MAX5886EGK-D+ [MAXIM]

Quick Dynamic Performance Evaluation;
MAX5886EGK-D+
型号: MAX5886EGK-D+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quick Dynamic Performance Evaluation

文件: 总10页 (文件大小:761K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
General Description  
Features  
Quick Dynamic Performance Evaluation  
● LVDS-Compatible Data Inputs  
● SMA Coaxial Connectors for Clock Input and  
Analog Output  
● 50Ω Matched Clock Input and Analog Output  
Signal Lines  
The MAX5886/MAX5887/MAX5888 evaluation kits  
(EV kits) are fully assembled and tested circuit boards  
that contain all the components necessary to evaluate  
the performance of the MAX5886 (12-bit), MAX5887  
(14-bit), and MAX5888 (16-bit), 500Msps, current-output,  
digital-to-analog converters (DACs). Each EV kit requires  
low-voltage differential-signaling (LVDS)-compatible data  
inputs, a single-ended clock input, and 3.3V power  
supplies for simple board operation.  
● Single-Ended to Differential Clock-Signal  
Conversion Circuitry  
● Differential Current Output to Single-Ended  
Voltage Signal Output Conversion Circuitry  
● Full-Scale Current Output Configured for 20mA  
● External 1.25V Reference Source Available  
Fully Assembled and Tested  
Part Selection Table  
Ordering Information  
PART  
RESOLUTION (BITS) SPEED (Msps)  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
IC PACKAGE  
68 QFN-EP**  
68 QFN-EP**  
68 QFN-EP**  
MAX5886EGK-D+  
MAX5887EGK-D+  
MAX5888EGK-D+  
12  
14  
16  
500  
500  
500  
MAX5886EVKIT#  
MAX5887EVKIT#  
MAX5888EVKIT#  
+Denotes lead-free package.  
D = Dry pack.  
*EV kit PC board temperature range only.  
**EP = Exposed paddle.  
#Denotes ROHS compliant with exemption.  
Common Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
Not installed, resistors (0603)  
C1  
0
Not installed, ceramic capacitor (0603)  
R6, R8, R9  
R7  
0
1
2
2
2
2kΩ ±1% resistor (0603)  
0.1μF ±10%, 10V X5R ceramic  
capacitors (0402)  
TDK C1005X5R1A104KT or  
Taiyo Yuden LMK105BJ104KV  
R10, R11  
R12, R13  
CLK, OUT  
24.9Ω ±1% resistors (0402)  
0Ω ±5% resistors (0402)  
C2–C15  
14  
SMA PC-mount vertical connectors  
C16, C28  
0
3
Not installed, ceramic capacitor (0805)  
Not installed, scope probe connectors  
Tektronix 131-4244-00  
OUTP, OUTN  
T1, T3  
0
2
1
47μF ±10%, 6.3V tantalum capacitors (B)  
AVX TAJB476K006R or  
Kemet T494B476K006AS  
C17, C20, C23  
Transformers  
Mini-Circuits ADTL1-12  
10μF ±10%, 10V tantalum capacitors (A)  
AVX TAJA106K010R or  
Kemet T494A106K010AS  
1:1 balun transformer  
Coilcraft TTWB3010-1L  
C18, C21, C24,  
C26  
T2  
4
4
TP1, TP2, TP3  
3
1
1
PC test points, black  
1μF ±10%, 10V X5R ceramic  
capacitors (0603)  
TDK C1608X5R1A105KT  
TP4  
PC test point, red  
C19, C22, C25,  
C27  
U1  
See the EV Kit Specific Component List  
1.25V voltage reference (8-pin SO)  
Maxim MAX6161AESA or  
MAX6161BESA  
J1, J2  
JU1–JU5  
JU6  
2
5
0
2 x 20-pin surface-mount headers (0.1in)  
2-pin headers  
U2  
1
Not installed  
5
1
Shunts (JU1–JU5)  
Ferrite bead cores (4532)  
Würth Elektronik 74279226101  
L1–L4  
4
MAX5886/MAX5887/MAX5888 EV kit  
PC board  
R1–R4  
R5  
4
1
100Ω ±0.1% resistors (0603)  
100Ω ±1% resistor (0603)  
19-0581; Rev 1; 1/21  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
EV Kit Specific Component List  
Component Suppliers  
DESIGNATION DESIGNATION  
DESCRIPTION  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
843-946-0238 www.avxcorp.com  
