MAX5931A [MAXIM]

Low-Voltage, Triple, Hot-Swap Controllers/ Power Sequencers/Voltage Trackers;
MAX5931A
型号: MAX5931A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage, Triple, Hot-Swap Controllers/ Power Sequencers/Voltage Trackers

文件: 总23页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4200; Rev 0; 7/08  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
General Description  
Features  
The MAX5930A/MAX5931A/MAX5931B +1V to +15V  
triple hot-swap controllers provide complete protection  
for multisupply systems. They allow the safe insertion  
and removal of circuit cards into live backplanes. These  
devices hot swap multiple supplies ranging from +1V to  
+15V, provided one supply is at or above +2.7V. The  
input voltage rails (channels) can be configured to  
sequentially turn-on/off, track each other, or have com-  
pletely independent operation.  
o Safe Hot Swap for +1V to +15V Power Supplies  
with Any Input Voltage (V ) ≥ 2.7V  
IN_  
o Adjustable Circuit-Breaker/Current-Limit  
Threshold from 25mV to 100mV  
o Configurable Tracking, Sequencing, or  
Independent Operation Modes  
o VariableSpeed/BiLevel Circuit-Breaker Response  
o Internal Charge Pumps Generate n-Channel  
The discharged filter capacitors of the circuit card provide  
low impedance to the live backplane. High inrush cur-  
rents from the backplane to the circuit card can burn up  
connectors and components, or momentarily collapse the  
backplane power supply leading to a system reset. The  
MAX5930A/MAX5931A/MAX5931B hot-swap controllers  
prevent such problems by gradually ramping up the out-  
put voltage and regulating the current to a preset limit  
when the board is plugged in, allowing the system to sta-  
bilize safely. After the startup cycle is complete, on-chip  
comparators provide VariableSpeed/BiLevel™ protection  
against short-circuit and overcurrent faults, and provide  
immunity against system noise and load transients.  
MOSFET Gate Drives  
o Inrush Current Regulated at Startup  
o Autoretry or Latched Fault Management  
o Programmable Undervoltage Lockout  
o Status Outputs Indicate Fault/Safe Condition  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
24 QSOP  
MAX5930AEEG+  
MAX5931AEEP+  
MAX5931BEEP+  
20 QSOP  
20 QSOP  
The load is disconnected in the event of a fault condi-  
tion. The MAX5930A/MAX5931A/MAX5931B fault-man-  
agement mode is selectable, allowing latched fault or  
autoretry after a fault condition.  
+Denotes a lead-free/RoHS-compliant package.  
Selector Guide and Typical Operating Circuit appear at end  
of data sheet.  
The MAX5930A/MAX5931A/MAX5931B offer a variety of  
options to reduce external component count and  
design time. All devices integrate an on-board charge  
pump to drive the gates of low-cost, external n-channel  
MOSFETs, an adjustable startup timer, and an  
adjustable current limit. The devices offer integrated  
features like startup current regulation and current  
glitch protection to eliminate external timing resistors  
and capacitors. The MAX5931A provides an open-  
drain, active-low status output for each channel, the  
MAX5931B provides an open-drain, active-high status  
output for each channel, and the MAX5930A status out-  
put polarity is selectable.  
Pin Configurations  
TOP VIEW  
POL  
ON2  
1
2
3
4
5
6
7
8
9
24 MODE  
23 ON3  
ON1  
22 LIM2  
21 IN2  
LIM1  
MAX5930A  
IN1  
20 SENSE2  
19 GATE2  
18 LIM3  
17 IN3  
SENSE1  
GATE1  
STAT1  
STAT2  
The MAX5930A is available in a 24-pin QSOP package,  
and the MAX5931A/MAX5931B are available in a 20-pin  
QSOP package. All devices are specified over the  
extended -40°C to +85°C temperature range.  
16 SENSE3  
15 GATE3  
14 GND  
13 BIAS  
TIM 10  
LATCH 11  
STAT3 12  
Applications  
Network Switches, Routers, Power-Supply  
QSOP  
Hubs  
Sequencing/Tracking  
Hot Plug-In Daughter Cards Base-Station Line Cards  
Pin Configurations continued at end of data sheet.  
RAID  
Portable Computer Device  
Bays (Docking Stations)  
VariableSpeed/BiLevel is a trademark of Maxim Integrated  
Products, Inc.  
Solid-State Circuit Breakers  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND, unless otherwise noted.)  
IN_ ..........................................................................-0.3V to +16V  
GATE_.............................................................-0.3V to (IN_ + 6V)  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin QSOP (derate 9.1mW/°C above +70°C)............727mW  
24-Pin QSOP (derate 9.5mW/°C above +70°C)............762mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
BIAS (Note 1) .............................................. (V - 0.3V) to +16V  
IN  
ON_, STAT_, LIM_ (MAX5930A), TIM, MODE,  
LATCH, POL (MAX5930A)........................-0.3V to (V + 0.3V)  
SENSE_........................................................-0.3V to (IN_ + 0.3V)  
Current into Any Pin.......................................................... 50mA  
IN  
Note 1: V is the largest of V , V , and V  
.
IN3  
IN  
IN1 IN2  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +1V to +15V, provided at least one supply is larger than or equal to +2.7V, T = -40°C to +85°C, unless otherwise noted. Typical  
A
IN_  
values are at V  
= 12.0V, V  
= 5.0V, V  
= 3.3V, V = +3.3V, and T = +25°C.) (Notes 1, 2)  
IN1  
IN2  
IN3  
ON_ A  
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN_ Input Voltage Range  
V
At least one V  
+2.7V  
IN_  
1.0  
15  
5
V
IN_  
I
+ I  
+ I , V  
= 2.7V,  
IN1  
IN2  
IN3 ON_  
Supply Current  
I
2.5  
25  
mA  
Q
V
= +15V, after STAT_ high  
IN_  
CURRENT CONTROL  
LIM_ = GND (Note 4)  
22.5  
80  
28  
Slow-Comparator Threshold  
(V - V  
R
LIM_  
= 10kΩ (MAX5930A)  
125  
)
SENSE_  
V
V
mV  
IN_  
SC,TH  
R
x 7.5 x  
LIM_  
(Note 3)  
R
LIM_  
from LIM_ to GND (MAX5930A)  
-6  
10 + 25mV  
0/MAX5931B  
1mV overdrive  
50mV overdrive  
3
ms  
µs  
Slow-Comparator Response Time  
(Note 4)  
t
SCD  
130  
Fast-Comparator Threshold  
2 x  
mV  
FC,TH  
(V  
IN_  
- V  
)
V
SENSE_  
SC,TH  
200  
Fast-Comparator Response Time  
SENSE_ Input Bias Current  
MOSFET DRIVER  
t
10mV overdrive, from overload condition  
ns  
FCD  
I
V
= V  
0.03  
1
µA  
B SENSE_  
SENSE_  
IN_  
R
R
= 100kΩ  
8.0  
0.30  
5
10.8  
0.4  
9
13.6  
0.55  
14  
TIM  
Startup Period (Note 5)  
