MAX5522 [MAXIM]

Dual, Ultra-Low-Power, 10-Bit, Voltage-Output DACs;
MAX5522
型号: MAX5522
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, Ultra-Low-Power, 10-Bit, Voltage-Output DACs

文件: 总23页 (文件大小:1157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3064; Rev 1; 12/04  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
General Description  
Features  
The MAX5522–MAX5525 are dual, 10-bit, ultra-low-  
power, voltage-output, digital-to-analog converters  
(DACs) offering rail-to-rail buffered voltage outputs. The  
DACs operate from a 1.8V to 5.5V supply and consume  
less than 5µA, making the devices suitable for low-  
power and low-voltage applications. A shutdown mode  
reduces overall current, including the reference input  
current, to just 0.18µA. The MAX5522–MAX5525 use a  
3-wire serial interface that is compatible with SPI™,  
QSPI™, and MICROWIRE™.  
Ultra-Low 5µA Supply Current  
Shutdown Mode Reduces Supply Current to  
0.18µA (max)  
Single +1.8V to +5.5V Supply  
Small 4mm x 4mm x 0.8mm Thin QFN Package  
Internal Reference Sources 8mA of Current  
(MAX5523/MAX5525)  
Flexible Force-Sense-Configured Rail-to-Rail  
Output Buffers  
Upon power-up, the MAX5522–MAX5525 outputs are  
driven to zero scale, providing additional safety for  
applications that drive valves or for other transducers  
that need to be off during power-up. The zero-scale  
outputs enable glitch-free power-up.  
Fast 16MHz, 3-Wire, SPI-/QSPI-/MICROWIRE-  
Compatible Serial Interface  
TTL- and CMOS-Compatible Digital Inputs with  
Hysteresis  
The MAX5522 accepts an external reference input and  
provides unity-gain outputs. The MAX5523 contains a  
precision internal reference and provides a buffered  
external reference output with unity-gain DAC outputs.  
The MAX5524 accepts an external reference input and  
provides force-sense outputs. The MAX5525 contains a  
precision internal reference and provides a buffered  
external reference output with force-sense DAC outputs.  
Glitch-Free Outputs During Power-Up  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
MAX5522EUA  
MAX5523EUA  
MAX5524ETC  
MAX5525ETC  
8 µMAX  
12 Thin QFN-EP*  
12 Thin QFN-EP*  
The MAX5524/MAX5525 are available in a 4mm x 4mm  
x 0.8mm, 12-pin, thin QFN package. The MAX5522/  
MAX5523 are available in an 8-pin µMAX package. All  
devices are guaranteed over the extended -40°C to  
+85°C temperature range.  
*EP = Exposed paddle (internally connected to GND).  
Selector Guide  
For 12-bit compatible devices, refer to the MAX5532–  
MAX5535 data sheet. For 8-bit compatible devices,  
refer to the MAX5512–MAX5515 data sheet.  
PART  
OUTPUTS  
Unity gain  
Unity gain  
REFERENCE TOP MARK  
MAX5522EUA  
MAX5523EUA  
External  
Internal  
External  
Internal  
Applications  
Portable Battery-Powered Devices  
Instrumentation  
MAX5524ETC Force sense  
MAX5525ETC Force sense  
AACK  
AACL  
Automatic Trimming and Calibration in Factory  
or Field  
Pin Configurations  
Programmable Voltage and Current Sources  
TOP VIEW  
Industrial Process Control and Remote  
Industrial Devices  
CS  
SCLK  
DIN  
1
2
3
4
8
7
6
5
OUTA  
GND  
Remote Data Conversion and Monitoring  
Chemical Sensor Cell Bias for Gas Monitors  
Programmable LCD Bias  
MAX5522  
MAX5523  
V
DD  
REFIN(MAX5522)  
OUTB  
REFOUT(MAX5523)  
µMAX  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
ABSOLUTE MAXIMUM RATINGS  
DD  
OUTA, OUTB to GND.................................-0.3V to (V  
FBA, FBB to GND.......................................-0.3V to (V  
SCLK, DIN, CS to GND ..............................-0.3V to (V  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
REFIN, REFOUT to GND ............................-0.3V to (V + 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
12-Pin Thin QFN (derate 16.9mW/°C above +70°C).....1349mW  
8-Pin µMAX (derate 5.9mW/°C above +70°C).............471mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +1.8V to +5.5V, OUT_ unloaded, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY (MAX5522/MAX5524 EXTERNAL REFERENCE)  
Resolution  
N
10  
Bits  
V
V
= 5V, V  
= 4.096V  
REF  
1
1
4
4
DD  
DD  
Integral Nonlinearity (Note 1)  
INL  
LSB  
= 1.8V, V  
= 1.024V  
REF  
Guaranteed monotonic, V  
= 5V,  
DD  
0.2  
0.2  
1
1
V
= 4.096V  
REF  
Differential Nonlinearity (Note 1)  
DNL  
LSB  
Guaranteed monotonic, V  
= 1.8V,  
DD  
V
V
V
= 1.024V  
REF  
DD  
DD  
= 5V, V  
= 4.096V  
1
1
20  
20  
REF  
Offset Error (Note 2)  
V
mV  
µV/°C  
LSB  
OS  
= 1.8V, V  
= 1.024V  
REF  
Offset-Error Temperature Drift  
Gain Error (Note 3)  
2
V
V
= 5V, V  
= 4.096V  
REF  
0.5  
0.5  
2
2
DD  
DD  
GE  
= 1.8V, V  
= 1.024V  
REF  
Gain-Error Temperature  
Coefficient  
4
ppm/°C  
Power-Supply Rejection Ratio  
PSRR  
1.8V V  
5.5V  
85  
dB  
DD  
STATIC ACCURACY (MAX5523/MAX5525 INTERNAL REFERENCE)  
