MAX5942A-MAX5942B [MAXIM]

IEEE 802.3af Power-Over-Ethernet Interface/PWM Controller for Power Devices; IEEE 802.3af标准的供电的以太网供电接口/ PWM控制器,适用于用电设备
MAX5942A-MAX5942B
型号: MAX5942A-MAX5942B
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

IEEE 802.3af Power-Over-Ethernet Interface/PWM Controller for Power Devices
IEEE 802.3af标准的供电的以太网供电接口/ PWM控制器,适用于用电设备

控制器 以太网
文件: 总24页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3024; Rev 0; 10/03  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
General Description  
Features  
The MAX5942A/MAX5942B integrate a complete power  
IC for powered devices (PD) in a power-over-ethernet  
(PoE) system. The MAX5942A/MAX5942B provide a PD  
interface and a compact DC-DC PWM controller suitable  
for flyback and forward converters in either isolated or  
nonisolated designs.  
o Powered Device Interface  
Fully Integrated IEEE 802.3af-Compliant PD  
Interface  
PD Detection and Programmable Classification  
Signatures  
Less than 10µA Leakage Current Offset During  
Detection  
Integrated MOSFET for Isolation and Inrush  
Current Limiting  
Gate Output Allows External Control of the  
Internal Isolation FET  
Programmable Inrush Current Control/ULVO  
PGOOD/PGOOD Outputs Enable PWM  
Controller  
The MAX5942A/MAX5942B PD interface complies with  
the IEEE 802.3af standard, providing the PD with a detec-  
tion signature, a classification signature, and an integrat-  
ed isolation switch with programmable inrush current  
control. These devices also feature power-mode under-  
voltage lockout (UVLO) with wide hysteresis and power-  
good status outputs.  
The MAX5942A/MAX5942B also integrate all the build-  
ing blocks necessary for implementing DC-DC fixed-  
frequency isolated power supplies. This device is a  
current-mode controller with an integrated high startup  
circuit suitable for isolated telecom/industrial voltage  
range power supplies. A high-voltage startup circuit  
allows the PWM controller to draw power directly from the  
18V to 67V input supply during startup. The switching  
frequency is internally trimmed to 275kHz 10ꢀ, thus  
reducing magnetics and filter components. The  
MAX59412A allows an 85ꢀ operating duty cycle and can  
be used to implement flyback converters. The MAX5942B  
limits the operating duty cycle to less than 50ꢀ and can  
be used in single-ended forward converters. The  
MAX5942A/MAX5942B are designed to work with or with-  
out an external diode bridge in front of the PD.  
o PWM Controller  
Wide Input Range: 18V to 67V  
Isolated (Without Optocoupler) or Nonisolated  
Power Supply  
Current-Mode Control  
Leading-Edge Blanking  
Internally Trimmed 275kHz 10ꢀ Oscillator  
Soft-Start  
Ordering Information  
PIN-  
MAX DUTY  
PACKAGE CYCLE (ꢀ)  
PART  
TEMP RANGE  
MAX5942AESE* -40°C to +85°C  
MAX5942ACSE 0°C to +70°C  
MAX5942BESE* -40°C to +85°C  
MAX5942BCSE  
*Future product—contact factory for availability.  
16 SO  
16 SO  
16 SO  
85  
85  
50  
50  
The MAX5942A/MAX5942B are available in 16-pin SO  
packages.  
Applications  
0°C to +70°C 16 SO  
IP Phones  
Wireless Access Nodes  
Internet Appliances  
Computer Telephony  
Security Cameras  
Pin Configuration  
TOP VIEW  
V+  
1
2
3
4
5
6
7
8
16 V  
CC  
Power Devices in Power-Over-Ethernet/  
Power-Over-MDI  
V
DD  
15 NDRV  
14 V-  
FB  
SS_SHDN  
ULVO  
MAX5942A  
MAX5942B  
13 CS  
12 GND  
11 PGOOD  
10 PGOOD  
RCL  
Typical Operating Circuit appears at end of data sheet.  
GATE  
V
9
OUT  
EE  
SO  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
ABSOLUTE MAXIMUM RATINGS  
(All voltages are referenced to V , unless otherwise noted.)  
UVLO, PGOOD, PGOOD to V .....................................20mA  
EE  
EE  
GND........................................................................-0.3V to +80V  
OUT, PGOOD ...........................................-0.3V to (GND + 0.3V)  
RCL, GATE .............................................................-0.3V to +12V  
UVLO........................................................................-0.3V to +8V  
PGOOD to OUT.........................................-0.3V to (GND + 0.3V)  
V+ to V-...................................................................-0.3V to +80V  
GATE to V ....................................................................80mA  
EE  
V
, V .........................................................................20mA  
DD CC  
NDRV Continuous ...........................................................25mA  
NDRV (pulsed for less than 1µs) ....................................... 1A  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin SO (derate 9.1mW/°C above +70°C)................727mW  
Operating Temperature Ranges  
MAX5942_CSE...................................................0°C to +70°C  
MAX5942_ESE................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
V
V
to V-.................................................................-0.3V to +40V  
to V-..............................................................-0.3V to +12.5V  
DD  
CC  
FB, NDRV, SS_SHDN, CS to V-..................-0.3V to (V  
+ 0.3V)  
CC  
Maximum Input/Output Current (continuous)  
OUT to V ...................................................................500mA  
EE  
GND, RCL to V ............................................................70mA  
EE  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = (GND - V ) = 48V, GATE = PGOOD = PGOOD = OPEN, V- tied to OUT, V+ tied to GND, UVLO = V , T = T  
to T  
,
MAX  
MIN  
IN  
EE  
EE  
A
unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to V , unless otherwise noted.) (Note 1)  
A
EE  
PARAMETER  
PD INTERFACE  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DETECTION MODE  
Input Offset Current  
I
V
V
= 1.4V to 10.1V (Note 2)  
10  
µA  
OFFSET  
dR  
IN  
IN  
Effective Differential Input  
Resistance  
= 1.4V up to 10.1V with 1V step,  
550  
kΩ  
OUT = PGOOD = GND (Note 3)  
CLASSIFICATION MODE  
Classification Current Turn-Off  
Threshold  
V
V
V
rising (Note 4)  
20.8  
21.8  
22.5  
V
TH,CLSS  
IN  
IN  
Class 0, R = 10kΩ  
0
2
CL  
= 12.6V  
Class 1, R = 732Ω  
9.17  
17.29  
26.45  
36.6  
11.83  
19.71  
29.55  
41.4  
CL  
to 20V, R  
= 25.5kΩ  
(Notes 5, 6)  
DISC  
Classification Current  
I
Class 2, R = 392Ω  
mA  
CLASS  
CL  
Class 3, R = 255Ω  
CL  
Class 4, R = 178Ω  
CL  
POWER MODE  
Operating Supply Voltage  
Operating Supply Current  
Default Power Turn-On Voltage  
V
V
= (GND - V )  
EE  
67  
1
V
mA  
V
IN  
IN  
I
IN  
Measure at GND, not including R  
