 address input allows up to two MAX6891s to con-  
1
0
1
0
0
A0  
X
R/W  
X = Don’t Care  
START  
CONDITION  
CLOCK PULSE FOR ACKNOWLEDGE  
8
2
1
9
SCL  
SDA BY  
TRANSMITTER  
S
SDA BY  
RECEIVER  
Figure 6. Acknowledge  
SDA  
1
0
A1  
A0  
X
R/W  
ACK  
0
1
START  
MSB  
LSB  
SCL  
Figure 7. Slave Address  
32 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Send Byte  
The send byte protocol allows the master device to  
send one byte of data to the slave device (see Figure  
8). The send byte presets a register pointer address for  
a subsequent read or write. The slave sends a NACK  
instead of an ACK if the master tries to send an  
address that is not allowed or if the device is writing  
data to EEPROM or is booting. If the master sends C0h,  
the data is ACK. This could be the start of the block  
write protocol, and the slave expects the following data  
bytes. If the master sends a Stop condition, the internal  
address pointer does not change. If the master sends  
C1h, this signifies that the block read protocol is  
expected, and a repeated Start condition should follow.  
The device reboots if the master sends C4h. The send  
byte procedure follows:  
00h to 2Eh. The data byte is written to the register bank  
if the command code is valid. The slave generates a  
NACK at step 5 if the command code is invalid or any  
internal operations are ongoing.  
In order to write a single byte of data to the user or con-  
figuration EEPROM, the 8-bit command code and a sin-  
gle 8-bit data byte are sent. The following 8-bit data  
byte is written to the addressed EEPROM location.  
Block Write  
The block write protocol allows the master device to  
write a block of data (1 to 16 bytes) to the EEPROM or  
to the register bank (see Figure 8). The destination  
address must already be set by the send byte protocol  
and the command code must be C0h. If the number of  
bytes to be written causes the address pointer to  
exceed 2Fh for the configuration register or B7h for the  
configuration EEPROM, the address pointer stops  
incrementing, overwriting the last memory address with  
the remaining bytes of data. Only the last data byte  
sent is stored in B7h (as 2Fh is read only and a write  
causes no change in the content). If the number of  
bytes to be written exceeds the address pointer 7Fh for  
the user EEPROM, the address pointer stops incre-  
menting and continues writing exceeding data to the  
last address. Only the last data is actually written to  
7Fh. The block write procedure follows:  
1) The master sends a Start condition.  
2) The master sends the 7-bit slave address and a  
write bit (low).  
3) The addressed slave asserts an ACK on SDA.  
4) The master sends an 8-bit data byte.  
5) The addressed slave asserts an ACK on SDA.  
6) The master sends a Stop condition.  
Write Byte  
The write byte protocol allows the master device to write  
a single byte in the register bank or in the EEPROM  
(configuration or user) (see Figure 8). The Write Byte  
procedure follows:  
1) The master sends a Start condition.  
2) The master sends the 7-bit slave address and a  
write bit (low).  
1) The master sends a Start condition.  
3) The addressed slave asserts an ACK on SDA.  
2) The master sends the 7-bit slave address and a  
write bit (low).  
4) The master sends the 8-bit command code for  
block write (C0h).  
3) The addressed slave asserts an ACK on SDA.  
4) The master sends an 8-bit command code.  
5) The addressed slave asserts an ACK on SDA.  
6) The master sends an 8-bit data byte.  
5) The addressed slave asserts an ACK on SDA.  
6) The master sends the 8-bit byte count (1 to 16  
bytes) N.  
7) The addressed slave asserts an ACK on SDA.  
8) The master sends 8 bits of data.  
7) The addressed slave asserts an ACK on SDA.  
8) The master sends a Stop condition.  
9) The addressed slave asserts an ACK on SDA.  
10) Repeat steps 8 and 9 N – 1 times.  
In order to write a single byte to the register bank, only  
the 8-bit command code and a single 8-bit data byte  
are sent. The command code must be in the range of  
11) The master generates a Stop condition.  
______________________________________________________________________________________ 33  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Read Byte  
The read byte protocol allows the master device to  