t
= 4kΩ (minimum value)  
ms  
START  
TIM  
TIM unconnected (default)  
2
_______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +1V to +15V, provided at least one supply is larger than or equal to +2.7V, T = -40°C to +85°C, unless otherwise noted. Typical  
A
IN_  
values are at V  
= 12.0V, V  
= 5.0V, V  
= 3.3V, V = +3.3V, and T = +25°C.) (Notes 1, 2)  
IN1  
IN2  
IN3  
ON_ A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
100  
100  
MAX  
UNITS  
Charging, V  
(Note 6)  
= GND, V  
= +5V  
GATE_  
IN_  
80  
125  
µA  
Discharging, during startup  
Discharging, normal turn-off or triggered by  
the slow comparator after startup; V  
Average Gate Current  
I
=
GATE_  
2
3
7
GATE  
5V, V  
= 10V, V  
= 0V  
ON_  
IN_  
mA  
V
Discharging, triggered by a fault after  
startup; V = 5V, V = 10V, (V -  
IN_  
28  
4.9  
50  
120  
5.6  
GATE_  
IN_  
V
) > V  
(Note 7)  
FC,TH_  
SENSE_  
Gate-Drive Voltage  
V
V
- V , I = 1µA  
IN_ GATE_  
5.3  
DRIVE  
GATE_  
ON COMPARATOR  
Low to high  
Hysteresis  
0.83  
0.875  
25  
0.90  
V
mV  
µs  
V
ON_ Threshold  
V
ON_,TH  
ON_ Propagation Delay  
ON_ Voltage Range  
10mV overdrive  
10  
V
Without false output inversion  
= V  
V
IN  
ON_  
ON_ Input Bias Current  
ON_ Pulse-Width Low  
I
V
0.03  
1
µA  
µs  
BON  
ON_  
IN  
t
To unlatch after a latched fault  
100  
UNLATCH  
DIGITAL OUTPUTS (STAT_)  
Output Leakage Current  
V
15V  
1
µA  
V
STAT_  
POL = unconnected (MAX5930A),  
= 1mA  
Output Voltage Low  
V
0.4  
OL_  
I
SINK  
UNDERVOLTAGE LOCKOUT (UVLO)  
Startup is initiated when this threshold is  
UVLO Threshold  
V
reached by any V  
(Note 8)  
and V > 0.9V  
ON_  
2.25  
2.45  
250  
2.65  
V
UVLO  
IN_  
UVLO Hysteresis  
V
mV  
µs  
UVLO,HYST  
UVLO Glitch Filter Reset Time  
t
V
< V maximum pulse width to reset  
UVLO  
10  
60  
D,GF  
IN  
Time input voltage must exceed V  
before startup is initiated  
UVLO  
UVLO to Startup Delay  
t
20  
37.5  
ms  
D,UVLO  
Input Power-Ready Threshold  
Input Power-Ready Hysteresis  
LOGIC AND TIMING  
V
(Note 9)  
0.9  
0.95  
50  
1.0  
V
PWRRDY  
V
mV  
PWRHYST  
POL Input Pullup  
I
POL = GND (MAX5930A)  
LATCH = GND  
2
2
4
4
6
6
µA  
µA  
POL  
LATCH Input Pullup  
I
LATCH  
MODE unconnected (default to sequencing  
mode)  
MODE Input Voltage  
V
1.0  
1.25  
1.5  
0.4  
V
V
MODE  
Independent-Mode Selection  
Threshold  
V
V
rising  
MODE  
INDEP,TH  
_______________________________________________________________________________________  
3
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +1V to +15V, provided at least one supply is larger than or equal to +2.7V, T = -40°C to +85°C, unless otherwise noted. Typical  
A
IN_  
values are at V  
= 12.0V, V  
= 5.0V, V  
= 3.3V, V  
= +3.3V, and T = +25°C.) (Notes 1, 2)  
IN1  
IN2  
IN3  
ON_  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Tracking-Mode Selection  
Threshold  
V
V
rising  
2.7  
TRACK,TH  
MODE  
MODE Input Impedance  
R
200  
kΩ  
MODE  
64 x  
Autoretry Delay  
t
Delay time to restart after fault shutdown  
ms  
RETRY  
t
START  
Note 2: All devices are 100% tested at T = +85°C. Limits over temperature are guaranteed by design.  
A
Note 3: The slow-comparator threshold is adjustable. V  
= R  
x 7.5µA + 25mV (see theTypical Operating Characteristics  
LIM_  
SC,TH  
section).  
Note 4: The current-limit slow-comparator response time is weighed against the amount of overcurrent, the higher the overcurrent  
condition, the faster the response time (see the Typical Operating Characteristics section).  
Note 5: The startup period (t  
) is the time during which the slow comparator is ignored and the device acts as a current-limiter  
START  
by regulating the sense current with the fast comparator (see the Startup Period section).  
(see the Typical Operating Characteristics section).  
Note 6: The current available at GATE is a function of V  
GATE  
Note 7: After a fault triggered by the fast comparator, the gate is discharged by the strong discharge current.  
Note 8: Each channel input while the other inputs are at +1V.  
Note 9: Each channel input while any other input is at +3.3V.  
Typical Operating Characteristics  
(Typical Operating Circuit, Q1 = Q2 = Q3 = Fairchild FDB7030L, V  
= +12.0V, V  
= +5.0V, V  
= +1V, T = +25°C, unless oth-  
IN1  
IN2  
IN3 A  
erwise noted. Channels 1 through 3 are identical in performance. Where characteristics are interchangeable, channels 1 through 3  
are referred to as X, Y, and Z.)  
TOTAL SUPPLY CURRENT  
vs. INPUT VOLTAGE  
GATE-DRIVE VOLTAGE  
vs. INPUT VOLTAGE  
SUPPLY CURRENT vs. INPUT VOLTAGE  
0/MAX5931B  
8
6
4
2
0
5.0  
4.0  
3.0  
2.0  
1.0  
4
3
2
1
0
I
V
V
= I + I + I  
V
= V = 2.7V  
INY INZ  
V
= V = 2.7V  
INZ  
IN IN1 IN2 IN3  
INY  
= V = V = V  
INX INY INZ  
IN  
= V  
= V  
= V  
ON2 ON3  
ON  
ON1  
I
+ I + I  
INX INY INZ  
V
= 0V  
ON  
I
INX  
V
= 3.3V  
ON  
I
+ I  
INY INZ  
0
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
V
(V)  
V
(V)  
V (V)  
IN  
INX  
INX  
4
_______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, Q1 = Q2 = Q3 = Fairchild FDB7030L, V  
= +12.0V, V  
= +5.0V, V = +1V, T = +25°C, unless oth-  
IN3 A  
IN1  
IN2  
erwise noted. Channels 1 through 3 are identical in performance. Where characteristics are interchangeable, channels 1 through 3  
are referred to as X, Y, and Z.)  
GATE CHARGE CURRENT  
vs. TEMPERATURE  
GATE-DRIVE VOLTAGE  
vs. INPUT VOLTAGE  
GATE CHARGE CURRENT  
vs. GATE VOLTAGE  
8
6
4
2
0
200  
160  
120  
80  
150  
120  
90  
60  
30  
0
V
= V = 2.7V  
INZ  
V
= V = V = 2.7V  
INY  
ONW  
INY  
INZ  
V
= 13.2V  
= 5V  
INX  
V
= 13.2V  
INX  
V
= 5V  
INX  
V
INX  
V
= 1V  
INX  
V
= 1V  
60  
INX  
40  
V
V
= V = V = 2.7V  
INY INZ  
ONX  
= 0V  
GATEX  
0
-40  
-15  
10  
35  
85  
125  
500  
0
2
4
6
8
10  
12  
14  
0
5
10  
15  
20  
TEMPERATURE (°C)  
V
(V)  
V
(V)  
INX  
GATEX  
TURN-OFF TIME  
vs. SENSE VOLTAGE  
STRONG GATE DISCHARGE CURRENT  
vs. TEMPERATURE  
STRONG GATE DISCHARGE CURRENT  
vs. GATE VOLTAGE  
10  
1
6
5
4
3
2
1
0
6
R
= 100Ω  
LIMX  
V
= 0V  
V
V
= 0V  
= V = 2.7V  
INZ  
ONX  
ONX  
V
= V = 2.7V  
INZ  
INY  
INY  
5
4
3
2
1
0
V
= 13.2V  
INX  
V
= 13.2V  
INX  
V
= 5V  
INX  
0.1  
0.01  
V
= 5V  
INX  
SLOW-COMPARATOR  
THRESHOLD  
V
= 3.3V  
INX  
V
= 3.3V  
INX  