0.4  
DISC  
V
V
increasing, UVLO = V  
EE  
37.4  
30  
38.6  
40.1  
UVLO,ON  
IN  
Default Power Turn-Off Voltage  
V
V
decreasing, UVLO = V  
V
V
UVLO,OFF  
IN  
EE  
Default Power Turn-On/Off  
Hysteresis  
V
7.4  
HYST,UVLO  
External UVLO Programming  
Range  
V
Set UVLO externally (Note 7)  
increasing  
12  
67  
V
V
IN,EX  
UVLO External Reference Voltage  
V
V
2.400  
19.2  
2.460  
20  
2.522  
20.9  
REF,UVLO  
HYST  
UVLO  
UVLO External Reference  
Voltage Hysteresis  
Ratio to V  
%
REF,UVLO  
2
_______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(V = (GND - V ) = 48V, GATE = PGOOD = PGOOD = OPEN, V- tied to OUT, V+ tied to GND, UVLO = V , T = T  
to T  
,
MAX  
MIN  
IN  
EE  
EE  
A
unless otherwise noted. Typical values are at T = +25°C. All voltages are referenced to V , unless otherwise noted.) (Note 1)  
A
EE  
PARAMETER  
UVLO Bias Current  
SYMBOL  
CONDITIONS  
UVLO = 2.460V  
MIN  
TYP  
MAX  
UNITS  
I
-1.5  
+1.5  
µA  
UVLO  
UVLO Input Ground Sense  
Threshold  
V
(Note 8)  
50  
440  
mV  
µs  
TH,G,UVLO  
UVLO Input Ground Sense Glitch  
Rejection  
UVLO = V  
7
EE  
Power Turn-Off Voltage,  
Undervoltage Lockout Deglitch  
Time  
t
V
, V falling (Note 9)  
IN UVLO  
0.32  
ms  
OFF_DLY  
T
= +25°C  
A
Output current =  
300mA, V = 5.6V,  
0.6  
0.8  
1.1  
1.5  
(Note 11)  
Isolation Switch N-Channel  
MOSFET On-Resistance  
GATE  
R
ON  
measured between  
OUT and V  
T
= +85°C  
A
EE  
Isolation Switch N-Channel  
MOSFET Off-Threshold Voltage  
OUT = GND, V  
< 1µA  
- V output current  
EE,  
GATE  
V
0.5  
V
GSTH  
GATE Pulldown Switch Resistance  
GATE Charging Current  
GATE High Voltage  
R
Power-off mode, V = 12V, UVLO = V  
EE  
38  
10  
80  
15  
µA  
V
G
IN  
I
V
= 2V  
5
G
GATE  
GATE  
V
I
= 1µA  
5.58  
5.76  
5.93  
GATE  
V
V
- V , |V  
- V | decreasing,  
OUT  
EE  
OUT EE  
1.15  
4.62  
1.23  
1.31  
4.91  
V
PGOOD, PGOOD Assertion  
= 5.75V  
V
GATE  
OUTEN  
V
Threshold  
OUT  
Hysteresis  
70  
4.76  
80  
mV  
V
(GATE - V ) increasing, OUT = V  
EE  
EE  
PGOOD, PGOOD Assertion  
Threshold  
V
GSEN  
V
GATE  
Hysteresis  
mV  
V
PGOOD Output Low Voltage  
PGOOD Output Low Voltage  
PGOOD Leakage Current  
PGOOD Leakage Current  
V
I
I
= 2mA (Note 10)  
0.4  
0.2  
1
OLDCDC  
SINK  
SINK  
= 2mA, OUT (GND - 5V) (Note 10)  
= 67V (Note 10)  
V
GATE = high, GND - V  
µA  
µA  
OUT  
GATE = V , PGOOD - V = 67V (Note 10)  
1
EE  
EE  
ELECTRICAL CHARACTERISTICS (PWM Controller)  
(All voltages referenced to V-. V  
= 13V, a 10µF capacitor connects V  
to V-, V = V-, V+ = 48V, 0.1µF capacitor connected to  
DD  
CC CS  
SS_SHDN, NDRV = open circuit, V = 3V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX  
A
FB  
MIN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SUPPLY CURRENT  
I
V
= 0V, V+ = 67V, driver not switching  
DD  
0.8  
1.6  
14  
1.6  
3.2  
V+(NS)  
V+ Supply Current  
mA  
µA  
V+ = 67V, V  
switching  
= 0V, V = 4V, driver  
FB  
DD  
I
V+(S)  
V+ Supply Current After Startup  
V+ = 67V, V  
= 13V, V = 4V  
FB  
DD  
_______________________________________________________________________________________  
3
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
ELECTRICAL CHARACTERISTICS (PWM Controller) (continued)  
(All voltages referenced to V-. V  
SS_SHDN, NDRV = open circuit, V = 3V, T = T  
= 13V, a 10µF capacitor connects V  
to V-, V = V-, V+ = 48V, 0.1µF capacitor connected to  
DD  
CC CS  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX  
A
FB  
MIN  
A
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS  
= 36V, driver not switching  
MIN  
TYP  
0.9  
1.9  
180  
4
MAX  
1.6  
UNITS  
I
V
V
V
V
VDD(NS)  
DD  
V
mA  
DD  
I
= 36V, driver switching, V = 4V  
OPTO  
3.2  
VDD(S)  
DD  
V+ Shutdown Current  
Shutdown Current  
= 0V, V+ = 67V  
= 0V  
290  
20  
µA  
µA  
SS_SHDN  
SS_SHDN  
V
DD  
PREREGULATORS/STARTUP  
V+ Input Voltage  
18  
13  
67  
36  
V
V
V
Supply Voltage  
DD  
INTERNAL REGULATORS  
Powered from V+, I  
= 7.5mA, V  
= 0V  
DD  
7.5  
9.0  
9.8  
10.0  
6.6  
12  
CC  
V
Output Voltage  
V
V
CC  
Powered from V , I  
= 7.5mA  
11.0  
DD CC  
V
Undervoltage Lockout  
V
V
falling  
CC  
CC  
CC_UVLO  
OUTPUT DRIVER  
Peak Source Current  
Peak Sink Current  
V
V
V
= 11V (externally forced)  
= 11V (externally forced)  
570  
mA  
mA  
CC  
CC  
1000  
NDRV High-Side Driver  
Resistance  
= 11V, externally forced, NDRV  
CC  
R
4
12  
4
OH  
sourcing 50mA  
NDRV Low-Side Driver  
Resistance  
V
CC  
50mA  
= 11V, externally forced, NDRV sinking  
R
1.6  
OL  
ERROR AMPLIFIER  
FB Input Resistance  
R
50  
1
kΩ  
µA  
V/V  
kHz  
V
IN  
FB Input Bias Current  
Error Amplifier Gain (Inverting)  
Closed-Loop 3dB Bandwidth  
FB Input Voltage Range  
SLOPE COMPENSATION  
Slope Compensation  
I
V
= V  
FB SS_SHDN  
FB  
A
-20  
200  
VCL  
2
3
V
MAX5942A  
FB = 4V  
26  
mV/µs  
SCOMP  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature  
Thermal Hysteresis  
+150  
25  
°C  
°C  
CURRENT LIMIT  
CS Threshold Voltage  
CS Input Bias Current  
V
419  
-1  
465  
510  
+1  
mV  
µA  
ILIM  
0V V 2V, FB = 4V  
CS  
Current-Limit Comparator  
Propagation Delay  
25mV overdrive on CS, FB = V-  
180  
70  
ns  
ns  
CS Blanking Time  
OSCILLATOR  
FB = GND, only PWM comparator is blanked  
Clock Frequency Range  
FB = V-  
235  
75  
275  
314  
85  
kHz  
%
MAX5942A, FB = V-  
MAX5942B, FB = V-  
Max Duty Cycle  
44  
50  
4
_______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
ELECTRICAL CHARACTERISTICS (PWM Controller) (continued)  
(All voltages referenced to V-. V  
SS_SHDN, NDRV = open circuit, V = 3V, T = T  
= 13V, a 10µF capacitor connects V  
to V-, V = V-, V+ = 48V, 0.1µF capacitor connected to  
DD  
CC CS  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX  
A
FB  
MIN  
A
PARAMETER  
SOFT-START  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SS Source Current  
I
V
= V-  
SS_SHDN  
2.0  
1
4.5  
6.5  
µA  
mA  
V
SSO  
SS Sink Current  
Peak Soft-Start Voltage Clamp  
No external load  
2.331  
0.25  
0.53  
2.420  
0.37  
0.59  
2.500  
0.41  
0.65  
V
V
falling (Note 11)  
rising (Note 11)  
SS_SHDN  
SS_SHDN  
Shutdown Threshold  
V
Note 1: All min/max limits for the PD interface are production tested at +85°C (extended grade)/+70°C (commercial grade). Limits  
at +25°C and -40°C are guaranteed by design. All PWM controller min/max limits are 100% production tested at +25°C  
and +85°C (extended grade)/+70°C (commercial grade). Limits at -40°C are guaranteed by design, unless otherwise  
noted.  
