MAX5590AEUG [MAXIM]

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs; 缓冲,快速建立,八通道12 /10/ 8位,电压输出DAC
MAX5590AEUG
型号: MAX5590AEUG
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs
缓冲,快速建立,八通道12 /10/ 8位,电压输出DAC

文件: 总33页 (文件大小:1111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2983; Rev 0; 9/03  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
General Description  
Features  
Octal, 12/10/8-Bit Serial DACs in TSSOP Packages  
3µs (max) 12-Bit Settling Time to 1/2 LSB  
The MAX5590–MAX5595 octal, 12/10/8-bit, voltage-out-  
put digital-to-analog converters (DACs) offer buffered  
outputs and a 3µs maximum settling time at the 12-bit  
level. The DACs operate from a +2.7V to +5.25V analog  
supply and a separate +1.8V to +5.25V digital supply.  
The 20MHz 3-wire serial interface is compatible with  
SPI™, QSPI™, MICROWIRE™, and digital signal  
processor (DSP) protocol applications. Multiple devices  
can share a common serial interface in direct-access or  
daisy-chained configuration. The MAX5590–MAX5595  
provide two multifunction, user-programmable, digital  
I/O ports. The externally selectable power-up states of  
the DAC outputs are either zero scale, midscale, or full  
scale. Software-selectable FAST and SLOW settling  
modes decrease settling time in FAST mode, or reduce  
supply current in SLOW mode.  
Integral Nonlinearity:  
1 LSB (max) MAX5590/MAX5591 A-Grade (12-Bit)  
1 LSB (max) MAX5592/MAX5593 (10-Bit)  
1/2 LSB (max) MAX5594/MAX5595 (8-Bit)  
Guaranteed Monotonic, 1 LSB (max) DNL  
Two User-Programmable Digital I/O Ports  
Single +2.7V to +5.25V Analog Supply  
+1.8V to AV  
Digital Supply  
DD  
20MHz, 3-Wire, SPI-/QSPI-/MICROWIRE-/DSP-  
Compatible Serial Interface  
The MAX5590/MAX5591 are 12-bit DACs, the MAX5592/  
MAX5593 are 10-bit DACs, and the MAX5594/  
MAX5595 are 8-bit DACs. The MAX5590/MAX5592/  
MAX5594 provide unity-gain-configured output buffers,  
while the MAX5591/MAX5593/MAX5595 provide force-  
sense-configured output buffers. The MAX5590–  
MAX5595 are specified over the extended -40°C to  
+85°C temperature range, and are available in space-  
saving 24-pin and 28-pin TSSOP packages.  
Glitch-Free Outputs Power Up to Zero Scale,  
Midscale, or Full Scale Controlled by PU Pin  
Unity-Gain or Force-Sense-Configured Output  
Buffers  
Applications  
Portable Instrumentation  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
24 TSSOP  
24 TSSOP  
28 TSSOP  
28 TSSOP  
24 TSSOP  
28 TSSOP  
24 TSSOP  
28 TSSOP  
Automatic Test Equipment (ATE)  
Digital Offset and Gain Adjustment  
Automatic Tuning  
MAX5590AEUG*  
MAX5590BEUG  
MAX5591AEUI*  
MAX5591BEUI  
MAX5592EUG  
MAX5593EUI  
MAX5594EUG  
MAX5595EUI  
Programmable Voltage and Current Sources  
Programmable Attenuators  
Industrial Process Controls  
Motion Control  
Microprocessor (µP)-Controlled Systems  
Power Amplifier Control  
*Future product—contact factory for availability. Specifications  
are preliminary.  
Fast Parallel-DAC to Serial-DAC Upgrades  
Selector Guide and Pin Configurations appear at end of data  
sheet.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
ABSOLUTE MAXIMUM RATINGS  
AV  
to DV ........................................................................ 6V  
Maximum Current into Any Pin ......................................... 50mA  
DD  
DD  
AGND to DGND.................................................................. 0.3V  
Continuous Power Dissipation (T = +70°C)  
A
AV  
DV  
to AGND, DGND.............................................-0.3V to +6V  
to AGND, DGND ............................................-0.3V to +6V  
24-Pin TSSOP (derate 12.2mW/°C above +70°C) .......976mW  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) .....1026mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Maximum Junction Temperature .....................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
FB_, OUT_,  
REF to AGND........-0.3V to the lower of (AV + 0.3V) or +6V  
DD  
SCLK, DIN, CS, PU,  
DSP to DGND.......-0.3V to the lower of (DV + 0.3V) or +6V  
DD  
UPIO1, UPIO2  
to DGND...............-0.3V to the lower of (DV + 0.3V) or +6V  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= 2.7V to 5.25V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V (for AV  
= 2.7V to 5.25V), V  
= 4.096V (for  
REF  
DD  
DD  
DD  
REF  
DD  
AV  
(Note 1)  
= 4.5V to 5.25V), R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY  
MAX5590/MAX5591  
MAX5592/MAX5593  
MAX5594/MAX5595  
12  
10  
8
Resolution  
N
Bits  
MAX5590A/MAX5591A (12-bit)  
MAX5590B/MAX5591B (12-bit)  
MAX5592/MAX5593 (10-bit)  
MAX5594/MAX5595 (8-bit)  
1
4
1
V
AV  
V
AV  
= 2.5V at  
= 2.7V and  
= 4.096V at  
= 5.25V  
REF  
DD  
2
Integral Nonlinearity  
INL  
LSB  
REF  
0.5  
DD  
(Note 2)  
0.125  
0.5  
1
Differential Nonlinearity  
Offset Error  
DNL  
Guaranteed monotonic (Note 2)  
LSB  
mV  
MAX5590A/MAX5591A (12-bit), decimal code = 40  
MAX5590B/MAX5591B (12-bit), decimal code = 40  
MAX5592/MAX5593 (10-bit), decimal code = 10  
MAX5594/MAX5595 (8-bit), decimal code = 3  
5
5
5
5
25  
25  
25  
V
OS  
ppm of  
FS/°C  
Offset-Error Drift  
Gain Error  
5
MAX5590A/MAX5591A (12-bit)  
4
40  
10  
3
MAX5590B/MAX5590B (12-bit)  
Full-scale output  
20  
5
GE  
LSB  
MAX5592/MAX5593 (10-bit)  
MAX5594/MAX5595 (8-bit)  
2
ppm of  
FS/°C  
Gain-Error Drift  
1
2
_______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 2.7V to 5.25V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V (for AV  
= 2.7V to 5.25V), V  
= 4.096V (for  
REF  
DD  
DD  
DD  
REF  
DD  
AV  
(Note 1)  
= 4.5V to 5.25V), R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Full-scale output, AV = 2.7V to 5.25V  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Rejection  
Ratio  
PSRR  
200  
µV/V  
DD  
REFERENCE INPUT  
Reference Input Range  
V
R
0.25  
145  
AV  
V
REF  
DD  
Reference Input  
Resistance  
Normal operation (no code dependence)  
Shutdown mode  
200  
0.5  
kΩ  
REF  
Reference Leakage  
Current  
1
µA  
DAC OUTPUT CHARACTERISTICS  
Unity gain  
SLOW mode, full scale  
Force sense  
85  
67  
Output Voltage Noise  
µV  
RMS  
Unity gain  
FAST mode, full scale  
Force sense  
140  
110  
Unity-gain output  
0
0
AV  
DD  
Output Voltage Range  
(Note 3)  
V
Force-sense output  
AV / 2  
DD  
DC Output Impedance  
38  
57  
45  
30  
40  
AV  
AV  
= 5V, OUT_ to AGND, full scale, FAST mode  
= 3V, OUT_ to AGND, full scale, FAST mode  
DD  
Short-Circuit Current  
mA  
DD  
Power-Up Time  
Wake-Up Time  
From V  
applied until interface is functional  
60  
µs  
µs  
DD  
Coming out of shutdown, outputs settled  
Output OUT_ and FB_  
Open-Circuit Leakage  
Current  
Programmed in shutdown mode, force-sense  
outputs only  
0.01  
µA  
DIGITAL OUTPUTS (UPIO_)  
DV  
0.5  
-
DD  
Output High Voltage  
V
I
= 2mA  
SOURCE  
V
V
OH  
Output Low Voltage  
V
I = 2mA  
SINK  
0.4  
OL  
DIGITAL INPUTS (SCLK, CS, DIN, DSP, UPIO_)  
DV 2.7V  
2.4  
DD  
Input High Voltage  
V
V
V
IH  
0.7 x  
DV < 2.7V  
DD  
DV  
DD  
DV > 3.6V  
DD  
0.8  
0.6  
0.2  
1
Input Low Voltage  
V
2.7V DV 3.6V  
IL  
DD  
DV < 2.7V  
DD  
Input Leakage Current  
Input Capacitance  
I
0.1  
10  
µA  
pF  
IN  
C
IN  
_______________________________________________________________________________________  
3
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 2.7V to 5.25V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V (for AV  
= 2.7V to 5.25V), V  
= 4.096V (for  
REF  
DD  
DD  
DD  
REF  
DD  
AV  
(Note 1)  
= 4.5V to 5.25V), R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PU INPUT  
DV  
200mV  
-
DD  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
V
V
IH-PU  
V
200  
200  
mV  
nA  
IL-PU  
IN-PU  
PU still considered floating when connected to a  
tri-state bus  
I
DYNAMIC PERFORMANCE  
FAST mode  
SLOW mode  
3.6  
1.6  
Voltage-Output Slew  
Rate  
SR  
V/µs  
MAX5590/MAX5591 from code 322 to  
code 4095 to 1/2 LSB  
2
1.5  
1
3
3
2
6
6
4
FAST  
mode  
MAX5592/MAX5593 from code 10 to  
code 1023 to 1/2 LSB  
MAX5594/MAX5595 from code 3 to  
code 255 to 1/2 LSB  
Voltage-Output Settling  
Time (Note 5)  
µs  
MAX5590/MAX5591 from code 322 to  
code 4095 to 1/2 LSB  
3
SLOW  
mode  
MAX5592/MAX5593 from code 10 to  
code 1023 1/2 LSB  
2.5  
2
MAX5594/MAX5595 from code 3 to  
code 255 to 1/2 LSB  
FB_ Input Voltage  
FB_ Input Current  
0
V
/ 2  
V
REF  
0.1  
µA  
Unity gain  
200  
150  
Reference -3dB  
Bandwidth (Note 6)  
kHz  
Force sense  
CS = DV , code = zero scale, any digital input  
DD  
Digital Feedthrough  