Resolution  
N
10  
Bits  
V
V
= 5V, V  
= 3.9V  
REF  
1
1
4
4
DD  
DD  
Integral Nonlinearity (Note 1)  
INL  
LSB  
= 1.8V, V  
= 1.2V  
REF  
Guaranteed monotonic, V  
= 5V,  
DD  
DD  
0.2  
0.2  
1
1
V
= 3.9V  
REF  
Differential Nonlinearity (Note 1)  
DNL  
LSB  
Guaranteed monotonic, V  
= 1.8V,  
V
V
V
= 1.2V  
REF  
DD  
DD  
= 5V, V  
= 3.9V  
1
1
20  
20  
REF  
Offset Error (Note 2)  
V
mV  
µV/°C  
LSB  
OS  
= 1.8V, V  
= 1.2V  
REF  
Offset-Error Temperature Drift  
Gain Error (Note 3)  
2
V
V
= 5V, V  
= 3.9V  
REF  
0.5  
0.5  
2
2
DD  
DD  
GE  
= 1.8V, V  
= 1.2V  
REF  
Gain-Error Temperature  
Coefficient  
4
ppm/°C  
2
_______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +1.8V to +5.5V, OUT_ unloaded, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
PARAMETER  
Power-Supply Rejection Ratio  
SYMBOL  
CONDITIONS  
5.5V  
MIN  
TYP  
MAX  
UNITS  
PSRR  
1.8V V  
85  
dB  
DD  
REFERENCE INPUT (MAX5522/MAX5524)  
Reference-Input Voltage Range  
V
0
V
V
REFIN  
DD  
Normal operation  
In shutdown  
4.1  
MΩ  
GΩ  
Reference-Input Impedance  
R
REFIN  
2.5  
REFERENCE OUTPUT (MAX5523/MAX5525)  
No external load, V  
No external load, V  
No external load, V  
No external load, V  
= 1.8V  
= 2.5V  
= 3V  
1.197  
1.913  
2.391  
3.828  
1.214  
1.940  
2.425  
3.885  
1.231  
1.967  
2.459  
3.941  
DD  
DD  
DD  
DD  
Initial Accuracy  
V
V
REFOUT  
= 5V  
Output-Voltage Temperature  
Coefficient  
V
T
= -40°C to +85°C (Note 4)  
12  
2
30  
200  
2
ppm/°C  
TEMPCO  
A
Line Regulation  
V
< V  
- 200mV (Note 5)  
µV/V  
REFOUT  
DD  
0 I  
V
1mA, sourcing, V = 1.8V,  
DD  
REFOUT  
0.3  
= 1.2V  
REF  
Load Regulation  
µV/µA  
0 I  
8mA, sourcing, V = 5V,  
DD  
REFOUT  
= 3.9V  
0.3  
2
V
REF  
-150µA I  
0, sinking  
0.2  
150  
600  
50  
REFOUT  
0.1Hz to 10Hz, V  
= 3.9V  
= 3.9V  
= 1.2V  
= 1.2V  
REF  
10Hz to 10kHz, V  
REF  
REF  
Output Noise Voltage  
µV  
P-P  
0.1Hz to 10Hz, V  
10Hz to 10kHz, V  
450  
30  
REF  
V
V
= 5V  
DD  
DD  
Short-Circuit Current (Note 6)  
mA  
= 1.8V  
14  
Capacitive Load Stability Range  
Thermal Hysteresis  
(Note 7)  
(Note 8)  
0 to 10  
200  
5.4  
nF  
ppm  
REFOUT unloaded, V  
REFOUT unloaded, V  
= 5V  
DD  
DD  
Reference Power-Up Time  
(from Shutdown)  
ms  
= 1.8V  
4.4  
ppm/  
1khrs  
Long-Term Stability  
200  
DAC OUTPUTS (OUTA, OUTB)  
Capacitive Driving Capability  
C
1000  
pF  
L
V
= 5V, V  
set to full scale, OUT  
OUT  
DD  
65  
65  
14  
14  
shorted to GND, source current  
V
V
= 5V V  
set to 0V, OUT shorted to  
OUT  
DD  
DD  
, sink current  
Short-Circuit Current (Note 6)  
mA  
V
= 1.8V, V  
set to full scale OUT  
OUT  
DD  
shorted to GND, source current  
V
V
= 1.8V, V  
, sink current  
set to 0V, OUT shorted to  
OUT  
DD  
DD  
_______________________________________________________________________________________  
3
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +1.8V to +5.5V, OUT_ unloaded, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3
MAX  
UNITS  
V
= 5V  
DD  
DD  
Coming out of shutdown  
(MAX5522/MAX5524)  
V
= 1.8V  
= 1.8V to  
3.8  
DAC Power-Up Time  
µs  
Coming out of standby  
(MAX5523/MAX5525)  
V
5.5V  
DD  
0.4  
Output Power-Up Glitch  
FB_ Input Current  
C = 100pF  
L
10  
10  
mV  
pA  
DIGITAL INPUTS (SCLK, DIN, CS)  
4.5V V  
2.7V < V  
1.8V V  
4.5V V  
2.7V < V  
1.8V V  
(Note 9)  
5.5V  
3.6V  
2.7V  
5.5V  
3.6V  
2.7V  
2.4  
2.0  
DD  
DD  
DD  
DD  
DD  
DD  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
0.7 x V  
DD  
0.8  
0.6  
V
IL  
0.3 x V  
DD  
Input Leakage Current  
Input Capacitance  
I
0.05  
10  
0.5  
µA  
pF  
IN  
C
IN  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
SR  
Positive and negative (Note 10)  
10  
V/ms  
µs  
0.1 to 0.9 of full scale to within 0.5 LSB  
(Note 10)  
Voltage-Output Settling Time  
660  
V
V
V
V
= 5V  
80  
55  
DD  
DD  
DD  
DD  
0.1Hz to 10Hz  
10Hz to 10kHz  
= 1.8V  
= 5V  
Output Noise Voltage  
µV  
P-P  
620  
476  
= 1.8V  
POWER REQUIREMENTS  
Supply Voltage Range  
V
1.8  
5.5  
8.0  
8.0  
8.0  
5.0  
5.0  
6.0  
4.5  
4.0  
3.5  
0.25  
V
DD  
V
V
V
V
V
V
V
V
V
= 5V  
7.0  
6.4  
7.0  
3.8  
3.8  
4.7  
3.3  
2.8  
2.4  
0.05  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
MAX5523/MAX5525  
MAX5522/MAX5524  
= 3V  
= 1.8V  
= 5V  
Supply Current (Note 9)  
I
µA  
DD  
= 3V  
= 1.8V  
= 5V  
MAX5523/MAX5525  
(Note 9)  
Standby Supply Current  
Shutdown Supply Current  
I
I
µA  
µA  
= 3V  
DDSD  
DDPD  
= 1.8V  
(Note 9)  
4
_______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
TIMING CHARACTERISTICS  
(V  
= +4.5V to +5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
MIN  
PARAMETER  
SYMBOL  
= 4.5V to 5.5V )  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (V  
Serial Clock Frequency  
DD  
f
0