847-639-6400 www.coilcraft.com  
864-963-6300 www.kemet.com  
718-934-4500 www.minicircuits.com  
714-373-7366 www.panasonic.com  
800-348-2496 www.t-yuden.com  
847-803-6100 www.component.tdk.com  
MAX5886EGK-D  
(68 QFN-EP 10mm x  
10mm x 0.9mm)  
MAX5886EVKIT  
Coilcraft  
Kemet  
MAX5887EGK-D  
(68 QFN-EP 10mm x  
10mm x 0.9mm)  
Mini-Circuits  
Panasonic  
Taiyo Yuden  
TDK  
MAX5887EVKIT  
MAX5888EVKIT  
U1  
MAX5888EGK-D  
(68 QFN-EP 10mm x  
10mm x 0.9mm)  
Würth Elektronik  
+49 7942 945  
www.we-online.com  
Note: Indicate that you are using the MAX5886/MAX5887/MAX5888  
when contacting these component suppliers.  
7) Connect the digital pattern generator output to the  
input header connectors J1 and J2 on the EV kit  
board. The input header pins are labeled for proper  
connection with the digital pattern generator (i.e.,  
connect the positive rail of bit 0 to the header pin  
labeled B0P and complementary negative rail to the  
header pin labeled B0N, etc.).  
Quick Start  
Recommended Equipment  
Three 3.3VDC, 1A power supplies  
● RF signal generator with low phase noise and low  
jitter for clock input (e.g., HP/Agilent 8644B)  
● 12-bit (MAX5886EVKIT), 14-bit (MAX5887EVKIT), or  
16-bit (MAX5888EVKIT) digital pattern generator for  
LVDS data inputs (e.g., Agilent 81250)  
8) Connect the spectrum analyzer to the OUT SMA  
connector.  
9) Connect the ground terminal of a 3.3V power supply  
to GND_CK. Next, connect the positive terminal of  
this supply to VDD_CK.  
● Spectrum analyzer (e.g., Rohde & Schwartz FSU)  
Voltmeter  
These EV kits are fully assembled and tested surface-  
mount boards. Follow the steps below for board operation.  
Do not enable signal generators until all connections  
are completed:  
10) Connect the ground terminal of a 3.3V power supply  
to DGND. Next, connect the positive terminal of this  
supply to DVDD.  
11) Connect the ground terminal of a 3.3V power supply  
to AGND. Next, connect the positive terminal of this  
supply to AVDD.  
1) Verify that no shunts are installed across jumpers  
JU1, JU2 (DAC uses the 1.2V internal voltage refer-  
ence), and JU3 (DAC in normal operation mode).  
12) Turn on the three power supplies.  
2) Verify that a shunt is installed across jumper JU4.  
3) Verify that no shunt is installed across jumper JU5.  
13) With a voltmeter, verify that 1.2V is measured at the  
VREF PC board pad on the EV kit.  
4) Synchronize the digital pattern generator (Agilent  
81250) to the clock signal generator (HP/Agilent  
8644B).  
14) Enable the clock signal generator and the digital  
pattern generator. Set the clock signal generator  
output power to +10dBm and the frequency (f  
less than or equal to 500MHz.  
) to  
CLK  
5) Connect the clock signal generator to the CLK SMA  
connectors on the EV kit.  
15) Use the spectrum analyzer to view the EV kit  
output spectrum or view the output waveform using an  
oscilloscope.  
6) Verify that the digital pattern generator is programmed  
for LVDS outputs.  
Maxim Integrated  
2  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
Clock Signal  
Detailed Description  
The DAC requires a differential clock input signal with  
minimal jitter. The EV kit circuit provides single-ended to  
differential conversion circuitry. The user must supply a  
single-ended clock signal at the CLK SMA connector.  
The MAX5886/MAX5887/MAX5888 EV kits are designed  
to simplify the evaluation of the MAX5886 (12-bit),  
