MAX66300ETN+T [MAXIM]

Consumer Circuit, ROHS COMPLIANT, TQFN-56;
MAX66300ETN+T
型号: MAX66300ETN+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Consumer Circuit, ROHS COMPLIANT, TQFN-56

商用集成电路
文件: 总20页 (文件大小:516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Scalable 13.56MHz Analog Front-End Provides  
Support for Multiple Antenna Configurations  
• Single- or Double-Antenna Driver Using On-Off  
Keying (OOK) Modulation  
General Description  
DeepCover embedded security solutions cloak sensitive  
data under multiple layers of advanced physical security  
to provide the most secure key storage possible.  
®
• User-Selectable ASK Uplink Modulations Index  
Adjustable from 7% Up to 30%  
• High-Output RF Power of Up to 200mW  
• Multiple Receiver Inputs for High-Communication  
Reliability  
• Built-In Receiver Lowpass-Filter Cutoff Frequen-  
cies Selectable Between 400kHz and 1MHz  
• Built-In Receiver Highpass-Filter Cutoff Frequency  
Selectable Among 100kHz, 200kHz, and 300kHz  
• Selectable Receive Gain from 0dB up to 40dB  
• Multiple Subcarrier Receiving Compatibility  
• (212kHz and 424kHz)  
The DeepCover Secure Authenticator (MAX66300)  
combines a highly integrated RFID reader for contactless  
communication at 13.56MHz and a SHA-256 secure  
authenticator coprocessor. The RFID IC reader covers  
the ISO 15693 standard. The authenticator coprocessor’s  
engine is based on the FIPS 180-4 standard and supports  
secure challenge-and-response authentication when  
paired with peripherals such as the Maxim MAX66240/  
MAX66242 family of tag solutions. An embedded host  
processor can easily interface with the MAX66300 using  
its UART or SPI interface.  
Antenna Short-Circuit Protection Enhances System  
Applications  
Secure Access Control  
Ruggedness  
Asset-Tracking Readers  
Authentication of Consumables  
Readers in Printers (Ink Cartridge)  
Blood Glucose Meters/Monitors  
Ordering Information appears at end of data sheet.  
Handheld Reader Modules  
Typical Application Circuit  
Features and Benefits  
Secure, Contactless Host Authenticator  
• ISO/IEC 15693 Standard Compliant  
• SHA-256 Engine to Run a Symmetric Key-Based  
Bidirectional Secure Authentication  
MAX66300  
ANALOG  
FRONT-END  
COPROCESSOR  
UART  
SPI  
SHA-256 CORE  
MEMORY PAGES  
M-SECRET KEYS  
• Four 32-Byte Pages of User Memory  
• Four Master Secrets with Multiple Programmable  
Protection Options  
• 76-Byte Scratchpad in SRAM  
• True Hardware Random-Number Generator  
• Unique 64-Bit Serial Number  
MAX66242  
(TAG)  
ANTENNA  
DRIVE  
CONTROL  
RFID READER  
PROTOCOL  
ARBITRATION  
MODULATOR  
DEMODULATOR  
Design Flexibility Supports Diverse Applications  
• UART and SPI Interface Ports  
• Power-Down Mode by an Input Pin  
(Low, Standby Power)  
• Antenna Short-Circuit Protection  
• Compatible with 3.3V or 5V Supply Voltages  
• ±2kV HBM ESD Protection  
DeepCover is a registered trademark of Maxim Integrated  
Products, Inc.  
219-0045; Rev 0; 9/14  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Absolute Maximum Ratings  
Continuous Power Dissipation (T = +70°C)  
(Applies to pins 33 to 51)  
Voltage Range on V , V  
A
TQFN (multilayer board)  
,
DDA1 DDA2  
(derate 47.6mW/°C above +70°C) ..................................1.9W  
Operating Temperature Range........................... -40°C to +85°C  
Maximum Junction Temperature ..................................... +110°C  
Lead Temperature (soldering, 10s) .................................+300°C  
ESD Protection per Method 3015 .......................................±2kV  
(Applies to pins 1 to 32 and 52 to 56)  
and V  
...............................................-0.3V to +6V  
DD_AFE_DIG  
Maximum Voltage Range on Any Input  
or Bidirectional Pin.................................V  
Minimum Voltage Range on  
Any input or Bidirectional Pin .................................V - 0.3V  
Maximum Output Current on  
+ 0.3V  
DD_AFE_DIG  
SS  
Voltage Range on V  
, V  
..................-0.3V to +3.6V  
Any Single I/O pin except ANT1 and ANT2....................10mA  
Maximum AC Peak Current on ANT1 and ANT2 .............100mA  
Storage Temperature Range (Note 1).............. -55°C to +120°C  
ESD Protection per Method 3015 on ANT1 and ANT2.......±4kV  
DD_CORE DDQ  
Voltage Range on Any Input  
or Bidirectional Pin................................. -0.3V to the lesser of  
((V +3.6V),5.5V) for the max  
DD_CORE  
Voltage Range on HFXIN.............. -0.3V to (V  
+ 0.5V)  
DD_CORE  
Continuous Output Current on Any Single I/O Pin.............25mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Note 1: Storage temperature is defined as the temperature of the device when all supply voltage is 0V.  
(Note 2)  
Package Thermal Characteristics  
TQFN  
Junction-to-Ambient Thermal Resistance (θ ) ..........21°C/W  
Junction-to-Case Thermal Resistance (θ )....................1°C/W  
JC  
JA  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= V  
, limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant  
DDQ  
DD_CORE A A  
supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not  
production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL (APPLIES TO PINS 1 TO 32 AND 52 TO 56)  
Operating Supply Voltage  
Power-Fail Warning Voltage  
V
V
3.3  
3.6  
3.0  
V
V
DD_CORE  
RST  
V
Brownout detection  
2.8  
RST  
External 24MHz clock source  
generates system clock; device in  
reset  
Reset Mode Current  
(RESET)  
I
I
12  
14.4  
2.3  
20  
mA  
mA  
mA  
DD1  
External 24MHz clock source  
generates system clock; code  
running from data memory; CSAM  
subcommand loop  
Supply Current, External  
Clock Source  
DD2  
T
= +25°C, V = 3.6V,  
DD_CORE  
A
Sleep Mode Current  
(SLEEP)  
I
SLEEP = GND, all other pins  
disconnected  
SLEEP  
Maxim Integrated  
2  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Electrical Characteristics (continued)  
(V  
= V  
, limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant  
DDQ  
DD_CORE A A  
supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not  
production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
current is the sum of V  
DDIOH  
DDIO  
I/O Supply Output High  
Voltage  
V
DD_CORE  
-0.4  
V
current and I  
of all I/O,  
V
V
DDIOH  
OH1  
DD_CORE  
I
= 20mA  
OH1  
Input Low Voltage (HFXIN)  
Input Low Voltage (Any I/O)  
V
V
V
V
0.4  
V
V
IL1  
GND  
GND  
0.2 x  
IL2  
V
DD_CORE  
Input High Voltage (HFXIN)  