0.1  
nV-s  
from 0 to DV  
and DV  
to 0, f = 100kHz  
DD  
DD  
Digital-to-Analog Glitch  
Impulse  
Major carry transition  
(Note 4)  
2
nV-s  
nV-s  
DAC-to-DAC Crosstalk  
15  
4
_______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 2.7V to 5.25V, DV  
= 1.8V to AV , AGND = 0, DGND = 0, V  
= 2.5V (for AV  
= 2.7V to 5.25V), V  
= 4.096V (for  
REF  
DD  
DD  
DD  
REF  
DD  
AV  
(Note 1)  
= 4.5V to 5.25V), R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
L
L
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Analog Supply Voltage  
Range  
AV  
DV  
2.70  
1.8  
5.25  
V
V
DD  
Digital Supply Voltage  
Range  
AV  
DD  
DD  
SLOW mode, all digital inputs  
Unity gain  
1.5  
2.4  
2.5  
3.4  
3.2  
at DGND or DV , no load,  
DD  
I
AVDD  
+
Force sense  
Unity gain  
4.8  
8
V
= 4.096V  
REF  
Operating Supply  
Current  
mA  
µA  
FAST mode, all digital inputs  
at DGND or DV , no load,  
I
DVDD  
DD  
Force sense  
8
V
= 4.096V  
REF  
I
AVDD(SHDN)  
+
Shutdown Supply  
Current  
No clocks, all digital inputs at DGND or DV , all  
DD  
DACs in shutdown mode  
0.5  
1
I
DVDD(SHDN)  
Note 1: For the force-sense versions, FB_ is connected to its respective OUT_. V  
Note 2: Linearity guaranteed from decimal code 40 to code 4095 for the MAX5590B/MAX5591B (12-bit, B-grade), code 10 to code  
(max) = V  
/ 2, unless otherwise noted.  
REF  
OUT  
1023 for the MAX5592/MAX5593 (10-bit), and code 3 to code 255 for the MAX5594/MAX5595 (8-bit).  
Note 3: Represents the functional range. The linearity is guaranteed at V  
= 2.5V (for AV  
from 2.7V to 5.25V), and V  
=
REF  
DD  
REF  
= 4.5V to 5.25V). See the Typical Operating Characteristics section for linearity at other voltages.  
4.096V (for AV  
DD  
Note 4: DC crosstalk is measured as follows: outputs of DACA–DACH are set to full scale and the output of DACH is measured.  
While keeping DACH unchanged, the outputs of DACA–DACG are transitioned to zero scale and the V  
measured.  
of DACH is  
OUT  
Note 5: Guaranteed by design.  
Note 6: The reference -3dB bandwidth is measured with a 0.1V  
sine wave on V  
REF  
and with full-scale input code.  
P-P  
_______________________________________________________________________________________  
5
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICS—DSP Mode Disabled (3V, 3.3V, 5V Logic) (Figure 1)  
(DV  
= 2.7V to 5.25V, GND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
2.7V < DV  
(Note 7)  
(Note 7)  
< 5.25V  
DD  
20  
SCLK  
SCLK Pulse-Width High  
t
20  
20  
10  
5
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
SCLK Rise to CS Fall Setup  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
t
ns  
CSS  
CSH  
t
ns  
t
10  
12  
5
ns  
CS0  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUTDC1 Valid  
Propagation Delay  
t
C = 20pF, UPIO_ = DOUTDC1 mode  
30  
30  
ns  
ns  
DO1  
DO2  
L
SCLK Fall to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC0 or DOUTRB  
L
mode  
t
CS Rise to SCLK Rise Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
10  
45  
ns  
ns  
CS1  
t
CSW  
UPIO_ TIMING CHARACTERISTICS  
DOUT Tri-State Time when Exiting  
DOUTDC0, DOUTDC1, and UPIO  
Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
100  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
20  
20  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Rise  
C = 20pF, from 8th rising edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
20  
100  
20  
ns  
ns  
ns  
ns  
LDL  
LDS  
LDAC Effective Delay  
Figure 6  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
100  
100  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
6
_______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICS—DSP Mode Disabled (1.8V Logic) (Figure 1)  
(DV  
= 1.8V to 5.25V, GND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
1.8V < DV  
(Note 7)  
(Note 7)  
< 5.25V  
DD  
10  
SCLK  
SCLK Pulse-Width High  
t
40  
40  
20  
0
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
SCLK Rise to CS Fall Setup  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
t
ns  
CSS  
CSH  
t
ns  
t
10  
20  
5
ns  
CS0  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUTDC1 Valid  
Propagation Delay  
t
C = 20pF, UPIO_ = DOUTDC1 mode  
60  
60  
ns  
ns  
DO1  
DO2  
L
SCLK Fall to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC0 or DOUTRB  
L
mode  
t
CS Rise to SCLK Rise Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
20  
90  
ns  
ns  
CS1  
t
CSW  
UPIO_ TIMING CHARACTERISTICS  
DOUT Tri-State Time when  
Exiting DOUTDC0, DOUTDC1,  
and UPIO Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
200  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
40  
40  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Rise  
C = 20pF, from 8th rising edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
40  
200  
40  
ns  
ns  
ns  
ns  
LDL  
LDS  
LDAC Effective Delay  
Figure 6  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
200  
200  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
_______________________________________________________________________________________  
7
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICS—DSP Mode Enabled (3V, 3.3V, 5V Logic) (Figure 2)  
(DV  
= 2.7V to 5.25V, GND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
2.7V < DV  
(Note 7)  
(Note 7)  
< 5.25V  
DD  
20  
SCLK  
SCLK Pulse-Width High  
t
20  
20  
10  
10  
5
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Fall Setup Time  
DSP Fall to SCLK Fall Setup Time  
SCLK Fall to CS Rise Hold Time  
SCLK Fall to CS Fall Delay  
SCLK Fall to DSP Fall Delay  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
t
t
ns  
CSS  
DSS  
CSH  
ns  
t
ns  
t
t
10  
10  
12  
5
ns  
CS0  
DS0  
ns  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC1 or DOUTRB  
L
mode  
t
30  
30  
ns  
ns  
DO1  
SCLK Fall to DOUT_ Valid  
Propagation Delay  
t
C = 20pF, UPIO_ = DOUTDC0 mode  
L
DO2  
CS Rise to SCLK Fall Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
10  
45  
20  
20  
ns  
ns  
ns  
ns  
CS1  
t
t
CSW  
DSW  
DSP Pulse-Width High  
DSP Pulse-Width Low  
t
DSPWL  
(Note 8)  
UPIO_ TIMING CHARACTERISTICS  
DOUT Tri-State Time when  
Exiting DOUTDC0, DOUTDC1,  
and UPIO Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
100  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
20  
20  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Fall  
C = 20pF, from 8th falling edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
20  
100  
20  
ns  
ns  
ns  
ns  
LDL  
LDS  
LDAC Effective Delay  
Figure 6  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
100  
100  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
8
_______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
TIMING CHARACTERISTICS—DSP Mode Enabled (1.8V Logic) (Figure 2)  
(DV  
= 1.8V to 5.25V, GND = 0, T = T  
MIN  
to T , unless otherwise noted.)  
MAX  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
1.8V < DV  
(Note 7)  
(Note 7)  
< 5.25V  
DD  
10  
SCLK  
SCLK Pulse-Width High  
t
40  
40  
20  
20  
0
CH  
SCLK Pulse-Width Low  
t
ns  
CL  
CS Fall to SCLK Fall Setup Time  
DSP Fall to SCLK Fall Setup Time  
SCLK Fall to CS Rise Hold Time  
SCLK Fall to CS Fall Delay  
SCLK Fall to DSP Fall Delay  
DIN to SCLK Fall Setup Time  
DIN to SCLK Fall Hold Time  
t
t
ns  
CSS  
DSS  
CSH  
ns  
t
ns  
t
t
10  
15  
20  
5
ns  
CS0  
DS0  
ns  
t
ns  
DS  
t
ns  
DH  
SCLK Rise to DOUT_ Valid  
Propagation Delay  
C = 20pF, UPIO_ = DOUTDC1 or DOUTRB  
L
mode  
t
60  
60  
ns  
ns  
DO1  
SCLK Fall to DOUT_ Valid  
Propagation Delay  
t
C = 20pF, UPIO_ = DOUTDC0 mode  
L
DO2  
CS Rise to SCLK Fall Hold Time  
CS Pulse-Width High  
t
MICROWIRE and SPI modes 0 and 3  
20  
90  
40  
40  
ns  
ns  
ns  
ns  
CS1  
t
t
CSW  
DSW  
DSP Pulse-Width High  
DSP Pulse-Width Low  
t
DSPWL  
(Note 8)  
UPIO_ TIMING CHARACTERISTICS  
DOUT Tri-State Time when  
Exiting DOUTDC0, DOUTDC1,  
and UPIO Modes  
C = 20pF, from end of write cycle to UPIO_  
L
in high impedance  
t
200  
ns  
DOZ  
DOUTRB Tri-State Time from CS  
Rise  
C = 20pF, from rising edge of CS to UPIO_  
in high impedance  
L
t
40  
40  
ns  
ns  
DRBZ  
DOUTRB Tri-State Enable Time  
from 8th SCLK Fall  
C = 20pF, from 8th falling edge of SCLK to  
L
UPIO_ driven out of tri-state  
t
ZEN  
LDAC Pulse-Width Low  
t
t
Figure 5  
40  
200  
40  
ns  
ns  
ns  
ns  
LDL  
LDS  
LDAC Effective Delay  
Figure 6  
CLR, MID, SET Pulse-Width Low  
GPO Output Settling Time  
t
Figure 5  
CMS  
t
Figure 6  
200  
200  
GP  