MAX5887 (14-bit), or MAX5888 (16-bit), 500Msps,  
current-output DACs. The DACs require LVDS-compatible  
data inputs, differential clock input signals, a 1.2V  
reference voltage, and 3.3V power supplies for simple  
board operation.  
The clock signal can be either a sine wave or a square  
wave. For a sine wave, 2V  
(+10dBm) amplitude is  
P-P  
recommended and for a square wave greater than a  
0.5V signal is recommended.  
The EV kits provide header connectors to easily inter-  
face with an LVDS pattern generator, circuitry to convert  
the differential current outputs to a single-ended voltage  
signal, and circuitry to convert a user-supplied single-  
ended clock signal to a differential clock signal required  
by the DAC. The EV kit circuit includes different options  
for supplying a reference voltage to the DAC. The EV  
kit circuit can operate with a single 3.3V power supply,  
but also supports the use of three separate 3.3V power  
supplies by dividing the circuit grounds into digital,  
analog, and digital clock ground planes that improve  
dynamic performance. The three ground planes are  
connected together on the back of the PC board.  
P-P  
Reference Voltage Options  
The DAC requires a reference voltage to set the full-scale  
analog signal voltage output. The EV kit features three  
ways to provide a reference voltage to the DAC: internal,  
on-board external, and user-supplied external reference.  
Verify that no shunt is connected across jumper JU1 to  
use the internal 1.2V bandgap reference. The reference  
voltage can be measured at the VREF pad on the EV kit.  
The internal reference can be overdriven by an external  
reference to enhance accuracy and drift performance or  
for gain control. The EV kit circuit is designed with an  
on-board 1.25V temperature-stable external voltage refer-  
ence source U2 (MAX6161) that can be used to overdrive  
the internal reference provided by the DAC. Install shunts  
across jumpers JU1 and JU2 to use the on-board external  
reference. The user can also supply an external voltage  
reference in the range of 0.125V to 1.25V by connecting a  
voltage source to the VREF pad and removing the shunts  
across jumpers JU1 and JU2. See Table 1 to configure  
the shunts across jumpers JU1 and JU2 and select the  
source of the reference voltage.  
Power Supplies  
The EV kits can operate from a single 3.3V power supply  
connected to the VDD_CK, DVDD, AVDD input power  
pads and their respective ground pads for simple board  
operation. However, three separate 3.3V power supplies  
are recommended for optimum dynamic performance.  
The EV kit PC board layout is divided into three sections:  
digital, analog, and clock. Using separate power supplies  
for each section reduces crosstalk and improves the  
output signal integrity. When using separate power sup-  
plies, connect each power supply across the DVDD and  
DGND PC board pads (digital), across the VDD_CK and  
GND_CK PC board pads (clock), and across the AVDD  
and AGND PC board pads (analog) on the EV kit.  
Table 1. Reference Voltage Selection  
JU1 AND JU2  
VOLTAGE REFERENCE MODE  
SHUNT POSITIONS  
LVDS Input Data  
External 1.25V reference (U2)  
Installed  
connected to REFIO pin  
These EV kits provide two 0.1in 2 x 20 header connectors  
(J1 and J2) to allow interface of a 12-bit, 14-bit, or 16-bit  
LVDS pattern generator. The header data pins are labeled  
on the board with the appropriate data bit designation.  