Input High Voltage (Any I/O)  
Input Hysteresis (Schmitt)  
Output Low Voltage  
V
V
0.7 x V  
0.7 x V  
V
V
V
IH1  
DDIO  
DD_CORE  
5.5  
IH2  
DDIO  
V
0.5  
6
V
IHYS  
V
I
I
= 4mA, V  
= 3.0V  
V
0.4  
V
OL1  
OH1  
OL1  
OH1  
DDIO  
GND  
Output High Voltage  
V
= -4mA, V  
= 3.0V  
V
- 0.6  
V
DDIO  
V
DDIO  
DDIO  
Input Crystal Capacitance  
Input Leakage Current  
Input Pullup Current (Any I/O)  
Pullup Resistor (RESET)  
VOLTAGE SENSOR  
C
Not production tested  
5.5V (Note 3)  
pF  
µA  
µA  
kΩ  
IN  
I
V
V
-10  
20  
+10  
55  
LEAK  
GND ≤ IN ≤  
I
-85  
40  
PU  
R
PU  
V
High Reset  
VDD_CORE  
V
4.0  
4.6  
V
V
DD_CORE_OV  
Overvoltage Threshold  
REG18 Overvoltage Reset  
Threshold  
V
2.6  
REG18_OV  
CLOCK SOURCE  
External-Crystal Frequency  
Between HFXIN and  
HFXOUT  
f
f
23.95  
24  
24  
24.05  
24.05  
MHz  
MHz  
HFXIN  
HFXIN  
External-Clock Oscillator  
Frequency on HFXIN  
23.95  
45  
External-Clock Period Duty  
Cycle  
t
55  
3
%
CLDC  
Clock Rise Time  
t
ns  
CR  
MEMORY CHARACTERISTICS  
t
27  
20,000  
100  
ms  
PROG  
Write/Erase Cycles  
Data Retention  
Cycles  
Years  
T = +25°C  
A
Maxim Integrated  
3  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Electrical Characteristics (continued)  
(V  
= V  
, limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant  
DDQ  
DD_CORE A A  
supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not  
production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SPI ELECTRICAL CHARACTERISTICS (Figure 6)  
SPI Slave Operating  
Frequency  
1/t  
f
= f  
f /4  
CK  
MHz  
ns  
SCK  
SPI_RF  
CK  
HFXIN  
SPI I/O Rise/Fall Time  
t
CL = 15pF, pullup = 560Ω  
8.3  
23.6  
SCLK Input Pulse-Width  
High/Low  
t
t
t
/2  
SCK  
ns  
SCH, SCL  
SSEL Active to First Shift  
Edge  
t
t
t
ns  
ns  
SSE  
SPI_RF  
SPI_RF  
MOSI Input to SCLK Sample  
Edge Rise Setup  
t
SIS  
MOSI Input from SCLK  
Sample Edge Transition Hold  
t
t
ns  
SIH  
SPI_RF  
MISO Output Valid After  
SCLK Shift Edge Transition  
t
2t  
ns  
ns  
ns  
SOV  
SPI_RF  
SSEL Inactive  
t
f
f
= 1/f  
= 1/f  
t
+ t  
CK SPI_RF  
SSH  
CK  
CK  
HFXIN  
SCLK Inactive to SSEL  
Rising  
t
t
SPI_RF  
SD  
MISO Output Disabled After  
SSEL Edge Rise  
2t  
2t  
+
CK  
t
ns  
SLH  
HFXIN  
SPI_RF  
SSEL Rising to Active BUSY  
SCLK Delay Between Bytes  
SHA-256 ENGINE  
t
2
µs  
µs  
SAB  
t
3
SDLY  
Computation Time  
t
t
ms  
ms  
CSHA  
See Full data sheet  
Authentication Time  
AUTH  
Maxim Integrated  
4  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Electrical Characteristics  
(Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed  
A
by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. V  
= V  
=
DD  
DDA1  
V
= V  
; V = V  
= V  
= 0V.)  
DDA2  
DD_AFE_DIG SS  
SSA1  
SSA2  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG FRONT-END (APPLIES TO PINS 33 TO 51)  
3.3V  
3.3  
4.5  
3.45  
5.0  
3.6  
5.5  
Supply Voltage  
V
V
DD  
PD  
ON  
5.0V (Note 4)  
Sleep Mode Current  
(SLEEP)  
I
1
5
µA  
mA  
3.3V (Note 5)  
5.0V  
8.5  
12  
12  
20  
Supply Current Excluding  
Antenna Driver Current  
I
3.3V (Note 5)  
5.0V  
0.7  
2.3  
1.3  
2.5  
2.1  
2.1  
1.6  
2.7  
AGD Level  
V
V
V
V
AGD  
POR  
3.3V  
Power-On Reset Level  
5.0V  
1.4  
3.6  
ANTENNA DRIVERS  
3.3V, I  
modulation index  
= 100mA, 100%  
ANT  
4
5
3
5
9.3  
11  
7
15  
20  
12  
15  
3.3V, I  
index  
= 30mA, 10% modulation  
ANT  
Driver Output Impedance  
(ANT1 or ANT2)  
R
Ω
AD  
5.0V, I  
= 100mA, 100%  
ANT  
modulation index  
5.0V, I  
index  
= 100mA, 10% modulation  
ANT  
10  
SPECIAL-PURPOSE PINS (SYSAOUT, SYSBOUT, SYSCOUT, SYSDOUT, SYSEOUT)  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
0.2 x V  
0.1 x V  
V
V
V
V
IL  
DD  
V
0.8 x V  
IH  
DD  
DD  
V
I
I
= 1mA  
= 1mA  
OL  
OL  
DD  
V
0.9 x V  
OH  
OH  
Interface Clock Rate  
Frequency (SYSCOUT)  
f
1
MHz  
MAX  
AM DEMODULATION  
RF Amplitude of RFIN Inputs  
RFIN Input Resistance  
3.3V  
1.65  
2.5  
V
R
V
PP  
RFIN  
RFIN  
SENS  
5.0V  
3.3V, 5.0V  
3.3V  
5
15.5  
0.75  
1.5  
20  
kΩ  
mV  
Receiver Sensitivity at  
212kHz  
V
PP  
5.0V  
Maxim Integrated  
5
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed  
A
by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. V  
= V  
=
DD  
DDA1  
V
= V  
; V = V  
= V = 0V.)  
SSA2  
DDA2  
DD_AFE_DIG SS  
SSA1  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.8  
MAX  
UNITS  
3.3V  
5.0V  
3.3V  
5.0V  
Receiver Sensitivity at 24kHz  
V
mV  
mV  
SENS  
SENS  
P-P  
P-P  
2.2  
1.95  
3.5  
Receiver Sensitivity at  
848kHz  
V
Recovery Time of Reception  
after Antenna Modulation  
t
100  
µs  
REC  
XTAL OSCILLATOR (OSCIN, OSCOUT)  
3.3V, normal mode  
0.45  
2
3.3V, high-oscillator mode  
Transconductance  
g
mS  
M
5.0V, normal mode (Notes 6 and 7)  
5.0V, high-oscillator mode (Note 7)  
0.9  
2.7  
Set-Up Time after Power  
Down  
t
5
15  
ms  
pF  
SET  
Input Crystal Capacitance  
C
Not production tested  
22  
INPUT  
Note 3: Any tolerant I/O pin, when an input with no internal weak pullup, can reach a peak static current of 45µA (typ) at V  
+ 0.4V.  
DD_CORE  
Note 4: Due to the 10kΩ ±5% resistor pullups on pins SYSBIN, SYSCIN, and SYSEIN in 5V operation, V  
needs to be  
DD_CORE  
present at or before V  
.
DD_AFE_DIG  
Note 5: Includes external 1.8kΩ ±5% resistor connected on AGD output to fix a voltage on the pin of 1.3V.  
Note 6: Recommended to use the high g transconductance (i.e., high oscillator mode).  
M
Note 7: Recommended to use the following crystal electrical parameters: quality factor min of 26,000, series resistance typical of  
20Ω, and a static capacitance typical of 2.8pF.  
Maxim Integrated  
6  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Pin Configuration  
TOP VIEW  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
N.C.  
RFIN2  
N.C.  
N.C.  
RFIN1  
REG18  
N.C.  
SYSBOUT  
SYSCOUT  
SYSAOUT  
SYSDOUT  
N.C.  
GND  
V
DDQ  
MAX66300  
HFXOUT  
HFXIN  
V
SS  
AGD  
SYSEIN  
TP  
N.C.  
RESET  
PORTSLCT  
BUSY  
SYSDIN  
N.C.  
EP  
+
SYSAIN_1  
SLEEP  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
TQFN  
Pin Description  
PIN  
NAME  
SYSAIN_2  
FUNCTION  
1
Special-Purpose Pin. Must be connected to SYSAOUT. This pin is 5V tolerant.  
2, 4, 19, 24,  
25, 27, 28, 30,  
43, 55  
N.C.  
No Connection  
3
5
6
SYSAIN_3  
RXD  
Special-Purpose Pin. Must be connected to SYSAOUT. This pin is 5V tolerant.  