GPO Output High-Impedance  
Time  
t
ns  
GPZ  
Note 7: In some daisy-chain modes, data is required to be clocked in on one clock edge and the shifted data clocked out on the fol-  
lowing edge. In the case of a 1/2 clock-period delay, it is necessary to increase the minimum high/low clock times to 25ns  
(2.7V) or 50ns (1.8V).  
Note 8: The falling edge of DSP starts a DSP-type bus cycle, provided that CS is also active low to select the device. DSP active low  
and CS active low must overlap by a minimum of 10ns (2.7V) or 20ns (1.8V). CS can be permanently low in this mode of  
operation.  
_______________________________________________________________________________________  
9
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics  
(AV = DV = 5V, V  
= 4.096V, R = 10k, C = 100pF, speed mode = FAST, PU = floating, T = +25°C, unless otherwise noted.)  
L L A  
DD  
DD  
REF  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (12-BIT)  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (10-BIT)  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (8-BIT)  
4
3
1.00  
0.50  
0.25  
0
0.75  
0.50  
0.25  
0
2
1
0
-1  
-2  
-3  
-0.25  
-0.50  
-0.75  
-0.25  
B-GRADE  
-4  
-1.00  
-0.50  
0
1024  
2048  
3072  
4095  
0
256  
512  
768  
1023  
0
64  
128  
192  
255  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (8-BIT)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (12-BIT)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (10-BIT)  
0.050  
0.025  
0
0.50  
0.2  
0.1  
0
0.25  
0
-0.025  
-0.25  
-0.1  
B-GRADE  
3072 4095  
DIGITAL INPUT CODE  
-0.050  
-0.50  
-0.2  
0
64  
128  
192  
255  
0
1024  
2048  
0
256  
512  
768  
1023  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
INTEGRAL NONLINEARITY  
vs. REFERENCE VOLTAGE (12-BIT)  
DIFFERENTIAL NONLINEARITY  
vs. REFERENCE VOLTAGE (12-BIT)  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE (12-BIT)  
4
3
0.5  
0.4  
4
3
2
0.3  
2
0.2  
1
1
0
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
B-GRADE  
B-GRADE  
MIDSCALE  
B-GRADE  
MIDSCALE  
MIDSCALE  
1.0 1.5 20 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
(V)  
-40 -15  
10  
35  
60  
85  
V
V
REF  
TEMPERATURE (°C)  
REF  
10 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(AV = DV = 5V, V  
= 4.096V, R = 10k, C = 100pF, speed mode = FAST, PU = floating, T = +25°C, unless otherwise noted.)  
L L A  
DD  
DD  
REF  
DIFFERENTIAL NONLINEARITY  
vs. TEMPERATURE (12-BIT)  
SUPPLY CURRENT  
vs. DIGITAL INPUT CODE (FORCE-SENSE)  
SUPPLY CURRENT  
vs. DIGITAL INPUT CODE (UNITY GAIN)  
5
4
3
2
1
3
2
0.2  
0.1  
0
-0.1  
-0.2  
1
0
B-GRADE  
MIDSCALE  
12-BIT  
NO LOAD  
12-BIT  
NO LOAD  
0
0
1024  
2048  
3072  
4095  
0
1024  
2048  
3072  
4095  
-40 -15  
10  
35  
60  
85  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
TEMPERATURE (°C)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (FORCE-SENSE)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (UNITY GAIN)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
60  
FAST MODE  
FAST MODE  
50  
40  
30  
20  
10  
0
FORCE SENSE  
UNITY GAIN  
SLOW MODE  
SLOW MODE  
AV = DV  
NO LOAD  
AV = DV  
NO LOAD  
DD  
DD  
DD  
DD  
NO LOAD  
2.70  
2.70  
3.40  
4.10  
4.80  
5.25  
2.70  
3.40  
4.10  
4.80  
5.25  
3.40  
4.10  
4.80  
5.25  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
OUTPUT VOLTAGE  
vs. OUTPUT SOURCE/SINK CURRENT  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
7
6
0
-2  
CODE = 40  
UNITY GAIN: 1 LSB = 1mV  
FORCE SENSE: 1 LSB = 0.5mV  
MIDSCALE  
5
4
-4  
FORCE SENSE  
FORCE SENSE  
UNITY GAIN  
3
2
1
-6  
UNITY GAIN  
-8  
UNITY GAIN  
UNITY GAIN: 1 LSB = 1mV  
FORCE SENSE: 1 LSB = 0.5mV  
V
= 4.096V  
REF  
0
-10  
-15  
-10  
-5  
0
5
10  
15  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
I
(mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUT  
______________________________________________________________________________________ 11  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(AV = DV = 5V, V  
= 4.096V, R = 10k, C = 100pF, speed mode = FAST, PU = floating, T = +25°C, unless otherwise noted.)  
DD  
DD  
REF  
L
L
A
MAJOR-CARRY TRANSITION GLITCH  
SETTLING TIME POSITIVE  
SETTLING TIME NEGATIVE  
MAX5590-95 toc21  
MAX5590-95 toc19  
MAX5590-95 toc20  
FULL-SCALE  
TRANSITION  
CS  
5V/div  
CS  
CS  
5V/div  
5V/div  
OUT_  
2mV/div  
OUT_  
OUT_  
2V/div  
2V/div  
FULL-SCALE  
TRANSITION  
250ns/div  
400ns/div  
400ns/div  
DAC-TO-DAC CROSSTALK  
REFERENCE INPUT BANDWIDTH  
REFERENCE FEEDTHROUGH AT 1kHz  
MAX5590-95 toc24  
5
0
-22  
-30  
-40  
-50  
-60  
-5  
OUTA–OUTG  
2V/div  
-70  
-80  
-10  
-15  
-20  
-25  
-90  
-100  
-110  
-120  
-130  
OUTH  
1mV/div  
V
= 0.1V AT 4.096V  
P-P DC  
REF  
UNITY GAIN  
-142  
200µs/div  
1
10  
100  
FREQUENCY (kHz)  
1000  
10,000  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
FREQUENCY (kHz)  
DIGITAL FEEDTHROUGH  
POWER-UP GLITCH  
EXITING SHUTDOWN TO MIDSCALE  
MAX5590-95 toc25  
MAX5590-95 toc26  
MAX5590-95 toc27  
SCLK  
AV  
DD  
2V/div  
2V/div  
CS  
2V/div  
OUT_  
2V/div  
OUT_  
(AC-COUPLED)  
2mV/div  
OUT_  
2V/div  
PU = DV  
DD  
1µs/div  
400µs/div  
10µs/div  
12 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Pin Description  
PIN  
MAX5590  
MAX5592  
MAX5594  
MAX5591  
MAX5593  
MAX5595  
NAME  
FUNCTION  
1
1
2
AV  
Analog Supply  
DD  
2
AGND Analog Ground  
3
3
OUTA  
N.C.  
DACA Output  
4, 8, 17, 21  
6
No Connection. Not internally connected.  
DACB Output  
5
6
OUTB  
OUTC  
OUTD  
CS  
7
DACC Output  
7
10  
11  
12  
13  
DACD Output  
9
Active-Low Chip-Select Input  
Serial Clock Input  
10  
11  
SCLK  
DIN  
Serial Data Input  
Clock Enable. Connect DSP to DV  
at power-up to transfer data on the rising edge  
DD  
12  
14  
DSP  
of SCLK. Connect DSP to GND to transfer data on the falling edge of SCLK.  
Connect DSP to DGND at power-up to transfer data on the falling edge of SCLK.  
13  
14  
15  
16  
18  
19  
20  
22  
15  
16  
17  
18  
19  
22  
23  
26  
DV  
Digital Supply  
DD  
DGND Digital Ground  
UPIO1 User-Programmable Input/Output 1  
UPIO2 User-Programmable Input/Output 2  
OUTE  
OUTF  
DACE Output  
DACF Output  
OUTG DACG Output  
OUTH  
PU  
DACH Output  
Power-Up State Select Input. Connect PU to DV to set OUTA–OUTH to full scale  
DD  
upon power-up. Connect PU to DGND to set OUTA–OUTH to zero upon power-up.  
Leave PU floating at power-up to set OUTA–OUTH to midscale.  
23  
27  
24  
28  
4
REF  
FBA  
FBB  
FBC  
FBD  
FBE  
FBF  
FBG  
FBH  
Reference Input  
Feedback for DACA  
Feedback for DACB  
Feedback for DACC  
Feedback for DACD  
Feedback for DACE  
Feedback for DACF  
Feedback for DACG  
Feedback for DACH  
5
8
9
20  
21  
24  
25  
______________________________________________________________________________________ 13  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Functional Diagrams  
AV  
DV  
AGND  
DGND  
DD  
DD  
CS  
SCLK  
DIN  
SERIAL  
INTERFACE  
CONTROL  
MAX5590  
MAX5592  
MAX5594  
DSP  
16-BIT SHIFT  
REGISTER  
DOUT  
REGISTER  
MUX  
UPIO1  
UPIO2  
UPIO1 AND  
UPIO2  
LOGIC  
POWER-DOWN  
LOGIC AND  
REGISTER  
DECODE  
CONTROL  
OUTA  
PU  
INPUT  
REGISTER  
A
DAC  
REGISTER  
A
DACA  
OUTH  
INPUT  
REGISTER  
H
DAC  
REGISTER  
H
DACH  
REF  
14 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Functional Diagrams (continued)  
AV  
DV  
AGND  
DGND  
DD  
DD  
CS  
SCLK  
DIN  
SERIAL  
INTERFACE  
CONTROL  
MAX5591  
MAX5593  
MAX5595  
DSP  
16-BIT SHIFT  
REGISTER  
DOUT  
REGISTER  
MUX  
UPIO1  
UPIO2  
UPIO1 AND  
UPIO2  
LOGIC  
POWER-DOWN  
LOGIC AND  
REGISTER  
FBA  
DECODE  
CONTROL  
OUTA  
PU  
INPUT  
REGISTER  
A
DAC  
REGISTER  
A
DACA  
FBH  
OUTH  
INPUT  
REGISTER  
H
DAC  
REGISTER  
H
DACH  
REF  
______________________________________________________________________________________ 15  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Use the serial interface to set the shutdown output  
Detailed Description  
impedance of the amplifiers to 1kor 100kfor the  
MAX5590/MAX5592/MAX5594 and 1kor high imped-  
ance for the MAX5591/MAX5593/MAX5595. The DAC  
outputs can drive a 10k(typ) load and are stable with  
up to 500pF (typ) of capacitive load.  
The MAX5590–MAX5595 octal, 12/10/8-bit, voltage-out-  
put DACs offer buffered outputs and a 3µs maximum  
settling time at the 12-bit level. The DACs operate from a  
single 2.7V to 5.25V analog supply and a separate 1.8V  
to AV  
digital supply. The MAX5590–MAX5595 include  
DD  
an input register and DAC register for each channel and  