15  
0
16.7  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
SCLK Pulse-Width High  
t
DS  
DH  
CH  
t
t
24  
24  
100  
0
SCLK Pulse-Width Low  
t
CL  
CS Pulse-Width High  
t
CSW  
SCLK Rise to CS Rise Hold Time  
CS Fall to SCLK Rise Setup Time  
SCLK Fall to CS Fall Setup  
CS Rise to SCK Rise Hold Time  
t
CSH  
t
20  
0
CSS  
CSO  
t
t
20  
CS1  
TIMING CHARACTERISTICS  
(V  
= +1.8V to +5.5V, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
DD  
MIN  
MAX  
SYMBOL  
= 1.8V to 5.5V )  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (V  
Serial Clock Frequency  
DD  
f
0
24  
0
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
DIN to SCLK Rise Setup Time  
DIN to SCLK Rise Hold Time  
SCLK Pulse-Width High  
t
DS  
DH  
CH  
t
t
40  
40  
150  
0
SCLK Pulse-Width Low  
t
CL  
CS Pulse-Width High  
t
CSW  
SCLK Rise to CS Rise Hold Time  
CS Fall to SCLK Rise Setup Time  
SCLK Fall to CS Fall Setup  
CS Rise to SCK Rise Hold Time  
t
CSH  
t
30  
0
CSS  
CSO  
t
t
30  
CS1  
Note 1: Linearity is tested within codes 24 to 1020.  
Note 2: Offset is tested at code 24.  
Note 3: Gain is tested at code 1023. For the MAX5524/MAX5525, FB_ is connected to its respective OUT_.  
Note 4: Guaranteed by design. Not production testsed  
Note 5:  
V
DD  
must be a minimum of 1.8V.  
Note 6: Outputs can be shorted to V  
or GND indefinitely, provided that package power dissipation is not exceeded.  
DD  
Note 7: Optimal noise performance is at 2nF load capacitance.  
Note 8: Thermal hysteresis is defined as the change in the initial +25°C output voltage after cycling the device from T  
to T  
.
MIN  
MAX  
Note 9: All digital inputs at V  
or GND.  
DD  
Note 10: Load = 10kin parallel with 100pF, V  
= 5V, V  
= 4.096V (MAX5522/MAX5524) or V  
= 3.9V (MAX5523/MAX5525).  
DD  
REF  
REF  
_______________________________________________________________________________________  
5
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Typical Operating Characteristics  
(V  
= 5.0V, V  
= 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T = +25°C, unless otherwise noted.)  
REF  
A
DD  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(MAX5522/MAX5524)  
SUPPLY CURRENT vs. TEMPERATURE  
(MAX5522/MAX5524)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(MAX5523/MAX5525)  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
9
8
7
6
5
4
3
2
1
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY CURRENT vs. TEMPERATURE  
(MAX5523/MAX5525)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5522/MAX5524)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5523/MAX5525)  
10  
9
8
7
6
5
4
3
2
1
0
1000  
100  
10  
1000  
100  
10  
1
1
0.1  
0.1  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT  
vs. CLOCK FREQUENCY  
SUPPLY CURRENT  
vs. LOGIC INPUT VOLTAGE  
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE (MAX5523/MAX5525)  
1000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
CS = LOGIC LOW  
CODE = 0  
ALL DIGITAL INPUTS  
SHORTED TOGETHER  
V
= 5V  
V
= 3.9V  
DD  
REF  
V
= 2.4V  
REF  
V
= 1.9V  
REF  
V
= 1.2V  
REF  
V
= 1.8V  
DD  
1
0.01 0.1  
1
10 100 1000 10000100000  
FREQUENCY (kHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOGIC INPUT VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(V  
= 5.0V, V  
= 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T = +25°C, unless otherwise noted.)  
REF  
A
DD  
INL vs. INPUT CODE  
DNL vs. INPUT CODE  
INL vs. INPUT CODE  
(V = V = 5V)  
(V = V  
= 1.8V)  
(V = V  
= 1.8V)  
DD  
REF  
DD  
REF  
DD  
REF  
0.4  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-0.01  
-0.02  
-0.03  
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
0
200  
400  
600  
800 1000 1200  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
OFFSET VOLTAGE  
vs. TEMPERATURE  
DNL vs. INPUT CODE  
GAIN ERROR CHANGE  
vs. TEMPERATURE  
(V = V  
= 5V)  
DD  
REF  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.04  
0.03  
0.02  
0.01  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
V
= 5V  
DD  
V
V
= 5V  
DD  
= 3.9V  
REF  
= 3.9V  
REF  
-0.2  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.4  
-0.6  
-0.8  
-1.0  
-0.01  
-0.02  
-0.03  
-40  
-15  
10  
35  
60  
85  
0
200  
400  
600  
800 1000 1200  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DIGITAL INPUT CODE  
TEMPERATURE (°C)  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
DAC OUTPUT LOAD REGULATION  
vs. OUTPUT CURRENT  
DIGITAL FEEDTHROUGH RESPONSE  
MAX5522 toc16  
1.9440  
1.9435  
1.9430  
1.9425  
1.9420  
1.9415  
1.9410  
1.9405  
1.9400  
0.6050  
0.6048  
0.6046  
0.6044  
0.6042  
0.6040  
ZERO SCALE  
V
= 5.0V  
DD  
V
= 1.8V  
DD  
DAC CODE = MIDSCALE  
= 3.9V  
CS  
5V/div  
DAC CODE = MIDSCALE  
= 1.2V  
V
REF  
V
REF  
SCLK  
5V/div  
DIN  
5V/div  
OUT  