UART Receive. Data input from host. This pin is 5V tolerant.  
TXD  
UART Transmit. Data output to host. This pin is 5V tolerant.  
Special-Purpose Pin. This pin must be connected to SYSCOUT. Also, this pin must be  
7
SYSCIN  
pulled up with a 10kΩ ±5% resistor to the same voltage potential as V  
.
DD_AFE_DIG  
Special-Purpose Pin. This pin must be connected to SYSBOUT. Also, this pin must be  
8
9
SYSBIN  
GND  
pulled up with a 10kΩ ±5% resistor to the same voltage potential as V  
.
DD_AFE_DIG  
Digital Ground  
Maxim Integrated  
7  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Master In-Slave Out. The MISO pin is used to transfer data out of the MAX66300. During  
a read cycle, data bytes are shifted out on this pin after the falling edge of the serial  
clock. This pin is 5V tolerant.  
10  
MISO  
Master Out-Slave In. The MOSI pin is used to transfer data into the device. It receives  
instructions, addresses, and data. Data is latched on the rising edge of the serial clock.  
This pin is 5V tolerant.  
11  
12  
MOSI  
SCLK  
Serial Clock. The SCLK pin is used to synchronize the communication between host  
processor (master) and the MAX66300. Data bytes present on the MOSI pin are latched  
on the rising edge of the clock input, and data bytes on the MISO pin are updated after  
the falling edge of the clock input. This pin is 5V tolerant.  
Slave Select. A low level on the SSEL pin selects the device; a high level deselects the  
device. When the MAX66300 is deselected, MISO goes to the high-impedance state,  
allowing multiple parts to share the same SPI bus. This pin is 5V tolerant.  
13  
14  
15  
SSEL  
IRQ  
Interrupt Out. This pin drives low when an interrupt has occurred. Otherwise, the pin is in  
high impedance. This pin is 5V tolerant.  
Sleep Mode In. This pin is used to put the device into low-power mode when set low.  
This device comes out of low-power mode and into normal operation within 20ms of  
transition from low to high logic state. This pin is 5V tolerant.  
SLEEP  
Busy Out. This pin indicates a transaction is in progress when driving high and that no  
messages should be sent to the device. When driving low, the device is ready to accept  
new messages. Note in UART mode, BUSY in not required since communication is  
asynchronous.  
16  
17  
BUSY  
Port Select In. After a reset, this pin is sampled within 20ms. If the sample detects logic-  
low, the UART port is enabled and the SPI port is disabled. If the sample detects logic-  
high, the SPI port is enabled and the UART port is disabled. This pin is 5V tolerant.  
PORTSLCT  
Active-Low Reset. This bidirectional pin recognizes external active-low reset inputs and  
uses an internal pullup resistor to allow for a combination of wired-OR external reset  
sources. An RC is not required for power-up, as this function is provided internally. This  
pin also acts as an output when the source of the reset is internal to the device (e.g.,  
exception handling of an incorrect message, etc.). In this case, the pin is low while the  
processor is in a reset state, and returns high as the processor exits this state. This pin  
is 5V tolerant.  
18  
RESET  
High-Frequency Crystal Input/Output. Connect an external 24MHz crystal or resonator  
between HFXIN and HFXOUT as the high-frequency system clock. Alternatively, if a  
more accurate external system clock is available, HFXIN can be the input for a 24MHz  
clock source when HFXOUT is unconnected.  
20  
21  
HFXIN  
HFXOUT  
22  
23  
V
Digital Supply. Connect to V  
through a 50Ω 1µF capacitor filter.  
DDIO  
DDQ  
GND  
Digital Ground  
Regulator Capacitor. This pin must be connected to ground through a 1.0µF external  
ceramic chip capacitor. The capacitor must be placed as close as possible to this pin. No  
devices other than the capacitor should be connected to this pin.  
26  
29  
REG18  
V
Digital Core Supply Voltage. +3.3V nominal supply voltage.  
DD_CORE  
Maxim Integrated  
8  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Switched I/O Power Supply (Internally Connected to V  
). This output pin must  
DD_CORE  
be connected to ground through a 1.0µF external ceramic chip capacitor. The capacitor  
must be placed as close as possible to this pin. No devices or power rail other than the  
31  
V
DDIO  
capacitor and V  
Digital Ground  
through a filter should be connected to this pin.  
DDQ  
32  
33  
GND  
SYSEOUT  
Special-Purpose Pin. This pin must be connected to SYSEIN.  
Digital Supply Voltage for the Analog Front-End. This pin can operate at 3.3V or 5V.  
This pin has to be the same voltage potential as V  
and V  
. This pin must be  
DDA1  
DDA2  
34  
V
connected to ground through a 0.1µF external ceramic chip capacitor. The capacitor  
must be placed as close as possible to this pin. No devices other than the capacitor  
should be connected to this pin.  
DD_AFE_DIG  
35  
36  
OSCIN  
Quartz Oscillator Input/Output. These pins are driven by an external crystal oscillator  
to generate the needed RF frequencies for the analog front-end. These pins require a  
standard 13.56MHz ±7kHz quartz crystal. A CoG-rated capacitor should be used for  
loading with a typical value of 22pF for each pin.  
OSCOUT  
Positive Supply for Antenna Driver. This pin is to be separately filtered from any of the  
digital supplies and lumped together with V  
. Variations in this supply voltage directly  
DDA2  
modulate the antenna driver and effect the receiver’s input. The power-supply sensitivity  
range, for frequency components that are in the receiving bandwidth, is the same as the  
37  
V
DDA1  
RFIN sensitivity. The ground pins used for V  
and V  
of the antenna driver are  
DDA2  
DDA1  
V
and V  
(see note).  
SSA2  
SSA1  
RF Output (10Ω Output Impedance). This pin is the output of the antenna driver.  
Connect to external antenna components.  
38  
39  
ANT1  
Negative Supply for Antenna Driver (0V). This pin is the ground pin for the antenna  
driver. This pin is to be separately filtered from any of the digital supplies and lumped  
V
SSA1  
together with V  
.
SSA2  
40  
41  
V
Negative Supply for Antenna Driver (0V). See the V  
pin description.  
SSA2  
SSA2  
RF Output (10Ω Output Impedance). This pin is the output of the antenna driver.  
Connect to external antenna circuit.  
ANT2  
42  
44  
V
Positive Supply for Antenna Driver. See the V  
pin description (see note).  
DDA2  
DDA1  
RFIN2  