FAST-COMPARATOR  
THRESHOLD  
0.001  
V
= 1V  
-15  
INX  
V
= 1V  
INX  
0.0001  
0
25  
50  
- V  
75  
(mV)  
100  
-40  
10  
35  
60  
85  
0
4
8
12  
(V)  
16  
20  
V
TEMPERATURE (°C)  
INX  
SENSEX  
V
GATEX  
TURN-OFF TIME vs. SENSE VOLTAGE  
(EXPANDED SCALE)  
SLOW-COMPARATOR THRESHOLD  
STARTUP PERIOD  
vs. R  
vs. R  
LIMX  
TIM  
10  
120  
100  
80  
60  
40  
20  
0
R
= 100Ω  
LIMX  
1
60  
40  
20  
0
SLOW-COMPARATOR THRESHOLD  
0.1  
20  
25  
30  
35  
40  
45  
50  
4
6
8
2
10  
0
0
100  
200  
R
300  
(kΩ)  
400  
V
- V  
(mV)  
R
(kΩ)  
INX  
SENSEX  
LIMX  
TIM  
_______________________________________________________________________________________  
5
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, Q1 = Q2 = Q3 = Fairchild FDB7030L, V  
= +12.0V, V  
= +5.0V, V = +1V, T = +25°C, unless oth-  
IN3 A  
IN1  
IN2  
erwise noted. Channels 1 through 3 are identical in performance. Where characteristics are interchangeable, channels 1 through 3  
are referred to as X, Y, and Z.)  
TURN-OFF TIME  
TURN-OFF TIME  
FAST-COMPARATOR FAULT  
SLOW-COMPARATOR FAULT  
V
STATX  
2V/div  
V
STATX  
2V/div  
0V  
0V  
V
- V  
SENSEX  
V
- V  
SENSEX  
INX  
INX  
100mV/div  
0V  
25mV/div  
AC-COUPLED  
V
V
GATEX  
GATEX  
5V/div  
5V/div  
0V  
0V  
100ns/div  
1ms/div  
STARTUP WAVEFORMS SLOW TURN-ON  
STARTUP WAVEFORMS FAST TURN-ON  
(C  
GATE  
= 0.22μF, C  
= 1000μF)  
(C  
= 0nF, C  
= 1000μF)  
BOARD  
GATE  
BOARD  
V
ONX  
V
ON  
5V/div  
5V/div  
V
V
STATX  
STATX  
5V/div  
5V/div  
I
OUTX  
I
OUTX  
2A/div  
2A/div  
V
V
GATEX  
GATEX  
10V/div  
10V/div  
0/MAX5931B  
V
V
OUTX  
OUTX  
5V/div  
5V/div  
2ms/div  
2ms/div  
TURN-ON IN  
VOLTAGE-TRACKING MODE  
AUTORETRY DELAY  
V
INX  
V
PWRRDY  
V
GATEX  
2V/div  
2V/div  
0V  
0V  
V
ONX  
2V/div  
V
OUTX  
2V/div  
0V  
V
GATEY  
I
OUTX  
500mA/div  
5V/div  
0V  
V
GATEX  
0V  
4ms/div  
100ms/div  
6
_______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, Q1 = Q2 = Q3 = Fairchild FDB7030L, V  
= +12.0V, V  
= +5.0V, V = +1V, T = +25°C, unless oth-  
IN3 A  
IN1  
IN2  
erwise noted. Channels 1 through 3 are identical in performance. Where characteristics are interchangeable, channels 1 through 3  
are referred to as X, Y, and Z.)  
TURN-ON IN  
XXXX  
TURN-OFF IN  
VOLTAGE-TRACKING MODE  
XXXX  
POWER-SEQUENCING MODE  
V
INX  
V
V
V
PWRRDY  
PWRRDY  
INX  
2V/div  
2V/div  
0V  
0V  
V
ONX  
V
2V/div  
ONX  
2V/div  
0V  
V
GATEY  
V
GATEY  
5V/div  
0V  
5V/div  
0V  
V
GATEX  
V
GATEX  
4ms/div  
4ms/div  
TURN-OFF IN  
POWER-SEQUENCING MODE  
TURN-ON IN  
INDEPENDENT MODE  
XXXX  
XXXX  
V
V
V
INX  
INX  
PWRRDY  
2V/div  
2V/div  
0V  
0V  
ONX  
V
V
2V/div  
ONX  
2V/div  
0V  
V
GATEY  
V
GATEY  
V
5V/div  
0V  
GATEX  
5V/div  
0V  
V
GATEX  
4ms/div  
4ms/div  
STRONG GATE DISCHARGE CURRENT  
vs. OVERDRIVE  
TURN-OFF IN  
XXXX  
INDEPENDENT MODE  
50  
40  
30  
20  
10  
0
V
V
= V  
IN  
ONX  
V
INX  
V
PWRRDY  
= 5V  
GATE  
2V/div  
0V  
AFTER STARTUP  
LIM_ = GND V = 12V  
INX  
V
ONX  
V
= 5V  
2V/div  
INX  
V
GATEY  
V
= 2.7V  
INX  
5V/div  
0V  
V
GATEX  
20  
25  
30  
35  
40  
(mV)  
45  
50  
4ms/div  
V
- V  
SENSE_  
IN_  
_______________________________________________________________________________________  
7
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
Pin Description  
PIN  
MAX5931A/  
NAME  
FUNCTION  
MAX5930A  
MAX5931B  
1
2
3
1
POL  
ON2  
ON1  
STAT Output-Polarity Select. See Table 3 and the Status Outputs (STAT_) section.  
On/Off Channel 2 Control Input. See the Mode section.  
2
On/Off Channel 1 Control Input. See the Mode section.  
Channel 1 Current-Limit Setting. Connect a resistor from LIM1 to GND to set current-trip  
level. Connect to GND for the default 25mV threshold. Do not leave LIM1 unconnected.  
4
5
3
LIM1  
IN1  
Channel 1 Supply Input. Connect to a 1V to 15V supply voltage and to one end of R  
Bypass with a 0.1µF capacitor to ground.  
.
SENSE1  
Channel 1 Current-Sense Input. Connect SENSE1 to the drain of an external MOSFET and  
to one end of R  
6
7
8
4
5
6
SENSE1  
.
SENSE1  
GATE1 Channel 1 Gate-Drive Output. Connect to the gate of the external n-channel MOSFET.  
Open-Drain Status Signal for Channel 1. STAT1 asserts when hot swap is successful and t  
STAT1  
START  
has elapsed. STAT1 deasserts if ON1 is low, or if channel 1 is turned off for any fault condition.  
Open-Drain Status Signal for Channel 2. STAT2 asserts when hot swap is successful and t  
has elapsed. STAT2 deasserts if ON2 is low, or if channel 2 is turned off for any fault condition.  
START  
9
7
8
STAT2  
TIM  
Startup Timer Setting. Connect a resistor from TIM to GND to set the startup period. Leave  
10  
11  
12  
13  
TIM unconnected for the default startup period of 9ms. R  
must be between 4kΩ and  
TIM  
500kΩ.  
Latch/Autoretry Selection Input. Connect LATCH to GND for autoretry mode after a fault.  
Leave LATCH unconnected for latch mode.  
9
LATCH  
STAT3  
Open-Drain Status Signal for Channel 3. STAT3 asserts when hot swap is successful and  
10  
t
has elapsed. STAT3 deasserts if ON3 is low, or if channel 3 is turned off for any fault  
START  
condition.  
Supply Reference Output. The highest supply is available at BIAS for filtering. Connect a 1nF  
to 10nF ceramic capacitor from BIAS to GND. No other connections are allowed to BIAS.  
0/MAX5931B  
11  
BIAS  
GND  
14  
15  
12  
13  
Ground  
GATE3 Channel 3 Gate-Drive Output. Connect to gate of external n-channel MOSFET.  
Channel 3 Current-Sense Input. Connect SENSE3 to the drain of an external MOSFET and  
SENSE3  
16  
17  
14  
15  
to one end of R  
.
SENSE3  
Channel 3 Supply Input. Connect to a supply voltage from 1V to 15V and to one end of  
. Bypass with a 0.1µF capacitor to ground.  
IN3  
R
SENSE3  
Channel 3 Current-Limit Setting. Connect a resistor from LIM3 to GND to set current-trip  
level. Connect to GND for the default 25mV threshold. Do not leave LIM3 unconnected.  
18  
19  
20  
16  
17  
LIM3  
GATE2 Channel 2 Gate-Drive Output. Connect to gate of external n-channel MOSFET.  
Channel 2 Current-Sense Input. Connect SENSE2 to the drain of an external MOSFET and  
SENSE2  
to one end of R  
.
SENSE2  
Channel 2 Supply Input. Connect to a 1V to 15V supply voltage and to one end of R  
Bypass with a 0.1µF capacitor to ground.  
