MAX6753KA31+ [MAXIM]

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN;
MAX6753KA31+
型号: MAX6753KA31+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN

信息通信管理 光电二极管
文件: 总16页 (文件大小:1402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here for production status of specific part numbers.  
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
General Description  
Benefits and Features  
● Configurable Reset and Watchdog Options Enables  
Wide Variety of Applications  
The MAX6746–MAX6753 low-power microprocessor  
(μP) supervisory circuits monitor single/dual system  
supply voltages from 1.575V to 5V and provide maximum  
adjustability for reset and watchdog functions. These  
devices assert a reset signal whenever the V  
supply voltage or RESET IN falls below its reset threshold  
Factory-Set Reset Threshold Options from 1.575V  
to 5V in ~100mV Increments  
Adjustable Reset Threshold Options  
Single/Dual Voltage Monitoring  
CC  
Capacitor-Adjustable Reset Timeout  
Capacitor-Adjustable Watchdog Timeout  
Min/Max (Windowed) Watchdog Option  
Manual-Reset Input Option  
or when manual reset is pulled low. The reset output  
remains asserted for the reset timeout period after V  
CC  
and RESET IN rise above the reset threshold. The reset  
function features immunity to power-supply transients.  
Push-Pull or Open-Drain RESET Output Options  
The MAX6746–MAX6753 have ±2% factory-trimmed  
reset threshold voltages in approximately 100mV  
increments from 1.575V to 5.0V and/or adjustable reset  
threshold voltages using external resistors.  
● 3.7μA Supply Current Reduces System Power  
Consumption  
● Integrated Power Supply Protection Increases  
Robustness  
The reset and watchdog delays are adjustable with  
external capacitors. The MAX6746–MAX6751 contain  
a watchdog select input that extends the watchdog  
timeout period by 128x. The MAX6752/MAX6753 contain  
a window watchdog timer that looks for activity outside an  
expected window of operation.  
Power-Supply Transient Immunity  
Guaranteed RESET Valid for VCC ≥ 1V  
● 8-Pin SOT23 Packages Saves Board Space  
● AEC-Q100 Qualified. Refer to Ordering Information  
for Specific /V Trim Variants  
The MAX6746–MAX6753 are available with a push-pull  
or open-drain active-low RESET output. The MAX6746–  
MAX6753 are available in an 8-pin SOT23 package and  
are fully specified over the automotive temperature range  
(-40°C to +125°C).  
Typical Operating Circuit  
V
IN  
MAX6749  
MAX6751  
Applications  
V
CC  
● Medical Equipment  
● Automotive  
R1  
R2  
● Intelligent Instruments  
● Portable Equipment  
● Battery-Powered Computers/Controllers  
● Embedded Controllers  
● Critical μP Monitoring  
● Set-Top Boxes  
RESET IN  
MAX674ꢀ  
V
CC  
µP  
MAX674ꢁ  
MAX675ꢂ  
MAX675ꢃ  
RESET  
RESET  
GND  
● Computers  
Selector Guide and Ordering Information appear at end of  
data sheet.  
SRT  
C
SRT  
I/O  
WDI  
SWT  
WDS  
C
SWT  
WDS = 0 FOR NORMAL MODE  
WDS = V FOR EXTENDED MODE  
CC  
19-2530; Rev 20; 2/19  
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Absolute Maximum Ratings  
V
to GND...........................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
CC  
A
SRT, SWT, SET0, SET1, RESET IN, WDS, MR,  
8-Pin SOT23 (derate 5.1mW/°C above +70°C)...........408.2mW  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range ............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
WDI, to GND......................................…-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
CC  
RESET (Push-Pull) to GND....................…-0.3V to (V  
CC  
RESET (Open-Drain) to GND.............................…-0.3V to +6.0V  
Input Current (All Pins).....................................................±20mA  
Output Current (RESET) ...................................................±20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any  
other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
8 SOT23  
PACKAGE CODE  
K8+5, K8+5A  
21-0078  
Outline Number  
Land Pattern Number  
90-0176  
Thermal Resistance, Single-Layer Board  
Junction-to-Ambient (q  
)
N/A  
800  
JA  
Junction-to-Case (q  
)
JC  
Thermal Resistance, Four-Layer Board  
Junction-to-Ambient (q  
)
196  
70  
JA  
Junction-to-Case (q  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= +1.2V to +5.5V, T = T  
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
T = 0°C to +125°C  
MIN  
TYP  
MAX  
5.5  
5.5  
10  
9
UNITS  
1.0  
1.2  
A
Supply Voltage  
V
V
CC  
T = -40°C to 0°C  
A
V
V
V
≤ 5.5V  
≤ 3.3V  
≤ 2.0V  
5
CC  
CC  
CC  
Supply Current  
I
4.2  
3.7  
µA  
CC  
8
See V  
selection table  
V
2%  
-
V
2%  
+
TH  
TH  
TH  
V
CC  
Reset Threshold  
V
T = -40°C to +125°C  
A
V
TH  
Hysteresis  
Reset Threshold  
(MAX6752AKA32 Only)  
V
0.8  
%
V
HYST  
V
CC  
TA = -40°C to +125°C  
3.136  
0.65  
3.224  
0.90  
Hysteresis (MAX6752AKA32 Only)  
V
0.80  
20  
%
HYST  
V
falling from V + 100mV to V  
TH TH  
CC  
V
to Reset Delay  
µs  
CC  
-100mV at 1mV/µs  
C
C
= 1500pF  
5.692  
7.590  
0.506  
250  
9.487  
SRT  
SRT  
SRT  
Reset Timeout Period  
t
ms  
RP  
= 100pF  
SRT Ramp Current  
I
V
= 0 to 1.23V; V  
= 1.6V to 5V (V  
= 1.6V to 5V  
200  
300  
nA  
V
RAMP  
CC  
SRT Ramp Threshold  
V
V
rising)  
1.173  
1.235  
1.297  
RAMP  
CC  
RAMP  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Electrical Characteristics (continued)  
(V  
= +1.2V to +5.5V, T = T  
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1500pF  
MIN  
TYP  
7.590  
0.506  
MAX  
UNITS  
C
C
C
C
C
C
5.692  
728.6  
728.6  
9.487  
Normal Watchdog Timeout Period  
(MAX6746–MAX6751)  
SWT  
SWT  
SWT  
SWT  
SWT  
SWT  
t
ms  
WD  
WD  
= 100pF  
= 1500pF  
= 100pF  
= 1500pF  
= 100pF  
971.5 1214.4  
64.77  
Extended Watchdog Timeout  
(MAX6746–MAX6751)  
t
ms  
ms  
971.5 1214.4  
64.77  
Slow Watchdog Period  
(MAX6752/MAX6753)  
t
WD2  
Fast Watchdog Timeout Period,  
SET Ratio = 8,  
(MAX6752/MAX6753)  
C
C
C
C
C
C
= 1500pF  
= 100pF  
= 1500pF  
= 100pF  
= 1500pF  
= 100pF  
91.08 121.43 151.80  
8.09  
SWT  
SWT  
SWT  
SWT  
SWT  
SWT  
t
t
t
ms  
ms  
WD1  
Fast Watchdog Timeout Period,  
SET Ratio = 16,  
(MAX6752/MAX6753)  
45.53  
60.71  
4.05  
75.89  
WD1  
WD1  
Fast Watchdog Timeout Period,  
SET Ratio = 64,  
(MAX6752/MAX6753)  
11.38  
15.18  
1.01  
18.98  
ms  
Fast Watchdog Minimum Period  
(MAX6752/MAX6753)  
2000  
200  
ns  
SWT Ramp Current  
I
V
V
V
V
V
V
V
V
= 0 to 1.23V, V  
= 1.6V to 5V  
250  
300  
1.297  
0.3  
nA  
V
RAMP  
SWT  
CC  
SWT Ramp Threshold  
V
= 1.6V to 5V (V  
rising)  
1.173 1.235  
RAMP  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
RAMP  
≥ 1.0V, I  
≥ 2.7V, I  
4.5V, I  
≥ 1.8V, I  
= 50µA  
SINK  
SINK  
SINK  
RESET Output-Voltage Low  
Open-Drain, Push-Pull  
(Asserted)  
V
= 1.2mA  
= 3.2mA  
0.3  
V
OL  
0.4  
= 200µA  
0.8 x V  
0.8 x V  
0.8 x V  
SOURCE  
CC  
CC  
CC  
RESET Output-Voltage High,  
Push-Pull (Not Asserted)  
V
≥ 2.25V, I  
= 500µA  
V
OH  
SOURCE  
≥ 4.5V, I  
= 800µA  
SOURCE  
V
V
> V , reset not asserted,  
RESET Output Leakage Current,  
Open Drain  
TH  
I
1.0  
0.8  
µA  
LKG  
= 5.5V  
RESET  
DIGITAL INPUTS (MR, SET0, SET1, WDI, WDS)  
V
IL  
V
4.0V  
CC  
CC  
V
2.4  
IH  
Input Logic Levels  
V
V
V
< 4.0V  
0.3 x V  
CC  
IL  
V
0.7 x V  
1
IH  
CC  
µs  
ns  
ns  
kΩ  
ns  
MR Minimum Pulse Width  
MR Glitch Rejection  
100  
200  
20  
MR-to-RESET Delay  
Pullup to V  
12  
28  
MR Pullup Resistance  
WDI Minimum Pulse Width  
CC  
300  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Electrical Characteristics (continued)  
(V  
= +1.2V to +5.5V, T = T  
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET IN  
RESET IN Threshold  
RESET IN Leakage Current  
RESET IN to RESET Delay  
V
I
T
= -40°C to +125°C  
1.216  
-50  
1.235  
1.254  
+50  
V
RESET IN  
A
nA  
µs  
±1  
RESET IN  
RESET IN falling at 1mV/µs  
20  
Note 1: Production testing done at T = +25°C. Over temperature limits are guaranteed by design.  
A
Typical Operating Characteristics  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
RESET TIMEOUT PERIOD vs. C  
SRT  
WATCHDOG TIMEOUT PERIOD vs. C  
SWT  
1000  
100  
10  
100,000  
10,000  
1000  
100  
6
MAX6746–MAX6751  
5
4
3
EXTENDED MODE  
NORMAL MODE  
10  
2
1
1
1
0.1  
0.1  
0
100  
1000  
10,000  
(pF)  
100,000  
100  
1000  
10,000  
(pF)  
100,000  
1
2
3
4
5
6
C
SRT  
C
SWT  