Use the labels on the EV kit to match the data bits from  
the LVDS pattern generator to the corresponding data  
pins on J1 and J2. The positive rail of a bit is labeled  
BxP (positive) and the complementary rail is labeled BxN  
(negative) where x is the bit number.  
Not installed  
Not installed  
DAC internal 1.2V bandgap reference  
User-supplied voltage reference at the  
VREF pad (0.125V to 1.25V)  
Maxim Integrated  
3  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
Table 2. Power-Down (Jumper JU3)  
Table 3. Segment-Shuffling Mode  
(Jumper JU5)  
SHUNT  
Installed  
FUNCTION  
Power-down mode  
Normal operation  
SEGMENT-SHUFFLING  
SHUNT  
SEL0 PIN  
MODE  
Not installed  
Connected to  
DVDD  
Installed  
Enabled  
Full-Scale Output Current  
The DAC requires an external resistor to set the full-scale  
output current. The EV kit full-scale current is set to 20mA  
with resistor R7. Replace resistor R7 to adjust the full-  
scale output current. Refer to the Reference Architecture  
and Operation section in the DAC data sheet to select  
different values for R7.  
Connected to  
DGND through an  
internal pulldown  
resistor  
Not installed  
Disabled  
Segment Shuffling  
Analog Output  
The DAC complementary current outputs are terminated  
into 50Ω resistance to generate differential voltage signals  
with amplitudes of 1V  
The segment-shuffling function on the DAC can improve  
the high-frequency spurious-free dynamic range (SFDR)  
at the cost of an increase in the DAC’s noise floor. The EV  
kits provide jumper JU5, which allows the user to enable  
or disable this function. See Table 3 to configure jumper  
JU5.  
differential. The positive and  
P-P  
negative rails of the differential signal can be sampled at  
the OUTP and OUTN probe pads. The differential signal  
is converted into a 50Ω singled-ended signal with balun  
transformer T2 and can be sampled at the OUT SMA con-  
nector. A shunt on jumper JU4 connects the center tap  
of transformer T2 to AGND, thus enhancing the dynamic  
performance of the DAC. The single-ended output signal  
after the transformer generates a -3dBm full-scale output  
power when terminated into 50Ω. A shunt on jumper  
JU4 should always be installed for optimum dynamic  
performance.  
Board Layout  
The EV kit boards are a four-layer board design opti-  
mized for high-speed signals. All high-speed signal  
lines are routed through 50Ω impedance-matched  
transmission lines. The length of these 50Ω transmis-  
sion lines is matched to within 40 mils (1mm) to minimize  
layout-dependent data skew. The board layout separates  
the analog, digital, and digital clock sections of the circuit  
for optimum performance.  
Power-Down  
The DAC can be powered down or powered up by config-  
uring jumper JU3. In power-down mode, the total power  
dissipation of the DAC is reduced to less than 1mW. See  
Table 2 for jumper JU3 configuration.  
Maxim Integrated  
4  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
B 6 P  
B 6 N  
B 5 P  
B 5 N  
B 4 P  
N . C .  
A G N D  
D D  
V A  
A G N D  
D D  
V A  
D D  
V A  
J 1 - 3 2 J 1 - 9  
J 1 - 3 4 J 1 - 7  
J 1 - 3 6 J 1 - 5  
B 4 N  
B 3 P  
B 3 N  
A G N D  
I O U T P  
I O U T N  
A G N D  
D G N D  
D D  
D V  
D D  
V A  
D G N D  
J 1 - 3 8 J 1 - 3  
J 1 - 4 0 J 1 - 1  
B 2 P  
N . C .  
B 2 N  
B 1 P  
B 1 N  
B 0 P  
B 0 N  
D A C R E F  
F S A D J  
R E F I O  
A G N D  
D D  
V A  
Figure 1. MAX5886 EV Kit Schematic  
Maxim Integrated  