.
SENSE2  
21  
22  
18  
IN2  
Channel 2 Current-Limit Setting. Connect a resistor from LIM2 to GND to set current-trip  
level. Connect to GND for the default 25mV threshold. Do not leave LIM2 unconnected.  
LIM2  
8
_______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
Pin Description (continued)  
PIN  
MAX5931A/  
NAME  
FUNCTION  
MAX5930A  
MAX5931B  
23  
24  
19  
ON3  
On/Off Channel 3 Control Input. See the Mode section.  
Mode Configuration Input. Mode is configured according to Table 1 as soon as one of the  
IN_ voltages exceeds UVLO and before turning on OUT_ (see the Mode section).  
20  
MODE  
The MAX5930A/MAX5931A/MAX5931B turn off all  
Detailed Description  
channels if any of the above conditions are not met.  
After a fault-latched shutdown, cycle any of the ON_  
pins to unlatch and restart all channels.  
The MAX5930A/MAX5931A/MAX5931B are circuit-  
breaker ICs for hot-swap applications where a line card  
is inserted into a live backplane. The MAX5931A/  
MAX5931B operate down to 1V provided one of the  
inputs is above 2.7V. Normally, when a line card is  
plugged into a live backplane, the card’s discharged  
filter capacitors provide low impedance that can  
momentarily cause the main power supply to collapse.  
The MAX5930A/MAX5931A/MAX5931B reside either on  
the backplane or on the removable card to provide  
inrush current limiting and short-circuit protection. This  
is achieved by using external n-channel MOSFETs,  
external current-sense resistors, and on-chip compara-  
tors. The startup period and current-limit threshold of  
the MAX5930A/MAX5931A/MAX5931B can be adjusted  
with external resistors. Figure 1 shows the MAX5930A/  
MAX5931A/MAX5931B functional diagram.  
Power-Sequencing Mode  
Leave MODE unconnected to enter power-sequencing  
mode. While in power-sequencing mode, the  
MAX5930A/MAX5931A/MAX5931B turn on and off each  
channel depending on the state of the corresponding  
V . To turn on a given channel:  
ON_  
• At least one V  
must exceed V  
(2.45V) for the  
IN_  
UVLO  
UVLO to startup delay (37.5ms).  
• All V  
must exceed V  
(0.95V).  
IN_  
PWRRDY  
• The corresponding V  
(0.875V).  
must exceed V  
ON_  
ON,TH  
• No faults may be present on any channel.  
The MAX5930A/MAX5931A/MAX5931B turn off all chan-  
nels if any of the above conditions are not met. After a  
fault-latched shutdown, cycle any of the ON_ inputs to  
unlatch and restart all channels, dependent on the corre-  
The MAX5930A offers three programmable current lim-  
its, selectable fault-management mode, and selectable  
STAT_ output polarity. The MAX5930A features fixed  
current limits, selectable fault-management mode, and  
fixed STAT_ output polarity.  
sponding V  
state.  
ON_  
Independent Mode  
Mode  
The MAX5930A/MAX5931A/MAX5931B support three  
modes of operation: voltage-tracking, power-sequenc-  
ing, and independent mode. Select the appropriate  
mode according to Table 1.  
Connect MODE to GND to enter independent mode.  
While in independent mode the MAX5930A/  
MAX5931A/MAX5931B provide complete independent  
control for each channel. To turn on a given channel:  
• At least one V  
must exceed V  
(2.45V) for the  
IN_  
UVLO  
UVLO to startup delay (37.5ms).  
Voltage-Tracking Mode  
Connect MODE high to enter voltage-tracking mode.  
While in voltage-tracking mode, all channels turn on  
and off together. To turn all channels on:  
• The corresponding V  
(0.95V).  
must exceed V  
PWRRDY  
IN_  
• The corresponding V  
(0.875V).  
must exceed V  
ON,TH  
ON_  
• At least one V  
must exceed V  
(2.45V) for the  
IN_  
UVLO  
UVLO to startup delay (37.5ms).  
Table 1. Operational Mode Selection  
• All V  
• All V  
must exceed V  
(0.95V).  
IN_  
PWRRDY  
MODE  
High (Connect to BIAS)  
Unconnected  
GND  
OPERATION  
Voltage Tracking  
must exceed V  
(0.875V).  
ON_  
ON,TH  
• No faults may be present on any channel.  
Voltage Sequencing  
Independent  
_______________________________________________________________________________________  
9
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
R
R
LIM2  
R
LIM1  
TIM  
1nF  
LIM1*  
LIM2*  
TIM  
BIAS  
POL*  
2.45V  
IN1  
IN2  
V
V
V
V
SC, TH  
SC, TH  
FC, TH  
FC, TH  
STARTUP  
OSCILLATOR  
R
R
SENSE2  
SENSE1  
FAST  
COMPARATOR  
FAST  
COMPARATOR  
UVLO  
BIAS AND  
REFERENCES  
UVLO  
SENSE1  
GATE1  
SENSE2  
GATE2  
SLOW  
COMPARATOR  
SLOW  
COMPARATOR  
TIMING  
OSCILLATOR  
CURRENT CONTROL  
AND  
STARTUP LOGIC  
CURRENT CONTROL  
AND  
STARTUP LOGIC  
CHARGE  
PUMP  
CHARGE  
PUMP  
DEVICE CONTROL  
LOGIC  
Q1  
Q2  
OUT1  
OUT2  
SLOW DISCHARGE  
SLOW DISCHARGE  
FAST DISCHARGE  
FAST DISCHARGE  
3mA  
50mA  
3mA  
50mA  
100μA  
100μA  
STAT1  
LIM3*  
STAT2  
R
LIM3  
IN3  
V
V
FC, TH  
SC, TH  
R
SENSE3  
MAX5930A  
MAX5931A  
MAX5931B  
FAST  
COMPARATOR  
UVLO  
SENSE3  
GATE3  
SLOW  
COMPARATOR  
CURRENT CONTROL  
AND  
STARTUP LOGIC  
CHARGE  
PUMP  
Q3  
0/MAX5931B  
OUT3  
SLOW DISCHARGE  
FAST DISCHARGE  
ON  
INPUT  
COMPARATORS  
FAULT  
MANAGEMENT  
OPERATION  
MODE  
3mA  
50mA  
100μA  
*MAX5930A ONLY.  
STAT3  
LATCH*  
ON1 ON2 ON3  
MODE  
Figure 1. Functional Diagram  
The MAX5930A/MAX5931A/MAX5931B turn off the cor-  
responding channel if any of the above conditions are  
not met. During a fault condition on a given channel  
only, the affected channel is disabled. After a fault-  
latched shutdown, recycle the corresponding ON_  
inputs to unlatch and restart only the corresponding  
channel.  
Startup Period  
sets the duration of the startup period from 0.4ms  
R
TIM  
(R  
= 4kΩ) to 51ms (R  
= 500kΩ) (see the Setting  
TIM  
TIM  
the Startup Period, R  
section). The default startup  
TIM  
period is fixed at 9ms when TIM is unconnected. The  
startup period begins after the turn-on conditions are  
met as described in the Mode section, and the device  
is not latched or in its autoretry delay (see the Latched  
and Autoretry Fault Management section).  
10 ______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
ON1  
ON2  
ON3  
V
V
(2.45V)  
UVLO  
ANY  
IN_  
(0.95V)  
PWRRDY  
IN2  
V
(0.95V)  
PWRRDY  
IN3  
V
(0.95V)  
PWRRDY  
OUT1*  
OUT2*  
OUT3*  
*THE OUT_ DISCHARGE RATE IS A RESULT OF NATURAL DECAY OF THE LOAD RESISTANCE AND CAPACITANCE.  