RF Input PM (maximum 5V , DC-coupled to AGD). These two input pins are to be  
P-P  
connected with external components to detect the amplitude or phase modulated  
signals.  
45  
RFIN1  
46  
47  
SYSBOUT  
SYSCOUT  
Special-Purpose Pin. This pin must be connected to SYSBIN.  
Special-Purpose Pin. This pin must be connected to SYSCIN.  
Maxim Integrated  
9  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Pin Description (continued)  
PIN  
48  
NAME  
FUNCTION  
SYSAOUT  
SYSDOUT  
Special-Purpose Pin. Must be connected to SYSAIN_1, SYSAIN_2, and SYSAIN_3.  
Special-Purpose Pin. Must be connected to SYSDIN.  
49  
50  
V
Ground (Analog Ground of RF AFE)  
SS  
Reference Voltage Output 2.5V. This pin is to be connected to a 0.1µF X7R capacitor to  
51  
52  
AGD  
ground when V  
ground to fix the voltage at 1.3V when V  
is 5V. This pin is to be connected to an external resistor to  
DD_AFE_DIG  
is 3.3V.  
DD_AFE_DIG  
Special-Purpose Pin. This pin must be connected to SYSEOUT. Also, this pin must be  
pulled up with a 10kΩ ±5% resistor to the same voltage potential as V  
SYSEIN  
.
DD_AFE_DIG  
53  
54  
56  
TP  
SYSDIN  
SYSAIN_1  
EP  
Test Pin. This pin is to be pulled up for standard operation to V  
.
DD_CORE  
Special-Purpose Pin. Must be connected to SYSDOUT. This pin is 5V tolerant.  
Special-Purpose Pin. This pin must be connected to SYSAOUT. This pin is 5V tolerant.  
Exposed Pad  
Note: Decouple V  
to V  
with the following types of capacitors; use C0D ceramic technology (±5%) for the 10nF  
DDA1/2  
SS1/2  
capacitors, use X7R ceramic technology (±10%) for the 100nF capacitors, and use tantalum electrolytic technology for the  
3.3µF capacitors.  
Maxim Integrated  
10  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
VDD_CORE  
HFXOUT  
HFXIN  
VDD_AFE_DIG  
EXTERNAL  
CRYSTAL  
OSCILLATOR  
EXTERNAL  
13.56MHz  
OSCILLATOR  
VDDQ  
PORTSLCT  
INTERFACE  
OPTION BITS  
UART  
SPI  
PROTOCOL  
ARBITRATION OF  
MESSAGES AND  
RESPONSES  
SPI/UART  
INTERFACE  
CONTROLLER  
VSSA2  
EN  
AND  
ANT2  
VDDA2  
ANTENNA  
DRIVER  
I/O MULTIPLEX  
BUSY  
SLEEP  
POWER-ON  
RESET  
STATUS  
MAX66300  
MODULATOR  
RESET  
POWER-FAIL  
WARNING  
FACTORY DETAILS  
BPCK  
DECODER  
SCRATCHPAD  
M-SECRETS 0 – 3  
OR  
VSSA2  
ANT2  
VDDA2  
S-SECRET  
ANTENNA  
DRIVER  
RANDOM  
NUMBER  
GENERATOR  
SHA-256  
ENGINE  
AGD  
BANDGAP  
REFERENCE  
64-BIT SERIAL  
NUMBER  
MAC READOUT  
REGISTER  
RFIN2  
GND  
USER MEMORY  
PAGES 0 – 3  
FILTER AND  
GAIN  
COMPARATOR  
DEMODULATOR  
RFIN1  
VSS  
COPROCESSOR  
ANALOG FRONT END  
Figure 1. Block Diagram  
at 3.3V with 5V tolerant I/O. The device’s coprocessor  
computes a unique slave secret (S-Secret) from any one of  
four master secrets (M-Secrets) and additional data. Once  
the S-Secret is computed, the coprocessor computes slave  
authentication MACs (to verify a tag’s authenticity). The  
same S-Secret in the coprocessor generates slave write  
MACs. For example, a slave-write MAC permits writing to  
the memory and protection registers of a secure memory in  
a tag. If the memory is not write-protected, a new M-Secret  
can be loaded directly and additional data. In addition,  
the coprocessor can perform a slave authentication from  
knowing the MAX66240/42’s tag UID with a single message  
and response, greatly relieving the host’s burden. This only  
requires that both the MAX66300 and MAX66240/42 have  
been properly set up with secrets. This can be achieved by  
using Maxim’s preprogramming service.  
Detailed Description  
The RFID reader’s analog front-end (AFE) function is  
highly integrated into the MAX66300 to support contactless  
communication at 13.56MHz for compliancy with the ISO/  
IEC 15693 standard. The host configures this reader with  
ease and flexibility. This is accomplished through single  
configuration byte writes to the AFE. The AFE operates at  
3.3V or 5V. The reader’s push-pull transmitter generates  
up to 200mW output RF power depending on the antenna  
configuration design selected. The output stage drivers are  
capable of on-off keying (OOK) and amplitude shift keying  
(ASK) modulation from 7% up to 30% of AM modulation.  
See Figure 1 for a block diagram.  
The MAX66300 has a built-in SHA-256 engine and user  
memory space divided into four pages. Its core operates  
Maxim Integrated  
11  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Switch Coil On  
UART:  
STX ICK SCOF 02h CHK ETX  
STX ICK SCOF ACK CHK ETX  
SPI (assume MOSI = FFh during MISO output):  
SSEL STX ICK SCOF 02h CHK ETX DSEL  
SSEL STX ICK SCOF ACK CHK ETX DSEL  
02h = On – standard operation  
Xxh = All other values are invalid  
Power Management  
There are two available power modes. The selection of  
these two modes is done by setting the PUF bit to logic-  
low. Here are the two modes:  
Functional Description  
Coprocessor  
Reset the power-up flag in the configuration word  
(option bit 0), which turns off the AFE only. The copro-  
cessor and UART/SPI interface continues to run.  
The MAX66300 coprocessor analyzes command IDs and  
payload received from the host. Next, the coprocessor  
communicates with theAFE to send and capture data from  
a tag. The coprocessor then returns the proper responses  
and payload to the host after it has analyzed the received  
data bytes. The ISO 15693 uplink encoding supported in  
the MAX66300 is the “1 out of 4” pulse position encoding  
scheme. The other encoding scheme supported on the  
ISO 15693 standard, “1 out of 256,” is not supported in the  
MAX66300. Additionally, the coprocessor also performs  
all the SHA-256 computations necessary for all secure  
transactions. Doing so helps to reduce host processing  
time during a tag authentication session. The coprocessor  
operates a 3.3V and requires a clock running at 24MHz  
with an external crystal for greater accuracy.  
Apply a low level on the SLEEP pin input. In this case,  
the AFE goes to sleep and the coprocessor, including  
the UART/SPI, goes to sleep mode.  
When the SLEEP pin input is changed to high (i.e., PUF  
is high), the MAX66300 goes immediately to the mode in  
which it was before the SLEEP pin went to a low level.  
Bandgap Reference  
A reference voltage (2.5V) is generated internally by a  
bandgap reference and uses an external capacitor for  
blocking.  
Antenna Drivers  
The antenna driver produces the RF signal from the  
oscillator output. The pMOS and nMOS driver sides are  