a 16-bit data-in/data-out shift register. The 3-wire serial  
interface is compatible with SPI, QSPI, MICROWIRE, and  
DSP applications. The MAX5590– MAX5595 provide two  
user-programmable digital I/O ports, which are pro-  
grammed through the serial interface. The externally  
selectable power-up states of the DAC outputs are either  
zero scale, midscale, or full scale.  
Power-On Reset  
At power-up, all DAC outputs power up to full scale,  
midscale, or zero scale, depending on the configuration  
of the PU input. Connect PU to DV  
to set OUT_ to full  
DD  
scale upon power-up. Connect PU to digital ground  
(DGND) at power-up to set OUT_ to zero scale. Leave  
PU floating to set OUT_ to midscale.  
Digital Interface  
Reference Input  
The reference input, REF, accepts both AC and DC val-  
ues with a voltage range extending from analog ground  
(AGND) to AV . The voltage at REF sets the full-scale  
DD  
output of the DACs. Determine the output voltage using  
the following equations:  
The MAX5590–MAX5595 use a 3-wire serial interface  
that is compatible with SPI, QSPI, MICROWIRE, and DSP  
protocol applications (Figures 1 and 2). Connect DSP to  
DV  
before power-up to clock data in on the rising  
DD  
edge of SCLK. Connect DSP to DGND before power-up  
to clock data in on the falling edge of SCLK. After power-  
up, the device enters DSP frame-sync mode on the first  
rising edge of DSP. Refer to the MAX5590–MAX5595  
Programmer’s Handbook for details.  
Unity-gain versions:  
V
OUT_  
= (V  
x CODE) / 2N  
REF  
Force-sense versions (FB_ connected to OUT_):  
= 0.5 x (V  
x CODE) / 2N  
The MAX5590–MAX5595 include a 16-bit input shift  
register. The data is loaded into the input shift register  
through the serial interface. The 16 bits can be sent in  
two serial 8-bit packets or one 16-bit word (CS must  
remain low until all 16 bits are transferred). The data is  
loaded MSB first. For the MAX5590/MAX5591, the 16  
bits consist of 4 control bits (C3–C0) and 12 data bits  
(D11–D0) (see Table 1). For the 10-bit MAX5592/  
MAX5593 devices, D11–D2 are the data bits and D1  
and D0 are sub-bits. For the 8-bit MAX5594/  
MAX5595 devices, D11–D4 are the data bits and  
D3–D0 are sub-bits. Set all sub-bits to zero for optimum  
performance.  
V
OUT  
REF  
where CODE is the numeric value of the DAC’s binary  
input code and N is the bits of resolution. For the  
MAX5590/MAX5591, N = 12 and CODE ranges from 0  
to 4095. For the MAX5592/MAX5593, N = 10 and  
CODE ranges from 0 to 1023. For the MAX5594/  
MAX5595, N = 8 and CODE ranges from 0 to 255.  
Output Buffers  
The DACA and DACH output-buffer amplifiers of the  
MAX5590–MAX5595 are unity-gain stable with Rail-to-  
Rail® output voltage swings and a typical slew rate  
of 3.6V/µs (FAST mode). The MAX5590/MAX5592/  
MAX5594 provide unity-gain outputs, while the  
MAX5591/MAX5593/MAX5595 provide force-sense out-  
puts. For the MAX5591/MAX5593/MAX5595, access to  
the output amplifier’s inverting input provides flexibility  
in output gain setting and signal conditioning (see the  
Applications Information section).  
Each DAC channel includes two registers: an input reg-  
ister and the DAC register. At power-up, the DAC out-  
put is set according to the state of PU. The DACs are  
double-buffered, which allows any of the following for  
each channel:  
• Loading the input register without updating the DAC  
register  
The MAX5590–MAX5595 offer FAST and SLOW settling-  
time modes. In the SLOW mode, the settling time is 6µs  
(max), and the supply current is 3.2mA (max). In the  
FAST mode, the settling time is 3µs (max), and the sup-  
ply current is 8mA (max). See the Digital Interface section  
for settling-time mode programming details.  
• Updating the DAC register from the input register  
• Updating the input and DAC registers simultaneously  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
16 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Table 1. Serial Write Data Format  
MSB  
CONTROL BITS  
C2 C1  
16 BITS OF SERIAL DATA  
DATA BITS  
D6 D5  
LSB  
C3  
C0  
D11  
D10  
D9  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
t
CH  
SCLK  
DIN  
t
CL  
t
DS  
C3  
C2  
C1  
D0  
t
t
t
DH  
CSH  
CS0  
t
CSS  
CS  
t
CSW  
t
CS1  
t
DO1  
DOUTDC1*  
DOUT VALID  
t
DO2  
DOUTDC0  
OR  
DOUTRB*  
DOUT VALID  
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT).  
SEE THE DATA OUTPUT (DOUTRB, DOUTDC0, DOUTDC1) SECTION FOR DETAILS.  
Figure 1. Serial-Interface Timing Diagram (DSP Mode Disabled)  
t
CL  
SCLK  
t
CH  
t
DS  
DIN  
C3  
C2  
C1  
D0  
t
CS0  
t
DH  
t
CSH  
t
CCS  
CS  
t
CSW  
t
t
CS1  
DSS  
t
DS0  
DSP  
t
D02  
t
t
DSPWL  
DSW  
DOUTDC0*  
DOUT VALID  
t
D01  
DOUTDC1  
OR  
DOUT VALID  
DOUTRB*  
*UPIO1/UPIO2 CONFIGURED AS DOUTDC_ (DAISY-CHAIN DATA OUTPUT, MODE 0 OR 1) OR DOUTRB (READ-BACK DATA OUTPUT).  
SEE THE DATA OUTPUT (DOUTRB, DOUTDC0, DOUTDC1) SECTION FOR DETAILS.  
Figure 2. Serial-Interface Timing Diagram (DSP Mode Enabled)  
______________________________________________________________________________________ 17  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Serial-Interface Programming Commands  
Tables 2a, 2b, and 2c provide all of the serial-interface  
programming commands for the MAX5590–MAX5595.  
Table 2a shows the basic DAC programming com-  
mands, Table 2b gives the advanced-feature program-  
ming commands, and Table 2c provides the 24-bit  
read commands. Figures 3 and 4 provide the serial-  
interface diagrams for read and write operations.  
Loading Input and DAC Registers  
The MAX5590–MAX5595 contain a 16-bit shift register  
that is followed by a 12-bit input register and a 12-bit  
DAC register for each channel (see the Functional  
Diagrams). Tables 3, 4, and 5 highlight a few of the  
commands that handle the loading of the input and  
DAC registers. See Table 2a for all DAC programming  
commands.  
V
V
DD  
DD  
MICROWIRE  
SPI OR QSPI  
MAX5590–  
MAX5595  
MAX5590–  
MAX5595  
V
DV  
DD  
V
DV  
DD  
DD  
DD  
DSP  
SCLK  
DIN  
CS  
DSP  
SCLK  
DIN  
CS  
SK  
SO  
SCK  
MOSI  
I/O  
SS OR I/O  
MICROWIRE OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
ONLY IF SCLK COUNT = N 16  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
CS  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SPI (CPOL = 1, CPHA = 1) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
ONLY IF SCLK COUNT = N 16  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
CS  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 3. MICROWIRE and SPI Single DAC Writes (CPOL = 0, CPHA = 0 or CPOL = 1, CPHA = 1)  
DSP  
SPI OR QSPI  
MAX5590–  
MAX5595  
MAX5590–  
MAX5595  
V
DGND  
V
DGND  
SS  
SS  
DSP  
SCLK  
DSP  
SCLK  
TCLK, SCLK, OR CLKX  
DT OR DX  
SCK  
DIN  
CS  
MOSI  
DIN  
CS  
TFS OR FSX  
SS OR I/O  
DSP OR SPI (CPOL = 0, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
ONLY IF SCLK COUNT = N 16  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
CS  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DSP OR SPI (CPOL = 1, CPHA = 0) 8-BIT CONTROL DATA OR 12-BIT DAC DATA WRITE:  
COMMAND TAKES EFFECT HERE  
ONLY IF SCLK COUNT = N 16  
CS MUST REMAIN LOW BETWEEN BYTES ON A 16-BIT WRITE OPERATION  
CS  
SCLK  
DIN  
C3  
C2  
C1  
C0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 4. DSP and SPI Single DAC Writes (CPOL = 0, CPHA = 1 or CPOL = 1, CPHA = 0)  
18 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
______________________________________________________________________________________ 19  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
20 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
______________________________________________________________________________________ 21  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
I D A _ 0  
I D A _ 1  
I D A _ 2  
I D A _ 3  
I D A _ 4  
I D B _ 0  
I D B _ 1  
I D B _ 2  
I D B _ 3  
I D B _ 4  
I D C _ 0  
I D C _ 1  
I D C _ 2  
I D C _ 3  
I D C _ 4  
I D D _ 0  
I D D _ 1  
I D D _ 2  
I D D _ 3  
I D D _ 4  
I D E _ 0  
I D E _ 1  
I D E _ 2  
I D E _ 3  
I D E _ 4  
I D F _ 0  
I D F _ 1  
I D F _ 2  
I D F _ 3  
I D F _ 4  
I D G _ 0  
I D G _ 1  
I D H  
I D H  
I D H  
I D H  
I D H  
2 _ G I D  
I D G _ 3  
I D G _ 4  
I D G _ 5  
I D G _ 6  
I D G _ 7  
I D G _ 8  
I D G _ 9  
I D G _ 1 0  
I D G _ 1 1  
I D A _ 5  
I D A _ 6  
I D A _ 7  
I D A _ 8  
I D A _ 9  
I D A _ 1 0  
I D A _ 1 1  
I D B _ 5  
I D B _ 6  
I D B _ 7  
I D B _ 8  
I D B _ 9  
I D B _ 1 0  