5  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
B 8 P  
B 8 N  
B 7 P  
B 7 N  
B 6 P  
N . C .  
A G N D  
D D  
V A  
A G N D  
D D  
V A  
D D  
V A  
J 1 - 3 2 J 1 - 9  
J 1 - 3 4 J 1 - 7  
J 1 - 3 6 J 1 - 5  
B 6 N  
B 5 P  
B 5 N  
A G N D  
I O U T P  
I O U T N  
A G N D  
D G N D  
D D  
D V  
D D  
V A  
D G N D  
J 1 - 3 8 J 1 - 3  
J 1 - 4 0 J 1 - 1  
B 4 P  
N . C .  
B 4 N  
B 3 P  
B 3 N  
B 2 P  
B 2 N  
D A C R E F  
F S A D J  
R E F I O  
A G N D  
D D  
V A  
Figure 2. MAX5887 EV Kit Schematic  
Maxim Integrated  
6  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
5 2  
B 1 0 P  
N . C .  
5 3  
B 1 0 N  
A G N D  
5 4  
D D  
V A  
B 9 P  
5 5  
B 9 N  
A G N D  
5 6  
D D  
V A  
B 8 P  
5 7  
D D  
V A  
J 1 - 3 2 J 1 - 9  
J 1 - 3 4 J 1 - 7  
J 1 - 3 6 J 1 - 5  
B 8 N  
B 7 P  
B 7 N  
5 8  
5 9  
6 0  
A G N D  
I O U T P  
I O U T N  
A G N D  
D G N D  
6 1  
6 2  
6 3  
6 4  
6 5  
6 6  
6 7  
6 8  
D D  
D V  
D D  
V A  
D G N D  
J 1 - 3 8 J 1 - 3  
J 1 - 4 0 J 1 - 1  
B 6 P  
N . C .  
B 6 N  
B 5 P  
B 5 N  
B 4 P  
B 4 N  
D A C R E F  
F S A D J  
R E F I O  
A G N D  
D D  
V A  
Figure 3. MAX5888 EV Kit Schematic  
Maxim Integrated  
7  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
WWW.MAXIMINTEGRATED.COM  
1.0”  
1.0”  
Figure 4. MAX5886/MAX5887/MAX5888 EV Kit Component  
Placement Guide—Component Side  
Figure 5. MAX5886/MAX5887/MAX5888 EV Kit PC Board  
Layout—Component Side  
1.0”  
1.0”  
Figure 6. MAX5886/MAX5887/MAX5888 EV Kit PC Board  
Layout—Ground Planes  
Figure 7. MAX5886/MAX5887/MAX5888 EV Kit PC Board  
Layout—Power Planes  
Maxim Integrated  
8  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
1.0”  
1.0”  
Figure 8. MAX5886/MAX5887/MAX5888 EV Kit PC Board  
Layout—Solder Side  
Figure 9. MAX5886/MAX5887/MAX5888 EV Kit Component  
Placement Guide—Solder Side  
Maxim Integrated  
9  
www.maximintegrated.com  
Evaluate: MAX5886/MAX5887/MAX5888  
MAX5886/MAX5887/MAX5888  
Evaluation Kits  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/06  
Intial Release  
Updated MAX5886, MAX5887, and MAX5888 to ROHS compliance with  
exemption in Ordering Information Table, Updated Common Component List and  
Component Supplier Tables  
1
1/21  
1-2  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2021 Maxim Integrated Products, Inc.  
10  

相关型号:

MAX5886EGK-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.9 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX5886EGK-TD

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.9 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX5886EVKIT

Quick Dynamic Performance Evaluation
MAXIM

MAX5887

3.3V, 14-Bit, 500Msps High Dynamic Performance DAC with Differential LVDS Inputs
MAXIM

MAX5887EGK

3.3V, 14-Bit, 500Msps High Dynamic Performance DAC with Differential LVDS Inputs
MAXIM

MAX5887EGK-D

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.9 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX5887EGK-D+

Quick Dynamic Performance Evaluation
MAXIM

MAX5888

3.3V, 16-Bit, 500Msps High Dynamic Performance DAC with Differential LVDS Inputs
MAXIM

MAX5888A

3.3V.16-Bit.500Msps High Dynamic Performance DAC with Differential LVDS Inputs
MAXIM

MAX5888AEGK

3.3V, 16-Bit, 500Msps High Dynamic Performance DAC with Differential LVDS Inputs
MAXIM

MAX5888AEGK+

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.011us Settling Time, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX5888AEGK+D

暂无描述
MAXIM