SUPPLY VOLTAGE (V)  
NORMALIZED RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
1.20  
175  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
150  
125  
100  
75  
C
SRT  
= 100pF  
C
SWT  
= 100pF  
RESET OCCURS  
ABOVE THE CURVE  
C
SWT  
= 1500pF  
50  
C
SRT  
= 1500pF  
25  
V
TH  
= 2.92V  
800  
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
0
200  
400  
600  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET THRESHOLD OVERDRIVE (mV)  
Maxim Integrated  
4  
www.maximintegrated.com  
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Typical Operating Characteristics (continued)  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
CC  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
RESET IN THRESHOLD  
vs. SUPPLY VOLTAGE  
NORMALIZED RESET IN THRESHOLD VOLTAGE  
vs. TEMPERATURE  
1.010  
6
5
4
3
1.240  
1.239  
1.238  
1.237  
1.236  
1.235  
V
CC  
= 5V  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
V
CC  
= 5V  
V
CC  
= 1.8V  
V
CC  
= 3.3V  
2
1
0.990  
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
1
2
3
4
5
6
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
RESET AND WATCHDOG  
TIMEOUT PERIOD vs. SUPPLY VOLTAGE  
RESET AND WATCHING TIMEOUT  
PERIOD vs. SUPPLY VOLTAGE  
V
TO RESET DELAY  
CC  
vs. TEMPERATURE (V FALLING)  
CC  
27.0  
26.6  
26.2  
25.8  
25.4  
25.0  
0.60  
0.56  
0.52  
0.48  
0.44  
0.40  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
C
SWT  
= C  
= 100pF  
C
SWT  
= C  
= 1500pF  
SRT  
V
CC  
FALLING AT 1mV/µs  
SRT  
RESET  
WATCHDOG  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
-50 -25  
0
25  
50  
75 100 125  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
(V)  
V
CC  
V
CC  
TEMPERATURE (°C)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Pin Configurations  
TOP VIEW  
+
SET0  
SWT  
SRT  
1
2
3
4
8
7
6
5
V
CC  
RESET IN (MR)  
1
2
3
4
8
7
6
5
V
CC  
RESET  
WDI  
SWT  
SRT  
GND  
RESET  
WDI  
MAX6752  
MAX6753  
MAX6746–  
MAX6751  
WDS  
GND  
SET1  
SOT23  
SOT23  
( ) ARE FOR MAX6746 AND MAX6747 ONLY.  
Pin Descriptions  
PIN  
NAME  
FUNCTION  
MAX6746  
MAX6747  
MAX6748–  
MAX6751  
MAX6752  
MAX6753  
Manual-Reset Input. Pull MR low to manually reset the device. Reset  
remains asserted for the reset timeout period after MR is released.  
1
1
MR  
Reset Input. High-impedance input to the adjustable reset comparator.  
RESET IN Connect RESET IN to the center point of an external resistor-divider to  
set the threshold of the externally monitored voltage.  
1
Logic Input. SET0 selects watchdog window ratio or disables the  
watchdog timer. See Table 1.  
SET0  
Watchdog Timeout Input.  
MAX6746–MAX6751: Connect a capacitor between SWT and ground to  
set the basic watchdog timeout period (t ). Determine the period by  
WD  
with t  
6
the formula t  
= 4.94 x 10 x C  
in seconds and C  
WD  
SWT  
WD SWT  
in Farads. Extend the basic watchdog timeout period by using the WDS  
input. Connect SWT to ground to disable the watchdog timer function.  
2
2
2
SWT  
MAX6752/MAX6753: Connect a capacitor between SWT and ground  
to set the slow watchdog timeout period (t  
). Determine the slow  
WD2  
9
watchdog period by the formula: t  
= 0.65 x 10 x C  
with t  
in  
WD2  
SWT  
WD2  
seconds and C  
in Farads. The fast watchdog timeout period is set  
SWT  
by pin strapping SET0 and SET1 (Connect SET0 high and SET1 low to  
disable the watchdog timer function.) See Table 1.  
Reset Timeout Input. Connect a capacitor from SRT to GND to select  
3
4
3
4
3
4
SRT  
the reset timeout period. Determine the period as follows: t  
= 4.94 x  
RP  
6
10 x C  
with t  
in seconds and C  
in Farads.  
SRT  
RP  
SRT  
GND  
Ground  
Watchdog Select Input. WDS selects the watchdog mode. Connect  
WDS to ground to select normal mode and the watchdog timeout  
5
5
WDS  
period. Connect WDS to V  
to select extended mode, multiplying the  
CC  
basic timeout period by a factor of 128. A change in the state of WDS  
clears the watchdog timer.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Pin Descriptions (continued)  
PIN  
NAME  
FUNCTION  
MAX6746  
MAX6747  
MAX6748–  
MAX6751  
MAX6752  
MAX6753  
Logic Input. SET1 selects the watchdog window ratio or disables the  
watchdog timer. See Table 1.  
5
SET1  
Watchdog Input.  
MAX6746–MAX6751: A falling transition must occur on WDI within  
the selected watchdog timeout period or a reset pulse occurs. The  
watchdog timer clears when a transition occurs on WDI or whenever  
RESET is asserted. Connect SWT to ground to disable the watchdog  
timer function.  
6
6
6
WDI  
MAX6752/MAX6753: WDI falling transitions within periods shorter than  
t
or longer than t  
force RESET to assert low for the reset  
WD1  
WD2  
timeout period. The watchdog timer begins to count after RESET is  
deasserted. The watchdog timer clears when a valid transition occurs  
on WDI or whenever RESET is asserted. Connect SET0 high and SET1  
low to disable the watchdog timer function. See the Watchdog Timer  
section.  
Push/Pull or Open-Drain Reset Output. RESET asserts whenever V  
CC  
or RESET IN drops below the selected reset threshold voltage (V or  
TH  
V
, respectively) or manual reset is pulled low. RESET remains  
RESET IN  
low for the reset timeout period after all reset conditions are deasserted,  
7
7
7
RESET  
and then goes high. The watchdog timer triggers a reset pulse (t  
whenever a watchdog fault occurs.  
)
RP  
Supply Voltage. V  
is the power-supply input and the input for fixed  
CC  
8
8
8
V
CC  
threshold V  
monitor.  
CC  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
t
(MIN)  
t
(MAX)  
t
(MIN)  
t
(MAX)  
WD1  
WD1  
WD2  
WD2  
GUARANTEED  
TO ASSERT  
GUARANTEED TO  
NOT ASSERT  
GUARANTEED TO  
ASSERT  
RESET  
RESET  
RESET  
*UNDETERMINED  
*UNDETERMINED  
WDI CONDITION 1  
WDI CONDITION 2  
FAST FAULT  
NORMAL OPERATION  
SLOW FAULT  
WDI CONDITION 3  
*UNDETERMINED STATES MAY OR MAY NOT GENERATE A FAULT CONDITION  
Figure 1. MAX6752/MAX6753 Detailed Watchdog Input Timing Relationship  
RESET is guaranteed to be in the correct logic  
state for V greater than 1V. For applications  
Detailed Description  
The MAX6746–MAX6753 assert a reset signal whenever  
CC  
requiring valid reset logic when V  
is less than 1V,  
CC  
the V  
supply voltage or RESET IN falls below its reset  
CC  
see the Ensuring a Valid RESET Down to VCC = 0V  
(Push-Pull RESET) section.  
threshold. The reset output remains asserted for the reset  
timeout period after V and RESET IN rise above its  
CC  
respective reset threshold. A watchdog timer triggers a  
reset pulse whenever a watchdog fault occurs.  
RESET IN Threshold  
The MAX6748–MAX6751 monitor the voltage on RESET  
The reset and watchdog delays are adjustable with  
external capacitors. The MAX6746–MAX6751 contain a  
watchdog select input that extends the watchdog timeout  
period to 128x.  
IN using an adjustable reset threshold (V  
with an external resistor voltage-divider (Figure 2). Use  
the following formula to calculate the externally monitored  
) set  
RESET IN  
voltage (V  
):  
MON_TH  
The MAX6752 and MAX6753 have a sophisticated watchdog  
timer that detects when the processor is running outside  
an expected window of operation. The watchdog signals a  
fault when the input pulses arrive too early (faster that the  
V
= V  
x (R1 + R2)/R2  
MON_TH  
RESET IN  
V
MON_TH  
selected t  
selected t  
timeout period) or too late (slower than the  
timeout period) (see Figure 1).  
WD1  
WD2  
R1  
V
CC  
Reset Output  
V
CC  
RESET IN  
The reset output is typically connected to the reset input  
of a μP. A μP’s reset input starts or restarts the μP in a  
known state. The MAX6746–MAX6753 μP supervisory  
circuits provide the reset logic to prevent code-execution  
errors during power-up, power-down, and brownout conditions  
(see the Typical Operating Circuit). RESET changes from  
high to low whenever the monitored voltage, RESET  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
R2  
GND  
V
= 1.235 x (R1 + R2) / R2  
MON_TH  
IN and/or V  
drop below the reset threshold voltages.  
CC  
Once V  
and/or V  
exceeds its respective reset  
RESET IN  
CC  
threshold voltage(s), RESET remains low for the reset  
timeout period, then goes high.  
Figure 2. Calculating the Monitored Threshold Voltage  
(V  
)
MON_TH  
Maxim Integrated  
8  
www.maximintegrated.com  
 