Note 2: The input offset current is illustrated in Figure 1.  
Note 3: Effective differential input resistance is defined as the differential resistance between GND and V without any external  
EE  
resistance.  
Note 4: Classification current is turned off whenever the IC is in power mode.  
Note 5: See Table 2 in the PD Classification Mode section. R  
Note 6: See Thermal Dissipation section for details.  
and R must be 100ppm or better.  
DISC  
CL  
Note 7: When UVLO is connected to the midpoint of an external resistor-divider with a series resistance of 25.5k( 1%), the turn-  
on threshold set point for the power mode is defined by the external resistor-divider. Make sure the voltage on the UVLO  
pin does not exceed its maximum rating of 8V when V is at the maximum voltage.  
IN  
Note 8: When the V  
is below V  
the MAX5942_ sets the turn-on voltage threshold internally (V  
).  
UVLO  
TH, G, UVLO,  
UVLO,ON  
Note 9: An input voltage or V  
glitch below their respective thresholds shorter than or equal to t  
will not cause the  
UVLO  
OFF_DLY  
MAX5942A/MAX5942B to exit power-on mode (as long as the input voltage remains above an operable voltage level of 12V).  
Note 10: PGOOD references to OUT while PGOOD references to V  
Note 11: Guaranteed by design.  
.
EE  
I
IN  
(V  
(I  
- V  
)
INi  
1V  
INi + 1  
dR ≅  
i
=
- I  
)
(I  
- I  
INi + 1 INi  
)
INi + 1 INi  
V
INi  
I
I  
-
OFFSET INi  
dR  
i
I
+1  
INi  
dR  
i
I
INi  
I
OFFSET  
V
1V  
V
+1  
INi  
INi  
Figure 1. Effective Differential Input Resistance/Offset Current  
_______________________________________________________________________________________  
5
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Typical Operating Characteristics  
(V = (GND - V ) = 48V, GATE = PGOOD = PGOOD = OUT = OPEN, UVLO = V , V  
= 13V, NDRV floating, T = T  
to T  
.
MAX  
IN  
EE  
EE DD  
A
MIN  
Typical values are at T = +25°C. All voltages are referenced to V (for graphs 111 in the Typical Operating Characteristics); all  
A
EE  
voltages are referenced to V- (for graphs 1230 in the Typical Operating Characteristics), unless otherwise noted.  
CLASSIFICATION CURRENT  
vs. INPUT VOLTAGE  
DETECTION CURRENT vs.  
INPUT VOLTAGE  
EFFECTIVE DIFFERENTIAL INPUT  
RESISTANCE vs. INPUT VOLTAGE  
40  
35  
30  
25  
20  
15  
10  
5
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= 25.5kΩ  
DISC  
CLASS 4  
GND = V+ = V- = OUT  
CLASS 3  
CLASS 2  
CLASS 1  
CLASS 0  
0
10  
15  
20  
25  
30  
0
2
4
6
8
10  
0
5
10  
15  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OFFSET CURRENT  
vs. INPUT VOLTAGE  
NORMALIZED UVLO  
vs. TEMPERATURE  
PGOOD OUTPUT LOW VOLTAGE  
vs. CURRENT  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-3.5  
1.010  
1.008  
1.006  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
200  
180  
160  
140  
120  
100  
80  
UVLO = V  
EE  
60  
40  
20  
0
1
2
3
4
5
6
7
8
9
10 11  
-40  
-15  
10  
35  
60  
85  
0
4
8
12  
(mA)  
16  
20  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
I
SINK  
INRUSH CURRENT CONTROL  
PGOOD OUTPUT LOW VOLTAGE  
vs. CURRENT  
OUT LEAKAGE CURRENT  
vs. TEMPERATURE  
(V = 12V)  
IN  
MAX5942A/B toc09  
400  
350  
300  
250  
200  
150  
100  
50  
20  
16  
12  
V
= 67V  
OUT  
V
GATE  
5V/div  
I
INRUSH  
100mA/div  
8
4
V
OUT  
10V/div  
P
GOOD  
10V/div  
0
0
1ms/div  
0
4
8
12  
(mA)  
16  
20  
-40  
-15  
10  
35  
60  
85  
I
SINK  
INPUT VOLTAGE (V)  
6
_______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Typical Operating Characteristics (continued)  
(V = (GND - V ) = 48V, GATE = PGOOD = PGOOD = OUT = OPEN, UVLO = V , V  
= 13V, NDRV floating, T = T  
to T  
.
MAX  
IN  
EE  
EE DD  
A
MIN  
Typical values are at T = +25°C. All voltages are referenced to V (for graphs 111 in the Typical Operating Characteristics); all  
A
EE  
voltages are referenced to V- (for graphs 1230 in the Typical Operating Characteristics), unless otherwise noted.  
V
vs. TEMPERATURE  
INRUSH CURRENT CONTROL  
INRUSH CURRENT CONTROL  
SS_SHDN  
(AT THE END OF SOFT-START)  
(V = 48V)  
(V = 67V)  
IN  
IN  
MAX5942A/B toc10  
1.003  
1.002  
1.001  
1.000  
0.999  
V
V
= V-  
GATE  
5V/div  
FB  
V
GATE  
5V/div  
I
INRUSH  
100mA/div  
I
INRUSH  
100mA/div  
V
OUT  
50V/div  
V
OUT  
50V/div  
P
P
GOOD  
GOOD  
50V/div  
50V/div  
-40  
-20  
0
20  
40  
60  
80  
2ms/div  
2ms/div  
TEMPERATURE (°C)  
NDRV FREQUENCY  
vs. TEMPERATURE  
MAX5942A  
MAXIMUM DUTY CYCLE vs. TEMPERATURE  
MAX5942B  
MAXIMUM DUTY CYCLE vs. TEMPERATURE  
81.0  
278  
277  
276  
275  
274  
273  
48.0  
80.9  
80.8  
80.7  
80.6  
80.5  
80.4  
47.8  
47.6  
47.4  
47.2  
47.0  
46.8  
FB = V-  
FB = V-  
FB = V-  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V+ INPUT CURRENT vs.  
TEMPERATURE (AFTER STARTUP)  
V+ SUPPLY CURRENT  
vs. TEMPERATURE  
SOFT-START SOURCE CURRENT  
vs. TEMPERATURE  
13.80  
13.75  
13.70  
13.65  
1.64  
1.63  
1.62  
4.50  
4.49  
4.48  
4.47  
4.46  
4.45  
4.44  
4.43  
4.42  
4.41  
4.40  
V
= FB = SS_SHDN = V-  
DD  
V+ = 67V, V = 13V, FB = V-  
DD  
FB = V = V-  
V+ = 67V  
DD  
1.61  
1.60  
1.59  
13.60  
13.55  
13.50  
1.58  
1.57  
1.56  
1.55  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
60  
80  
40  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Typical Operating Characteristics (continued)  
(V = (GND - V ) = 48V, GATE = PGOOD = PGOOD = OUT = OPEN, UVLO = V , V  
= 13V, NDRV floating, T = T  
to T  
.
MAX  
IN  
EE  
EE DD  
A
MIN  
Typical values are at T = +25°C. All voltages are referenced to V (for graphs 111 in the Typical Operating Characteristics); all  
A
EE  
voltages are referenced to V- (for graphs 1230 in the Typical Operating Characteristics), unless otherwise noted.  