50mV/div  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-1000-800 -600-400 -200  
0
200 400 600 800 1000  
20µs/div  
DAC OUTPUT CURRENT (mA)  
DAC OUTPUT CURRENT (µA)  
_______________________________________________________________________________________  
7
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(V  
= 5.0V, V  
= 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T = +25°C, unless otherwise noted.)  
DD  
REF  
A
OUTPUT LARGE-SIGNAL STEP RESPONSE  
(V = 1.8V, V = 1.2V)  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT  
DD  
REF  
MAX5522 toc21  
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
V
= V  
REF  
DD  
REF  
DD  
CODE = MIDSCALE  
CODE = MIDSCALE  
V
= 5V  
DD  
V
V
= 5V  
= 3V  
DD  
DD  
V
OUT  
200mV/div  
V
= 3V  
DD  
V
= 1.8V  
DD  
V
= 1.8V  
DD  
0.001  
0.010  
0.100  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
100µs/div  
OUTPUT SOURCE CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
OUTPUT MINIMUM SERIES RESISTANCE  
vs. LOAD CAPACITANCE  
OUTPUT LARGE-SIGNAL STEP RESPONSE  
(V = 5V, V = 3.9V)  
POWER-UP OUTPUT VOLTAGE GLITCH  
DD  
REF  
MAX5522 toc22  
MAX5522 toc24  
600  
500  
400  
300  
200  
100  
0
FOR NO OVERSHOOT  
V
DD  
2V/div  
V
OUT  
500mV/div  
V
OUT  
10mV/div  
0.0001 0.001 0.01  
0.1  
1
10  
100  
200µs/div  
20ms/div  
CAPACITANCE (µF)  
MAJOR CARRY OUTPUT VOLTAGE GLITCH  
(CODE 7FFh TO 800h)  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
REFERENCE OUTPUT VOLTAGE  
vs. REFERENCE OUTPUT CURRENT  
(V = 5V, V  
= 3.9V)  
DD  
REF  
MAX5522 toc25  
3.940  
3.935  
3.930  
3.925  
3.920  
3.915  
3.910  
3.905  
3.900  
1.220  
1.219  
1.218  
1.217  
1.216  
1.215  
1.214  
V
= 5V  
DD  
V
= 1.8V  
DD  
V
OUT  
AC-COUPLED  
5mV/div  
-40  
-15  
10  
35  
60  
85  
-500  
1500  
3500  
5500  
7500  
100µs/div  
TEMPERATURE (°C)  
REFERENCE OUTPUT CURRENT (µA)  
8
_______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(V  
= 5.0V, V  
= 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T = +25°C, unless otherwise noted.)  
REF  
A
DD  
REFERENCE OUTPUT VOLTAGE  
vs. REFERENCE OUTPUT CURRENT  
REFERENCE LINE-TRANSIENT RESPONSE  
(V = 1.2V)  
REFERENCE OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
REF  
MAX5522 toc30  
3.92  
3.91  
3.90  
3.89  
3.88  
1.21750  
1.21748  
1.21746  
1.21744  
1.21742  
1.21740  
1.21738  
1.21736  
1.21734  
1.21732  
1.21730  
V
= 5V  
DD  
2.8V  
V
DD  
1.8V  
V
REF  
500mV/div  
-500 2000 4500 7000 9500 12,000 14,500  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
100µs/div  
REFERENCE OUTPUT CURRENT (µA)  
REFERENCE LOAD TRANSIENT  
REFERENCE LINE-TRANSIENT RESPONSE  
(V = 3.9V)  
(V = 1.8V)  
DD  
REF  
MAX5522 toc32  
MAX5522 toc31  
5.5V  
V
DD  
REFOUT  
SOURCE  
CURRENT  
0.5mA/div  
4.5V  
V
REF  
500mV/div  
V
REF  
3.9V  
500mV/div  
200µs/div  
100µs/div  
REFERENCE LOAD TRANSIENT  
REFERENCE LOAD TRANSIENT  
(V = 1.8V)  
DD  
(V = 5V)  
DD  
MAX5522 toc34  
MAX5522 toc33  
REFOUT  
REFOUT  
SINK  
CURRENT  
50µA/div  
SOURCE  
CURRENT  
0.5mA/div  
V
REF  
V
REF  
500mV/div  
500mV/div  
3.9V  
200µs/div  
200µs/div  
_______________________________________________________________________________________  
9
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Typical Operating Characteristics (continued)  
(V  
= 5.0V, V  
= 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T = +25°C, unless otherwise noted.)  
DD  
REF  
A
REFERENCE LOAD TRANSIENT  
(V = 5V)  
DD  
REFERENCE PSRR vs. FREQUENCY  
MAX5522 toc35  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
DD  
= 1.8V  
REFOUT  
SINK  
CURRENT  
100µA/div  
V
REF  
500mV/div  
3.9V  
0.01  
0.1  
1
10  
100  
1000  
200µs/div  
FREQUENCY (kHz)  
REFERENCE OUTPUT NOISE  
(0.1Hz TO 10Hz) (V = 1.8V, V  
= 1.2V)  
REFERENCE PSRR vs. FREQUENCY  
= 5V  
DD  
REF  
MAX5522 toc38  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
DD  
100µV/div  
0.01  
0.1  
1
10  
100  
1000  
1s/div  
FREQUENCY (kHz)  
REFERENCE OUTPUT NOISE  
(0.1Hz TO 10Hz) (V = 5V, V  
= 3.9V)  
DAC-TO-DAC CROSSTALK  
DD  
REF  
MAX5522 toc39  
MAX5522 toc40  
OUTA  
1V/div  
100µV/div  
OUTB  
AC-COUPLED  
10mV/div  
OUTB AT FULL SCALE  
1s/div  
400µs/div  
10 ______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX5522  
MAX5523  
MAX5524  
MAX5525  
1
2
1
2
1
2
1
2
CS  
SCLK  
DIN  
Active-Low Digital Chip-Select Input  
Serial-Interface Clock Input  
Serial-Interface Data Input  
Reference Input  
3
3
3
3
4
4
4
4
REFIN  
REFOUT  
Reference Output  
No Connection. Leave N.C. inputs unconnected  
(floating) or connected to GND.  
5, 11  
5, 11  
N.C.  
5
5
6
7
6
7
FBB  
Channel B Feedback Input  
OUTB  
Channel B Analog Voltage Output  
Power Input. Connect V  
to a 1.8V to 5.5V power  
DD  
6
6
8
8
V
DD  
supply. Bypass V  
to GND with a 0.1µF capacitor.  
DD  
7
8
7
8
9
9
GND  
OUTA  