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
timing performance. The MAX6748 and MAX6749 can be  
configured to monitor V  
voltage by connecting V  
to  
CC  
CC  
V
MON_TH  
V
.
MON_TH  
Dual-Voltage Monitoring (MAX6750/MAX6751)  
R1  
V
CC  
The MAX6750 and MAX6751 contain both factory-trimmed  
threshold voltages and an adjustable reset threshold input,  
V
CC  
RESET IN  
allowing the monitoring of two voltages, V  
and V  
CC  
MON_  
(see Figure 2). RESET is asserted when either of the  
TH  
MAX6748  
R2  
voltages fall below its respective threshold voltages.  
MAX6749  
MAX6750  
MAX6751  
Manual Reset (MAX6746/MAX6747)  
GND  
Many μP-based products require manual-reset capability  
to allow an operator or external logic circuitry to initiate a  
reset. The manual-reset input (MR) can connect directly  
to a switch without an external pullup resistor or debouncing  
network. MR is internally pulled up to V  
can be left unconnected if unused.  
and, therefore,  
CC  
Figure 3. Adding an External Manual-Reset Function to the  
MAX6748–MAX6751  
MR is designed to reject fast, falling transients (typically  
100ns pulses) and must be held low for a minimum of  
1μs to assert the reset output. A 0.1μF capacitor from MR  
to ground provides additional noise immunity. After MR  
transitions from low to high, reset remains asserted for the  
duration of the reset timeout period.  
where V  
is the desired reset threshold voltage  
MON_TH  
and V  
is the reset input threshold (1.235V). Resistors  
TH  
R1 and R2 can have very high values to minimize  
current consumption due to low leakage currents. Set R2  
to some conveniently high value (500kΩ, for example)  
and calculate R1 based on the desired reset threshold  
voltage, using the following formula:  
A manual-reset option can easily be implemented with  
the MAX6748–MAX6751 by connecting a normally open  
momentary switch in parallel with R2 (Figure 3). When  
the switch is closed, the voltage on RESET IN goes to  
zero, initiating a reset. Similar to the MAX6746/MAX6747  
manual reset, reset remains asserted while the voltage at  
RESET IN is zero and for the reset timeout period after  
the switch is opened.  
R1 = R2 x (V  
/V  
- 1) (Ω)  
MON_TH RESET IN  
The MAX6748 and MAX6749 do not monitor V  
CC  
supply voltage; therefore, V  
must be greater than  
CC  
1.5V to guarantee RESET IN threshold accuracy and  
V
CC  
t
t
RP  
WD  
WDI  
OV  
V
CC  
RESET  
OV  
NORMAL MODE (WDS = GND)  
Figure 4a. Watchdog Timing Diagram, WDS = GND  
Maxim Integrated  
9  
www.maximintegrated.com  
 