read the register or an EEPROM location (user or con-  
figuration) content of the MAX6889/MAX6890/MAX6891  
(see Figure 8). The read byte procedure follows:  
4) The master sends 8 bits of the block read com-  
mand (C1h).  
5) The slave asserts an ACK on SDA, unless busy.  
6) The master generates a repeated Start condition.  
7) The master sends the 7-bit slave address and a  
read bit (high).  
1) The master sends a Start condition.  
2) The master sends the 7-bit slave address and a  
write bit (low).  
8) The slave asserts an ACK on SDA.  
9) The slave sends the 8-bit byte count (16).  
10) The master asserts an ACK on SDA.  
11) The slave sends 8 bits of data.  
3) The addressed slave asserts an ACK on the data  
line.  
4) The master sends 8 data bits.  
5) The active slave asserts an ACK on the data line.  
6) The master sends a repeated Start condition.  
12) The master asserts an ACK on SDA.  
13) Repeat steps 8 and 9 15 times.  
7) The master sends the 7-bit slave ID plus a read bit  
(high).  
14) The master generates a Stop condition.  
Address Pointers  
Use the send byte protocol to set the register address  
pointers before read and write operations. For the con-  
figuration registers, valid address pointers range from  
00h to 2Fh. Register addresses outside of this range  
result in a NACK being issued from the MAX6889/  
MAX6890/MAX6891. When using the block write proto-  
col, the address pointer automatically increments after  
each data byte, except when the address pointer is  
already at 2Fh. If the address pointer is already 2Fh,  
and more data bytes are being sent, these subsequent  
bytes overwrite address 2Fh repeatedly. No data will  
be left in 2Fh as this is a read-only address.  
8) The addressed slave asserts an ACK on the data  
line.  
9) The slave sends 8 data bits.  
10) The master asserts a NACK on the data line  
11) The master generates a Stop condition.  
Note that once the read has been done, the internal  
pointer is increased by one, unless a memory boundary  
is hit.  
If the device is busy or if the address is not an allowed  
one, the command code is NACKed and the internal  
address pointer is not altered. The master must then  
interrupt the communication issuing a STOP condition.  
For the configuration EEPROM, valid address pointers  
range from 80h to B7h (even if they are only meaningful  
up to AEh). When using the block write protocol, the  
address pointer automatically increments after each  
data byte, except when the address pointer is already  
at B7h. If the address pointer is already B7h, and more  
data bytes are being sent, these subsequent bytes  
overwrite address B7h repeatedly, leaving only the last  
sent data byte stored at this register address.  
Block Read  
The block read protocol allows the master device to read  
a block of 16 bytes from the EEPROM or register bank  
(see Figure 8). Read fewer than 16 bytes of data by issu-  
ing an early STOP condition from the master, or by gen-  
erating a NACK with the master. Previous actions through  
the serial interface predetermines the first source  
address. It is suggested to use a send byte protocol,  
before the block read, to set the initial read address. The  
block read protocol is initiated with a command code of  
C1h. The block read procedure follows:  
For the user EEPROM, valid address pointers range  
from 40h to 7Fh. As for the configuration EEPROM,  
block write and block read protocols can also be used.  
The internal address pointer will auto-increment up to  
the user-EEPROM boundary 7Fh where the pointer will  
stop incrementing. When writing, only the last data writ-  
ten will be stored in 7Fh.  
1) The master sends a Start condition.  
2) The master sends the 7-bit slave address and a  
write bit (low).  
3) The addressed slave asserts an ACK on SDA.  
34 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
SEND BYTE FORMAT  
READ BYTE FORMAT  
S
ADDRESS  
WR  
0
ACK  
DATA  
8 bits  
ACK  
P
SR  
S
ADDRESS  
7 bits  
WR  
0
ACK  
DATA  
8 bits  
ACK  
ADDRESS  
ACK  
DATA  
8 bits  
ACK  
P
WR  
1
7 bits  
7 bits  
Slave Address–  
Data Byte–presets the  
internal address pointer  
or represents a command.  
Slave Address–  
equivalent to chip-  
select line of a  
Data Byte—presets  
the internal address  
pointer.  