I D B _ 1 1  
I D C _ 5  
I D C _ 6  
I D C _ 7  
I D C _ 8  
I D C _ 9  
I D C _ 1 0  
I D C _ 1 1  
I D D _ 5  
I D D _ 6  
I D D _ 7  
I D D _ 8  
I D D _ 9  
I D D _ 1 0  
I D D _ 1 1  
I D E _ 5  
I D E _ 6  
I D E _ 7  
I D E _ 8  
I D E _ 9  
I D E _ 1 0  
I D E _ 1 1  
I D F _ 5  
I D F _ 6  
I D F _ 7  
I D F _ 8  
I D F _ 9  
I D F _ 1 0  
I D F _ 1 1  
I D H  
I D H  
I D H  
I D H  
I D H  
I D H  
I D H  
D D A _ 0  
D D A _ 1  
D D A _ 2  
D D A _ 3  
D D A _ 4  
D D A _ 5  
D D A _ 6  
D D A _ 7  
D D A _ 8  
D D A _ 9  
D D B _ 0  
D D B _ 1  
D D B _ 2  
D D B _ 3  
D D B _ 4  
D D B _ 5  
D D B _ 6  
D D B _ 7  
D D B _ 8  
D D B _ 9  
D D C _ 0  
D D C _ 1  
D D C _ 2  
D D C _ 3  
D D C _ 4  
D D C _ 5  
D D C _ 6  
D D C _ 7  
D D C _ 8  
D D C _ 9  
D D D _ 0  
D D D _ 1  
D D D _ 2  
D D D _ 3  
D D D _ 4  
D D D _ 5  
D D D _ 6  
D D D _ 7  
D D D _ 8  
D D D _ 9  
D D E _ 0  
D D E _ 1  
D D E _ 2  
D D E _ 3  
D D E _ 4  
D D E _ 5  
D D E _ 6  
D D E _ 7  
D D E _ 8  
D D E _ 9  
D D F _ 0  
D D F _ 1  
D D F _ 2  
D D F _ 3  
D D F _ 4  
D D F _ 5  
D D F _ 6  
D D F _ 7  
D D F _ 8  
D D F _ 9  
D D G _ 0  
D D G _ 1  
D D G _ 2  
D D G _ 3  
D D G _ 4  
D D G _ 5  
D D G _ 6  
D D G _ 7  
D D G _ 8  
D D G _ 9  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D A _ 1 0  
D D A _ 1 1  
D D B _ 1 0  
D D B _ 1 1  
D D C _ 1 0  
D D C _ 1 1  
D D D _ 1 0  
D D D _ 1 1  
D D E _ 1 0  
D D E _ 1 1  
D D F _ 1 0 0 1 _  
D D F _ 1 1  
D D G  
D D  
D D  
D D G _ 1 1  
SC  
22 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
DAC Programming Examples:  
Advanced-Feature  
To load input register A from the shift register, leaving  
DAC register A unchanged (DAC output unchanged),  
use the command in Table 3.  
Programming Commands  
Select Bits (M_)  
The select bits allow synchronous updating of any com-  
bination of channels. The select bits command the  
loading of the DAC register from the input register of  
each channel. Set the select bit M_ = 1 to load the DAC  
register “_” with data from the input register “_”, where  
“_” is replaced with A, B, or C and so on through H,  
depending on the selected channel. Setting the select  
bit M_ = 0 results in no action for that channel (Table 6).  
The MAX5590–MAX5595 can load all of the input regis-  
ters (A–H) simultaneously from the shift register, leaving  
the DAC registers unchanged (DAC output unchanged),  
by using the command in Table 4.  
To load all of the input registers (A–H) and all of the DAC  
registers (A–H) simultaneously, use the command in  
Table 5.  
For the 10-bit and 8-bit versions, set sub-bits = 0 for  
best performance.  
Select Bits Programming Example:  
To load DAC register B from input register B while  
keeping other channels (A, C–H) unchanged, set MB =  
1 and M_ = 0 (Table 7).  
Table 3. Load Input Register A from Shift Register  
DATA  
CONTROL BITS  
DATA BITS  
D6 D5  
DIN  
0
0
0
0
D11  
D10  
D9  
D8  
D7  
D4  
D3/0 D2/0 D1/0 D0/0  
Table 4. Load Input Registers (A–H) from Shift Register  
DATA  
CONTROL BITS  
DATA BITS  
D6 D5  
DIN  
1
0
0
1
D11  
D10  
D9  
D8  
D7  
D4  
D3/0 D2/0 D1/0 D0/0  
Table 5. Load Input Registers (A–H) and DAC Registers (A–H) from Shift Register  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3/0 D2/0 D1/0 D0/0  
Table 6. Select Bits (M_)  
DATA  
CONTROL BITS  
DATA BITS  
ME MD  
DIN  
1
0
0
0
X
X
X
X
MH  
MG  
MF  
MC  
MB  
MA  
X = Don’t care.  
Table 7. Select Bits Programming Example  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
0
0
X
X
0
0
0
0
0
0
0
0
1
0
X = Don’t care.  
______________________________________________________________________________________ 23  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Shutdown-Mode Bits (PD_0, PD_1)  
Use the shutdown-mode bits and control bits to  
shut down each DAC independently. The shutdown-  
mode bits determine the output state of the selected  
channels. The shutdown-control bits put the selected  
channels into shutdown-mode. To select the shutdown  
mode for DACA–DACH, set PD_0 and PD_1 according  
to Table 8 (where “_” is replaced with one of the select-  
ed channels (A–H)). The three possible states for unity-  
gain versions are 1) normal operation, 2) shutdown with  
1koutput impedance, and 3) shutdown with 100kΩ  
output impedance. The three possible states for force-  
sense versions are 1) normal operation, 2) shutdown  
with 1koutput impedance, and 3) shutdown with the  
output in a high-impedance state. Tables 9 and 10  
show the commands for writing to the shutdown-mode  
bits. Table 11 shows the commands for writing the  
shutdown-control bits. This command is required to put  
the selected channels into shutdown.  
Always write the shutdown-mode-bits command first  
and then write the shutdown-control-bits command to  
properly shut down the selected channels. The shut-  
down-control-bits command can be written at any time  
after the shutdown-mode-bits command. It does not  
have to immediately follow the shutdown-mode-bits  
command.  
Table 8. Shutdown-Mode Bits  
PD_1  
PD_0  
DESCRIPTIONS  
Shutdown with 1ktermination to ground  
on DAC_ output.  
0
0
Settling-Time-Mode Bits (SPD_)  
The settling-time-mode bits select the settling time (FAST  
mode or SLOW mode) of the MAX5590–MAX5595.  
Set SPD_ = 1 to select FAST mode or set SPD_ = 0 to  
select SLOW mode, where “_” is replaced by A, B, or C  
and so on through H, depending on the selected chan-  
nel (Table 12). FAST mode provides a 3µs maximum set-  
tling time, and SLOW mode provides a 6µs maximum  
settling time.  
Shutdown with 100ktermination to  
ground on DAC_ output for unity-gain  
versions. Shutdown with high-impedance  
output for force-sense versions.  
0
1
1
1
0
1
Ignored.  
DAC_ is powered up in its normal  
operating mode.  
Table 9. Shutdown-Mode Write Command (DACA–DACD)  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
1
0
0
0
0
PDD1 PDD0 PDC1 PDC0 PDB1 PDB0 PDA1 PDA0  
X = Don’t care.  
Table 10. Shutdown-Mode Write Command (DACE–DACH)  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
1
0
0
1
0
PDH1 PDH0 PDG1 PDG0 PDF1 PDF0 PDE1 PDE0  
X = Don’t care.  
Table 11. Shutdown-Control-Bits Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
1
0
1
0
0
PDCH PDCG PDCF PDCE PDCD PDCC PDCB PDCA  
X = Don’t care.  
Table 12. Settling-Time-Mode Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
1
1
0
0
0
SPDH SPDG SPDF SPDE SPDD SPDC SPDB SPDA  
24 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Settling-Time-Mode Write Example:  
ing edge of SCLK. Set the DAC’s CPOL and CPHA bits  
to CPOL = 0 and CPHA = 1 or CPOL = 1 and CPHA =  
0 for DSP and SPI applications, requiring the clocking  
of data in on the falling edge of SCLK (refer to the  
Programmer’s Handbook and see Table 15 for details).  
To configure DACA and DACD into FAST mode and  
DACB and DACC into SLOW mode, use the command  
in Table 13.  
To read back the settling-time-mode bits, use the com-  
mand in Table 14.  
At power-up, if DSP = DV , the default value of CPHA  
DD  
is zero and if DSP = DGND, the default value of CPHA  
is one. The default value of CPOL is zero at power-up.  
CPOL and CPHA Control Bits  
The CPOL and CPHA control bits of the  
MAX5590–MAX5595 are defined the same as the CPOL  
and CPHA bits in the SPI standard. Set the DAC’s  
CPOL and CPHA bits to CPOL = 0 and CPHA = 0 or  
CPOL = 1 and CPHA = 1 for MICROWIRE and SPI  
applications requiring the clocking of data in on the ris-  
To write to the CPOL and CPHA bits, use the command  
in Table 16.  
To read back the device’s CPOL and CPHA bits, use  
the command in Table 17.  
Table 13. Settling-Time-Mode Write Example  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
1
1
0
0
0
X
X
X
X
1
0
0
1
X = Don’t care.  
Table 14. Settling-Time-Mode Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
0
X
1
X
1
X
1
X
0
X
0
X
1
X
X
X
X
X
X
X
X
X
DOUTRB  
SPDH SPDG SPDF SPDE SPDD SPDC SPDB SPDA  
X = Don’t care.  
Table 15. CPOL and CPHA Bits  
CPOL  
CPHA  
DESCRIPTION  
Default values at power-up when DSP is connected to DV . Data is clocked in on the rising edge  
of SCLK.  
DD  
0
0
Default values at power-up when DSP is connected to DGND. Data is clocked in on the falling edge  
of SCLK.  
0
1
1
1
0
1
Data is clocked in on the falling edge of SCLK.  
Data is clocked in on the rising edge of SCLK.  
Table 16. CPOL and CPHA Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
1
0
0
0
0
0
0
X
X
X
X
X
X
CPOL CPHA  
X = Don’t care.  
Table 17. CPOL and CPHA Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