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
V
CC  
t
t
x 128  
RP  
WD  
WDI  
OV  
V
CC  
RESET  
OV  
EXTENDED MODE (WDS = V  
)
CC  
Figure 4b. Watchdog Timing Diagram, WDS = V  
CC  
Watchdog Timer  
Table 1. Min/Max Watchdog Setting  
MAX6746–MAX6751  
SET0  
Low  
SET1  
Low  
RATIO  
The watchdog’s circuit monitors the μP’s activity. It the μP  
does not toggle the watchdog input (WDI) within t (user-  
8
WD  
Low  
High  
Low  
16  
Watchdog Disabled  
64  
selected), RESET asserts for the reset timeout period. The  
internal watchdog timer is cleared by any event that asserts  
RESET, by a falling transition at WDI (which can detect  
pulses as short as 300ns), or by a transition at WDS. The  
watchdog timer remains cleared while reset is asserted; as  
soon as reset is released, the timer starts counting.  
High  
High  
High  
the SET0 and SET1 configuration for the 8, 16, and 64  
window ratio ( t  
/t  
).  
WD2 WD1  
For example, if C  
is 1500pF, and SET0 and SET1 are  
The MAX6746–MAX6751 feature two modes of watch-  
dog operation: normal mode and extended mode. In  
normal mode (Figure 4a), the watchdog timeout period  
is determined by the value of the capacitor connected  
between SWT and ground. In extended mode (Figure  
4b), the watchdog timeout period is multiplied by 128. For  
example, in extended mode, a 0.1μF capacitor gives a  
watchdog timeout period of 65s (see the Extended-Mode  
SWT  
low, then t  
is 975ms (typ) and t  
is 122ms (typ).  
WD2  
WD1  
RESET asserts if the watchdog input has two falling edges  
too close to each other (faster than t ) (Figure 5a) or  
falling edges that are too far apart (slower than t  
(Figure 5b). Normal watchdog operation is displayed in  
Figure 5c. The internal watchdog timer is cleared when  
a WDI falling edge is detected within the valid watchdog  
window or when RESET is deasserted. All WDI inputs are  
ignored while RESET is asserted.  
WD1  
)
WD2  
Watchdog Timeout Period vs. C  
graph in the Typical  
SWT  
Operating Circuit). To disable the watchdog timer function,  
connect SWT to ground.  
The watchdog timer begins to count after RESET is  
deasserted. The watchdog timer clears and begins to  
count after a valid WDI falling logic input. WDI falling  
MAX6752/MAX6753  
The MAX6752 and MAX6753 have a windowed watchdog  
timer that asserts RESET for the adjusted reset timeout  
period when the watchdog recognizes a fast watchdog fault  
transitions within periods shorter than t  
or longer than  
WD1  
t
force RESET to assert low for the reset timeout  
WD2  
period. WDI falling transitions within the t  
and t  
(t  
< t  
), or a slow watchdog fault (period > t  
).  
WD1  
WD2  
WDI  
WD1  
WD2  
window do not assert RESET. WDI transitions between  
and t or t and t  
WD2(max)  
The reset timeout period is adjusted independently of the  
watchdog timeout period.  
t
WD1(min)  
WD1(max)  
WD2(min)  
are not guaranteed to assert or deassert RESET. To  
The slow watchdog period (t  
) is calculated as follows:  
WD2  
guarantee that the window watchdog does not assert  
9
t
= 0.65 x 10 x C  
WD2  
SWT  
RESET, strobe WDI between t  
and t  
.
WD1(max)  
WD2(min)  
The watchdog timer is cleared when RESET is asserted  
or after a falling transition on WDI, or after a state  
change on SET0 or SET1. Disable the watchdog timer by  
connecting SET0 high and SET1 low.  
with t  
in seconds and C  
in Farads.  
WD2  
SWT  
The fast watchdog period (t  
from the slow watchdog fault period (t  
fast watchdog period by pin strapping SET0 and SET1,  
) is selectable as a ratio  
WD1  
). Select the  
WD2  
where high is V and low is GND. Table 1 illustrates  
CC  
Maxim Integrated  
10  
www.maximintegrated.com  
 