Slave Address—  
equivalent to chip-  
select line of a  
Data Byte–data read  
from the preset register  
(or EEPROM) address.  
equivalent to chip-  
select line of a 3-  
wire interface.  
3-wire interface.  
3-wire interface.  
WRITE BYTE FORMAT  
S
ADDRESS  
WR  
0
ACK  
COMMAND  
8 bits  
ACK  
DATA  
8 bits  
ACK  
P
7 bits  
Slave Address–  
Command Byte–  
selects register  
EEPROM location you  
are writing to.  
Data Byte–data goes into the  
register (or EEPROM location)  
set by the command byte.  
equivalent to chip-  
select line of a 3-  
wire interface.  
BLOCK WRITE FORMAT  
BYTE  
COUNT= N  
DATA BYTE  
1
DATA BYTE  
DATA BYTE  
N
S
ADDRESS  
7 bits  
WR  
0
ACK COMMAND ACK  
C0h  
ACK  
ACK  
ACK  
ACK  
P
...  
8 bits  
8 bits  
8 bits  
8 bits  
Slave Address–  
equivalent to chip-  
select line of a 3-  
wire interface.  
Command Byte–  
prepares device  
for block  
Data Byte–first data goes into the address preset  
with a previous "Set Address" and the following data  
in the following locations.  
write operation.  
BLOCK READ FORMAT  
ADDRESS WR ACK COMMAND ACK SR ADDRESS WR  
BYTE  
COUNT = N  
DATA BYTE  
1
DATA BYTE  
...  
DATA BYTE  
N
S
ACK  
ACK  
ACK  
ACK  
ACK  
P
7 bits  
0
C1h  
7 bits  
1
8 bits  
8 bits  
8 bits  
8 bits  
Slave Address–  
equivalent to chip-  
select line of a 3-  
wire interface.  
Command Byte–  
prepares device  
for block  
Slave Address–  
Data Byte–data comes from the address set by a  
previous "send byte".  
equivalent to chip-  
select line of a 3-  
wire interface.  
operation.  
S = Start condition.  
P = Stop condition.  
Shaded = Slave transmission.  
SR = Repeated start condition.  
2
Figure 8. SMBus/I C Protocols  
volatile memory) to the local latches. This download  
occurs in a number of steps:  
Applications Information  
Configuration Download at Power-up  
The configuration of the MAX6889/MAX6890/MAX6891  
(undervoltage thresholds, PO_ timeout periods, watch-  
dog behavior, programmable output conditions and  
configurations, etc.) depends on the contents of the  
EEPROM. The EEPROM is comprised of buffered latch-  
es that store the configuration. The local volatile memo-  
ry latches lose their contents at power-down. Therefore,  
at power-up, the device configuration must be restored  
by downloading the contents of the EEPROM (non-  
1) Programmable outputs go high impedance with no  
power applied to the device.  
2) When V  
exceeds 1V, all programmable outputs are  
CC  
weakly pulled to GND through a 10µA current sink.  
3) When V exceeds UVLO, the configuration  
CC  
EEPROM starts to download its contents to the  
volatile configuration registers. The programmable  
outputs assume their programmed conditional out-  
put state when V  
exceeds UVLO.  
CC  
______________________________________________________________________________________ 35  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
4) Any attempt to communicate with the device prior to  
this download completion results in a NACK being  
issued from the MAX6889/MAX6890/MAX6891.  
Other Fault Signals from µC  
Connect a general-purpose output from a µC to one of  
the GPI_ inputs to allow interrupts to assert any output  
of the MAX6889/MAX6890/MAX6891. Configure one of  
the programmable outputs to assert on whichever GPI_  
input connects to the general-purpose output of the µC.  
Forcing Programmable Outputs High  
During Power-up  
A weak, 10µA pulldown current holds all programmable  
Layout and Bypassing  
For better noise immunity, bypass each of the voltage  
detector inputs to GND with 0.1µF capacitors installed  
outputs low during power-up until V  
exceeds the  
CC  
undervoltage-lockout (UVLO) threshold. Applications  
requiring a guaranteed high programmable output for  
as close to the device as possible. Bypass V  
and  
V
down to GND require external pullup resistors to  
CC  
CC  
DBP to GND with 1µF capacitors installed as close to the  
device as possible. V (when not externally supplied)  
maintain the logic state until V  
exceeds UVLO. Use  
CC  
20kresistors for most applications.  
CC  
and DBP are internally generated voltages and should  
not be used to supply power to external circuitry.  
Uses for General-Purpose Inputs (GPI_)  
Watchdog Timer  
Program GPI_ as an input to the watchdog timer in the  