V+ SHUTDOWN CURRENT  
vs. TEMPERATURE  
CS THRESHOLD VOLTAGE  
vs. TEMPERATURE  
0.488  
0.487  
0.486  
0.485  
0.484  
0.483  
182.5  
182.0  
V+ = 67V, FB = SS_SHDN = V-  
FB = V-  
181.5  
181.0  
180.5  
180.0  
179.5  
179.0  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CURRENT-LIMIT DELAY  
vs. TEMPERATURE  
NDRV RESISTANCE  
vs. TEMPERATURE  
210  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
188  
5.0  
4.5  
4.0  
3.5  
3.0  
FB = V-, 100mV OVERDRIVE ON CS  
HIGH-SIDE DRIVER  
LOW-SIDE DRIVER  
2.5  
2.0  
1.5  
1.0  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
60  
80  
40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
vs. V  
DD  
NDRV FREQUENCY vs. V  
SS_SHDN  
DD  
271.0  
2.410  
2.408  
2.406  
2.404  
2.402  
2.400  
270.5  
270.0  
269.5  
269.0  
268.5  
268.0  
267.5  
267.0  
FB = V-  
0
5
10 15 20 25 30 35 40  
(V)  
0
5
10 15 20 25 30 35 40  
(V)  
V
V
DD  
DD  
8
_______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Typical Operating Characteristics (continued)  
(V = (GND - V ) = 48V, GATE = PGOOD = PGOOD = OUT = OPEN, UVLO = V , V  
= 13V, NDRV floating, T = T  
to T  
.
MAX  
IN  
EE  
EE DD  
A
MIN  
Typical values are at T = +25°C. All voltages are referenced to V (for graphs 111 in the Typical Operating Characteristics); all  
A
EE  
voltages are referenced to V- (for graphs 1230 in the Typical Operating Characteristics), unless otherwise noted.  
MAX5942B  
MAXIMUM DUTY CYCLE vs. V  
DD  
V
vs. V  
DD  
CC  
48.0  
47.9  
47.8  
47.7  
47.6  
47.5  
47.4  
47.3  
47.2  
47.1  
47.0  
10.2  
10.1  
10.0  
9.9  
V
= 4V, CS = V-  
FB  
DEVICE POWERED FROM V  
DD  
FB = V-  
DEVICE POWERED  
FROM V  
9.8  
DD  
9.7  
DEVICE POWERED  
FROM V+  
9.6  
DEVICE POWERED  
FROM V+  
9.5  
0
5
10 15 20 25 30 35 40  
(V)  
0
5
10 15 20 25 30 35 40  
(V)  
V
DD  
V
DD  
V+ SUPPLY CURRENT vs.  
V+ VOLTAGE  
V+ SUPPLY CURRENT vs. V+ VOLTAGE  
(AFTER STARTUP)  
1.60  
1.59  
1.58  
1.57  
1.56  
1.55  
1.54  
1.53  
1.52  
1.51  
16  
14  
12  
10  
8
V
= V = V-  
DD  
FB  
V
= 13V, FB = V-  
DD  
6
4
2
0
0
20  
40  
60  
80  
100  
0
10 20 30 40 50 60 70 80 90 100 110  
V+ VOLTAGE (V)  
V+ VOLTAGE (V)  
V
VOLTAGE vs. V CURRENT  
V
VOLTAGE vs. V CURRENT  
CC  
CC  
CC  
CC  
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
10.4  
10.2  
10.0  
9.8  
V
= GND, V = 4V  
V+ = +67V, V = 4V  
DD  
FB  
FB  
V
= 36V  
V
DD  
V+ = 67V  
V+ = 48V  
= 13V  
V+ = 36V  
V+ = 24V  
DD  
9.6  
9.4  
9.2  
9.0  
0
5
10  
15  
20  
0
5
10  
CURRENT (mA)  
15  
20  
V
V
CURRENT (mA)  
CC  
CC  
_______________________________________________________________________________________  
9
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Pin Description  
PIN  
NAME  
FUNCTION  
High-Voltage Startup Input. Referenced to V-. Connect directly to an input voltage range between 18V to 67V.  
1
V+  
Connects internally to a high-voltage linear regulator that generates V during startup.  
CC  
Line Regulator Input. Referenced to V-. V is the input to the linear regulator that generates V . For  
DD  
CC  
supply voltages less than 36V, connect V  
and V+ to the supply. For supply voltages greater than 36V,  
DD  
2
V
DD  
V
receives its power from the tertiary winding of the transformer and accepts voltages from 13V to 36V.  
DD  
Bypass V  
to V- with a 4.7µF capacitor.  
DD  
Fixed-Gain Inverting Amplifier Input. Referenced to V-. Connect a voltage-divider from the regulated output  
to FB. The noninverting input of the amplifier is referenced to +2.4V  
3
4
FB  
Soft-Start Timing Capacitor Connection. Referenced to V-. Ramp time to full current limit is approximately  
SS_SHDN 0.45ms/nF. Bypass with a minimum 10nF capacitor to V-. A 2.4V reference voltage appears across the  
capacitor. Disable the PWM controller by pulling SS_SHDN below 0.25V.  
Undervoltage Lockout Programming Input for Power Mode. Referenced to V . When UVLO is above its  
EE  
threshold, the device enters the power mode. Connect UVLO to V to use the default undervoltage lockout  
EE  
5
UVLO  
threshold. Connect UVLO to an external resistor-divider to define a threshold externally. The series  
resistance value of the external resistors must add to 25.5k( 1%) and replaces the detection resistor. To  
keep the device in undervoltage lockout, pull UVLO between V  
and V  
.
TH,G,UVLO  
REF,UVLO  
6
7
RCL  
Classification Setting. Referenced to V . Add a resistor from RCL to V to set a PD class (see Table 1).  
EE EE  
Gate of Internal N-Channel Power MOSFET. Referenced to V  
GATE sources 10µA when the device  
EE .  
enters the power mode. Connect an external 100V ceramic capacitor from GATE to V  
to program the  
OUT  
GATE  
inrush current. Pull GATE to V to turn off the internal MOSFET. The detection and classification functions  
EE  
operate normally when GATE is pulled to V  
.
EE  
Negative Input Power. Source of the integrated isolation N-channel power MOSFET. Connect V to  
EE  
-48V.  
8
9
V
EE  
Output Voltage. Referenced to V . Drain of the integrated isolation N-channel power MOSFET. Connect  
EE  
OUT to V-.  
OUT  
Power-Good Indicator Output, Active High, Open Drain. PGOOD is referenced to OUT. PGOOD goes high  
10  
PGOOD impedance when V is within 1.2V of V and when GATE is 5V above V . Otherwise, PGOOD is pulled  
OUT EE EE  
to OUT (given that V  
is at least 5V below GND).  
OUT  
Power-Good Indicator Output, Active Low, Open Drain. PGOOD is referenced to V . PGOOD is pulled to  
EE  
V
when V  
is within 1.2V of V and when GATE is 5V above V . Otherwise, PGOOD goes high  
11  
12  
13  
PGOOD  
GND  
CS  
EE  
OUT EE EE  
impedance.  
Ground. Referenced to V . GND is the positive input power.  
EE  
Current-Sense Input. Referenced to V-. Turns power switch off if V rises above 465mV for cycle-by-cycle  
CS  
current limiting. CS is also the feedback for the current-mode controller. CS connects to the PWM controller  
through a leading-edge blanking circuit.  
14  
15  
V-  
Ground. V- is the ground terminal of the PWM controller.  
NDRV  
Gate Drive. Referenced to V-. Drives a high-voltage external N-channel power MOSFET.  
Regulated IC Supply. Referenced to V-. Provides power for MAX5942_. V  
is regulated from V  
during  
DD  
CC  
16  
V
normal operation and from V+ during startup. Bypass V with a 10µF tantalum capacitor in parallel with a  
CC  
CC  
0.1µF ceramic capacitor to V-.  
10 ______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Table 1. PD Power Classification/R Selection  
CL  
CLASS  
USAGE  
Default  
R
()  
MAXIMUM POWER USED BY PD (W)  
0.44 to 12.95  
CL  
0
1
2
3
4
10k  
732  
392  
255  
178  
Optional  
Optional  
Optional  
Not allowed  
0.44 to 3.84  
3.84 to 6.49  
6.49 to 12.95  
Reserved*  
*Class 4 reserved for future use.  
magnetic components to minimize board space. Both the  
MAX5942A and MAX5942B can be used in power sup-  
plies providing multiple output voltages. A functional dia-  
gram of the PWM controller is shown in Figure 4. Typical  
application circuits for forward and flyback topologies are  
shown in Figure 5 and Figure 6, respectively.  