fed by nonoverlapping signals (3ns) to minimize the power  
consumption. The output resistance of each antenna  
driver is typically 7Ω. The two integrated antenna drivers  
can be used in three possible configurations, depending  
on the output power level desired. When a single driver  
configuration is selected, the output power level on the  
50Ω load is 100mW. For a 200mW output power, both  
drivers must be used in a parallel configuration fashion  
to double the output power (option bit 5). The drivers can  
operate in a push-pull configuration (option bit 6). This  
mode can used in case of a direct antenna connection  
configuration. In that configuration, the reader's antenna  
AFE Power-Supply Considerations  
The MAX66300AFE can operate at 3.3V or 5V. The supply  
voltages to power the AFE must be the same on both the  
analog and digital input lines (V  
, V  
,
DD_AFE_DIG  
DDA1  
V
DDA2  
). It is strongly recommended to use a regulated  
supply. Power-supply ripples and noise inside the receiver  
frequency range degrade the overall performance of the  
system. An external resistor must be added to the AGD  
output to use the AFE at 3.3V. Doing so fixes the voltage  
level on AGD to 1.3V. For power efficiency reasons, the  
external resistor can be switched off (using for example a  
microcontroller I/O) when the MAX66300 is not used or is  
in the sleep mode.  
Maxim Integrated  
12  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
is connected to the output drivers through a resonant  
capacitor (LC tank adjusted to 13.56MHz). In the direct  
antenna configuration, the user can achieve an RF output  
power above 200mW. To be compliant with emissions  
regulation in certain countries (e.g., FCC in the U.S.), it  
could be necessary to add a filtering structure between  
the device output state drivers and the antenna. The short  
protection circuit (option bit 4) prevents damage to the  
output driver when the ANT pin is shorted to ground or to  
the AFE’s power supply.  
RF frequency components still present in the envelope  
signal are removed by a second-order lowpass filter.  
The received signal DC component is removed by the  
highpass filter, which has selectable corner frequency  
(option bits 7 and 8). The signal is amplified and further  
processed by the lowpass filtering stage, which corner  
frequency is selectable (option bit 9). The gain selection  
(option bits 10, 11, and 12) should be chosen according  
to the reader system parameters. Modifying the signal  
bandwidth changes noise level and results in different  
input sensitivity.  
Modulator  
AGC System  
The modulator enables OOK or ASK modulation of the  
RF signal on the antenna outputs (ANT1 and ANT2). The  
reader can cause a low field (ASK modulation index as in  
Figure 5) or a field-stop (OOK modulation as in Figure 4).  
The selection between OOK and ASK modulation depth  
is done using configuration word (option bits 1, 2, and 3).  
The field modulation index can be adjusted from 7%  
up to 30% covering all the ISO standard air interface  
requirements. Before and after a modulation phase, the  
receiver input is disconnected from the antenna circuitry  
to preserve DC operating point setting. For high-quality  
factor systems, it may be necessary to prolong (option bit  
24) the hold time after modulation to allow settling of the  
resonant circuit.  
The integrated AGC system can be activated by the  
configuration word (option bit 14). The AGC amplifier has a  
40dB gain correction depth. The AGC system is adapted to  
all RFID communication protocols. Before the tag starts to  
emit the data, the receiver gain is set to maximum (option  
bits 10, 11, 12). When the reader detects a tag signal that  
is above the attack threshold the receiver gain is rapidly  
reduced (option bits 17 and 18) to fit the signal into a linear  
range of the receiver. The gain remains unchanged as long  
as the signal level is above the decay threshold. When  
the received signal falls below the decay threshold for a  
period of time set by option bits 19 and 20, the reader logic  
establishes that the communication with one tag is finished  
and makes a fast decay to return to the maximum gain.  
The receiver is ready to demodulate the emission of the  
next tag, which can be far away from the reader antenna.  
This feature is necessary for anti-collision purposes. With  
tags that have a modulation DC level shift significantly  
higher than modulation sub-carrier AC level the AGC can  
Receiver  
The receiver senses the envelope of the signal present  
on the inputs RFIN1 or RFIN2 (option bit 13). These  
two inputs, used with external components, permit the  
detection of amplitude or phase modulated signals. Any  
CARRIER AMPLITUDE  
100%  
CARRIER AMPLITUDE  
100%  
84%  
t
t
Figure 4. Transmitter Field on ANT1 for Modulation Set to OOK  
(100% AM)  
Figure 5. Transmitter Field for ANT1 for Modulation Set to ASK  
(16% AM)  
Maxim Integrated  
13  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
react on DC shift and decrease the system gain too much.  
It is possible not to attack the first pulse (option bit 15) in a  
burst (for OOK modulation) to allow the DC level to settle  
before AGC action. The time after which the first pulse in  
a burst is not attacked (shortest sub-carrier stop in OOK  
modulation is 1/10 of the time) is set by option bits 19, 20  
as decay wait time. It is also possible to use slow decay  
mode (option bit 16). The slow decay is started when the  
received signal falls below the decay threshold. The decay  
rate is one gain step per time defined by option bits 19  
and 20. When AGC system is disabled the receiver gain is  
directly controlled by option bits 10, 11, 12.  
SPI Interface  
The MAX66300 is a slave device that communicates with  
its master—a microcontroller—through the serial SPI  
interface. This interface uses the signals SSEL, SCLK,  
MOSI, and MISO.  
The SPI protocol defines communication in full bytes  
with the most significant bit being transmitted first. Every  
SPI communication sequence begins with at least 1 byte  
written to the slave device. The first byte that the slave  
receives from the master is understood as the beginning  
of the message. Depending on the first few message bytes  
the slave may need more bytes, e.g., more message data  
to complete the message; for a read function, after having  