FBA  
Ground  
10  
12  
EP  
10  
12  
EP  
Channel A Analog Voltage Output  
Channel A Feedback Input  
Exposed Paddle Exposed Paddle. Connect EP to GND.  
Functional Diagrams  
V
REFIN  
DD  
POWER-  
DOWN  
CONTROL  
MAX5522  
INPUT  
REGISTER  
DAC  
REGISTER  
10-BIT DAC  
10-BIT DAC  
CONTROL  
LOGIC  
AND  
SHIFT  
REGISTER  
SCLK  
DIN  
CS  
OUTA  
OUTB  
INPUT  
REGISTER  
DAC  
REGISTER  
GND  
______________________________________________________________________________________ 11  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Functional Diagrams (continued)  
V
DD  
POWER-  
DOWN  
CONTROL  
2-BIT  
PROGRAMMABLE  
REFERENCE  
REF  
BUF  
REFOUT  
OUTA  
MAX5523  
INPUT  
REGISTER  
DAC  
REGISTER  
10-BIT DAC  
10-BIT DAC  
CONTROL  
LOGIC  
AND  
SHIFT  
REGISTER  
SCLK  
DIN  
CS  
INPUT  
REGISTER  
DAC  
REGISTER  
OUTB  
GND  
V
DD  
REFIN  
POWER-  
DOWN  
CONTROL  
MAX5524  
INPUT  
REGISTER  
DAC  
REGISTER  
10-BIT DAC  
10-BIT DAC  
CONTROL  
LOGIC  
AND  
SHIFT  
REGISTER  
SCLK  
DIN  
CS  
OUTA  
FBA  
INPUT  
REGISTER  
DAC  
REGISTER  
OUTB  
FBB  
GND  
12 ______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Functional Diagrams (continued)  
V
DD  
POWER-  
DOWN  
CONTROL  
2-BIT  
PROGRAMMABLE  
REFERENCE  
REF  
BUF  
REFOUT  
MAX5525  
INPUT  
REGISTER  
DAC  
REGISTER  
10-BIT DAC  
10-BIT DAC  
CONTROL  
LOGIC  
AND  
SHIFT  
REGISTER  
SCLK  
DIN  
CS  
OUTA  
FBA  
INPUT  
REGISTER  
DAC  
REGISTER  
OUTB  
FBB  
GND  
Digital Interface  
Detailed Description  
The MAX5522–MAX5525 use a 3-wire serial interface  
that is compatible with SPI/QSPI/MICROWIRE protocols  
(Figures 1 and 2).  
The MAX5522–MAX5525 dual, 10-bit, ultra-low-power,  
voltage-output DACs offer rail-to-rail buffered voltage  
outputs. The DACs operate from a 1.8V to 5.5V supply  
and require only 5µA (max) supply current. These  
devices feature a shutdown mode that reduces overall  
current, including the reference input current, to just  
0.18µA (max) The MAX5523/MAX5525 include an inter-  
nal reference that saves additional board space and  
can source up to 8mA, making it functional as a system  
reference. The 16MHz, 3-wire serial interface is com-  
patible with SPI, QSPI, and MICROWIRE protocols.  
The MAX5522–MAX5525 include a single, 16-bit, input  
shift register. Data loads into the shift register through  
the serial interface. CS must remain low until all 16 bits  
are clocked in. The 16 bits consist of 4 control bits  
(C3–C0), 10 data bits (D9–D0) (Table 1), and 2 sub-bits  
(S1 and S0). D9–D0 are the DAC data bits and S1 and  
S0 are the sub-bits. The sub-bits must be set to zero for  
proper operation. Following the control bits, data loads  
MSB first, D9–D0. The control bits C3–C0 control the  
MAX5522–MAX5525, as outlined in Table 2.  
When V  
is applied, all DAC outputs are driven to  
DD  
zero scale with virtually no output glitch. The MAX5522/  
MAX5523 output buffers are configured in unity gain  
and come in µMAX packages. The MAX5524/MAX5525  
output buffers are configured in force sense allowing  
users to externally set voltage gains on the output (an  
output-amplifier inverting input is available). The  
MAX5524/MAX5525 come in 4mm x 4mm thin QFN  
packages.  
Each DAC channel includes two registers: an input reg-  
ister and a DAC register. The input register holds input  
data. The DAC register contains the data updated to  
the DAC output.  
The double-buffered register configuration allows any  
of the following:  
Loading the input registers without updating the DAC  
registers  
Updating the DAC registers from the input registers  
Updating all the input and DAC registers simultaneously  
______________________________________________________________________________________ 13  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Table 1. Serial Write Data Format  
CONTROL  
DATA BITS  
MSB  
LSB  
C3  
C2  
C1  
C0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
Sub-bits S1 to S0 must be set to zero for proper operation.  
t
CH  
SCLK  
t
CL  
t
DS  
C3  
C2  
C1  
S0  
DIN  
CS  
t
CS0  
t
t
DH  
CSH  
t
CSS  
t
CSW  
t
CS1  
Figure 1. Timing Diagram  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DIN  
CS  
C3  
C2  
C1  
C0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
CONTROL BITS  
DATA BITS  
SUB-BITS  
COMMAND  
EXECUTED  
Figure 2. Register Loading Diagram  
14 ______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Table 2. Serial-Interface Programming Commands  
CONTROL BITS  
INPUT DATA  
D9–D0  
SUB-BITS  
FUNCTION  
No operation; command is ignored.  
C3  
C2  
C1  
C0  
S1 AND S0  
0
0
0
0
XXXXXXXXXX  
00  
Load input register A from shift register; DAC registers unchanged;  
DAC outputs unchanged.  
0
0
0
0
0
1
1
0
10-bit data  
10-bit data  
00  
00  