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
t
< t  
(MIN)  
WDI WD1  
5V  
3.3V  
V
CC  
WDI  
MAX6747  
MAX674ꢀ  
MAX6753  
100k  
RESET  
V
CC  
(a) FAST FAULT  
RESET  
µP  
RESET  
t
> t  
(MAX)  
WDI WD2  
N
GND  
GND  
WDI  
RESET  
(b) SLOW FAULT  
Figure 6. Interfacing to Other Voltage Levels  
t
(MAX) < t  
< t  
(MIN)  
WD1  
WDI WD2  
with t  
in seconds and C  
in Farads.  
SWT  
WD  
For the MAX6752 and MAX6753 windowed watchdog  
function, calculate the slow watchdog period, t  
as  
WD2  
follows:  
WDI  
9
t
= 0.65 x 10 x C  
RESET  
WD2  
SWT  
C
and C  
must be a low-leakage (< 10nA) type  
SWT  
SRT  
capacitor. Ceramic capacitors are recommended.  
(c) NORMAL OPERATION (NO PULSING, OUTPUT STAYS HIGH)  
Transient Immunity  
Figure 5. MAX6752/MAX6753 Window Watchdog Diagram  
In addition to issuing a reset to the μP during power-up,  
power-down, and brownout conditions, these supervisors  
are relatively immune to short-duration supply transients  
(glitches). The Maximum Transient Duration vs. Reset  
Threshold Overdrive graph in the Typical Operating  
Characteristics shows this relationship.  
Applications Information  
Selecting Reset/Watchdog Timeout Capacitor  
The reset timeout period is adjustable to accommodate a  
variety of μP applications. Adjust the reset timeout period  
(t ) by connecting a capacitor (C  
ground. Calculate the reset timeout capacitor as follows:  
) between SRT and  
RP  
SRT  
The area below the curves of the graph is the region in  
which these devices typically do not generate a reset  
pulse. This graph was generated using a falling pulse  
6
C
= t /(4.94 x 10 )  
SRT  
RP  
applied to V , starting above the actual reset threshold  
CC  
with t  
in seconds and C  
in Farads.  
SRT  
RP  
(V ) and ending below it by the magnitude indicated  
TH  
The watchdog timeout period is adjustable to  
accommodate a variety of μP applications. With this  
feature, the watchdog timeout can be optimized for soft-  
ware execution. The programmer can determine how  
often the watchdog timer should be serviced. Adjust  
(reset threshold overdrive). As the magnitude of the transient  
increases (farther below the reset threshold), the maxi-  
mum allowable pulse width decreases. Typically, a V  
CC  
transient that goes 100mV below the reset threshold and  
lasts 50μs or less does not cause a reset pulse to be  
the watchdog timeout period (t ) by connecting a  
WD  
issued. For applications where the power supply to V  
CC  
specific value capacitor (C  
) between SWT and GND.  
SWT  
has high transient rates, dV/dt > 5V/50µS, an RC filter  
on V is required. See Figure 8. Application Circuit for  
For normal mode operation, calculate the watchdog  
timeout capacitor as follows:  
CC  
High-Input Voltage Transient Applications.  
C
SWT  
= t /(4.94 x 106)  
WD  
Maxim Integrated  
11  
www.maximintegrated.com  
 