1
X
0
X
0
X
0
X
0
X
0
X
1
X
X
X
X
X
X
X
X
X
X
X
DOUTRB  
X
X
X
X
CPOL CPHA  
X = Don’t care.  
______________________________________________________________________________________ 25  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
UPIO Bits (UPSL1, UPSL2, UP0–UP3)  
The MAX5590–MAX5595 provide two user-programma-  
ble input/output (UPIO) ports: UPIO1 and UPIO2. These  
ports have 15 possible configurations, as shown in  
Table 22. UPIO1 and UPIO2 can be programmed inde-  
pendently or simultaneously by writing to the UPSL1,  
UPSL2, and UP0–UP3 bits (Table 18).  
UPIO Programming Example:  
To set only UPIO1 as LDAC and leave UPIO2  
unchanged, use the command in Table 20.  
The UPIO selection and configuration bits can be read  
back from the MAX5590–MAX5595 when UPIO1 or  
UPIO2 is configured as a DOUTRB output. Table 21  
shows the read-back data format for the UPIO bits.  
Writing the command in Table 21 initiates a read opera-  
tion of the UPIO bits. The data is clocked out starting on  
the ninth clock cycle of the sequence. Bits UP3-2  
through UP0-2 provide the UP3–UP0 configuration bits  
for UPIO2 (Table 22), and bits UP3-1 through UP0-1  
provide the UP3–UP0 configuration bits for UPIO1.  
Table 19 shows how UPIO1 and UPIO2 are selected for  
configuration. The UP0–UP3 bits select the desired  
functions for UPIO1 and/or UPIO2 (Table 22).  
Table 18. UPIO Write Command  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
1
0
1
1
0
UPSL2 UPSL1 UP3  
UP2  
UP1  
UP0  
X
X
X = Don’t care.  
Table 19. UPIO Selection Bits (UPSL1 and UPSL2)  
UPSL2  
UPSL1  
UPIO PORT SELECTED  
None selected  
0
0
1
1
0
1
0
1
UPIO1 selected  
UPIO2 selected  
Both UPIO1 and UPIO2 selected  
Table 20. UPIO Programming Example  
DATA  
CONTROL BITS  
DATA BITS  
DIN  
1
0
1
1
0
1
1
0
0
1
0
0
0
0
X
X
X
X
X = Don’t care.  
Table 21. UPIO Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
0
X
1
X
1
X
0
X
1
X
1
1
X
X
X
X
X
X
DOUTRB  
X
X
UP3-2 UP2-2 UP1-2 UP0-2 UP3-1 UP2-1 UP1-1 UP0-1  
X = Don’t care.  
26 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
UPIO Configuration  
Table 22 lists the possible configurations for UPIO1 and  
UPIO2. UPIO1 and UPIO2 use the selected function  
when configured by the UP3–UP0 configuration bits.  
Drive LDAC low to asynchronously load the DAC regis-  
ters from their corresponding input registers (DACs that  
are in shutdown remain shut down). The LDAC input  
does not require any activity on CS, SCLK, or DIN to  
take effect. If LDAC is brought low coincident with a ris-  
ing edge of CS (which executes a serial command  
modifying the value of either DAC input register), then  
LDAC must remain asserted for at least 120ns following  
the CS rising edge. This requirement applies only for  
serial commands that modify the value of the DAC input  
registers. See Figures 5 and 6 for timing details.  
LDAC  
LDAC controls the loading of the DAC registers. When  
LDAC is high, the DAC registers are latched, and any  
change in the input registers does not affect the con-  
tents of the DAC registers or the DAC outputs. When  
LDAC is low, the DAC registers are transparent, and the  
values stored in the input registers are fed directly to the  
DAC registers, and the DAC outputs are updated.  
Table 22. UPIO Configuration Register Bits (UP3–UP0)  
UPIO CONFIGURATION BITS  
FUNCTION  
DESCRIPTION  
UP3  
UP2  
UP1  
UP0  
Active-Low Load DAC Input. Drive low to asynchronously load all DAC registers  
with data from input registers.  
0
0
0
0
LDAC  
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
SET  
MID  
CLR  
PDL  
Active-Low Input. Drive low to set all input and DAC registers to full scale.  
Active-Low Input. Drive low to set all input and DAC registers to midscale.  
Active-Low Input. Drive low to set all input and DAC registers to zero scale.  
Active-Low Power-Down Lockout Input. Drive low to disable software shutdown.  
Reserved This mode is reserved. Do not use.  
Active-Low 1kShutdown Input. Overrides PD_1 and PD_0 settings. For the  
MAX5590/MAX5592/MAX5594, drive SHDN1K low to pull OUTA–OUTH to AGND  
with 1k. For the MAX5591/MAX5593/MAX5595, drive SHDN1K low to leave  
OUTA–OUTH high impedance.  
0
0
1
1
1
1
0
1
SHDN1K  
Active-Low 100kShutdown Input. Overrides PD_1 and PD_0 settings. For the  
MAX5590/MAX5592/MAX5594, drive SHDN100K low to pull OUTA–OUTH to  
AGND with 100k. For the MAX5591/MAX5593/MAX5595, drive low to leave  
OUTA–OUTH high impedance.  
SHDN100K  
1
1
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
DOUTRB  
Data Read-Back Output  
Mode 0 Daisy-Chain Data Output. Data is clocked out on the falling edge of  
DOUTDC0  
DOUTDC1 Mode 1 Daisy-Chain Data Output. Data is clocked out on the rising edge of SCLK.  
GPI  
General-Purpose Logic Input  
GPOL  
GPOH  
General-Purpose Logic-Low Output  
General-Purpose Logic-High Output  
Toggle Input. Toggles DAC outputs between data in input registers and data in  
DAC registers. Drive low to set all DAC outputs to values stored in input registers.  
Drive high to set all DAC outputs to values stored in DAC registers.  
1
1
1
1
1
1
0
1
TOGG  
Fast/Slow Settling-Time-Mode Input. Drive low to select FAST (3µs) mode or drive  
high to select SLOW (6µs) settling mode. Overrides the SPDA–SPDH settings.  
FAST  
______________________________________________________________________________________ 27  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
t
LDL  
LDAC  
TOGG  
END OF  
CYCLE*  
t
GP  
PDL  
GPO_  
LDAC  
t
CMS  
t
LDS  
CLR,  
MID, OR  
SET  
t
S
0.5 LSB  
V
OUT_  
* END-OF-CYCLE REPRESENTS THE RISING EDGE OF CS OR THE 16TH  
ACTIVE CLOCK EDGE, DEPENDING ON THE MODE OF OPERATION.  
PDL AFFECTS DAC OUPTUTS (V  
) ONLY IF DACS WERE PREVIOUSLY SHUT DOWN.  
OUT_  
Figure 6. GPO_ and LDAC Signal Timing  
Figure 5. Asynchronous Signal Timing  
SET, MID, CLR  
SHDN1K low to select shutdown mode with OUTA–  
OUTH internally terminated with 1kto ground, or drive  
SHDN100K low to select shutdown with an internal  
100ktermination. For the MAX5591/MAX5593/  
MAX5595, drive SHDN1K low for shutdown with 1kΩ  
output termination, or drive SHDN100K low for shut-  
down with high-impedance outputs.  
The SET, MID, and CLR signals force the DAC outputs  
to full scale, midscale, or zero scale (Figure 5). These  
signals cannot be active at the same time.  
The active-low SET input forces the DAC outputs to full  
scale when SET is low. When SET is high, the DAC out-  
puts follow the data in the DAC registers.  
For proper shutdown, first select a shutdown mode  
(Table 8), then use the shutdown-control bits as listed  
in Table 2b.  
The active-low MID input forces the DAC outputs to  
midscale when MID is low. When MID is high, the DAC  
outputs follow the data in the DAC registers.  
Data Output (DOUTRB, DOUTDC0, DOUTDC1)  
UPIO1 and UPIO2 can be configured as serial data out-  
puts, DOUTRB (data out for read back), DOUTDC0  
(data out for daisy-chaining, mode 0), and DOUTDC1  
(data out for daisy-chaining, mode 1). The differences  
between DOUTRB and DOUTDC0 (or DOUTDC1) are  
as follows:  
The active-low CLR input forces the DAC outputs to  
zero scale when CLR is low. When CLR is high, the  
DAC outputs follow the data in the DAC registers.  
If CLR, MID, or SET signals go low during a write com-  
mand, reload the data to ensure accurate results.  
Power-Down Lockout (PDL)  
The PDL active-low, software-shutdown lockout input  
overrides (not overwrites) the PD_0 and PD_1 shutdown-  
mode bits. PDL cannot be active at the same time as  
SHDN1K or SHDN100K (see the Shutdown Mode  
(SHDN1K, SHDN100K) section).  
The source of read-back data on DOUTRB is the  
DOUT register. Daisy-chain DOUTDC_ data comes  
directly from the shift register.  
Read-back data on DOUTRB is only present after a  
DAC read command. Daisy-chain data is present on  
DOUTDC_ for any DAC write after the first 16 bits  
are written.  
If the PD_0 and PD_1 bits command the DAC to  
shut down prior to PDL going low, the DAC returns to  
shutdown mode immediately after PDL goes high,  
unless the PD_0 and PD_1 bits were modified through  
the serial interface in the meantime.  
The DOUTRB idle state (CS = high) for read back is  
high impedance. Daisy-chain DOUTDC_ idles high  
when inactive to avoid floating the data input in the  
next device in the daisy-chain.  
Shutdown Mode (SHDN1K, SHDN100K)  
The SHDN1K and SHDN100K are active-low signals  
that override (not overwrite) the PD_1 and PD_0 bit set-  