Figure 2. Voltage-Tracking Timing Diagram (Provided t  
Requirement is Met)  
D, UVLO  
______________________________________________________________________________________ 11  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
ON1  
ON2  
ON3  
V
(2.45V)  
UVLO  
ANY  
IN_  
V
(0.95V)  
PWRRDY  
IN2  
IN3  
V
(0.95V)  
PWRRDY  
V
(0.95V)  
PWRRDY  
0/MAX5931B  
*
OUT1  
OUT2  
*
*
OUT3  
*THE OUT_ DISCHARGE RATE IS A RESULT OF NATURAL DECAY OF THE LOAD RESISTANCE AND CAPACITANCE.  
Figure 3. Power-Sequencing Timing Diagram (Provided t  
Requirement is Met)  
D, UVLO  
12 ______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
voltage to ensure that the voltage across the sense resis-  
tor does not exceed V  
. This effectively regulates  
SU,TH  
the inrush current during startup.  
ON1 = ON2 = ON3  
Figure 6 shows the startup waveforms. STAT_ is assert-  
ed immediately after the startup period if no fault condi-  
tion is present.  
OVERCURRENT  
FAULT  
CONDITION  
VariableSpeed/BiLevel Fault Protection  
VariableSpeed/BiLevel fault protection incorporates  
comparators with different thresholds and response  
times to monitor the load current (Figure 7). During the  
startup period, protection is provided by limiting the  
load current. Protection is provided in normal operation  
(after the startup period has expired) by discharging  
the MOSFET gates with a strong 3mA/50mA pulldown  
current in response to a fault condition. After a fault,  
STAT_ is deasserted. Use the LATCH input to control  
whether the STAT_ outputs latch off or autoretry (see  
the Latched and Autoretry Fault Management section).  
*
OUT1  
*
OUT2  
OUT3  
Slow-Comparator Startup Period  
The slow comparator is disabled during the startup  
period while the external MOSFETs are turning on.  
Disabling the slow comparator allows the device to  
ignore the higher-than-normal inrush current charging  
the board capacitors when a card is first plugged into a  
live backplane.  
*
*THE OUT_ DISCHARGE RATE IS A RESULT OF NATURAL DECAY  
OF THE LOAD RESISTANCE AND CAPACITANCE.  
Slow-Comparator Normal Operation  
After the startup period is complete, the slow comparator  
is enabled and the device enters normal operation. The  
Figure 4. Power-Sequencing Fault Turn-Off  
comparator threshold voltage (V  
) is adjustable from  
SC,TH  
25mV to 100mV. The slow-comparator response time is  
3ms for a 1mV overdrive. The response time decreases  
to 100µs with a large overdrive. The variable-speed  
response time allows the MAX5930A/MAX5931A/  
MAX5931B to ignore low-amplitude momentary glitches,  
thus increasing system noise immunity. After an extend-  
ed overcurrent condition, a fault is generated, STAT_ out-  
puts are deasserted and the MOSFET gates are  
discharged with a 3mA pulldown current.  
The MAX5930A/MAX5931A/MAX5931B limit the load  
current if an overcurrent fault occurs during startup  
instead of completely turning off the external MOSFETs.  
The slow comparator is disabled during the startup  
period and the load current can be limited in two ways:  
1) Slowly enhancing the MOSFETs by limiting the  
MOSFET gate-charging current.  
2) Limiting the voltage across the external current-  
sense resistor.  
Fast-Comparator Startup Period  
During the startup period, the fast comparator regu-  
lates the gate voltages to ensure that the voltage  
across the sense resistor does not exceed the startup  
During the startup period, the gate-drive current is limit-  
ed to 100µA and decreases with the increase of the gate  
voltage (see the Typical Operating Characteristics sec-  
tion). This allows the controller to slowly enhance the  
MOSFETs. If the fast comparator detects an overcurrent,  
the MAX5930A/MAX5931A/MAX5931B regulate the gate  
fast-comparator threshold voltage (V  
), V  
is  
SU,TH  
SU,TH  
scaled to two times the slow-comparator threshold  
(V ).  
SC,TH  
______________________________________________________________________________________ 13  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
ON1  
ON2  
ON3  
V
(2.45V)  
UVLO  
IN1  
IN2  
V
(0.95V)  
PWRRDY  
V
(0.95V)  
PWRRDY  
IN3  
V
(0.95V)  
PWRRDY  
0/MAX5931B  
t
D,UVLO  
*
OUT1  
OUT2  
*
*
OUT3  
*THE OUT_ DISCHARGE RATE IS A RESULT OF NATURAL DECAY OF THE LOAD RESISTANCE AND CAPACITANCE.  
Figure 5. Independent-Mode Timing Diagram  
14 ______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
ON_  
STAT_  
SLOW  
COMPARATOR  
t
START  
V
GATE_  
3ms  
V
DRIVE  
FAST  
COMPARATOR  
V
OUT_  
V
TH  
V
V
GATE_  
130μs  
OUT_  
V
C
= LARGE  
= 0  
200ns  
FC,TH  
BOARD_  
R
SENSE_  
C
BOARD_  
V
SC,TH  
V
FC,TH  
I
LOAD_  
(2 x V  
)
SC,TH  
SENSE VOLTAGE (V - V  
)
IN  
SENSE  
t
ON  
Figure 6. Independent-Mode Startup Waveforms  
Figure 7. VariableSpeed/BiLevel Response  
Fast-Comparator Normal Operation  
In normal operation, if the load current reaches the fast-  
comparator threshold, a fault is generated, STAT_ is  
deasserted, and the MOSFET gates are discharged  
with a strong 50mA pulldown current. This happens in  
the event of a serious current overload or a dead short.  
below the UVLO threshold for longer than t  
reinitiates  
D,GF  
. See Figure 8 for  
t
and the startup period, t  
D,UVLO  
START  
an example of automatic turn-on function.  
Latched and Autoretry Fault Management  
The MAX5930A can be configured to latch the external  
MOSFETs off or to autoretry (see Table 2). Toggling  
ON_ below 0.875V for at least 100µs clears the  
MAX5930A/MAX5931A/MAX5931B (LATCH = uncon-  
nected) fault and reinitiates the startup period.  
Similarly, the MAX5930A/MAX5931A/MAX5931B  
(LATCH = GND) turn the external MOSFETs off when  
an overcurrent fault is detected, then automatically  
restart after the autoretry delay that is internally set to  
The fast-comparator threshold voltage (V  
) is  
FC,TH  
scaled to two times the slow-comparator threshold  
(V ). This comparator has a fast response time of  
SC,TH  
200ns (Figure 7).  
Undervoltage Lockout (UVLO)  
The UVLO prevents the MAX5930A/MAX5931A/  
MAX5931B from turning on the external MOSFETs until  
one input voltage exceeds the UVLO threshold (2.45V)  
64 times t  
.
START  
for t  
. The MAX5930A/MAX5931A/MAX5931B use  
D,UVLO  
Status Outputs (STAT_)  
The status (STAT_) outputs are open-drain outputs that  