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Interfacing to Other Voltages for  
Logic Compatibility  
The open-drain RESET output can be used to interface  
to a μP with other logic levels. As shown in Figure 6, the  
open-drain output can be connected to voltages from 0  
to 6V.  
Ensuring a Valid RESET Down to V  
= 0V  
CC  
(Push-Pull RESET)  
When V  
falls below 1V, RESET current sinking capabilities  
CC  
decline drastically. The high-impedance CMOS logic  
inputs connected to RESET can drift to undetermined  
voltages. This presents no problems in most applications,  
since most μPs and other circuitry do not operate with  
Generally, the pullup resistor connected to RESET  
connects to the supply voltage that is being monitored at  
V
CC  
below 1V.  
the IC’s V  
pin. However, some systems can use the  
In those applications where RESET must be valid down to  
0V, add a pulldown resistor between RESET and GND for  
the MAX6746/MAX6748/MAX6750/MAX6752 push/pull  
outputs. The resistor sinks any stray leakage currents,  
holding RESET low (Figure 7). The value of the pulldown  
resistor is not critical; 100kΩ is large enough not to load  
RESET and small enough to pull RESET to ground. The  
external pulldown cannot be used with the open-drain  
reset outputs.  
CC  
open-drain output to level-shift from the monitored supply  
to reset circuitry powered by some other supply. Keep  
in mind that as the supervisor’s V  
decreases towards  
CC  
1V, so does the IC’s ability to sink current at RESET.  
Also, with any pullup resistor, RESET is pulled high as  
V
CC  
decays toward zero. The voltage where this occurs  
depends on the pullup resistor value and the voltage to  
which it is connected.  
3.3V  
V
CC  
V
CC  
100Ω  
MAX6746  
MAX6748  
MAX6450  
MAX6752  
VCC  
RESET  
1µF  
MAX6753  
RESET  
100k  
GND  
GND  
Figure 7. Ensuring RESET Valid to V  
= 0V  
Figure 8. Application Circuit for High-Input Voltage Transient  
Applications  
CC  
Maxim Integrated  
12  
www.maximintegrated.com  
 