tings. For the MAX5590/MAX5592/MAX5594, drive  
See Figures 1 and 2 for timing details.  
28 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
GPI, GPOL, GPOH  
UPIO1 and UPIO2 can each be configured as a gener-  
al-purpose input (GPI), a general-purpose output low  
(GPOL), or a general-purpose output high (GPOH).  
GPOL outputs a constant low, and GPOH outputs a  
constant high. See Figure 6.  
TOGG  
Use the TOGG input to toggle the DAC outputs  
between the values in the input registers and DAC reg-  
isters. A delay of greater than 100ns from the end of the  
previous write command is required before the TOGG  
signal can be correctly switched between the new  
value and the previously stored value. When TOGG =  
0, the output follows the information in the input regis-  
ters. When TOGG = 1, the output follows the informa-  
tion in the DAC register (Figure 5).  
The GPI can serve to detect interrupts from µPs or micro-  
controllers. The GPI has three functions:  
1) Sample the signal at GPI at the time of the read  
(RTP1 and RTP2).  
2) Detect whether or not a falling edge has occurred  
since the last read or reset (LF1 and LF2).  
3) Detect whether or not a rising edge has occurred  
since the last read or reset (LR1 and LR2).  
FAST  
The MAX5590–MAX5595 have two settling-time-mode  
options: FAST (3µs max) and SLOW (6µs max). To  
select the FAST mode, drive FAST low, and to select  
SLOW mode, drive FAST high. This overrides (not over-  
writes) the SPDA–SPDH bit settings.  
RTP1, LF1, and LR1 represent the data read from  
UPIO1; RTP2, LF2, and LR2 represent the data read  
from UPIO2.  
To issue a read command for the UPIO configured as  
GPI, use the command in Table 23.  
Once the command is issued, RTP1 and RTP2 provide  
the real-time status (0 or 1) of the inputs at UPIO1 or  
UPIO2, respectively, at the time of the read. If LF2 or  
LF1 is one, then a falling edge has occurred on the  
respective UPIO1 or UPIO2 input since the last read or  
reset. If LR2 or LR1 is one, then a rising edge has  
occurred since the last read or reset.  
Table 23. GPI Read Command  
DATA  
DIN  
CONTROL BITS  
DATA BITS  
1
X
0
X
1
X
1
X
1
X
0
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
DOUTRB  
RTP2 LF2  
LR2 RTP1 LF1  
LR1  
X = Don’t care.  
Table 24. Unipolar Code Table (Gain = +1)  
DAC CONTENTS  
ANALOG OUTPUT  
DAC_  
REF_  
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
1111  
0001  
0000  
1111  
0001  
0000  
OUT_  
1111  
0000  
0000  
1111  
0000  
0000  
+V  
+V  
(4095 / 4096)  
(2049 / 4096)  
REF  
REF  
V
= V  
x CODE / 4096  
REF_  
OUT_  
CODE IS THE DAC_ INPUT  
CODE (0 TO 4095 DECIMAL).  
+V  
(2048 / 4096) = V  
/ 2  
REF  
REF  
+V  
(2047 / 4096)  
MAX5590  
REF  
+V  
(1 / 4096)  
0
REF  
Figure 7. Unipolar Output Circuit  
______________________________________________________________________________________ 29  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Applications Information  
Unipolar Output  
Figure 7 shows the unity-gain MAX5590 in a unipolar  
output configuration. Table 24 lists the unipolar out-  
put codes.  
10k  
10kΩ  
V+  
Bipolar Output  
The MAX5590 outputs can be configured for bipolar  
operation, as shown in Figure 8. The output voltage is  
given by the following equation:  
V
OUT  
DAC_  
REF  
OUT_  
V-  
V
OUT_  
= V  
x (CODE - 2048) / 2048  
REF  
MAX5590  
where CODE represents the numeric value of the  
DAC’s binary input code (0 to 4095 decimal). Table 25  
shows digital codes and the corresponding output volt-  
age for the Figure 8 circuit.  
Configurable Output Gain  
The MAX5591/MAX5593/MAX5595 have force-sense  
outputs, which provide a direct connection to the invert-  
ing terminal of the output op amp, yielding the most  
flexibility. The force-sense output has the advantage  
that specific gains can be set externally for a given  
application. The gain error for the MAX5591/MAX5593/  
MAX5595 is specified in a unity-gain configuration (op-  
amp output and inverting terminals connected), and  
additional gain error results from external resistor  
tolerances. The force-sense DACs allow many useful  
circuits to be created with only a few simple external  
components.  
Figure 8. Bipolar Output Circuit  
DAC_  
REF  
OUT_  
FB_  
R2 = 12k  
0.1%  
25ppm  
MAX5591  
An example of a custom, fixed gain using the  
MAX5591’s force-sense output is shown in Figure 9. In  
this example, the external reference is set to 1.25V, and  
the gain is set to +1.1V/V with external discrete resis-  
tors to provide an approximate 0 to 1.375V DAC output  
voltage range.  
R1 = 10kΩ  
0.1%  
25ppm  
V
= [(0.5 x V  
x CODE) / 4096] x [1 + (R2 / R1)]  
OUT  
REF_  
where CODE represents the numeric value of the  
DAC’s binary input code (0 to 4095 decimal).  
Figure 9. Configurable Output Gain  
In this example, R2 = 12kand R1 = 10kto set the  
gain = 1.1V/V.  
Table 25. Bipolar Code Table (Gain = +1)  
DAC CONTENTS  
ANALOG OUTPUT  
V
OUT  
= [(0.5 x 1.25V x CODE) / 4096] x 2.2  
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
1111  
0001  
0000  
1111  
0001  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
+V  
(2047 / 2048)  
REF  
+V  
(1 / 2048)  
0
REF  
-V  
-V  
(1 / 2048)  
REF  
(2047 / 2048)  
REF  
-V  
(2048 / 2048) = -V  
REF  
REF  
30 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
inductance ground plane. Wire-wrapped boards and  
sockets are not recommended. For optimum system  
performance, use PC boards with separate analog and  
digital ground planes. Connect the two ground planes  
together at the low-impedance power-supply source.  
Power-Supply and Layout Considerations  
Bypass the analog and digital power supplies by using a  
10µF capacitor in parallel with a 0.1µF capacitor to AGND  
and DGND (Figure 10). Minimize lead lengths to reduce  
lead inductance. Use shielding and/or ferrite beads to fur-  
ther increase isolation.  
Using separate power supplies for AV  
and DV  
DD  
DD  
improves noise immunity. Connect AGND and DGND at  
the low-impedance power-supply sources (Figure 11).  
Digital and AC transient signals coupling to AGND can  
create noise at the output. Connect AGND to the high-  
est quality ground available. Use proper grounding  
techniques, such as a multilayer board with a low-  
AV  
DV  
DD  
DD  
ANALOG SUPPLY  
AV AGND  
DIGITAL SUPPLY  
DV DGND  
0.1µF  
10µF  
DV  
0.1µF  
10µF  
V
REF  
DD  
DD  
AV  
DD  
DD  
REF  
0.1µF*  
10µF*  
OUTA  
MAX5590–MAX5595  
CS  
SCLK  
DIN  
10µF  
10µF  
OUTH  
FBA  
0.1µF  
0.1µF  
PU  
MAX5591  
MAX5593  
MAX5595  
ONLY  
DSP  
UPIO1  
UPIO2  
AV  
DD  
AGND  
DV  
DGND  
DV  
DD  
DGND  
DIGITAL  
CIRCUITRY  
DD  
FBH  
MAX5590–MAX5595  
AGND**  
DGND**  
*REMOVE BYPASS CAPACITORS ON REF FOR AC-REFERENCE INPUTS.  
**CONNECT ANALOG AND DIGITAL GROUND PLANES AT THE  
LOW-IMPEDANCE POWER-SUPPLY SOURCE.  
Figure 11. Separate Analog and Digital Power Supplies  
Figure 10. Bypassing Power Supplies AV , DV , and REF  
DD  
DD  
______________________________________________________________________________________ 31  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Pin Configurations  
TOP VIEW  
AV  
1
2
3
4
5
6
7
8
9
28 REF  
DD  
AV  
1
2
3
4
5
6
7
8
9
24 REF  
DD  
AGND  
OUTA  
FBA  
27 PU  
AGND  
OUTA  
N.C.  
23 PU  
26 OUTH  
25 FBH  
24 FBG  
23 OUTG  
22 OUTF  
21 FBF  
22 OUTH  
21 N.C.  
20 OUTG  
19 OUTF  
18 OUTE  
17 N.C.  
16 UPIO2  
15 UPIO1  
14 DGND  
FBB  
MAX5590  
MAX5592  
MAX5594  
MAX5591  
MAX5593  
MAX5595  
OUTB  
OUTC  
OUTD  
N.C.  
OUTB  
OUTC  
FBC  
FBD  
20 FBE  
CS  
OUTD 10  
CS 11  
19 OUTE  
18 UPIO2  
17 UPIO1  
16 DGND  
SCLK 10  
DIN 11  
SCLK 12  
DIN 13  
DSP 14  
DSP 12  
13 DV  
DD  
15 DV  
DD  
TSSOP  
TSSOP  
Selector Guide  
Chip Information  
TRANSISTOR COUNT: 38,513  
OUTPUT  
BUFFER  
INL  
RESOLUTION  
(LSBs  
PROCESS: BiCMOS  
PART  
(BITS)  
CONFIGURATION  
MAX)  
MAX5590AEUG*  
MAX5590BEUG  
MAX5591AEUI*  
MAX5591BEUI  
MAX5592EUG  
MAX5593EUI  
Unity Gain  
Unity Gain  
12  
12  
12  
12  
10  
10  
8
1
4
Force Sense  
Force Sense  
Unity Gain  
1
4
1
Force Sense  
Unity Gain  
1
MAX5594EUG  
MAX5595EUI  
0.5  
0.5  
Force Sense  
8
*Future product. Contact factory for availability. Specifications  
are preliminary.  
32 ______________________________________________________________________________________  
Buffered, Fast-Settling, Octal, 12/10/8-Bit,  
Voltage-Output DACs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 33  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5590AEUG+

暂无描述
MAXIM

MAX5590AEUG+T

DAC 8-CH 12-bit 24-Pin TSSOP T/R
MAXIM

MAX5590AEUG-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 3us Settling Time, PDSO24, 4.40 MM, MO-153AD, TSSOP-24
MAXIM

MAX5590BEUG

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs
MAXIM

MAX5590BEUG+T

D/A Converter, 1 Func, Parallel, Word Input Loading, 3us Settling Time, PDSO24, 4.40 MM, MO-153AD, TSSOP-24
MAXIM

MAX5590BEUG-T

D/A Converter, 1 Func, Parallel, Word Input Loading, 3us Settling Time, PDSO24, 4.40 MM, MO-153AD, TSSOP-24
MAXIM

MAX5590_04

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs
MAXIM

MAX5591AEUI

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs
MAXIM

MAX5591AEUI+

D/A Converter, 1 Func, Serial Input Loading, 3us Settling Time, PDSO28, ROHS COMPLIANT, TSSOP-28
MAXIM

MAX5591BEUI

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs
MAXIM

MAX5591BEUI+

D/A Converter, 1 Func, Serial Input Loading, 3us Settling Time, PDSO28, ROHS COMPLIANT, TSSOP-28
MAXIM

MAX5592

Buffered, Fast-Settling, Octal, 12/10/8-Bit, Voltage-Output DACs
MAXIM