received the beginning response message bytes, the  
slave starts sending data to the master.  
True Random-Number Generator  
A true hardware random-number generator is included for  
key generation and challenge generation. As an example,  
during a SHA-256 authentication of a tag, it is required to  
have a challenge. If a system only has a pseudo random-  
number generator, hackers who know how the random  
number is generated can compromise a system. By using  
true hardware to generate a random number, a higher  
level of security is achieved.  
The SPI protocol knows four communication modes,  
which differ in the polarity and phase of the SCLK signal.  
The MAX66300 supports MODE (0/0). See the timing  
specification in Figure 6.  
The read timing of these graphics begins with the first  
bit that the MAX66300 transmits to the master and ends  
when the master ends the communication by deactivating  
SSEL (low to high transition). The data on the MOSI is  
latched (i.e., sampled) on the SCLK's rising edge and data  
on the MISO is updated (i.e., shifted out) on a falling edge  
of SCLK. Also, the first bit on the MOSI is latched on the  
first leading rising edge of SCLK. So data on the MOSI  
UART  
The  
universal  
asynchronous  
receiver-transmitter  
(UART) interface provides transmit and receive signals  
to communicate with PCs, modems, and other similar  
interfaces when paired with an external RS-232 line driver/  
receive. This device provides asynchronous, full-duplex  
communication (i.e., Baud rate: 38400, Data: 8 bit, Parity:  
none, Stop: 1 bit, Flow control: none).  
needs to be stable for at least a t  
before the first SCLK  
SIS  
cycle for MAX66300. Therefore, the first bit transmitted  
from the MISO is updated at least a half cycle before the  
first SCLK cycle to meet the master's setup time.  
SAMPLE  
SAMPLE  
SHIFT  
SHIFT  
t
SSE  
SSEL  
t
SSH  
t
SCK  
t
t
t
SD  
SCH  
t
SDLY  
SCL  
SCLK  
MODE  
0/0  
t
t
SIH  
SIS  
MOSI  
MSB  
MSB-1  
MSB-1  
LSB  
MSB  
MSB-1  
MSB-1  
LSB  
t
t
t
SOV  
SPI_RF  
SLH  
MISO  
BUSY  
MSB  
LSB  
MSB  
LSB  
t
SAB  
Figure 6. SPI Timing Specification  
Maxim Integrated  
14  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Configuration Word (Option Bits) Selection  
Applications Information  
Depending on Tag IC  
AFE Oscillator  
The MAX66300 is compliant with almost all 13.56MHz  
tag ICs by setting the AFE by the use of Table 18. The  
large combinations offered by the MAX66300 option bits  
permit to adapt the reader IC to the tag communication  
protocol. Table 20 gives the ISO typical suggested option  
bit configuration depending on the tag IC used.  
The frequency range allowed by the regulations is  
13.56MHz ±7kHz. The correct load capacitance has to  
be chosen according to the manufacturer’s guideline. A  
temperature coefficent of type C0G capacitors should be  
used. It is not recommended to connect any components  
except quartz crystal and load capacitors to the oscillator’s  
pins since any interference or noise injected into the  
oscillator corrupts the system performance. When an  
external clock source is used, the phase noise of the  
clock has to be kept low since it also corrupts the system  
performances.  
Table 20. Option Bit Configuration for ISO  
15693 Standard  
OPTION  
BIT  
SUGGESTED  
VALUE  
CONFIGURATION  
Antenna Driver  
0
1, 2, 3  
4
1
1, 0, 0  
1
Power up  
The correct load impedance for a single output driver  
(100mW) is 7Ω resistive. The correct load impedance for  
a double parallel output driver (option bit 5, 200mW) is  
3.5Ω resistive. The load impedance for a push-pull driver  
(option bits 5 and 6) must be at least 14Ω resistive. In this  
configuration, the consideration of chip power dissipation  
and junction temperature is necessary. It is also possible to  
use this configuration for low power systems with a direct  
antenna connection if a load impedance higher than 14Ω  
is used. Since the ASK modulation index is dependent on  
the load, it differs from those listed in Table 18.  
OOK modulation  
Short circuit enabled  
Two drivers in differential  
300kHz  
5, 6  
7, 8  
9
1, 1  
0, 0  
0
1MHz  
10, 11, 12  
13  
1, 0, 0  
0
Gain decreased for 5.7dB  
RFIN1 selected  
AGC activated  
14  
1
15 to 20  
21  
0, 0, 0, 0, 0, 0 Standard configuration  
Receiver  
0
Sub-carrier mode  
BPSK not used  
Systems using a 212kHz sub-carrier modulation should  
use the medium filter selection and systems using a  
424kHz or 848kHz sub-carrier should use the high  
frequency filter selection. When a 424kHz or 848kHz  
system with on/off sub-carrier coding is used, the higher  
frequency zero enables very fast response of the receiver  
to the pulse burst with high DC level shift. When a BPSK  
system is used, lower frequency zero decreases phase  
distortion of the BPSK signal. System option bits control  
the receiver gain. Different receiver bandwidths result in  
different noise levels therefore enabling different gain and  
sensitivity levels. The combination of filter selection and  
gain selection allows the system designer to choose the  
best combination for the RFID reader.  
22  
0
23  
0
Analog output disable  
Hold delay set to 5µs  
24  
0
25  
1
High g  
M
26  
0
Internal quartz  
27 to 31  
0, 0, 0, 0, 0  
Normal IC mode  
Tag subcarrier: 424kHz or 484kHz  
Modulation index: 100%  
Reception bandwidth: 300kHz to 1MHz  
AGC: Nominal gain  
Configuration word value: (MSB) 02h 00h 44h 73h (LSB)  
Maxim Integrated  
15  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Antenna Configurations and Decoupling  
The theoretical antenna configurations and typical decoupling are shown in Figure 7, Figure 8, and  
Figure 9. Since the LC tank values needed for tuning of the antenna are subject to a larger dialogue, this information is  
available in Application Note 5912: Designing an Antenna for the MAX66300.  
J 1  
1
VC C 5  
VC C 5  
VC C 3 . 3  
2
U?  
C O N 2  
J 2  
L 1  
1 0 u H  
2 2  
2 9  
3 1  
3 4  
3 7  
4 2  
5 1  
5
6
R XD  
T XD  
VDDQ  
VD D Q  
VD D _ C O R E  
VD D I O  
VD D _ AF E _ D I G  
VD D A1  
VD D A2  
R XD  
T XD  
1
2
3
4
VDDIO  
1 0  
1 1  
1 2  
1 3  
M O S I  
M I S O  
S C LK  
S S E L  
VDDAFEDIG  
VDDA1  
VDDA2  
AGD  
M I S O  
M O S I  
S C LK  
S S E L  
1
AN T E N N A  
C O N 4  
J 3  
AG D  
W 1  
L 2  
3 8  
4 1  
4 5  
4 4  
1 4  
1 5  
1 6  
1 7  
5 3  
I R Q  
AN T 1  
AN T 2  
R F I N 1  