 
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Table 2. Reset Threshold Voltage Suffix  
Table 3. Standard Version Table  
(T = -40°C to +125°C)  
A
PART  
TOP MARK  
AEDI  
SUFFIX  
MIN  
4.900  
4.802  
TYP  
5.000  
4.900  
MAX  
5.100  
4.998  
MAX6746KA16  
MAX6746KA23  
MAX6746KA26  
MAX6746KA29  
MAX6746KA46  
MAX6747KA16  
MAX6747KA23  
MAX6747KA26  
MAX6747KA29  
MAX6747KA46  
MAX6748KA  
50  
AEDJ  
AEDK  
AALN  
AEDL  
AALO  
AEDM  
AEDN  
AEDO  
AEDP  
AALP  
AALQ  
AEDQ  
AALR  
AEDR  
AEDS  
AEDT  
AEDU  
AEDV  
AEDW  
AEDX  
AEDY  
AEDZ  
AEEA  
AALT  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
4.704  
4.606  
4.533  
4.410  
4.288  
4.214  
4.116  
4.018  
3.920  
3.822  
3.724  
3.626  
3.528  
3.430  
3.332  
3.234  
3.136  
4.800  
4.700  
4.625  
4.500  
4.375  
4.300  
4.200  
4.100  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
3.400  
3.300  
3.200  
4.896  
4.794  
4.718  
4.590  
4.463  
4.386  
4.284  
4.182  
4.080  
3.978  
3.876  
3.774  
3.672  
3.570  
3.468  
3.366  
3.264  
MAX6749KA  
MAX6750KA16  
MAX6750KA23  
MAX6750KA26  
MAX6750KA29  
MAX6750KA46  
MAX6751KA16  
MAX6751KA23  
MAX6751KA26  
MAX6751KA29  
MAX6751KA46  
MAX6752KA16  
MAX6752KA23  
MAX6752KA26  
MAX6752KA29  
MAX6752KA46  
MAX6753KA16  
MAX6753KA23  
MAX6753KA26  
MAX6753KA29  
MAX6753KA46  
32A  
3.136  
3.200  
3.224  
(MAX6752AKA32 Only)  
31  
30  
3.014  
2.940  
3.075  
3.000  
3.137  
3.060  
29  
28  
27  
26  
25  
24  
23  
2.867  
2.744  
2.646  
2.573  
2.450  
2.352  
2.267  
2.925  
2.800  
2.700  
2.625  
2.500  
2.400  
2.313  
2.984  
2.856  
2.754  
2.678  
2.550  
2.448  
2.359  
AEEB  
AEEC  
AEED  
AEEE  
AEEF  
AEEG  
AEEH  
22  
21  
20  
19  
18  
17  
16  
2.144  
2.058  
1.960  
1.862  
1.764  
1.632  
1.544  
2.188  
2.100  
2.000  
1.900  
1.800  
1.665  
1.575  
2.232  
2.142  
2.040  
1.938  
1.836  
1.698  
1.607  
Note: Standard versions are shown in bold. There is a 2500-piece  
minimum order increment for standard versions.  
Sample stock is typically held on standard versions only.  
Nonstandard versions require a minimum order increment  
of 10,000 pieces. Contact factory for availability  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Selector Guide  
FIXED V  
RESET  
THRESHOLD  
ADJUSTABLE  
RESET  
THRESHOLD  
STANDARD  
WATCHDOG WATCHDOG  
MIN/MAX  
MANUAL-  
RESET  
INPUT  
CC  
PUSH/ PULL OPEN-DRAIN  
PART  
RESET  
RESET  
TIMER  
TIMER  
MAX6746  
MAX6747  
MAX6748  
MAX6749  
MAX6750  
MAX6751  
MAX6752  
MAX6753  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Maxim Integrated  
14  
www.maximintegrated.com  
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Ordering Information  
Chip Information  
PROCESS: BiCMOS  
PART  
TEMP RANGE  
PIN-PACKAGE  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
8 SOT23  
MAX6746KA_ _-T  
MAX6746KA_ _+T  
MAX6747KA_ _+T  
MAX6746KA_ _/V+T  
MAX6746KA23/V+T  
MAX6746KA28/V+T  
MAX6746KA29/V+T  
MAX6746KA31/V+T  
MAX6747KA_ _-T  
MAX6747KA_ _/V+T  
MAX6747KA30/V+T  
MAX6747KA31/V+T  
MAX6747KA46/V+T  
MAX6748KA+T  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
MAX6749KA+T  
MAX6750KA_ _+T  
MAX6750KA_ __/V+T  
MAX6750KA30/V+T  
MAX6750KA32/V+T  
MAX6751KA_ _-T  
MAX6751KA_ _+T  
MAX6751KA_ _/V+T*  
MAX6751KA17/V+T  
MAX6751KA30/V+T  
MAX6751KA50/V+T  
MAX6752KA_ _+T  
MAX6752KA_ _/V+T*  
MAX6752AKA32+T  
MAX6752AKA32/V+T  
MAX6752KA32/V+T  
MAX6753KA_ _-T  
MAX6753KA_ _+T  
MAX6753KA_ _/V+T  
MAX6753KA28/V+T  
MAX6753KA29/V+T  
MAX6753KA30/V+T  
MAX6753KA46/V+T  
Note: “_ _” represents the two number suffix needed when ordering the reset  
threshold voltage value for the MAX6746/MAX6747 and MAX6750–MAX6753.  
The reset threshold voltages are available in approximately 100mV incre-  
ments. Table 2 contains the suffix and reset factory-trimmed voltages. All  
devices are available in tape-and-reel only. There is a 2500-piece minimum  
order increment for standard versions (see Table 3). Sample stock is typically  
held on standard versions only. Nonstandard versions require a minimum  
order increment of 10,000 pieces. Contact factory for availability.  
Devices are available in both leaded and lead(Pb)-free packaging.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
/V denotes an automotive qualified part.  
*Future product—contact factory for availability.  
Maxim Integrated  
15  
www.maximintegrated.com  
 