MAX6889/MAX6890/MAX6891. The GPI_ input must  
toggle within the watchdog timeout period; otherwise  
any programmable output dependent on the watchdog  
timer will assert.  
Configuration Latency Period  
A delay of less than 5µs occurs between writing to the  
configuration registers and the time when these  
changes actually take place, unless when changing  
one of the voltage detector’s thresholds. Changing a  
voltage detector threshold typically takes 150µs. When  
changing EEPROM contents, a software reboot or  
cycling of power is required for these changes to trans-  
fer to volatile memory.  
Additional Manual Reset Functions  
The programmable outputs allow a set of conditions to  
assert the output. Program the set of conditions to  
depend on one of the GPI_ inputs. Any output that  
depends on GPI_ asserts when GPI_ is held in its  
active state, effectively acting as a manual reset input.  
Chip Information  
PROCESS: BiCMOS  
Register Map  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
READ/  
WRITE  
DESCRIPTION  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
IN1 undervoltage detector threshold (Table 2)  
IN2 undervoltage detector threshold (Table 3)  
IN3 undervoltage detector threshold (Table 3)  
IN4 undervoltage detector threshold (Table 3)  
IN5 undervoltage detector threshold (MAX6889/MAX6890 only) (Table 3)  
IN6 undervoltage detector threshold (MAX6889/MAX6890 only) (Table 3)  
IN7 undervoltage detector threshold (MAX6889 only) (Table 3)  
IN8 undervoltage detector threshold (MAX6889 only) (Table 4)  
Threshold range selection (Tables 2, 3, and 4)  
High-Z mode selection (Tables 2, 3, and 4)  
PO1 input selection (Table 7)  
PO1 input selection (Table 7)  
PO1 timeout period, programmable output polarity, and output type selection  
(Tables 17, 18, and 19)  
0Ch  
8Ch  
R/W  
0Dh  
0Eh  
8Dh  
8Eh  
R/W  
R/W  
PO2 input selection (Table 8)  
PO2 input selection (Table 8)  
36 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Register Map (continued)  
EEPROM  
MEMORY  
ADDRESS  
REGISTER  
ADDRESS  
READ/  
WRITE  
DESCRIPTION  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
PO2 timeout period and output type selection (Tables 17, 18, and 19)  
PO3 input selection (Table 9)  
PO3 input selection (Table 9)  
PO3 timeout period and output type selection (Tables 17, 18, and 19)  
PO4 input selection (Table 10)  
PO4 input selection (Table 10)  
PO4 timeout period and output type selection (Tables 17, 18, and 19)  
PO5 input selection (Table 11)  
PO5 input selection (Table 11)  
PO5 timeout period and output type selection (Tables 17, 18, and 19)  
PO6 (MAX6889/MAX6890) input selection (Table 12)  
PO6 (MAX6889/MAX6890) input selection (Table 12)  
PO6 (MAX6889/MAX6890) timeout period and output type selection (Tables 17, 18, and 19)  
PO7 (MAX6889/MAX6890) input selection (Table 13)  
PO7 (MAX6889/MAX6890) input selection (Table 13)  
PO7 (MAX6889/MAX6890) timeout period and output type selection (Tables 17, 18, and 19)  
PO8 (MAX6889/MAX6890) input selection (Table 14)  
PO8 (MAX6889/MAX6890) input selection (Table 14)  
PO8 (MAX6889/MAX6890) timeout period and output type selection (Tables 17, 18, and 19)  
PO9 (MAX6889 only) input selection (Table 15)  
PO9 (MAX6889 only) input selection (Table 15)  
PO9 (MAX6889 only) timeout period and output type selection (Tables 17, 18, and 19)  
PO10 (MAX6889 only) input selection (Table 16)  
PO10 (MAX6889 only) input selection (Table 16)  
PO10 (MAX6889 only) timeout period and output type selection (Tables 17, 18, and 19)  
GPI_ input polarity selection  
WD input selection and clear dependency (Table 20)  
WD initial and normal timeout duration and disable (Table 21)  
Reserved. Should not be overwritten.  
R/W  
R/W  
R/W  
User EEPROM write disable (Table 23)  
User EEPROM write disable (Table 23)  
Configuration lock and internal/external V  
power (Table 22)  
CC  
______________________________________________________________________________________ 37  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Pin Configurations  
TOP VIEW  
TOP VIEW  
32  
31  
30  
29  
28  
27  
26  
25  
28  
27  
26  
25  
24  
23  
22  
PO2  
PO3  
PO4  
GND  
PO5  
PO6  
PO7  
PO8  
1
2
3
4
5
6
7
8
24 IN7  
PO2  
IN6  
1
2
3
4
5
6
21  
20  
23  
22  
21  
20  
19  
IN8  
DBP  
PO3  
PO4  
GND  