Detailed Description  
The MAX5942A/MAX5942B integrate a complete power  
IC for powered devices (PD) in a power-over-ethernet  
(PoE) system. The MAX5942A/MAX5942B provide PD  
Interface and a compact DC-DC PWM controller suitable  
for flyback and forward converters in either isolated or  
nonisolated designs.  
Powered Device Interface  
The MAX5942A/MAX5942B PD interface complies with  
the IEEE 802.3af standard, providing the PD with a  
detection signature, a classification signature, and an  
integrated isolation switch with programmable inrush  
current control. These devices also feature power-mode  
undervoltage lockout (UVLO) with wide hysteresis, and  
power-good status outputs.  
Operating Modes  
The PD front-end section of the MAX5942A/MAX5942B  
operates in three different modes: PD detection signa-  
ture, PD classification, and PD power, depending on its  
input voltage (V = GND - V ). All voltage thresholds  
IN  
EE  
are designed to operate with or without the optional  
diode bridge while still complying with the IEEE 802.3af  
standard (see Application Circuit 1).  
An integrated MOSFET provides PD isolation during  
detection and classification. The MAX5942A/MAX5942B  
guarantee a leakage current offset of less than 10µA dur-  
ing the detection phase. A programmable current limit  
prevents high inrush current during power-on. The  
devices feature power-mode UVLO with wide hysteresis  
and long deglitch time to compensate for twisted-pair  
cable resistive drop and to ensure glitch-free transition  
between detection, classification, and power-on/off  
phases. The MAX5942A/MAX5942B provide both active-  
high (PGOOD) and active-low (PGOOD) outputs. Both  
devices offer an adjustable UVLO threshold with a  
default value compliant to the IEEE 802.3af standard.  
The MAX5942A/MAX5942B are designed to work with or  
without an external diode bridge in front of the PD.  
Detection Mode (1.4V V 10.1V)  
IN  
In detection mode, the power source equipment (PSE)  
applies two voltages on V in the range of 1.4V to  
IN  
10.1V (1V step minimum), and then records the current  
measurements at the two points. The PSE then com-  
putes V/I to ensure the presence of the 25.5ksig-  
nature resistor. In this mode, most of the  
MAX5942A/MAX5942B internal circuitry is off and the  
offset current is less than 10µA.  
If the voltage applied to the PD is reversed, install pro-  
tection diodes on the input terminal to prevent internal  
damage to the MAX5942A/MAX5942B (see Figures 8  
and 9). Since the PSE uses a slope technique (V/I) to  
calculate the signature resistance, the DC offset due to  
the protection diodes is subtracted and does not affect  
the detection process.  
Use the MAX5942A/MAX5942B PWM current-mode con-  
trollers to design flyback- or forward-mode power sup-  
plies. Current-mode operation simplifies control-loop  
design while enhancing loop stability. An internal high-  
voltage startup regulator allows the device to connect  
directly to the input supply without an external startup  
resistor. Current from the internal regulator starts the con-  
troller. Once the tertiary winding voltage is established,  
the internal regulator is switched off and bias current  
for running the PWM controller is derived from the  
tertiary winding. The internal oscillator is set to 275kHz  
and trimmed to 10%. This permits the use of small  
Classification Mode (12.6V V 20V)  
IN  
In the classification mode, the PSE classifies the PD  
based on the power consumption required by the PD.  
This allows the PSE to efficiently manage power distribu-  
tion. The IEEE 802.3af standard defines five different  
classes as shown in Table 1. An external resistor (R  
)
CL  
connected from RCL to V sets the classification current.  
EE  
______________________________________________________________________________________ 11  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Table 2. Setting Classification Current  
IEEE 802.3af PD CLASSIFICATION  
CURRENT SPECIFICATION (mA)  
CLASS CURRENT SEEN AT V (mA)  
IN  
CLASS  
R
()  
V * (V)  
IN  
CL  
MIN  
0
MAX  
4
MIN  
0
MAX  
4
0
1
2
3
4
10k  
732  
392  
255  
178  
12.6 to 20  
12.6 to 20  
12.6 to 20  
12.6 to 20  
12.6 to 20  
9
12  
20  
30  
42  
9
12  
20  
30  
44  
17  
26  
36  
17  
26  
36  
*V is measured across the MAX5942 input pins (V and GND), which does not include the diode bridge voltage drop.  
IN  
EE  
GND  
2.4V,  
REF  
UVLO  
REF  
6.8V  
EN  
GND  
RCL  
CLASSIFICATION  
R1  
R2  
PGOOD  
2.4V, 0.8  
HYST  
21.8V  
MAX5942B  
Q4  
39V  
R3  
V
, 6V  
GATE  
1.2V, REF  
EN  
UVLO  
PGOOD  
5V, REF  
Q3  
V
OUT  
Q2  
200mV  
GATE  
Q1  
V
EE  
Figure 2. Powered Device Interface Block Diagram  
12 ______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
The PSE determines the class of a PD by applying a volt-  
V
IN  
= 24V TO 60V  
age at the PD input and measures the current sourced  
out of the PSE. When the PSE applies a voltage between  
12.6V and 20V, the MAX5942A/MAX5942B exhibit a cur-  
rent characteristic with values indicated in Table 2. The  
PSE uses the classification current information to classify  
the power requirement of the PD. The classification cur-  
rent includes the current drawn by the 25.5kdetection  
signature resistor and the supply current of the  
MAX5942A/MAX5942B so that the total current drawn by  
the PD is within the IEEE 802.3af standard figures. The  
classification current is turned off whenever the device is  
in power mode.  
GND  
R1  
R2  
MAX5942A  
MAX5942B  
UVLO  
V
EE  
Power Mode  
During power mode, when V rises above the undervolt-  
IN  
age lockout threshold (V  
), the MAX5942A/  
UVLO,ON  
MAX5942B gradually turn on the internal N-channel MOS-  
FET Q1 (see Figure 2). The MAX5942A/MAX5942B  
charge the gate of Q1 with a constant current source  
(10µA, typ). The drain-to-gate capacitance of Q1 limits  
the voltage rise rate at the drain of MOSFET, thereby limit-  
ing the inrush current. To reduce the inrush current, add  
external drain-to-gate capacitance (see the Inrush  
Current section). When the drain of Q1 is within 1.2V of its  
source voltage and its gate-to-source voltage is above  
5V, the MAX5942A/MAX5942B assert the PGOOD/  
PGOOD outputs. The MAX5942A/MAX5942B have a wide  
UVLO hysteresis and turn-off deglitch time to compensate  
for the high impedance of the twisted-pair cable.  
Figure 3. Setting Undervoltage Lockout with an External  
Resistor-Divider  
1%. When using the external resistor-divider, the  
MAX5942 has an external reference voltage hysteresis of  
20% (typ). In other words, when UVLO is programmed  
externally, the turn-off threshold will be 80% (typ) of the  
new UVLO turn-on threshold.  
Inrush Current Limit  
The MAX5942A/MAX5942B charge the gate of the inter-  
nal MOSFET with a constant current source (10µA, typ).  
The drain-to-gate capacitance of the MOSFET limits the  
voltage rise rate at the drain, thereby limiting the inrush  
current. Add an external capacitor from GATE to OUT  
to further reduce the inrush current. Use the following  
equation to calculate the inrush current:  
Undervoltage Lockout  
The MAX5942A/MAX5942B operate up to a 67V supply  
voltage with a default UVLO turn-on set at 39V and a  
UVLO turn-off set at 30V. Adjust the UVLO threshold  
using a resistor-divider connected to UVLO (see Figure  
3). When the input voltage is above the UVLO threshold  
COUT  
CGATE  
IINRUSH = IG  
x
(V ), the IC is in power mode and the MOSFET is  
UVLO,ON  
on. When the input voltage goes below the UVLO thresh-  
old (V ) for more than t , the MOSFET  
The recommended inrush current for a PoE application  
is 100mA.  