Load input register B from shift register; DAC registers unchanged;  
DAC outputs unchanged.  
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Command reserved. Do not use.  
Command reserved. Do not use.  
Command reserved. Do not use.  
Command reserved. Do not use.  
Command reserved. Do not use.  
Load DAC registers A and B from respective input registers; DAC  
outputs A and B updated; MAX5523/MAX5525 enter normal  
operation if in standby or shutdown; MAX5522/MAX5524 enter  
normal operation if in shutdown.  
1
0
0
0
10-bit data  
00  
Load input register A and DAC register A from shift register; DAC  
output A updated; Load DAC register B from input register B; DAC  
output B updated; MAX5523/MAX5525 enter normal operation if in  
standby or shutdown; MAX5522/MAX5524 enter normal operation  
if in shutdown.  
1
0
0
1
10-bit data  
00  
Load input register B and DAC register B from shift register; DAC  
output B updated; Load DAC register A from input register A; DAC  
output A updated; MAX5523/MAX5525 enter normal operation if in  
standby or shutdown; MAX5522/MAX5524 enter normal operation  
if in shutdown.  
1
0
1
0
10-bit data  
00  
1
1
0
1
1
0
1
0
Command reserved. Do not use.  
MAX5523/MAX5525 enter standby*, MAX5522/MAX5524 enter  
shutdown. For the MAX5523/MAX5525, D9 and D8 configure the  
internal reference voltage (Table 3).  
D9, D8,  
XXXXXXXX  
00  
MAX5522–MAX5525 enter normal operation; DAC outputs reflect  
existing contents of DAC registers. For the MAX5523/MAX5525,  
D9 and D8 configure the internal reference voltage (Table 3).  
D9, D8,  
XXXXXXXX  
1
1
1
1
0
1
1
0
00  
00  
MAX5522–MAX5525 enter shutdown; DAC outputs set to high  
impedance. For the MAX5523/MAX5525, D9 and D8 configure the  
internal reference voltage (Table 3).  
D9, D8,  
XXXXXXXX  
Load input registers A and B and DAC registers A and B from shift  
register; DAC outputs A and B updated; MAX5523/MAX5525 enter  
normal operation if in standby or shutdown; MAX5522/MAX5524  
enter normal operation if in shutdown.  
1
1
1
1
10-bit data  
00  
X = Don’t care.  
*Standby mode can be entered from normal operation only. It is not possible to enter standby mode from shutdown.  
______________________________________________________________________________________ 15  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
For the MAX5523/MAX5525, standby mode cannot be  
Power Modes  
The MAX5522–MAX5525 feature two power modes to  
conserve power during idle periods. In normal opera-  
tion, the device is fully operational. In shutdown mode,  
the device is completely powered down, including the  
internal voltage reference in the MAX5523/MAX5525.  
The MAX5523/MAX5525 also offer a standby mode in  
which all circuitry is powered down except the internal  
voltage reference. Standby mode keeps the reference  
powered up while the remaining circuitry is shut down,  
allowing it to be used as a system reference. It also  
helps reduce the wake-up delay by not requiring the ref-  
erence to power up when returning to normal operation.  
entered directly from shutdown mode. The device must  
be brought into normal operation first before entering  
standby mode. To enter standby from shutdown, issue  
the command to return to normal operation followed  
immediately by the command to go into standby.  
Table 2 shows several commands that bring the  
MAX5523/MAX5525 back to normal operation. When  
transitioning from standby mode to normal operation,  
only the DAC power-up time is required before the DAC  
outputs are valid.  
Reference Input  
The MAX5522/MAX5524 accept a reference with a volt-  
Shutdown Mode  
The MAX5522–MAX5525 feature a software-program-  
mable shutdown mode that reduces the supply current  
and the interface input-current to 0.18µA (max). Writing  
an input control word with control bits C[3:0] = 1110  
(Table 2) places the device in shutdown mode. In shut-  
down, the MAX5522/MAX5524 reference input and DAC  
output buffers go high impedance. Placing the MAX5523/  
MAX5525 into shutdown turns off the internal reference  
and the DAC output buffers go high impedance. The seri-  
al interface still remains active for all devices.  
age range extending from 0 to V . The output voltage  
DD  
(V  
) is represented by a digitally programmable volt-  
OUT  
age source as:  
V
OUT  
= (V  
x N / 256) x gain  
REF  
where N is the numeric value of the DAC’s binary input  
code (0 to 1023), V is the reference voltage, gain is  
REF  
the externally set voltage gain for the MAX5524, and  
gain is one for the MAX5522.  
In shutdown mode, the reference input enters a high-  
impedance state with an input impedance of 2.5G(typ).  
Table 2 shows several commands that bring the  
MAX5522–MAX5525 back to normal operation. The  
power-up time from shutdown is required before the  
DAC outputs are valid.  