assert when hot swap is successful and t has  
elapsed. STAT_ deasserts if ON_ is low or if the chan-  
nel is turned off for any fault condition.  
power from the highest input voltage rail for the charge  
pumps. This allows for more efficient charge-pump oper-  
START  
ation. The highest V  
is provided as an output at BIAS.  
IN_  
The UVLO protects the external MOSFETs from an insuffi-  
cient gate-drive voltage. t ensures that the board  
D,UVLO  
is fully inserted into the backplane and that the input volt-  
ages are stable. The MAX5930A/MAX5931A/MAX5931B  
The polarity of the STAT_ outputs is selected using POL  
for the MAX5930A (see Table 3). Tables 4 and 5 con-  
tain the MAX5930A/MAX5931A/MAX5931B truth tables.  
include a UVLO glitch filter (t  
) to reject all input volt-  
D,GF  
age noise and transients. Bringing all input supplies  
______________________________________________________________________________________ 15  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
Table 2. Selecting Fault-Management  
BACKPLANE  
REMOVABLE CARD  
Mode (MAX5930A)  
V
V
V
1
LATCH  
FAULT MANAGEMENT  
2
3
Unconnected  
Low  
Fault condition latches MOSFETs off  
Autoretry mode  
Table 3. Selecting STAT_ Polarity  
(MAX5930A)  
ON1  
ON2  
ON3  
ON1  
ON2  
ON3  
POL  
STAT_  
MAX5930A  
MAX5931A  
MAX5931B  
Low  
Unconnected  
Asserts low  
Asserts high (open-drain)  
GND  
Applications Information  
GND  
Component Selection  
n-Channel MOSFETs  
Select the external MOSFETs according to the applica-  
tion’s current levels. Table 6 lists recommended com-  
Figure 8. Automatic Turn-On When Input Voltages are Above  
their Respective Undervoltage Lockout Threshold (Provided  
ponents. The MOSFET’s on-resistance (R  
)
DS(ON)  
should be chosen low enough to have a minimum volt-  
age drop at full load to limit the MOSFET power dissi-  
t
Requirement is Met)  
D,UVLO  
pation. High R  
causes output ripple if there is a  
DS(ON)  
Slow-Comparator Threshold, R  
(MAX5930A)  
LIM_  
pulsating load. Determine the device power rating to  
accommodate a short-circuit condition on the board at  
startup and when the device is in autoretry mode (see  
the MOSFET Thermal Considerations section).  
The slow-comparator threshold voltage is adjustable  
from 25mV to 100mV, allowing designers to fine-tune  
the current-limit threshold for use with standard-value  
sense resistors. Low slow-comparator thresholds allow  
for increased efficiency by reducing the power dissi-  
pated by the sense resistor. Furthermore, the low 25mV  
slow-comparator threshold is beneficial when operating  
with supply rails down to 1V because it allows a small  
percentage of the overall output voltage to be used for  
current sensing. The VariableSpeed/BiLevel fault pro-  
tection feature offers inherent system immunity against  
load transients and noise. This allows the slow-com-  
parator threshold to be set close to the maximum nor-  
mal operating level without experiencing nuisance  
faults. To adjust the slow-comparator threshold, calcu-  
Using these devices in latched mode allows the use of  
MOSFETs with lower power ratings. A MOSFET typical-  
ly withstands single-shot pulses with higher dissipation  
than the specified package rating. Table 7 lists some  
recommended MOSFET manufacturers.  
0/MAX5931B  
Sense Resistor  
The slow-comparator threshold voltage is adjustable  
from 25mV to 100mV. Select a sense resistor that caus-  
es a drop equal to the slow-comparator threshold volt-  
age at a current level above the maximum normal  
operating current. Typically, set the overload current at  
1.2 to 1.5 times the full load current. The fast-compara-  
tor threshold is two times the slow-comparator thresh-  
old in normal operating mode. Choose the sense-  
resistor power rating to be greater than or equal to 2 x  
late R  
as follows:  
LIM_  
V
25mV  
7.5μA  
TH  
R
=
LIM_  
(I  
) x V  
. Table 7 lists some recommend-  
SC,TH  
where V  
is the desired slow-comparator threshold  
OVERLOAD  
ed sense-resistor manufacturers.  
TH  
voltage. Shorting LIM_ to GND sets V  
to 25mV. Do  
TH  
not leave LIM_ unconnected.  
16 ______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
Table 4. Status Output Truth Table: Voltage-Tracking and Power-Sequencing Modes  
CHANNEL 1  
FAULT  
CHANNEL 2  
FAULT  
CHANNEL 3  
FAULT  
STAT1/  
GATE1*  
STAT2/  
GATE2*  
STAT3/  
GATE3*  
PART  
Yes  
X
X
Yes  
X
X
X
L/OFF  
L/OFF  
L/OFF  
L/OFF  
H/ON  
H/OFF  
H/OFF  
H/OFF  
H/OFF  
L/ON  
L/OFF  
L/OFF  
L/OFF  
L/OFF  
H/ON  
H/OFF  
H/OFF  
H/OFF  
H/OFF  
L/ON  
L/OFF  
L/OFF  
L/OFF  
L/OFF  
H/ON  
H/OFF  
H/OFF  
H/OFF  
H/OFF  
L/ON  
MAX5930A (POL = 1),  
MAX5931B  
X
Yes  
X
X
X
No  
Yes  
X
No  
X
No  
X
Yes  
X
X
MAX5930A (POL = 0),  
MAX5931A  
X
Yes  
X
X
X
No  
No  
No  
*L = Low, H = High.  
Table 5. Status Output Truth Table: Independent Mode  
CHANNEL 1  
FAULT  
CHANNEL 2  
FAULT  
CHANNEL 3  
FAULT  
STAT1/  
GATE1  
STAT2/  
GATE2  
STAT3/  
GATE3  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
Yes  
No  
Unasserted/OFF  
Unasserted/OFF  
Unasserted/OFF  
Unasserted/OFF  
Asserted/ON  
Unasserted/OFF  
Unasserted/OFF  
Asserted/ON  
Unasserted/OFF  
Asserted/ON  
Yes  
No  
Unasserted/OFF  
Asserted/ON  
No  
Asserted/ON  
Yes  
Yes  
No  
Yes  
No  
Unasserted/OFF  
Unasserted/OFF  
Asserted/ON  
Unasserted/OFF  
Asserted/ON  
No  
Asserted/ON  
No  
Yes  
No  
Asserted/ON  
Unasserted/OFF  
Asserted/ON  
No  
No  
Asserted/ON  
Asserted/ON  
Note: STAT_ is asserted when hot swap is successful and t  
has elapsed. STAT_ is unasserted during a fault.  
ON  
Table 6. Recommended n-Channel MOSFETs  
PART NUMBER  
MANUFACTURER  
DESCRIPTION  
10mΩ, 8-pin SO, 30V  
FDB8030L  
FDC653N  
FDS6670A  
FDS6692A  
55mΩ, SuperSOT-6, 30V, 5A  
3.5mΩ, D2PAK, 30V  
Fairchild Semiconductor  
14mΩ, 8-pin SO, 30V  
IRF6635TRPBF  
IRF7413  
1.8mΩ, DirectFET MX, 30V  
11mΩ, 8-pin SO, 30V  
International Rectifier  
IRF7401  
22mΩ, 8-pin SO, 20V  
IRF7805ZPBF  
7mΩ, 8-pin SO, 30V  
NTMS4N01R2G  
NTB75N06L  
HAT2099H  
40mΩ, 8-pin SO, 20V  
ON Semiconductor  
11mΩ, D2PAK, 60V  
Renesas Technology Corp.  
5mΩ, 8-pin SO (thermal land), 30V  
______________________________________________________________________________________ 17  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
Table 7. Component Manufacturers  
COMPONENT  
MANUFACTURER  
PHONE  
WEBSITE  
www.vishay.com  
Vishay  
402-563-6325  
361-992-7900  
888-522-5372  
310-322-3331  
602-244-6600  
Sense Resistors  
IRC, Inc.  
www.irctt.com  
Fairchild Semiconductor  
International Rectifier  
ON Semiconductor  
www.fairchildsemi.com  
www.irf.com  
MOSFETs  
www.onsemi.com  
Setting the Startup Period, R  
START  
TIM  
C
× ΔV  
+ Q  
GATE  
GATE GATE  
The startup period (t  
) is adjustable from 0.4ms to  
t =  
I
50ms. The adjustable startup period feature allows sys-  
tems to be customized for MOSFET gate capacitance  
GATE  
where:  
and board capacitance (C ). The startup period is  
BOARD  
C
is the external gate to ground capacitance  
adjusted with a resistor connected from TIM to GND  
(R ). R must be between 4kΩ and 500kΩ. The  
GATE  
(Figure 9),  
TIM  
TIM  
startup period has a default value of 9ms when TIM is left  
ΔV  
is the change in gate charge,  
GATE  
unconnected. Calculate R  
with the following equation:  
TIM  
Q
GATE  
is the MOSFET total gate charge,  
I
is the gate-charging/discharging current.  
GATE  
t
START  
R
=
TIM  
In this case, the inrush current depends on the MOSFET  
gate-to-drain capacitance (C ) plus any additional  
capacitance from GATE to GND (C  
load current (I  
128 × 800pF  
is the desired startup period.  
RSS  
), and on any  
where t  
GATE  
START  
) present during the startup period.  
LOAD  
Startup Sequence  
There are two ways of completing the startup  
sequence. Case A describes a startup sequence that  
slowly turns on the MOSFETs by limiting the gate  
charge. Case B uses the current-limiting feature and  
turns on the MOSFETs as fast as possible while still  
preventing a high inrush current. The output voltage  
C
BOARD  
I
=
× I  
+ I  
INRUSH  
GATE LOAD  
C
+ C  
RSS  
GATE  
Example: Charging and discharging times using the  
Fairchild FDB7030L MOSFET  
0/MAX5931B  
If V  
V
= 5V then GATE1 charges up to 10.4V (V  
+
ramp-up time (t ) is determined by the longer of the  
ON  
IN1  
DRIVE  
IN1  
), therefore ΔV  
= 10.4V. The manufacturer’s  
two timings, case A and case B. Set the startup timer  
GATE  
data sheet specifies that the FDB7030L has approxi-  
mately 60nC of gate charge and C = 600pF. The  
(t  
) to be longer than t  
to guarantee enough  
ON  
START  
time for the output voltage to settle.  
RSS  
MAX5930A/MAX5931A/MAX5931B have a 100µA gate  
charging current and a 3mA/50mA normal/strong dis-  
Case A: Slow Turn-On (Without Current Limit)  
There are two ways to turn on the MOSFETs without  
reaching the fast-comparator current limit:  
charging current. C  
= 6µF and the load does not  
BOARD  
draw any current during the startup period. With no gate  
capacitor, the inrush current, charge, and discharge  
times are:  
• If the board capacitance (C  
inrush current is low.  
) is small, the  
BOARD  
• If the gate capacitance is high, the MOSFETs turn  
on slowly.  
6μF  
600pF + 0  
0 × 10.4V + 60nC  
100μA  
I
=
× 100μA + 0 = 1A  
INRUSH  
In both cases, the turn-on time is determined only by  
the charge required to enhance the MOSFET. The  
small 100µA gate-charging current effectively limits  
the output voltage dV/dt. Connecting an external  
capacitor between GATE and GND extends the turn-  
on time. The time required to charge/discharge a  
MOSFET is as follows:  
t
=
= 0.6ms  
CHARGE  
0 × 10.4V + 60nC  
t
=
= 0.02ms  
=1.2μs  
DISCHARGE(NORMAL)  
3mA  
0 × 10.4V + 60nC  
t
=
DISCHARGE(STRONG)  
50mA  
18 ______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
R
SENSE_  
V
OUT_  
V
V
IN  
IN_  
C
BOARD  
R
PULLUP  
R
R
1
C
GATE  
IN_  
SENSE_  
GATE_  
IN_  
ON_  
SENSE_  
GATE_  
STAT_  
MAX5930A  
MAX5931A  
MAX5931B  
(R x R ) V ,  
ON TH  
MAX5930A  
MAX5931A  
MAX5931B  
2
1
V
-
TURN-ON  
R
2
2
ON_  
GND  
Figure 9. Operating with an External Gate Capacitor  
Figure 10. Adjustable Undervoltage Lockout  
ON Comparators  
The ON comparators control the on/off function of the  
MAX5930A/MAX5931A/MAX5931B. ON_ is also used to  
With a 22nF gate capacitor, the inrush current, charge,  
and discharge times are:  
6μF  
600pF + 22nF  
I
=
× 100μA + 0 = 26.5mA  
reset the fault latch (latch mode). Pull V  
low for  
ON_  
INRUSH  
100µs, t  
, to reset the shutdown latch. ON_ also  
UNLATCH  
22nF × 10.4V + 60nC  
programs the UVLO threshold (see Figure 10). A resis-  
tive divider between V , V , and GND sets the  
t
=
= 2.89ms  
CHARGE  
100μA  
IN_  
ON_  
user-programmable turn-on voltage. In power-sequenc-  
ing mode, an RC circuit can be used at ON_ to set the  
delay timing (see Figure 11).  
22nF ×10.4V + 60nC  
t
=
= 0.096ms  
DISCHARGE(NORMAL)  
3mA  
22nF × 10.4V + 60nC  
t
=
= 5.8μs  
DISCHARGE(STRONG)  
50mA  
Using the MAX5930A/MAX5931A/  
MAX5931B on the Backplane  
Case B: Fast Turn-On (With Current Limit)  
In applications where the board capacitance (C  
is high, the inrush current causes a voltage drop across  
that exceeds the startup fast-comparator  
Using the MAX5930A/MAX5931A/MAX5931B on the  
backplane allows multiple cards with different input  
capacitance to be inserted into the same slot even if  
the card does not have on-board hot-swap protection.  
The startup period can be triggered if IN_ is connected  
to ON_ through a trace on the card (Figure 12).  
)
BOARD  
R
SENSE  
threshold. The fast comparator regulates the voltage  
across the sense resistor to V . This effectively reg-  
FC,TH  
ulates the inrush current during startup. In this case,  
the current charging C can be considered con-  
Input Transients  
BOARD  
stant and the turn-on time is:  
× V × R  
SENSE  
The voltage at IN1, IN2, or IN3 must be above V  
dur-  
UVLO  
ing inrush and fault conditions. When a short-circuit con-  
dition occurs on the board, the fast-comparator trips  
cause the external MOSFET gates to be discharged at  
50mA according to the mode of operation (see the Mode  
section). The main system power supply must be able to  
sustain a temporary fault current, without dropping below  
the UVLO threshold of 2.45V, until the external MOSFET is  
completely off. If the main system power supply collapses  
below UVLO, the MAX5930A/MAX5931A/MAX5931B  