MAX6746–MAX6753  
μP Reset Circuits with Capacitor-Adjustable  
Reset/Watchdog Timeout Delay  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
7/02  
Initial release  
3
12/05  
Added the lead-free notation  
1
Added the automotive version of the MAX6746 and the MAX6753 and  
revised the Typical Operating Characteristics  
4
9/10  
1, 4  
5
6
12/10  
4/11  
Added the automotive version of the MAX6750  
Added the automotive version of the MAX6747  
Added the automotive version of the MAX6751  
Added a future product reference to MAX6751KA_ _ /V+T  
Corrected typo  
1
1
7
12/13  
2/14  
5/14  
6/14  
9/15  
1
8
1
9
10  
1
10  
11  
Added the automotive version of the MAX6752  
Added MAX6752A to data sheet with new limits  
2, 12, 14  
Added lead-free part numbers to Ordering Information table and lead-free  
package code to Package Information table  
12  
13  
14  
15  
12/15  
2/16  
9/16  
1/17  
14  
14  
Added MAX6752AKA32+T to Ordering Information table  
Updated tWD equation value in Pin Configuration table and Applications  
Information section  
6, 10  
10, 11  
Added text to Transient Immunity section and added Figure 8  
Added AEC qualification text to Benefits and Features section and updated  
Ordering Information table with additional part numbers  
16  
10/17  
1, 14  
17  
18  
19  
20  
12/17  
3/18  
Updated Ordering Information table with additional part numbers  
Updated Absolute Maxim Rating and added Package Information section  
Updated Package Information  
14  
2
12/18  
2/19  
2
Updated Typical Operating Circuit and Figure 6  
1, 11  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
16  

相关型号:

MAX6753KA32

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA32+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA32+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, ROHS COMPLIANT, SOT-23, 8 PIN
MAXIM

MAX6753KA32-T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA32/V+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA33/V+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA34

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA34+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA34/V+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX6753KA35

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA35+

Power Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, LEAD FREE, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX6753KA35+T

Power Supply Management Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, ROHS COMPLIANT, SOT-23, 8 PIN
MAXIM