Reference Output  
The MAX5523/MAX5525 internal voltage reference is  
software configurable to one of four voltages. Upon  
power-up, the default reference voltage is 1.214V.  
Configure the reference voltage using D8 and D9 data  
bits (Table 3) when the control bits are as follows C[3:0]  
Note: For the MAX5523/MAX5525, standby mode can-  
not be entered directly from shutdown mode. The  
device must be brought into normal operation first  
before entering standby mode.  
= 1100, 1101, or 1110 (Table 2). V  
must be kept at a  
DD  
minimum of 200mV above V  
for proper operation.  
REF  
Standby Mode (MAX5523/MAX5525 Only)  
The MAX5523/MAX5525 feature a software-program-  
mable standby mode that reduces the typical supply  
current to 3µA (max). Standby mode powers down all  
circuitry except the internal voltage reference. Place  
the device in standby mode by writing an input control  
word with control bits C[3:0] = 1100 (Table 2). The  
internal reference and serial interface remain active  
while the DAC output buffers go high impedance.  
Table 3. Reference Output Voltage  
Programming  
D9  
0
D8  
0
REFERENCE VOLTAGE (V)  
1.214  
1.940  
2.425  
3.885  
0
1
1
0
1
1
16 ______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Programmable Current Source  
Applications Information  
See the circuit in Figure 4 for an illustration of how to  
configure the MAX5524/MAX5525 as a programmable  
current source for driving an LED. The MAX5524/  
MAX5525 drive a standard NPN transistor to program  
1-Cell and 2-Cell Circuits  
See Figure 3 for an illustration of how to power the  
MAX5522–MAX5525 with either one lithium-ion battery  
or two alkaline batteries. The low current consumption  
of the devices make the MAX5522–MAX5525 ideal for  
battery-powered applications.  
the current source. The current source (I  
in the equation in Figure 4.  
) is defined  
LED  
V
DD  
536kΩ  
+1.25V  
1.8V V  
2.2V V  
3.3V  
ALKALINE  
3.3V  
LITHIUM  
REFIN  
DAC  
VOUT  
V (1.22mV / LSB)  
OUT  
0.1µF  
0.01µF  
MAX6006  
(1µA, 1.25V  
SHUNT  
V
× N  
1024  
REFIN  
DAC  
V
=
OUT  
MAX5524  
N
IS THE NUMERIC VALUE  
OF THE DAC INPUT CODE.  
DAC  
REFERENCE)  
GND  
Figure 3. Portable Application Using Two Alkaline Cells or One Lithium Coin Cell  
V+  
LED  
DAC  
REFIN  
VOUT  
V
OUT  
I
LED  
V
OUT  
= V + (I × R)  
BIAS T  
DAC  
REFIN  
VOUT  
1/2 MAX5524  
2N3904  
R
FB  
FB  
1/2 MAX5524  
I
TRANSDUCER  
T
V
× N  
DAC  
1024  
REFIN  
R
V
BIAS  
=
V
BIAS  
V
× N  
DAC  
1024 × R  
REFIN  
I
=
LED  
N
IS THE NUMERIC VALUE  
DAC  
N
DAC  
IS THE NUMERIC VALUE  
OF THE DAC INPUT CODE.  
OF THE DAC INPUT CODE.  
Figure 4. Programmable Current Source Driving an LED  
Figure 5. Transimpedance Configuration for a Voltage-Biased  
Current-Output Transducer  
______________________________________________________________________________________ 17  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
An example of a custom fixed gain using the MAX5524/  
MAX5525 force-sense output is shown in Figure 8. In  
this example, R1 and R2 set the gain for V  
Voltage Biasing a  
Current-Output Transducer  
.
See the circuit in Figure 5 for an illustration of how to  
configure the MAX5524/MAX5525 to bias a current-out-  
put transducer. In Figure 5, the output voltage of the  
MAX5524/MAX5525 is a function of the voltage drop  
across the transducer added to the voltage drop  
across the feedback resistor R.  
OUTA  
V
OUTA  
= [(V x N ) / 1024] x [1 + (R2 / R1)]  
REFIN A  
where N represents the numeric value of the DAC  
A
input code.  
Self-Biased Two-Electrode  
Potentiostat Application  
See the circuit in Figure 10 for an illustration of how to  
use the MAX5525 to bias a two-electrode potentiostat  
on the input of an ADC.  
Unipolar Output  
Figure 6 shows the MAX5524 in a unipolar output con-  
figuration with unity gain. Table 4 lists the unipolar out-  
put codes.  
Power Supply and  
Bypassing Considerations  
Bypass the power supply with a 4.7µF capacitor in parallel  
with a 0.1µF capacitor to GND. Minimize lengths to reduce  
lead inductance. If noise becomes an issue, use shielding  
and/or ferrite beads to increase isolation. For the thin QFN  
package, connect the exposed pad to ground.  
Bipolar Output  
The MAX5524 output can be configured for bipolar  
operation as shown in Figure 7. The output voltage is  
given by the following equation:  
V
OUT_  
= V x [(N - 512) / 512]  
REFIN A  
where N represents the decimal value of the DAC’s  
A
binary input code. Table 5 shows the digital codes (off-  
set binary) and the corresponding output voltage for  
the circuit in Figure 7.  
Configurable Output Gain  
The MAX5524/MAX5525 have force-sense outputs,  
which provide a connection directly to the inverting ter-  
minal of the output op amp, yielding the most flexibility.  