PO5  
PO6  
PO7  
DBP  
19  
18  
17  
16  
15  
V
CC  
V
CC  
GPI1  
GPI2  
GPI3  
GPI4  
MAX6890  
MAX6889  
GPI1  
GPI2  
18 GPI3  
17  
GPI4  
7
*EXPOSED PAD  
10  
*EXPOSED PAD  
8
9
11  
12  
13  
14  
9
10 11 12 13 14 15 16  
(5mm x 5mm THIN QFN)  
(5mm x 5mm THIN QFN)  
*EXPOSED PAD INTERNALLY CONNECTED TO GND.  
*EXPOSED PAD INTERNALLY CONNECTED TO GND.  
TOP VIEW  
20  
19  
18  
17  
16  
DBP  
PO2  
PO3  
PO4  
GND  
PO5  
15  
14  
13  
12  
11  
1
2
3
4
5
V
CC  
GPI1  
GPI2  
GPI3  
MAX6891  
*EXPOSED PAD  
7
6
8
9
10  
(5mm x 5mm THIN QFN)  
*EXPOSED PAD INTERNALLY CONNECTED TO GND.  
38 ______________________________________________________________________________________  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Typical Operating Circuit  
12V  
5V  
12V  
DC-DC  
1
DC-DC  
3
3.3V  
2.5V  
DC-DC  
2
R
PU  
R
PU  
IN1 PO1 IN2 PO2  
IN4  
µP  
IN3 PO3  
MARGIN  
MR  
SDA  
SDA  
SCL  
SCL  
RESET  
PO4  
PO5  
GPI1  
(WD)  
V
CC  
NMI, WD ALERT  
LOGIC OUTPUT  
MAX6891  
GND  
DBP  
A0  
GPI2  
GPI3  
12V SUPPLY  
PO1  
12V BUS INPUT  
t
PO1  
ENABLE 5V DC-DC CONVERTER  
5V OUTPUT  
5V SUPPLY  
PO2  
t
PO2  
ENABLE 2.5V DC-DC CONVERTER  
2.5V OUTPUT  
2.5V SUPPLY  
PO3  
t
PO3  
ENABLE 3.3V DC-DC CONVERTER  
3.3V OUTPUT  
3.3V SUPPLY  
PO4  
t
PO4  
SYSTEM RESET  
______________________________________________________________________________________ 39  
EEPROM-Programmable, Octal/Hex/Quad,  
Power-Supply Sequencers/Supervisors  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
L
MARKING  
XXXXX  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
PIN # 1 I.D.  
0.35x45  
DETAIL A  
e
PIN # 1  
I.D.  
(ND-1) X  
e
DETAIL B  
e
L
C
C
L
L1  
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
1
-DRAWING NOT TO SCALE-  
21-0140  
G
2
COMMON DIMENSIONS  
20L 5x5 28L 5x5  
EXPOSED PAD VARIATIONS  
D2 E2  
MIN. NOM. MAX. MIN. NOM. MAX. ±0.15  
DOWN  
BONDS  
ALLOWED  
L
PKG.  
SYMBOL MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX. MIN. NOM. MAX.  
16L 5x5  
32L 5x5  
PKG.  
CODES  
T1655-1  
T1655-2  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
A
**  
**  
**  
**  
0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80  
0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05  
0.20 REF. 0.20 REF. 0.20 REF. 0.20 REF.  
A1  
0
0
0
0
T1655N-1 3.00 3.10 3.20 3.00 3.10 3.20  
A3  
b
T2055-2  
T2055-3  
T2055-4  
T2055-5  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
NO  
YES  
NO  
Y
0.25 0.30 0.35 0.25 0.30 0.35 0.20 0.25 0.30 0.20 0.25 0.30  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10 4.90 5.00 5.10  
**  
**  
D
E
3.15 3.25 3.35 3.15 3.25 3.35 0.40  
e
0.80 BSC.  
0.25  
0.30 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.30 0.40 0.50  
0.65 BSC.  
0.50 BSC.  
0.50 BSC.  
T2855-1  
T2855-2  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
NO  
NO  
**  
**  
**  
**  
k
-
-
0.25  
-
-
0.25  
-
-
0.25  
-
-
L
T2855-3  
T2855-4  
3.15 3.25 3.35 3.15 3.25 3.35  
2.60 2.70 2.80 2.60 2.70 2.80  
2.60 2.70 2.80 2.60 2.70 2.80  
3.15 3.25 3.35 3.15 3.25 3.35  
YES  
YES  
NO  
L1  
-
-
-
-
-
-
-
-
-
-
-
-
N
ND  
16  
4
20  
5
28  
7
32  
8
T2855-5  
T2855-6  
T2855-7  
T2855-8  
**  
**  
**  
NO  
YES  
4
5
7
8
NE  
2.80  
3.35  
3.35  
3.20  
2.60 2.70  
3.15 3.25  
2.60 2.70 2.80  
3.15 3.25 3.35  
3.15 3.25 3.35  
3.00 3.10 3.20  
WHHB  
WHHC  
WHHD-1  
WHHD-2  
JEDEC  
0.40  
Y
N
NO  
T2855N-1 3.15 3.25  
**  
**  
**  
NOTES:  
T3255-2  
T3255-3  
T3255-4  
3.00 3.10  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
3.00 3.10 3.20 3.00 3.10 3.20  
3.00 3.10 3.20 3.00 3.10 3.20  
YES  
NO  
**  
**  
NO  
T3255N-1 3.00 3.10 3.20 3.00 3.10 3.20  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL  
CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE  
OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1  
IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
**SEE COMMON DIMENSIONS TABLE  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,  
T2855-3 AND T2855-6.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.  
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.  
PACKAGE OUTLINE,  
16, 20, 28, 32L THIN QFN, 5x5x0.8mm  
2
-DRAWING NOT TO SCALE-  
21-0140  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
40 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX6891ETP