force the device to restart once the supply has recov-  
ered. The MOSFET is turned off in a very short time result-  
ing in a high di/dt. The backplane delivering the power to  
the external card must have low inductance to minimize  
voltage transients caused by this high di/dt.  
C
BOARD  
IN  
t
=
ON  
V
FC,TH  
The maximum inrush current in this case is:  
V
FC,TH  
I
=
INRUSH  
R
SENSE  
Figure 6 shows the waveforms and timing diagrams for  
a startup transient with current regulation (see the  
Typical Operating Characteristics section). When oper-  
ating under this condition, an external gate capaci-  
tor is not required.  
______________________________________________________________________________________ 19  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
R
SENSEY  
Q1  
V
Y
OUTY  
C
BOARDY  
INY  
SENSEY  
GATEY  
R
1
ON  
OFF  
V
ON  
EN  
MAX5930A  
MAX5931A  
MAX5931B  
C
1
GND  
GND  
INZ  
SENSEZ  
GATEZ  
Q2  
OUTZ  
V
Z
R
SENSEZ  
C
BOARDZ  
V
EN  
V
V
- V  
ONY, TH  
EN  
t = -R C ln  
(
(
)
1
1 1  
V
EN  
V
ONZ, TH  
V
ON  
V
ONY, TH  
- V  
EN  
ONZ, TH  
V
t = -R C ln  
)
Y
2
1 1  
V
EN  
V
Z
V
V
- V  
EN  
ONY, TH  
t
= -R C ln  
1 1  
(
)
DELAY  
- V  
EN  
ONZ, TH  
t
0
t
1
t
2
0/MAX5931B  
t
DELAY  
Figure 11. Power Sequencing: Channel Z Turns On t  
After Channel Y  
DELAY  
2) The continuous autoretry after a fault: MAX5930A/  
MAX5931A/MAX5931B (LATCH = low).  
MOSFET Thermal Considerations  
During normal operation, the external MOSFETs dissi-  
pate little power. The MOSFET R  
is low when the  
DS(ON)  
MOSFET manufacturers typically include the package  
MOSFET is fully enhanced. The power dissipated in nor-  
thermal resistance from junction to ambient (R ) and  
θJA  
θJC  
2
mal operation is P = I  
x R  
. The most  
DS(ON)  
D
LOAD  
thermal resistance from junction to case (R  
), which  
power dissipation occurs during the turn-on and turn-off  
transients when the MOSFETs are in their linear regions.  
By taking into consideration the worst-case scenario of a  
continuous short-circuit fault, consider these two cases:  
determine the startup time and the retry duty cycle (d =  
/(t + t ). Calculate the required tran-  
t
START START  
RETRY  
sient thermal resistance with the following equation:  
T
T  
JMAX  
× I  
A
1) The single turn-on with the device latched after a  
fault: MAX5930A/MAX5931A/MAX5931B (LATCH =  
high or unconnected).  
Z
θJA(MAX)  
V
IN  
START  
where I  
= V  
/R  
.
START  
SU,TH SENSE  
20 ______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
REMOVABLE CARD  
WITH NO HOT-INSERTION  
BACKPLANE  
PROTECTION  
HIGH-CURRENT PATH  
V
IN  
V
OUT  
POWER  
SUPPLY  
C
BOARD  
IN_  
SENSE RESISTOR  
SENSE_ GATE_  
MAX5930A  
MAX5931A  
MAX5931B  
ON_  
MAX5930A  
MAX5931A  
MAX5931B  
Figure 13. Kelvin Connection for the Current-Sense Resistors  
Figure 12. Using the MAX5930A/MAX5931A/MAX5931B on a  
Backplane  
When the output is short circuited, the voltage drop  
across the external MOSFET becomes large. Hence, the  
power dissipation across the switch increases, as does  
the die temperature. An efficient way to achieve good  
power dissipation on a surface-mount package is to lay  
out two copper pads directly under the MOSFET pack-  
age on both sides of the board. Connect the two pads  
to the ground plane through vias, and use enlarged  
copper mounting pads on the topside of the board.  
Layout Considerations  
To take full tracking advantage of the switch response  
time to an output fault condition, it is important to keep all  
traces as short as possible and to maximize the high-cur-  
rent trace dimensions to reduce the effect of undesirable  
parasitic inductance. Place the MAX5930A/  
MAX5931A/MAX5931B close to the card’s connector.  
Use a ground plane to minimize impedance and induc-  
tance. Minimize the current-sense resistor trace length  
(<10mm), and ensure accurate current sensing with  
Kelvin connections (Figure 13).  
______________________________________________________________________________________ 21  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
Typical Operating Circuit  
BACKPLANE  
REMOVABLE CARD  
R
R
R
SENSE1  
SENSE2  
SENSE3  
Q1  
V
V
V
OUT1  
1
Q2  
OUT2  
2
3
Q3  
OUT3  
STAT1  
STAT2  
ON1  
ON2  
ON3  
ON1  
ON2  
ON3  
MAX5930A  
MAX5931A  
MAX5931B  
STAT3  
GND  
GND  
1nF  
16V  
R
LIM1  
**  
R
LIM2  
**  
R
LIM3  
**  
R
TIM  
**  
*MAX5930A ONLY.  
**OPTIONAL COMPONENT.  
0/MAX5931B  
Selector Guide  
PART  
MAX5930AEEG+  
MAX5931AEEP+  
MAX5931BEEP+  
CURRENT LIMIT  
Programmable  
Fixed  
FAULT MANAGEMENT  
Selectable  
STAT_ POLARITY  
Selectable  
Selectable  
Asserted Low  
Fixed  
Selectable  
Asserted High (Open-Drain)  
22 ______________________________________________________________________________________  
Low-Voltage, Triple, Hot-Swap Controllers/  
Power Sequencers/Voltage Trackers  
0/MAX5931B  
Pin Configurations (continued)  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
ON2  
ON1  
1
2
3
4
5
6
7
8
9
20 MODE  
19 ON3  
Package Information  
For the latest package outline information and land patterns, go  
IN1  
18 IN2  
to www.maxim-ic.com/packages.  
SENSE1  
GATE1  
STAT1  
STAT2  
TIM  
17 SENSE2  
16 GATE2  
15 IN3  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
MAX5931A  
MAX5931B  
20 QSOP  
E20-1  
21-0055  
21-0055  
24 QSOP  
E24-1  
14  
SENSE3  
13 GATE3  
12 GND  
11 BIAS  
LATCH  
STAT3 10  
QSOP  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX5931AEEP+

Low-Voltage, Triple, Hot-Swap Controllers/ Power Sequencers/Voltage Trackers
MAXIM

MAX5931B

Low-Voltage, Triple, Hot-Swap Controllers/ Power Sequencers/Voltage Trackers
MAXIM

MAX5931BEEP+

Low-Voltage, Triple, Hot-Swap Controllers/ Power Sequencers/Voltage Trackers
MAXIM

MAX5932

MAX5932 Evaluation Kit
MAXIM

MAX5932ESA

MAX5932 Evaluation Kit
MAXIM

MAX5932ESA+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX5932ESA-G077

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX5932ESA-T

暂无描述
MAXIM

MAX5932ESA-TG077

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX5933A

Positive High-Voltage, Hot-Swap Controllers
MAXIM

MAX5933AESA

Positive High-Voltage, Hot-Swap Controllers
MAXIM

MAX5933AESA+T

Power Supply Support Circuit, Adjustable, 1 Channel, BICMOS, PDSO8, 0.150 INCH, MS012AA, SOIC-8
MAXIM