The advantage of the force-sense output is that specific  
gains can be set externally for a given application. The  
gain error for the MAX5524/MAX5525 is specified in a  
unity-gain configuration (op-amp output and inverting ter-  
minals connected), and additional gain error results from  
external resistor tolerances. Another advantage of the  
force-sense DAC is that it allows many useful circuits to  
be created with only a few simple external components.  
Table 4. Unipolar Code Table (Gain = +1)  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
1100  
0100  
0000  
1100  
0100  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
+V  
(1023/1024)  
(513/1024)  
REF  
+V  
REF  
+V  
(512/1024) = +V  
/2  
REF  
REF  
+V  
(511/1024)  
REF  
+V  
(1/1024)  
REF  
0V  
Table 5. Bipolar Code Table (Gain = +1)  
REFIN  
DAC  
DAC CONTENTS  
ANALOG OUTPUT  
OUT_  
MSB  
1111  
1000  
1000  
0111  
0000  
0000  
LSB  
1100  
0100  
0000  
1100  
0100  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
+V  
(511/512)  
REF  
MAX5524  
FB_  
+V  
(1/512)  
REF  
V
× N  
A
1024  
REFIN  
0V  
V
=
OUT  
-V  
-V  
(1/512)  
REF  
N IS THE DAC INPUT CODE  
A
(0 TO 1023 DECIMAL).  
(511/512)  
REF  
-V  
(512/512) = -V  
REF  
REF  
Figure 6. Unipolar Output Circuit  
18 ______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Layout Considerations  
V
× N  
1024  
255 - N  
255  
REFIN  
DAC  
POT  
Digital and AC transient signals coupling to GND can  
create noise at the output. Use proper grounding tech-  
niques, such as a multilayer board with a low-inductance  
ground plane. Wire-wrapped boards and sockets are not  
recommended. For optimum system performance, use  
printed circuit (PC) boards. Good PC board ground lay-  
out minimizes crosstalk between DAC outputs, reference  
inputs, and digital inputs. Reduce crosstalk by keeping  
analog lines away from digital lines.  
V
=
1 +  
OUT  
(
)
N
N
IS THE NUMERIC VALUE OF THE DAC INPUT CODE.  
IS THE NUMERIC VALUE OF THE POT INPUT CODE.  
DAC  
POT  
1.8V V 5.5V  
DD  
REFIN  
DAC  
VOUT  
V
OUT  
H
CS1  
1/2 MAX5524  
MAX5401  
SOT-POT  
100k  
FB  
W
SCLK  
DIN  
5PPM/°C  
RATIOMETRIC  
TEMPCO  
10kΩ  
10kΩ  
CS2  
L
V+  
Figure 9. Software-Configurable Output Gain  
V
OUT  
DAC  
OUT_  
FB_  
REFIN  
V-  
1/2 MAX5524  
REF  
OUT  
DAC  
TO ADC  
TO ADC  
Figure 7. Bipolar Output Circuit  
I
F
R
F
FB  
WE  
1/2 MAX5525  
REFIN  
DAC  
SENSOR  
CE  
VOUTA  
V
OUT1  
R2  
R1  
V
× N  
1024  
R2  
R1  
REFIN  
DACA  
V
=
1 +  
OUT1  
( )  
FBA  
REFOUT  
BAND  
GAP  
N
IS THE NUMERIC VALUE  
OF THE DAC A INPUT CODE.  
DACA  
TO ADC  
C
L
1/2 MAX5524  
DAC  
VOUTB  
FBB  
V
OUT2  
Figure 10. Self-Biased Two-Electrode Potentiostat Application  
V
× N  
DACB  
1024  
REFIN  
V
OUT2  
=
N
IS THE NUMERIC VALUE  
DACB  
OF THE DAC B INPUT CODE.  
Figure 8. Separate Force-Sense Outputs Create Unity and  
Greater-than-Unity DAC Gains Using the Same Reference  
______________________________________________________________________________________ 19  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Pin Configurations (continued)  
REF  
TOP VIEW  
OUTA  
FBA  
DAC  
TO ADC  
FBA  
12  
N.C. OUTA  
I
F
R
F
11  
10  
CS  
SCLK  
DIN  
1
2
3
9
8
7
GND  
WE  
MAX5525  
SENSOR  
CE  
V
DD  
MAX5524  
MAX5525  
REF  
OUTB  
OUTB  
DAC  
4
5
6
REFIN(MAX5524)  
REFOUT(MAX5525)  
N.C.  
FBB  
FBB  
REFOUT  
BAND  
GAP  
THIN QFN  
TO ADC  
C
L
Figure 11. Driven Two-Electrode Potentiostat Application  
Chip Information  
TRANSISTOR COUNT: 10,688  
PROCESS: BiCMOS  
20 ______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
1
C
21-0139  
2
______________________________________________________________________________________ 21  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12, 16, 20, 24L THIN QFN, 4x4x0.8mm  
2
C
21-0139  
2
22 ______________________________________________________________________________________  
Dual, Ultra-Low-Power,  
10-Bit, Voltage-Output DACs  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0∞  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6 0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5522EUA

Dual, Ultra-Low-Power, 10-Bit, Voltage-Output DACs
MAXIM

MAX5522EUA+

暂无描述
MAXIM

MAX5522EUA-T

暂无描述
MAXIM

MAX5522|MAX5523|MAX5524|MAX5525

Dual. Ultra-Low-Power. 10-Bit. Voltage-Output DACs
MAXIM

MAX5523EUA

Dual, Ultra-Low-Power, 10-Bit, Voltage-Output DACs
MAXIM

MAX5523EUA+

暂无描述
MAXIM

MAX5523EUA-T

暂无描述
MAXIM

MAX5524

MAX5535 Evaluation Kit
MAXIM

MAX5524ETC

Dual, Ultra-Low-Power, 10-Bit, Voltage-Output DACs
MAXIM

MAX5524ETC-T

D/A Converter, 1 Func, Serial Input Loading, 12us Settling Time, 4 X 4 MM, 0.80 MM HEIGHT, MO-220-WGGB, TQFN-12
MAXIM

MAX5525

MAX5535 Evaluation Kit
MAXIM

MAX5525ETC

Dual, Ultra-Low-Power, 10-Bit, Voltage-Output DACs
MAXIM