R F I N 2  
I R Q  
S L E E P  
B US Y  
Po r t S L C T  
T P  
1
2
3
4
5
S L E E P  
B US Y  
Po r t S L C T  
T P  
C O AX  
C 1  
G N D  
C 2 2  
2 2 p F  
2 2 p F  
2 0  
2 1  
3 5  
3 6  
C O N 5  
C 2  
G N D  
VC C 5  
H F XI N  
H F XO UT  
O S C I N  
C 3  
1 0 n F 5 2  
3 3  
X1  
S Y S E I N  
S Y S E O U T  
R 2 2  
1 0 K  
2 4 . 0 0 M H z  
O S C O UT  
G N D  
5 6  
1
3
4 8  
8
4 6  
7
4 7  
5 4  
4 9  
1 8  
C 4  
RESET_I N  
S Y S AI N _ 1  
S Y S AI N _ 2  
S Y S AI N _ 3  
S Y S AO U T  
S Y S B I N  
S Y S B O UT  
S Y S C I N  
S Y S C O UT  
S Y S D I N  
R E S E T  
2 6  
5 0  
3 9  
4 0  
9
2 3  
3 2  
E P  
C 5  
R E G 1 8  
VS S  
C 6  
R 1  
X2  
1 3 . 5 6 M H z  
2 2 p F  
C 7  
VS S A 1  
VS S A 2  
G N D  
G N D  
G N D  
E P  
1 u F  
1 0 K  
R 2  
2 2 p F  
1 0 K  
S Y S D O UT  
M AX 6 6 3 0 0  
G N D  
VC C 3 . 3  
AG D  
VC C 5  
VC C 3 . 3  
VD D AF E D I G  
VD D A1 VD D A2  
R 3  
VD D Q  
VD D I O  
R 4  
2 0 K  
5
0
O
h
m
C 8  
0 . 1 u F  
C 9  
0 . 1 u F  
C 1 0  
3 . 3 u F  
C 1 1  
1 0 n F  
C 1 2  
3 . 3 u F  
C 1 3  
1 0 n F  
C 1 4  
0 . 1 u F  
C 1 5  
0 . 1 u F  
C 1 6  
0 . 1 u F  
C 1 7  
0 . 1 u F  
C 1 8  
0 . 1 u F  
C 1 9  
1 0 n F  
C 2 0  
1 u F  
S W 1  
R E S E T  
R ESET_IN  
G N D  
Figure 7. Single Output Driver (100mW)  
Maxim Integrated  
16  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
J 1  
1
2
VC C 5  
VC C 5  
VC C 3 . 3  
U?  
C O N 2  
L 1  
1 0 u H  
2 2  
2 9  
3 1  
3 4  
3 7  
4 2  
5 1  
5
6
R XD  
T XD  
J 2  
VDDQ  
VD D Q  
VD D _ C O R E  
VD D I O  
VD D _ AF E _ D I G  
VD D A1  
VD D A2  
R XD  
T XD  
1
VDDIO  
2
3
4
1 0  
1 1  
1 2  
1 3  
M O S I  
M I S O  
S C LK  
S S E L  
VDDAFEDIG  
VDDA1  
VDDA2  
AGD  
M I S O  
M O S I  
S C LK  
S S E L  
1
AN T E N N A  
C O N 4  
J 3  
AG D  
W 1  
L 2  
3 8  
4 1  
4 5  
4 4  
1 4  
1 5  
1 6  
1 7  
5 3  
I R Q  
AN T 1  
AN T 2  
R F I N 1  
R F I N 2  
I R Q  
S L E E P  
B US Y  
Po r t S L C T  
T P  
1
2
3
4
5
S L E E P  
B US Y  
Po r t S L C T  
T P  
C O AX  
C 1  
G N D  
C 2 2  
2 2 p F  
2 2 p F  
2 0  
2 1  
3 5  
3 6  
C O N 5  
C 2  
G N D  
VC C 5  
H F XI N  
H F XO UT  
O S C I N  
C 3  
1 0 n F 5 2  
3 3  
X1  
S Y S E I N  
S Y S E O U T  
R 2 2  
1 0 K  
2 4 . 0 0 M H z  
O S C O UT  
G N D  
5 6  
1
3
4 8  
8
4 6  
7
4 7  
5 4  
4 9  
1 8  
C 4  
RESET_I N  
S Y S AI N _ 1  
S Y S AI N _ 2  
S Y S AI N _ 3  
S Y S AO U T  
S Y S B I N  
S Y S B O UT  
S Y S C I N  
S Y S C O UT  
S Y S D I N  
R E S E T  
2 6  
5 0  
3 9  
4 0  
9
2 3  
3 2  
E P  
C
5
R E G 1 8  
VS S  
C
6
R
1
X
2
2 2 p F  
C 7  
VS S A 1  
VS S A 2  
G N D  
G N D  
G N D  
E P  
1
u
F
1
3
.
5
6
M
H
z
1 0 K  
R 2  
2
2
p
F
1
0
K
S
Y
S
D
O
U
T
M
A
X
6
6
3
0
0
G
N
D
V
C
C
3
.
3
A
G
D
V
C
C
5
V
C
C
3
.
3
V
D
D
A
F
E
D
I
G
V
D
D
A
1
V
D
D
A
2
R
3
V
D
D
Q
V
D
D
I
O
R 4  
2 0 K  
5
0
O
h
m
C 8  
0 . 1 u F  
C 9  
0 . 1 u F  
C 1 0  
3 . 3 u F  
C 1 1  
1 0 n F  
C 1 2  
3 . 3 u F  
C 1 3  
1 0 n F  
C 1 4  
0 . 1 u F  
C 1 5  
0 . 1 u F  
C 1 6  
0 . 1 u F  
C 1 7  
0 . 1 u F  
C 1 8  
0 . 1 u F  
C 1 9  
1 0 n F  
C 2 0  
1 u F  
S W 1  
R E S E T  
R
E
S
E
T
_
I
N
G
N
D
Figure 8. Double Parallel Output Driver (Options Bit 5, 200mW)  
Maxim Integrated  
17  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
J 1  
1
2
VC C 5  
VC C 5  
VC C 3 . 3  
U1  
C O N 2  
L 1  
1 0 u H  
2 2  
2 9  
3 1  
3 4  
3 7  
4 2  
5 1  
5
6
R XD  
T XD  
J 2  
VDDQ  
VD D Q  
VD D _ C O R E  
VD D I O  
VD D _ AF E _ D I G  
VD D A1  
VD D A2  
R XD  
T XD  
1
VDDIO  
2
3
4
1 0  
1 1  
1 2  
1 3  
M O S I  
M I S O  
S C LK  
S S E L  
VDDAFEDIG  
VDDA1  
VDDA2  
AGD  
M I S O  
M O S I  
S C LK  
S S E L  
C O N 4  
J 3  
AG D  
L 2  
AN T E N N A  
C 2 1  
R ser  
3 8  
4 1  
4 5  
4 4  
1 4  
1 5  
1 6  
1 7  
5 3  
I R Q  
AN T 1  
AN T 2  
R F I N 1  
R F I N 2  
I R Q  
S L E E P  
B US Y  
Po r t S L C T  
T P  
1
2
3
4
5
S L E E P  
B US Y  
Po r t S L C T  
T P  
C 1  
C 2 2  
2 2 p F  
2 2 p F  
2 0  
2 1  
3 5  
3 6  
C O N 5  
C 2  
G N D  
VC C 5  
H F XI N  
H F XO UT  
O S C I N  
C 3  
1 0 n F 5 2  
3 3  
X1  
S Y S E I N  
S Y S E O U T  
R 2 2  
1 0 K  
2 4 . 0 0 M H z  
O S C O UT  
G N D  
5 6  
1
3
4 8  
8
4 6  
7
4 7  
5 4  
4 9  
1 8  
C 4  
RESET_I N  
S Y S AI N _ 1  
S Y S AI N _ 2  
S Y S AI N _ 3  
S Y S AO U T  
S Y S B I N  
S Y S B O UT  
S Y S C I N  
S Y S C O UT  
S Y S D I N  
R E S E T  
2 6  
5 0  
3 9  
4 0  
9
2 3  
3 2  
E P  
C 5  
R E G 1 8  
VS S  
N o t e: I n su ch a con fi gu r a tion, t he  
r eso n a nt fre q u ency o f t he ext ern a l L C  
t a n k h a s t o be t u ned a ccu r a t el y t o  
1 3 . 5 6 M H z. T he reson a nt c a pa ci t or i s  
composed by C 2 1 i n p a r a l l el wi t h t he  
ca pa ci t or d i v i d er ( C 1 a nd C 3 ).  
C 6  
R 1  
X2  
2 2 p F  
C 7  
VS S A 1  
VS S A 2  
G N D  
G N D  
G N D  
E P  
1 u F  
1 3 . 5 6 M H z  
1 0 K  
R 2  
2 2 p F  
1 0 K  
S Y S D O UT  
M AX 6 6 3 0 0  
G N D  
VC C 3 . 3  
AG D  
V
C
C
5
V
C
C
3
.
3
VD D AF E D I G  
VD D A1 VD D A2  
R 3  
VD D Q  
VD D I O  
R 4  
2 0 K  
5 0 O h m  
C 8  
0 . 1 u F  
C 9  
0 . 1 u F  
C 1 0  
3 . 3 u F  
C 1 1  
1 0 n F  
C 1 2  
3 . 3 u F  
C 1 3  
1 0 n F  
C 1 4  
0 . 1 u F  
C 1 5  
0 . 1 u F  
C 1 6  
0 . 1 u F  
C 1 7  
0 . 1 u F  
C 1 8  
0 . 1 u F  
C 1 9  
1 0 n F  
C 2 0  
1 u F  
S W 1  
R ESET_IN  
R
E
S
E
T
G
N
D
Figure 9. Configuration for Lower Power Systems with Direct Antenna Connections  
Maxim Integrated  
18  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages.  
Note that a “+”, “#”, or “-” in the package code indicates  
RoHS status only. Package drawings may show a different  
suffix character, but the drawing pertains to the package  
regardless of RoHS status.  
PART  
TEMP RANGE  
-40°C to +85°C  
PIN-PACKAGE  
MAX66300ETN+  
56 TQFN-EP*  
+Denotes lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
56 TQFN-EP  
T5688M+3  
21-0135  
90-0047  
Note to readers: This document is an abridged version of the full data sheet.Additional device information is available  
only in the full version of the data sheet. To request the full data sheet, go to www.maximintegrated.com/MAX66300  
and click on Request Full Data Sheet.  
Maxim Integrated  
19  
www.maximintegrated.com  
ABRIDGED DATA SHEET  
MAX66300  
DeepCover Secure Authenticator  
with SHA-256 and RFID Reader  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
9/14  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
20  

相关型号:

MAX66300EVKIT

Protected Tag Solution with Peripheral Linking
MAXIM

MAX6630MTT+

12-Bit + Sign Digital Temperature Sensors with Serial Interface
MAXIM

MAX6630MTT+T

Serial Switch/Digital Sensor, 12 Bit(s), 3.20Cel, BICMOS, Square, 6 Pin, Surface Mount, 3 X 3 MM, 0.80 MM HEIGHT, MO-229, TDFN-6
MAXIM

MAX6630MUT

12-Bit + Sign Digital Temperature Sensors with Serial Interface
MAXIM

MAX6630MUT#TG16

Serial Switch/Digital Sensor, 12 Bit(s), 3.20Cel, Rectangular, Surface Mount, SOT23, 6 PIN
MAXIM

MAX6630MUT-T

12-Bit Sign Digital Temperature Sensors with Serial Interface
MAXIM

MAX6631

12-Bit Sign Digital Temperature Sensors with Serial Interface
MAXIM

MAX6631MTT

Serial Switch/Digital Sensor, 12 Bit(s), 3.20Cel, BICMOS, Square, 6 Pin, Surface Mount, 3 X 3 MM, 0.80 MM HEIGHT, MO-229, TDFN-6
MAXIM

MAX6631MTT+

12-Bit + Sign Digital Temperature Sensors with Serial Interface
MAXIM

MAX6631MTT+T

Serial Switch/Digital Sensor, 12 Bit(s), 3.20Cel, BICMOS, Square, 6 Pin, Surface Mount, 3 X 3 MM, 0.80 MM HEIGHT, MO-229, TDFN-6
MAXIM

MAX6631MUT

12-Bit + Sign Digital Temperature Sensors with Serial Interface
MAXIM

MAX6631MUT-T

12-Bit Sign Digital Temperature Sensors with Serial Interface
MAXIM