EEPROM-Programmable, Octal/Hex/Quad, Power-Supply Sequencers/Supervisors
MAXIM

MAX6891ETP-T

Power Supply Management Circuit, Adjustable, 4 Channel, BICMOS, PQCC20, 5 X 5 MM, TQFN-20
MAXIM

MAX6892

Pin-Selectable, Octal/Hex/Quad, Power-Supply Sequencers/Supervisors
MAXIM

MAX6892ETJ

Pin-Selectable, Octal/Hex/Quad, Power-Supply Sequencers/Supervisors
MAXIM

MAX6892ETJ+

Power Supply Management Circuit, Adjustable, 8 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-32
MAXIM

MAX6892ETJ+T

Power Management Circuit, BICMOS, PQCC32,
MAXIM

MAX6892ETJ-T

Power Supply Management Circuit, Adjustable, 8 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, TQFN-32
MAXIM

MAX6892_10

Pin-Selectable, Octal/Hex/Quad, Power-Supply Sequencers/Supervisors
MAXIM

MAX6893

Pin-Selectable, Octal/Hex/Quad, Power-Supply Sequencers/Supervisors
MAXIM

MAX6893ETI

Pin-Selectable, Octal/Hex/Quad, Power-Supply Sequencers/Supervisors
MAXIM

MAX6893ETI+

Power Supply Management Circuit, Adjustable, 6 Channel, BICMOS, 5 X 5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-28
MAXIM

MAX6893ETI+T

POWER-SUPPLY SEQUENCERS
MAXIM