UVLO,OFF  
turns off.  
OFF_DLY  
PGOOD/PGOOD Outputs  
PGOOD is an open-drain, active-high logic output.  
To adjust the UVLO threshold, connect an external  
resistor-divider from GND to UVLO and from UVLO to  
PGOOD goes high impedance when V  
is within 1.2V  
OUT  
V
. Use the following equations to calculate R1 and  
EE  
of V  
and when GATE is 5V above V . Otherwise,  
EE  
EE  
R2 for a desired UVLO threshold:  
PGOOD is pulled to V  
(given that V  
is at least 5V  
OUT  
OUT  
below GND). Connect PGOOD to SS_SHDN to enable  
the PWM controller.  
V
REF,UVLO  
R2 = 25.5kx  
V
IN,EX  
PGOOD is an open-drain, active-low logic output.  
R1 = 25.5k- R2  
PGOOD is pulled to V when V  
is within 1.2V of V  
EE  
EE  
OUT  
EE  
and when GATE is 5V above V . Otherwise, PGOOD  
where V  
is the desired UVLO threshold. Since the  
IN,EX  
goes high impedance.  
resistor-divider replaces the 25.5kPD detection resis-  
tor, ensure that the sum of R1 and R2 equals 25.5kΩ  
______________________________________________________________________________________ 13  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Thermal Dissipation  
During classification mode, if the PSE applies the maxi-  
mum DC voltage, the maximum voltage drop from GND  
Internal Regulators  
The internal regulators of the MAX5942A/MAX5942B  
enable initial startup without a lossy startup resistor and  
regulate the voltage at the output of a tertiary (bias)  
winding to provide power for the IC. At startup, V+ is reg-  
to V  
will be 13V. If the maximum classification cur-  
RCL  
rent of 42mA flows through the MAX5942A/  
MAX5942B, then the maximum DC power dissipation  
will be close to 546mW, which is slightly higher than the  
maximum DC power dissipation the IC can handle.  
However, according to the IEEE 802.3af standard, the  
duration of the classification mode is limited to 75ms  
(max). The MAX5942A/MAX5942B handle the maxi-  
mum classification power dissipation for the maximum  
duration time without sustaining any internal damage. If  
the PSE violates the IEEE 802.3af standard by exceed-  
ing the 75ms maximum classification duration, it may  
cause internal damage to the IC.  
ulated down to V  
DD  
to provide bias for the device. The  
CC  
V
regulator then regulates from the output of the ter-  
tiary winding to V . This architecture allows the tertiary  
CC  
winding to have only a small filter capacitor at its output,  
thus eliminating the additional cost of a filter inductor.  
When designing the tertiary winding, calculate the num-  
ber of turns so the minimum reflected voltage is always  
higher than 12.7V. The maximum reflected voltage  
must be less than 36V.  
To reduce power dissipation, the high-voltage regulator  
is disabled when the V  
voltage reaches 12.7V. This  
DD  
greatly reduces power dissipation and improves effi-  
PWM Controller  
ciency. If V  
falls below the undervoltage lockout  
= 6.6V), the low-voltage regulator is dis-  
CC  
Current-Mode Control  
The MAX5942A/MAX5942B offer current-mode control  
operation with added features such as leading-edge  
blanking with dual internal path that only blanks the  
sensed current signal applied to the input of the PWM  
comparator. The current-limit comparator monitors the  
CS pin at all times and provides cycle-by-cycle current  
limit without being blanked. The leading-edge blanking  
of the CS signal prevents the PWM comparator from  
prematurely terminating the on cycle. The CS signal  
contains a leading-edge spike that is the result of the  
MOSFET gate charge current, capacitive and diode  
reverse recovery current of the power circuit. Since this  
leading-edge spike is normally lower than the current-  
limit comparator threshold, current limiting is not  
blanked and cycle-by-cycle current limiting is provided  
under all conditions.  
threshold (V  
CC  
abled, and soft-start is reinitiated. In undervoltage lock-  
out, the MOSFET driver output (NDRV) is held low.  
If the input voltage range is between 13V and 36V, V+  
and V  
may be connected to the line voltage, provid-  
DD  
ed that the maximum power dissipation is not exceed-  
ed. This eliminates the need for a tertiary winding.  
PWM Controller Undervoltage Lockout,  
Soft-Start, and Shutdown  
The soft-start feature of the MAX5942A/MAX5942B  
allows the load voltage to ramp up in a controlled man-  
ner, thus eliminating output voltage overshoot.  
While the part is in undervoltage lockout, the capacitor  
connected to the SS_SHDN pin is discharged. Upon  
coming out of undervoltage lockout, an internal current  
source starts charging the capacitor to initiate the soft-  
start cycle. Use the following equation to calculate total  
soft-start time:  
Use the MAX5942A in discontinuous flyback applica-  
tions where wide line voltage and load current variation  
are expected. Use the MAX5942B for single-transistor  
forward converters where the maximum duty cycle  
must be limited to less than 50%.  
ms  
nF  
t
= 0.45  
×C  
ss  
startup  
Under certain conditions, it may be advantageous to  
use a forward converter with greater than 50% duty  
cycle. For those cases, use the MAX5942A. The large  
duty cycle results in much lower operating primary  
RMS currents through the MOSFET switch and in most  
cases a smaller output filter inductor. The major disad-  
vantage to this is that the MOSFET voltage rating must  
be higher and that slope compensation must be provid-  
ed to stabilize the inner current loop. The MAX5942A  
provides internal slope compensation.  
where C is the soft-start capacitor as shown in Figure 5.  
SS  
Operation begins when V  
ramps above 0.6V.  
SS_SHDN  
SS_SHDN  
When soft-start has completed, V  
is regulated  
to 2.4V, the internal voltage reference. Pull V  
below 0.25V to disable the controller.  
SS_SHDN  
Undervoltage lockout shuts down the controller when  
is less than 6.6V. The regulators for V+ and the ref-  
V
CC  
erence remain on during shutdown.  
14 ______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
V
DD  
V
DD-OK  
V+  
V-  
IN  
IN  
HIGH-  
VOLTAGE  
REGULATOR  
BIAS  
WINDING  
REGULATOR  
EN  
EN  
OUT  
OUT  
0.7V  
V
CC  
MAX5942A ONLY  
UVLO  
6.6V  
SLOPE  
COMPENSATION  
26mV/µs  
V
CC  
275kHz  
R
S
OSCILLATOR  
NDRV  
Q
26mV/µs  
1MΩ  
80%/50%  
DUTY CYCLE  
CLAMP  
50kΩ  
FB  
ILIM  
70ns  
PWM  
125mV  
CS  
ERROR  
AMP  
5kΩ  
V
CC  
BLANKING  
SS_SHDN  
4µA  
3R  
2.4V  
BUF  
R
0.25V  
Figure 4. MAX5942A/MAX5942B PWM Controller Functional Diagram  
______________________________________________________________________________________ 15  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
1N4148  
N
T
N
R
L1  
4.7µH  
6
14  
CMHD2003  
V
IN  
V
SBL204OCT  
OUT  
5V/10A  
(36V TO 72V)  
C
IN  
3
C
OUT  
3
0.1µF  
GND  
V+  
V
DD  
0.47µF  
20Ω  
N
N
S
5
P
560µF  
C
DD  
14  
4.7µF  
1nF  
M1  
IRF640N  
NDRV  
CS  
RCL  
R
1
V
MAX5942  
CC  
2kΩ  
100Ω  
R
C
SENSE  
100mΩ  
CC  
10µF  
R
25.5kΩ  
CL  
V-  
UVLO  
SS_SHDN  
C
SS  
0.1µF  
PGOOD  
GATE  
OUT  
FB  
V
EE  
GATE  
R
2
C
FB  
2kΩ  
(OPTIONAL)  
Figure 5. Forward Converter  
Figure 5). Calculate the output voltage using the follow-  
ing equation:  
Current-Sense Comparator  
The current-sense (CS) comparator and its associated  
logic limit the peak current through the MOSFET.  
Current is sensed at CS as a voltage across a sense  
resistor between the source of the MOSFET and GND.  
To reduce switching noise, connect CS to the external  
MOSFET source through a 100resistor or an RC low-  
pass filter (Figures 5, 6). Select the current-sense resis-  
R1  
R
VOUT = 1+  
× VREF  
2   
where V  
= 2.4V.  
REF  
Choose R1//R2 << R , where R 50kis the input  
IN  
IN  
tor, R  
according to the following equation:  
SENSE  
resistance of FB. The gain of the error amplifier is inter-  
nally configured for -20 (see Figure 4).  
RSENSE = 0.465V/ILIMPrimary  
The error amplifier may also be used to regulate the out-  
put of the tertiary winding for implementing a primary-  
side regulated isolated power supply (see Figure 7).  
Calculate the output voltage using the following equation:  
where I  
current.  
is the maximum peak primary-side  
LIMPrimary  
When V  
> 465mV, the power MOSFET switches off.  
CS  
The propagation delay from the time the switch current  
reaches the trip level to the driver turn-off time is 180ns.  
NS  
NT  
R1  
R
VOUT  
=
1+  
× VREF  
2   
Internal Error Amplifier  
The MAX5942A/MAX5942B include an internal error  
amplifier that can be used to regulate the output volt-  
age in the case of a nonisolated power supply (see  
where N is the number of secondary turns and N is  
S
T
the number of tertiary winding turns.  
16 ______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
N
T
V
OUT  
V
IN  
C
OUT  
C
IN  
V+  
GND  
V
DD  
N
N
S
P
C
C
DD  
CC  
M1  
NDRV  
CS  
RCL  
V
CC  
MAX5942  
100Ω  
R
R
CL  
SENSE  
25.5kΩ  
R
1
V-  
PGOOD  
SS_SHDN  
PGOOD  
UVLO  
C
SS  
OUT  
FB  
V
EE  
GATE  
R
2
Figure 6. Flyback Converter  
N
T
V
V
OUT  
IN  
C
OUT  
C
IN  
GND  
V+  
V
DD  
N
N
S
P
C
DD  
R
R
1
2
FB  
M1  
NDRV  
PGOOD  
V
CC  
CS  
MAX5942  
100Ω  
C
CC  
25.5kΩ  
GATE  
R
SENSE  
RCL  
V-  
OUT  
SS_SHDN  
PGOOD  
C
SS  
R
CL  
UVLO  
V
EE  
Figure 7. Flyback Converter  
______________________________________________________________________________________ 17  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
PWM Comparator and Slope Compensation  
Applications Information  
Design Example  
The following is a general procedure for designing a  
forward converter using the MAX5942B:  
An internal 275kHz oscillator determines the switching  
frequency of the controller. At the beginning of each  
cycle, NDRV switches the N-channel MOSFET on.  
NDRV switches the external MOSFET off after the maxi-  
mum duty cycle has been reached, regardless of the  
feedback.  
1) Determine the requirements.  
2) Set the output voltage.  
The MAX5942B uses an internal ramp generator for  
slope compensation. The internal ramp signal is reset  
at the beginning of each cycle and slews at 26mV/µs.  
3) Calculate the transformer primary to secondary  
winding turns ratio.  
4) Calculate the reset to primary winding turns ratio.  
The PWM comparator uses the instantaneous current,  
the error voltage, the internal reference, and the slope  
compensation (MAX5942A only) to determine when to  
switch the N-channel MOSFET off. In normal operation,  
the N-channel MOSFET turns off when:  
5) Calculate the tertiary to primary winding turns  
ratio.  
6) Calculate the current-sense resistor value.  
7) Calculate the output inductor value.  
8) Select the output capacitor.  
I
× R  
> V -V -V  
EA REF SCOMP  
PRIMARY  
SENSE  
The circuit in Figure 5 was designed as follows:  
where I  
is the current through the N-channel  
PRIMARY  
1) 30V V 67V, V  
= 5V, I  
= 10A, V  
IN  
OUT  
OUT  
RIPPLE  
MOSFET, V  
is the 2.4V internal reference, V is the  
REF  
EA  
SCOMP  
50mV. Turn-on threshold is set at 38.6V.  
output voltage of the internal amplifier, and V  
is a  
2) To set the output voltage, calculate the values of  
resistors R1 and R2 according to the following  
equation:  
ramp function starting at zero and slewing at 26mV/µs  
(MAX5942A only). When using the MAX5942A in a for-  
ward-converter configuration, the following condition  
must be met to avoid control-loop subharmonic oscilla-  
tions:  
R1  
R2  
VOUT = V  
1+  
REF   
N
k ×R  
× V  
OUT  
S
SENSE  
L
×
= 26mV/µs  
R1//R2 << 50kΩ  
VREF = VSS_SHDN = 2.4V  
N
P
where k = 0.75 to 1, and N and N are the number of  
S
P
where V  
is the reference voltage of the shunt reg-  
REF  
turns on the secondary and primary side of the trans-  
former, respectively. L is the output filter inductor. This  
makes the output inductor current downslope as refer-  
ulator, and R and R are the resistors shown in  
1
2
Figures 5 and 6.  
enced across R  
tion. The controller responds to transients within one  
cycle when this condition is met.  
equal to the slope compensa-  
SENSE  
3) The turns ratio of the transformer is calculated based  
on the minimum input voltage and the lower limit of  
the maximum duty cycle for the MAX5942B (44%).  
To enable the use of MOSFETs with drain-source  
breakdown voltages of less than 200V, use the  
MAX5942B with the 50% maximum duty cycle.  
Calculate the turns ratio according to the following  
equation:  
N-Channel MOSFET Gate Driver  
NDRV drives an N-channel MOSFET. NDRV sources  
and sinks large transient currents to charge and dis-  
charge the MOSFET gate. To support such switching  
transients, bypass V  
with a ceramic capacitor. The  
CC  
average current as a result of switching the MOSFET is  
the product of the total gate charge and the operating  
frequency. It is this current plus the DC quiescent cur-  
rent that determines the total operating current.  
V
+ V ×D  
(
)
N
OUT  
D1  
MAX  
S
N
D
× V  
IN_MIN  
P
MAX  
where:  
N /N = Turns ratio (N is the number of secondary  
turns and N is the number of primary turns).  
S
P
S
P
18 ______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
V
V
= Output voltage (5V).  
OUT  
1-0.5  
0.5  
= Voltage drop across D1 (typically 0.5V for  
power Schottky diodes).  
D1  
N 14×  
=14  
R
D
= Minimum value of maximum operating duty  
MAX  
cycle (44%).  
Round N to the nearest smallest integer.  
R
The turns ratio of the reset winding (N /N ) determines  
R
P
V
= Minimum input voltage (30V).  
IN_MIN  
the peak voltage across the N-channel MOSFET.  
Use the following equation to determine the maxi-  
mum drain-source voltage across the N-channel  
MOSFET:  
In this example:  
5V+ 0.5V × 0.44  
(
)
N
S
= 0.395  
N
0.44× 30V  
P
N
P
V
V  
× 1 +  
DSMAX  
IN_MAX  
N
Choose N based on core losses and DC resis-  
R
P
tance. Use the turns ratio to calculate N , rounding  
S
V
V
= Maximum MOSFET drain-source voltage.  
= Maximum input voltage:  
DSMAX  
up to the nearest integer. In this example, N = 14  
P
and N = 6.  
S
IN_MAX  
For a forward converter, choose a transformer with a  
magnetizing inductance in the neighborhood of  
200µH. Energy stored in the magnetizing inductance  
of a forward converter is not delivered to the load  
and must be returned back to the input; this is  
accomplished with the reset winding.  
14  
14  
V
67V × 1 +  
=134V  
DSMAX  
Choose MOSFETs with appropriate avalanche  
power ratings to absorb any leakage energy.  
The transformer primary to secondary leakage  
inductance should be less than 1µH. Note that all  
leakage energy is dissipated across the MOSFET.  
Snubber circuits may be used to direct some or all  
of the leakage energy to be dissipated across a  
resistor.  
5) Choose the tertiary winding turns ratio (N /N ) so that  
T
P
the minimum input voltage provides the minimum  
operating voltage at V  
(13V). Use the following  
DD  
equation to calculate the tertiary winding turns ratio:  
VDDMIN + 0.7  
×NP NT ≤  
To calculate the minimum duty cycle (D  
following equation:  
), use the  
MIN  
V
IN_MIN  
VDDMAX + 0.7  
V
×NP  
OUT  
=
D
=
MIN  
V
IN_MAX  
N
S
V
×
-V  
D1  
IN_MAX  
N
P
where:  
V
is the minimum V supply voltage (13V).  
DD  
where V  
is the maximum input voltage (67V).  
DDMIN  
IN_MAX  
V
is the maximum V  
supply voltage (30V).  
DD  
4) The reset winding turns ratio (N /N ) needs to be  
DDMAX  
R
P
low enough to guarantee that the entire energy in  
the transformer is returned to V+ within the off cycle  
at the maximum duty cycle. Use the following equa-  
tion to determine the reset winding turns ratio:  
V
V
is the minimum input supply voltage (30V).  
is the maximum input supply voltage (67V  
IN_MIN  
IN_MAX  
in this design example).  
N is the number of turns of the primary winding.  
P
1-DMAX  
N is the number of turns of the tertiary winding:  
T
NR NP ×  
DMAX  
13.7  
30  
36.7  
67  
×14N ≤  
×14  
T
where:  
N /N = Reset winding turns ratio.  
R
P
6.39N 7.67  
T
D
MAX  
= Maximum value of maximum duty cycle:  
Choose N = 7.  
T
______________________________________________________________________________________ 19  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Table 3. Component Suppliers  
COMPONENT  
SUPPLIERS  
International Rectifier  
Fairchild  
WEBSITE  
www.irf.com  
Power FETS  
www.fairchildsemi.com  
www.vishay.com/brands/siliconix/main.html  
www.vishay.com/brands/dale/main.html  
www.irctt.com/pages/index.cfm  
www.onsemi.com  
Vishay-Siliconix  
Dale-Vishay  
Current-Sense Resistors  
Diodes  
IRC  
ON Semi  
General Semiconductor  
Central Semiconductor  
Sanyo  
www.gensemi.com  
www.centralsemi.com  
www.sanyo.com  
Capacitors  
Magnetics  
Taiyo Yuden  
AVX  
www.t-yuden.com  
www.avxcorp.com  
Coiltronics  
www.cooperet.com  
Coilcraft  
www.coilcraft.com  
Pulse Engineering  
www.pulseeng.com  
6) Choose R  
according to the following equation:  
8) The size and ESR of the output filter capacitor deter-  
mine the output ripple. Choose a capacitor with a  
low ESR to yield the required ripple voltage.  
SENSE  
V
ILIM  
R
SENSE  
N
Use the following equations to calculate the peak-to-  
peak output ripple:  
S
×1.2×I  
OUTMAX  
N
P
2
2
where:  
V
= V  
+ V  
RIPPLE  
RIPPLE,ESR RIPPLE,C  
V
ILIM  
is the current-sense comparator trip threshold  
voltage (0.465V).  
where:  
N /N is the secondary-side turns ratio (5/14 in this  
V
is the combined RMS output ripple due to  
S
P
RIPPLE  
VRIPPLE,ESR, the ESR ripple, and V  
example).  
, the  
RIPPLE,C  
capacitive ripple. Calculate the ESR ripple and  
capacitive ripple as follows:  
I
is the maximum DC output current (10A in  
OUTMAX  
this example):  
V
= I  
x ESR  
RIPPLE,ESR  
RIPPLE  
0.465V  
R
= 90.4mΩ  
SENSE  
V
= I /(2 x π x 275kHz x C  
RIPPLE  
)
OUT  
RIPPLE,C  
6
×1.2×10  
14  
Layout Recommendations  
7) Choose the inductor value so that the peak ripple  
current (LIR) in the inductor is between 10% and  
20% of the maximum output current:  
All connections carrying pulsed currents must be very  
short, be as wide as possible, and have a ground plane  
as a return path. The inductance of these connections  
must be kept to a minimum due to the high di/dt of the  
currents in high-frequency switching power converters.  
V
+ V × 1-D  
(
) (  
)
OUT  
D
MIN  
L ≥  
2×LIR×275kHz×I  
OUTMAX  
Current loops must be analyzed in any layout pro-  
posed, and the internal area kept to a minimum to  
reduce radiated EMI. Ground planes must be kept as  
intact as possible.  
where V is the output Schottky diode forward-volt-  
D
age drop (0.5V) and LIR is the ratio of inductor rip-  
ple current to DC output current:  
5.5 × 1-0.198  
0.4×275kHz×10A  
(
) (  
)
L ≥  
= 4.01µH  
20 ______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
POWER-OVER  
SIGNAL PAIRS  
VREG  
PHY  
RX  
3
6
1
2
GND  
DF025A  
DF025A  
+
-
+
-
RJ-45  
4
5
7
8
TX  
-48V  
POWER-OVER  
SPARE PAIRS  
VREG  
V+  
V
GND  
NDRV  
CS  
DD  
MAX5942  
V
V-  
CC  
*D1  
GND  
SS_SHDN  
**R1  
**R2  
SMBJ58CA  
60V  
R
=
DISC  
25.5kΩ  
UVLO  
RCL  
PGOOD  
PGOOD  
68nF  
GATE  
FB  
*D2  
OUT  
V
EE  
-48V  
C
*
GATE  
* OPTIONAL.  
** R1 AND R2 ARE OPTIONAL AND WHEN USED, THEY MUST TOTAL TO 25.5kAND REPLACE THE 25.5kRESISTOR.  
Figure 8. PD with Power-Over-Ethernet (Power is Provided by Either the Signal Pairs or the Spare Pairs)  
______________________________________________________________________________________ 21  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
POWER-SUPPLY CIRCUIT 1  
VREG1  
V+  
V
GND  
NDRV  
CS  
DD  
MAX5942  
V
V-  
CC  
*D1  
GND  
SS_SHDN  
**R1  
**R2  
R
=
DISC  
25.5kΩ  
UVLO  
RCL  
PGOOD  
PGOOD  
68nF  
60V  
GATE  
FB  
R
CL  
*D2  
OUT  
V
EE  
-48V  
POWER-SUPPLY CIRCUIT 2  
C
GATE  
*
V+  
VREG2  
V+  
V
NDRV  
CS  
DD  
MAX5019  
V
GND  
CC  
SS_SHDN  
FB  
*OPTIONAL.  
**R1 AND R2 ARE OPTIONAL AND WHEN USED, THEY MUST TOTAL TO 25.5kAND REPLACE THE 25.5kRESISTOR.  
Figure 9. Power-Supply Circuit 1 Enabling PWM Controller of a Second Power Circuit  
22 ______________________________________________________________________________________  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Typical Operating Circuit  
VREG  
V+  
V
GND  
NDRV  
CS  
DD  
MAX5942  
V
V-  
CC  
GND  
SS_SHDN  
PGOOD  
UVLO  
RCL  
R
=
DISC  
25.5kΩ  
PGOOD  
60V  
GATE  
FB  
OUT  
V
EE  
-48V  
C
GATE  
Chip Information  
TRANSISTOR COUNT: 4232  
PROCESS: BiCMOS  
______________________________________________________________________________________ 23  
IEEE 802.3af Power-Over-Ethernet  
Interface/PWM Controller for Power Devices  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY