MAX5406_V01 [MAXIM]

Audio Processor with Pushbutton Interface;
MAX5406_V01
型号: MAX5406_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Audio Processor with Pushbutton Interface

文件: 总25页 (文件大小:2103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX5406  
Audio Processor with Pushbutton Interface  
General Description  
Features  
The MAX5406 stereo audio processor provides a com-  
plete audio solution with volume, balance, bass, and tre-  
ble controls. It features dual 32-tap logarithmic potentiom-  
eters for volume control, dual potentiometers for balance  
control, and linear digital potentiometers for tone control.  
A simple debounced pushbutton interface controls all  
functions. The MAX5406 advances the wiper setting  
once per button push. Maxim’s proprietary SmartWiperTM  
control eliminates the need for a microcontroller (µC) to  
increase the wiper transition rate. Holding the control  
input low for more than 1s advances the wiper at a rate  
of 4Hz for 4s and 16Hz thereafter. An integrated click/pop  
suppression feature eliminates the audible noise gener-  
ated by the wiper’s movements.  
Audio Processor Including All Op Amps and Pots  
for Volume, Balance, Mute, Bass, Treble, Ambience,  
Pseudostereo, and Subwoofer  
32-Tap Volume Control (2dB Steps)  
Small, 7mm x 7mm, 48-Pin TQFN and 48-Pin  
TSSOP Packages  
Single +2.7V to +5.5V or Dual ±2.7V Supply  
Operation  
Clickless Switching and Control  
Mute Function to < -90dB (typ)  
Channel Isolation > -70dB (typ)  
Two Sets of Single-Ended or Differential Stereo  
Inputs Can Be Used for Summing/Mixing  
The MAX5406 provides a subwoofer output that internally  
combines the left and right channels. An external filter  
capacitor allows for a customized cut-off frequency for the  
subwoofer output. A bass-boost mode enhances the low-  
frequency response of the left and right channels. An inte-  
Debounced Pushbutton Interface Works with  
Momentary Contact Switches or Microprocessors  
(µPs)  
Low 0.2µA (typ) Shutdown Supply Current  
Shutdown Stores All Control Settings  
grated bias amplifier generates the required (V  
+ V )/2  
DD  
SS  
bias voltage, eliminating the need for external op amps for  
unipolar operation.  
● 0.02% (typ) THD into 10kΩ Load, 25µV  
(typ)  
RMS  
Output Noise  
The MAX5406 also features ambience control to enhance  
the separation of the left- and right-channel outputs for  
headphones and desktop speakers systems, and a pseu-  
dostereo feature that approximates stereo sound from a  
monophonic signal.  
Internally Generated 1/2 Full-Scale Bias Voltage for  
Single-Ended Applications  
Power-On Volume Setting to -20dB  
Internal Passive RF Filters for Analog Inputs Prevent  
The MAX5406 is available in a 7mm x 7mm, 48-pin TQFN  
package and in a 48-pin TSSOP package and is specified  
over the extended (-40°C to +85°C) temperature range.  
High Frequencies from Reaching the Speakers  
Ordering Information  
Applications  
Desktop Speakers  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
Portable Audio  
PDAs or MP3 Player Docking Stations  
Karaoke Machines  
MAX5406EUM  
MAX5406ETM*  
*Future product—contact factory for availability.  
-40°C to +85°C 48 TSSOP  
-40°C to +85°C 48 TQFN  
U48-1  
T4877-6  
Flat-Screen TVs  
Pin Configurations appear at end of data sheet.  
SmartWiper is a trademark of Maxim Integrated Products, Inc.  
19-3817; Rev 1; 4/14  
MAX5406  
Audio Processor with Pushbutton Interface  
Absolute Maximum Ratings  
L1_H, L1_L, L2_H, L2_L  
V
V
V
to V ..............................................................-0.3V to +6V  
DD SS  
to V ................... -0.3V to the lower of (V  
+ 0.3V) or +6V  
+ 0.3V) or +6V  
to V  
......................................................................±6V  
SS  
DD  
DD  
DD  
LOGIC  
R1_H, R1_L, R2_H, R2_L  
to DGND ....................................................-0.3V to +6V  
LOGIC  
to V ................... -0.3V to the lower of (V  
DGND to V ..........................................................-0.3V to +6V  
SS  
SS  
AMB, BALL, BALR, VOLUP, VOLDN, MUTE, SHDN, BASSDN,  
LOUT, ROUT, SUBOUT Short Circuited to V  
......Continuous  
SS  
BASSUP, TREBDN, TREBUP  
Continuous Power Dissipation (T = +70°C)  
A
to DGND..........-0.3V to the lower of (V  
+ 0.3V) or +6V  
48-Pin TQFN (derate 27.8mW/°C above +70°C)......2222mW  
48-Pin TSSOP (derate 16mW/°C above +70°C).......1282mW  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LOGIC  
CTL_, CTR_, CBL_, CBR_, CLS_, CRS_, CSUB, CBIAS,  
CMSNS, AMBLI, AMBRI, BIAS  
to V ................... -0.3V to the lower of (V  
+ 0.3V) or +6V  
SS  
DD  
LOUT, ROUT, SUBOUT, LMR,  
LPR to V ........... -0.3V to the lower of (V  
+ 0.3V) or +6V  
SS  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= V  
= +5.0V, V  
= 0, V  
= V  
= V /2, DGND = 0, ambience disabled, V  
= V  
= V , V  
BIAS R1_L  
=
DD  
LOGIC  
SS  
BIAS  
CMSNS  
DD  
AMBLI  
AMBRI  
V
= V  
= V  
= external V  
, C  
= 0.15µF, C  
= C  
= 1µF, C  
= C  
= 3.3nF, C  
= C  
= 4.7nF, C  
L1_L  
R2_L  
L2_L  
BIAS CSUB  
CLS  
CRS  
CBL  
CBR  
CTL  
CTR BIAS  
= 0.1µF, C  
= 50µF (see the Typical Application Circuit), T = T  
to T  
unless otherwise specified. Typical values are at T  
CBIAS  
A
MIN  
MAX A  
= +25°C). (Note1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
8
TYP  
10  
20  
5
MAX  
UNITS  
R
With respect to  
INH  
INL  
Signal-Inputs Input Resistance  
R
kΩ  
IN  
IN  
V
BIAS  
R
16  
Signal-Inputs Input Capacitance  
RF Rejection  
C
With respect to V  
pF  
BIAS  
2MHz to 2.4GHz two-tone test,  
2/2.01MHz input to 10kHz out  
20  
dBc  
V
= +5V, V = 0, V  
= V  
, gain  
DD  
SS  
CM  
BIAS  
-4  
+4  
error ≤ -0.5dB  
Differential Input Voltage Range  
V
V
V
IN  
V
= +2.7V, V = -2.7V, V  
= V  
,
DD  
SS  
CM  
BIAS  
-4.5  
+4.5  
gain error ≤ -0.5dB  
V
V
= +5V, V = 0, V  
= V /2,  
DD  
DIFF  
SS  
BIAS DD  
= 100mV  
Common-Mode Input Voltage  
Range  
V
V
+ 0.5V  
V - 0.5V  
DD  
CM  
SS  
V
V
= +2.7V, V = -2.7V, V  
= 0,  
DD  
DIFF  
SS  
BIAS  
= 100mV  
Bias Voltage  
V
Internally generated (V  
= V  
)
(V + V )/2  
DD SS  
V
BIAS  
CMSNS  
SS  
L_ _H = R_ _H = V  
, L_ _L = R_ _L =  
BIAS  
DD  
Bias-Voltage Input Current  
1
mA  
open, V  
= V  
CMSNS  
AUDIO PROCESSING FUNCTIONS  
Maximum Balance Difference  
Minimum Balance Difference  
Balance Resolution  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
(Note 2)  
10  
12  
0
14  
dB  
dB  
2
dB  
Maximum Volume Attenuation  
Minimum Volume Attenuation  
Volume Resolution  
-63  
-62  
0
-59  
dB  
-0.5  
+0.5  
dB  
2
dB  
Volume-Control Steps  
32  
steps  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Electrical Characteristics (continued)  
(V  
= V  
= +5.0V, V  
= 0, V  
= V  
= V /2, DGND = 0, ambience disabled, V  
= V  
= V , V  
BIAS R1_L  
=
DD  
LOGIC  
SS  
BIAS  
CMSNS  
DD  
AMBLI  
AMBRI  
V
= V  
= V  
= external V  
, C  
= 0.15µF, C  
= C  
= 1µF, C  
= C  
= 3.3nF, C  
= C  
= 4.7nF, C  
L1_L  
R2_L  
L2_L  
BIAS CSUB  
CLS  
CRS  
CBL  
CBR  
CTL  
CTR BIAS  
= 0.1µF, C  
= 50µF (see the Typical Application Circuit), T = T  
to T  
unless otherwise specified. Typical values are at T  
CBIAS  
A
MIN  
MAX A  
= +25°C). (Note1)  
PARAMETER  
SYMBOL  
CONDITIONS  
Volume = 0dB (Note 2)  
Volume = 0dB (Note 2)  
= 1kHz, treble = 0dB,  
MIN  
TYP  
MAX  
UNITS  
Gain Matching of Input 1 to Input  
2 of Each Channel  
-0.1  
+0.1  
dB  
Gain Matching of Left to Right  
Channel  
-0.1  
10  
+0.1  
dB  
dB  
dB  
dB  
dB  
f
BASS  
Bass-Boost Range  
Bass-Cut Range  
14  
14  
15  
15  
C
= open, C  
= open (Note 3)  
CB_  
CT_  
f
= 1kHz, treble = 0dB,  
BASS  
10  
C
= open, C  
= open (Note 3)  
CB_  
CT_  
f
= 1kHz, bass = 0dB,  
TREBLE  
Treble-Boost Range  
Treble-Cut Range  
10  
C
= open, C  
= short (Note 3)  
CB_  
CT_  
f
= 1kHz, bass = 0dB,  
TREBLE  
10  
C
= open, C  
= short (Note 3)  
CB_  
CT_  
Bass-Boost/-Cut Steps  
Treble-Boost/-Cut Steps  
Bass End-to-End Resistance  
Treble End-to-End Resistance  
Bass Series Resistance  
Treble Series Resistance  
Mute Attenuation  
Max boost to max cut  
Max boost to max cut  
21  
21  
steps  
steps  
kΩ  
R
R
116  
17  
BPOT  
kΩ  
TPOT  
R
40  
kΩ  
B
R
3.5  
-90  
kΩ  
T
dB  
AC PERFORMANCE (V = 1V , R = 10kΩ, V  
= +2.7V, V = -2.7V, volume = 0dB, treble = bass = 0dB)  
SS  
IN  
P-P  
L
DD  
Total Harmonic Distortion Plus  
Noise  
THD+N  
(Notes 4, 5)  
L to R or R to L  
0.02  
-70  
0.05  
%
Interchannel Crosstalk  
ROUT/LOUT OUTPUTS  
Maximum Load Capacitance  
Output-Voltage Swing  
dB  
C
100  
pF  
V
LOAD  
V
R = 10kΩ, V  
= +2.7V, V = -2.7V  
-2.3  
-30  
+2.3  
+30  
OUTP-P  
L
DD  
SS  
V
= +2.7V, V = -2.7V, volume = 0dB,  
SS  
DD  
Output Offset Voltage  
V
0
mV  
OOS  
R = 10kΩ, inputs = V  
L
BIAS  
Short-Circuit Output Current  
Output Resistance  
I
Shorted to V  
15  
mA  
SC  
SS  
R
I
= 100µA to 500µA  
LOAD  
10  
_OUT  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Electrical Characteristics (continued)  
(V  
= V  
= +5.0V, V  
= 0, V  
= V  
= V /2, DGND = 0, ambience disabled, V  
= V  
= V , V  
BIAS R1_L  
=
DD  
LOGIC  
SS  
BIAS  
CMSNS  
DD  
AMBLI  
AMBRI  
V
= V  
= V  
= external V  
, C  
= 0.15µF, C  
= C  
= 1µF, C  
= C  
= 3.3nF, C  
= C  
= 4.7nF, C  
L1_L  
R2_L  
L2_L  
BIAS CSUB  
CLS  
CRS  
CBL  
CBR  
CTL  
CTR BIAS  
= 0.1µF, C  
= 50µF (see the Typical Application Circuit), T = T  
to T  
unless otherwise specified. Typical values are at T  
CBIAS  
A
MIN  
MAX A  
= +25°C). (Note1)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 20Hz to 20kHz, V = V ,  
BIAS  
MIN  
TYP  
MAX  
UNITS  
µV  
f
BW  
IN  
mute on, noise measured at LOUT and  
3.5  
9.5  
RMS  
ROUT (Notes 2, 4, 5)  
Output Noise  
e
n
f
= 20Hz to 20kHz, V = V  
, mute  
BW  
IN  
BIAS  
off, volume = 0dB, noise measured at  
LOUT and ROUT (Notes 2, 4, 5)  
25  
35  
100mV  
100mV  
at 217Hz on V  
-70  
-65  
dB  
P-P  
P-P  
DD  
Power-Supply Rejection Ratio  
PSRR  
at 1kHz on V  
DD  
SUBWOOFER OUTPUT  
Gain  
(V  
- V  
) to (V  
- V  
),  
L1_H  
L1_L  
SUBOUT  
BIAS  
-6  
dB  
Hz  
kΩ  
Hz  
kΩ  
volume = 0dB (Note 2)  
Highpass Filter Cutoff Frequency  
Volume = 0dB  
15  
Internal Highpass Cutoff  
Resistance  
R
Figure 12  
13.8  
100  
10.6  
100  
_S  
Lowpass Filter Cutoff Frequency  
Volume = 0dB  
Figure 12  
Internal Lowpass Cutoff  
Resistance  
R
SUB  
Maximum Load Capacitance  
Output-Voltage Swing  
C
pF  
V
SUBLOAD  
V
R = 10kΩ, V  
= +2.7V, V = -2.7V  
-2.3  
-15  
+2.3  
+15  
SUBOUTP-P  
L
DD  
SS  
V
= +2.7V, V = -2.7V, volume = 0dB,  
SS  
DD  
Output Offset Voltage  
V
0
mV  
SUBOOS  
R = 10kΩ  
L
Short-Circuit Output Current  
Output Resistance  
I
Shorted to V  
12  
mA  
SUBSC  
SS  
R
I
f
= 100µA to 500µA  
LOAD  
10  
11  
SUBOUT  
= 20Hz to 20kHz, V = V ,  
BIAS  
BW  
IN  
mute on, noise measured at SUBOUT  
9
(Notes 2, 4, 5)  
Output Noise  
e
µV  
RMS  
n
f
= 20Hz to 20kHz, V = V  
,
BW  
IN  
BIAS  
volume = 0dB, mute off, noise measured  
25  
35  
at SUBOUT (Notes 2, 4, 5)  
100mV  
100mV  
at 217Hz on V  
-70  
-65  
P-P  
P-P  
DD  
Power-Supply Rejection Ratio  
PSRR  
dB  
at 1kHz on V  
DD  
PUSHBUTTON CONTACT INPUTS (MUTE, AMB, VOLUP, VOLDN, BALL, BALR, BASSUP, BASSDN, TREBUP, TREBDN)  
Internal Pullup Resistor  
R
50  
kΩ  
PU  
Single-Pulse Input Low Time  
t
Figures 2a, 11a, 11b  
Figure 2b, 11a, 11b  
30  
40  
ms  
LPW  
Repetitive Input Pulse  
Separation Time  
t
ms  
HPW  
First Autoincrement Point  
First Autoincrement Rate  
Second Autoincrement Point  
Second Autoincrement Rate  
t
f
t
f
Figure 3  
Figure 3  
Figure 3  
Figure 3  
1
4
s
A1  
A1  
A2  
A2  
Hz  
s
4
16  
Hz  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Electrical Characteristics (continued)  
(V  
= V  
= +5.0V, V  
= 0, V  
= V  
= V /2, DGND = 0, ambience disabled, V  
= V  
= V , V  
BIAS R1_L  
=
DD  
LOGIC  
SS  
BIAS  
CMSNS  
DD  
AMBLI  
AMBRI  
V
= V  
= V  
= external V  
, C  
= 0.15µF, C  
= C  
= 1µF, C  
= C  
= 3.3nF, C  
= C  
= 4.7nF, C  
L1_L  
R2_L  
L2_L  
BIAS CSUB  
CLS  
CRS  
CBL  
CBR  
CTL  
CTR BIAS  
= 0.1µF, C  
= 50µF (see the Typical Application Circuit), T = T  
to T  
unless otherwise specified. Typical values are at T  
CBIAS  
A
MIN  
MAX A  
= +25°C). (Note1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (V  
Input-Voltage High  
Input-Voltage Low  
> 3.6V) (MUTE, AMB, VOLUP, VOLDN, BALL, BALR, BASSUP, BASSDN, TREBUP, TREBDN)  
LOGIC  
V
2.4  
3.4  
V
V
IH  
V
0.8  
IL  
SHDN Input-Voltage High  
SHDN Input-Voltage Low  
Input Leakage Current  
Input Capacitance  
V
V
IHSHDN  
V
0.8  
±5  
V
ILSHDN  
µA  
pF  
5
DIGITAL INPUTS (V  
LOGIC  
≤ 3.6V) (MUTE, AMB, VOLUP, VOLDN, BALL, BALR, BASSUP, BASSDN, TREBUP, TREBDN)  
Input-Voltage High  
V
2
V
V
IH  
Input-Voltage Low  
V
0.6  
IL  
SHDN Input-Voltage High  
SHDN Input-Voltage Low  
Input Leakage Current  
Input Capacitance  
V
2
V
IHSHDN  
V
0.6  
±5  
V
ILSHDN  
µA  
pF  
5
TIMING CHARACTERISTICS  
Click/pop suppression inactive,  
Figures 2a, 11a, 11b  
Wiper Settling Time  
t
45  
ms  
WS  
POWER SUPPLIES (V  
= V , internal bias enabled)  
SS  
CMSNS  
Supply-Voltage Difference  
V
- V  
+5.5  
+5.5  
0
V
V
V
DD  
SS  
Positive Analog Supply Voltage  
Negative Analog Supply Voltage  
V
+2.7  
-2.7  
DD  
SS  
V
V
Dual-Supply Positive Supply  
Voltage  
V
= -2.7V  
0
+2.7  
V
DD  
SS  
No signal, all logic inputs pulled high to  
or unconnected, SHDN = V ,  
LOGIC  
Active Positive Supply Current  
I
V
10  
13  
mA  
DD  
LOGIC  
R = 10kΩ (Note 6)  
L
No signal, all logic inputs connected to  
DGND or V , V = +5V, V = 0  
-13  
-13  
-10  
-10  
LOGIC DD  
SS  
Active Negative Supply Current  
(Note 6)  
I
mA  
µA  
SS  
No signal, all logic inputs connected to  
DGND or V , V = +2.7V,  
LOGIC DD  
V
= -2.7V  
SS  
No signal, V  
inputs connected to DGND or V  
SHDN = DGND  
= 5V, V = 0, all logic  
SS  
DD  
,
0.2  
LOGIC  
Shutdown Supply Current  
(Note 6)  
I
SHDN  
No signal, V  
= +2.7V,  
I
0.2  
50  
DD  
DD  
V
= -2.7V, all logic at DGND  
SS  
I
or V  
, SHDN = DGND  
SS  
LOGIC  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Electrical Characteristics (continued)  
(V  
= V  
= +5.0V, V  
= 0, V  
= V  
= V /2, DGND = 0, ambience disabled, V  
= V  
= V , V  
BIAS R1_L  
=
DD  
LOGIC  
SS  
BIAS  
CMSNS  
DD  
AMBLI  
AMBRI  
V
= V  
= V  
= external V  
, C  
= 0.15µF, C  
= C  
= 1µF, C  
= C  
= 3.3nF, C  
= C  
= 4.7nF, C  
L1_L  
R2_L  
L2_L  
BIAS CSUB  
CLS  
CRS  
CBL  
CBR  
CTL  
CTR BIAS  
= 0.1µF, C  
= 50µF (see the Typical Application Circuit), T = T  
to T  
unless otherwise specified. Typical values are at T  
CBIAS  
A
MIN  
MAX A  
= +25°C). (Note1)  
PARAMETER  
SYMBOL  
CONDITIONS  
Power first applied, _OUT = -20dB  
From shutdown (Note 7)  
MIN  
TYP  
1
MAX  
UNITS  
ms  
Power-Up Time  
t
PU  
Wake-Up Time  
t
1
ms  
WU  
Logic Supply Voltage  
V
DGND = 0, V  
≤ V  
+2.7  
V
DD  
V
LOGIC  
LOGIC  
DD  
No signal, one button pressed, remaining  
Logic Active Supply Current  
I
logic inputs connected to V  
unconnected  
or  
150  
µA  
LOGIC  
LOGIC  
No signal, all logic inputs connected to  
or unconnected, SHDN = DGND  
Logic Shutdown Supply Current  
V
02  
2
µA  
LOGIC  
(Note 6)  
Note 1: All devices 100% production tested at T = +85°C. Limits over the operating temperature range are guaranteed by design.  
A
CT_  
Note 2: Treble = bass = 0dB. C  
= open, C  
= short, left input signal = right input signal = +2V.  
CB_  
Note 3: See Tables 3 and 4 and Figure 7. V  
= +2.7V, V = -2.7V.  
SS  
DD  
Note 4: Guaranteed by design.  
Note 5: Measured with A-weighted filter.  
Note 6: Supply current measured while attenuator position is fixed.  
Note 7: Set _OUT = 0dB and shutdown device SHDN = 0. t  
is the time required for _OUT to reach 0dB after SHDN goes high.  
WU  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
ATTENUATION vs. TAP POSITION  
ATTENUATION vs. TAP POSITION  
BAXANDALL CURVE  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
15  
10  
5
V
= V  
= 5V, V = 0  
LOGIC SS  
DD  
V
= V  
= 5V, V = 0  
LOGIC SS  
V
DD  
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
DD  
TREBLE = BASS  
VOLUP = 0dB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-5  
-10  
-15  
C
CB_  
C
CT_  
= 10nF  
= 2.2nF  
0
4
8
12 16 20 24 28 32  
TAP POSITION  
0
4
8
12 16 20 24 28 32  
TAP POSITION  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
BAXANDALL CURVE  
BAXANDALL CURVE  
BAXANDALL CURVE  
20  
15  
10  
5
15  
10  
5
V
V
= V  
= 0.5V  
= 2.7V, V = -2.7V  
LOGIC SS  
C
C
= 10nF  
= 2.2nF  
DD  
CB_  
IN  
P-P  
15  
10  
5
CT_  
BASS = TREBLE  
V
DD  
= V  
= 5V, V = 0  
SS  
LOGIC  
BASS = 0dB  
0
0
0
-5  
-5  
-5  
C
C
= 10nF  
CB_  
-10  
-15  
-20  
-10  
-15  
-20  
-10  
-15  
-20  
= 2.2nF  
=2.7V, V = -2.7V  
LOGIC SS  
CT_  
V
V
= V  
DD  
C
CB_  
C
CT_  
= 10nF  
= 2.2nF  
= 0.5V  
IN  
P-P  
BASS = 0dB  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SINGLE-SUPPLY SUBOUT  
FREQUENCY RESPONSE  
BAXANDALL CURVE  
BAXANDALL CURVE  
15  
10  
5
20  
15  
10  
5
10  
0
C
C
V
= 10nF  
= 2.2nF  
C
C
V
= 10nF  
= 2.2nF  
CB_  
CT_  
CB_  
CT_  
= V  
= 2.7V,  
= V  
= 5V, V = 0  
SS  
DD  
LOGIC  
DUAL INPUTS  
DD  
LOGIC  
V
SS  
= -2.7V, V = 0.5V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
TREBLE = 0dB  
IN P-P  
TREBLE = 0dB  
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
10  
100  
1000  
10,000  
100,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
DUAL-SUPPLIES LOUT  
FREQUENCY RESPONSE  
DUAL-SUPPLIES SUBOUT  
FREQUENCY RESPONSE  
LOUT FREQUENCY RESPONSE  
10  
0
10  
5
10  
5
V
= V  
= 5V, V = 0  
V
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
DD  
LOGIC  
SS  
DD  
DUAL INPUTS  
VOLUP = 0dB  
VOLUP = 0dB  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
V
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
DD  
VOLUP = 0dB  
10  
100  
1000  
10,000  
100,000  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
DUAL-SUPPLIES ROUT  
FREQUENCY RESPONSE  
ROUT FREQUENCY RESPONSE  
PSRR vs. FREQUENCY  
MAX5406 toc4a  
5
10  
5
0
V
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
V
DD  
= V  
= 5V, V = 0  
LOGIC SS  
DD  
0
VOLUP = 0dB  
-10  
-20  
-30  
-40  
-50  
-60  
100mV ON V  
P-P DD  
0
-5  
V
= V  
= 5V, V = 0  
LOGIC SS  
DD  
VOLUP = 0dB  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
-70  
-80  
10  
100  
1k  
10k 100k  
1M  
10M  
10  
100  
1k  
10k 100k  
1M 10M  
0.1  
1
10  
100  
1,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
OUTPUT SWING  
vs. SUPPLY VOLTAGE  
PSRR vs. FREQUENCY  
PSRR vs. FREQUENCY  
MAX5406 toc4b  
MAX5406 toc4c  
10  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
SINGLE-SUPPLY OPERATION  
V
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
DD  
DD  
0
0
100mV ON POSITIVE SUPPLY  
V
DD  
= V  
THD = 0.02% AT 1kHz  
100mV ON NEGATIVE SUPPLY  
P-P  
LOGIC,  
P-P  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0.1  
0.1  
1
10  
100  
1,000  
1
10  
100  
1,000  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
V
DD  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT SWING  
vs. SUPPLY VOLTAGE  
TOTAL SUPPLY CURRENT  
vs. TEMPERATURE (I + I  
TOTAL SUPPLY CURRENT  
vs. TEMPERATURE (I + I  
)
)
DD LOGIC  
DD LOGIC  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
15  
13  
11  
9
DUAL-SUPPLY OPERATION  
V
= V  
= 5V, V = 0  
V
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
DD  
LOGIC  
SS  
DD  
V
LOGIC  
= V THD = 0.02% AT 1kHz  
DD,  
TOTAL SUPPLY CURRENT: I + I  
DD LOGIC  
ACTIVE MODE (ONE BUTTON PUSHED)  
ACTIVE MODE, ONE BUTTON PUSHED  
INACTIVE MODE (NO BUTTON PUSHED)  
INACTIVE MODE, NO BUTTON PUSHED  
9.0  
7
8.5  
8.0  
5
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
(V - V ) (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DD  
SS  
Maxim Integrated  
8
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
WIPER SWITCHING TRANSIENT  
(SUPPRESSION CIRCUIT ACTIVE)  
WIPER SWITCHING TRANSIENT  
I
vs. V  
LOGIC  
LOGIC  
MAX5406 toc07a  
MAX5406 toc07b  
200  
180  
160  
140  
120  
100  
80  
DC LEVEL AT  
THE INPUT  
5V SINE WAVE  
P-P  
BETWEEN L1_H  
AND L1_L  
T
= -40°C  
A
OUTPUT  
VOLUP  
T
A
= +85°C  
60  
T
A
= +25°C  
OUTPUT  
40  
V
= 5.5V, V = 0  
SS  
DD  
20  
ACTIVE MODE (ONE BUTTON PUSHED)  
0
10µs/div  
4ms/div  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
V
LOGIC  
(V)  
THD PLUS NOISE vs. FREQUENCY  
I
vs. V  
THD PLUS NOISE vs. FREQUENCY  
LOGIC  
LOGIC  
0.1  
1
0.1  
240  
220  
200  
180  
160  
140  
120  
100  
80  
V
= 5.5V, V = 0  
V
V
= V = 2.7V, V = -2.7  
LOGIC SS  
V
V
= V  
= 4.6V  
= 5V, V = GND  
LOGIC SS  
DD  
SS  
DD  
DD  
INACTIVE MODE (NO BUTTON PUSHED)  
= 4.6V  
IN  
P-P  
IN  
P-P  
T
A
= -40°C  
R = 10k  
L
R = 10k  
L
T
= +25°C  
A
0.01  
0.001  
NO LOAD  
60  
NO LOAD  
0.1  
40  
T
= +85°C  
A
20  
0.01  
0
0.01  
1
10  
100  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
0.01  
0.1  
1
10  
100  
FREQUENCY (Hz)  
V
LOGIC  
FREQUENCY (kHz)  
TOTAL SUPPLY CURRENT  
CROSSTALK vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
vs. SUPPLY VOLTAGE (I + I  
)
DD LOGIC  
MAX5406 toc10a  
MAX5406 toc10b  
0
0
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
V
V
= 2.7V, V = -2.7V, V  
= 2.5V,  
LOGIC  
V
V
= V  
= 5V, V = 0,  
LOGIC SS  
V
DD  
= V  
= 5V, V = 0  
LOGIC SS  
DD  
SS  
DD  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
= 1V , R = 10k  
P-P L  
= 1V , R = 10k  
ACTIVE MODE, ONE BUTTON PUSHED  
IN  
IN  
P-P  
L
T
A
= +25°C  
T
A
= +85°C  
T
A
= -40°C  
9.0  
-70  
-80  
-90  
8.5  
8.0  
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
TOTAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE (I + I  
)
LOUT NOISE vs. FREQUENCY  
DD LOGIC  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
1.9  
1.7  
1.5  
1.3  
V
DD  
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
V
= V  
= 5V, V = 0  
LOGIC SS  
DD  
INACTIVE MODE, NO BUTTON PUSHED  
T
= +25°C  
A
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
T
= -40°C  
A
MUTE ON  
MUTE OFF  
9.0  
T
A
= +85°C  
8.5  
8.0  
-0.1  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
SUPPLY VOLTAGE (V)  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
ROUT NOISE vs. FREQUENCY  
SUBOUT NOISE vs. FREQUENCY  
2
1.9  
1.7  
V
DD  
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
V
DD  
= V  
= 2.7V, V = -2.7V  
LOGIC SS  
1.8  
1.6  
1.4  
1.2  
1
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.3  
0.1  
-0.1  
0.8  
0.6  
0.4  
MUTE ON  
MUTE OFF  
0.2  
0
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
INPUT RF REJECTION  
VOLUME = 0dB  
= 2.7V, V = -2.7V  
-10  
-30  
-50  
-70  
V
DD  
SS  
INPUT = 200mV AT L1_H  
P-P  
-90  
-110  
1
10  
100  
1000  
10,000  
f FREQUENCY (MHz)  
1
Maxim Integrated  
10  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
TSSOP TQFN  
Bypass Capacitor Connection Point to Internally Generated Bias. Bypass CBIAS with a 50µF  
capacitor to system analog ground.  
1
2
3
43  
44  
45  
CBIAS  
V
Negative Power-Supply Input. Bypass with a 0.1µF capacitor to system analog ground.  
SS  
Left-Channel 1 High Terminal Input. Connect the source between L1_H and L1_L for differential  
signals. Connect the source to L1_H and tie L1_L to BIAS for single-ended signals.  
L1_H  
L1_L  
L2_L  
L2_H  
LMR  
Left-Channel 1 Low Terminal Input. Connect the source between L1_H and L1_L for differential  
signals. Connect L1_L to BIAS for single-ended signals.  
4
5
6
7
46  
47  
48  
1
Left-Channel 2 Low Terminal Input. Connect the source between L2_H and L2_L for differential  
signals. Connect L2_L to BIAS for single-ended signals.  
Left-Channel 2 High Terminal Input. Connect the source between L2_H and L2_L for differential  
signals. Connect the source to L2_H and tie L2_L to BIAS for single-ended signals.  
Left Minus Right Output Signal. LMR output provides a signal that is the difference of left and  
right input signals. See the Ambience Control section for more details.  
Ambience Left-Channel Input. AMBLI provides the proper ambient effect at LOUT based on the  
transfer function implemented between LMR and AMBLI. See the Ambience Control section for  
more details.  
8
2
AMBLI  
Left-Channel Treble Tone Control Capacitor Terminal 1. Connect a capacitor between CTL1 and  
CTL2 to set the treble cutoff frequency. See the Tone Control section for more details.  
9
3
4
5
CTL1  
CTL2  
CBL1  
Left-Channel Treble Tone Control Capacitor Terminal 2. Connect a capacitor between CTL2 and  
CTL1 to set the treble cutoff frequency. See the Tone Control section for more details.  
10  
11  
Left-Channel Bass Tone Control Capacitor Terminal 1. Connect a capacitor between CBL1 and  
CBL2 to set the bass cutoff frequency. See the Tone Control section for more details.  
Left-Channel Bass Tone Control Capacitor Terminal 2. Connect a capacitor between CBL2 and  
CBL1 to set the bass cutoff frequency. See the Tone Control section for more details.  
12  
13  
6
7
CBL2  
LOUT  
Left-Channel Output  
Subwoofer Left-Channel Highpass Filter Capacitor Negative Terminal. Connect a capacitor  
between CLSN and CLSP to set the highpass cutoff frequency at SUBOUT. See the Subwoofer  
Ouput section for more details.  
14  
8
CLSN  
Subwoofer Left-Channel Highpass Filter Capacitor Positive Terminal. Connect a capacitor  
between CLSP and CLSN to set the highpass filter cutoff frequency at SUBOUT. See the  
Subwoofer Ouput section for more details.  
15  
16  
9
CLSP  
Subwoofer Output. Connect a capacitor from SUBOUT to CSUB to set the lowpass filter cutoff  
frequency at SUBOUT. See the Subwoofer Ouput section for more details.  
10  
SUBOUT  
Subwoofer Lowpass Filter Capacitor Terminal. Connect a filter capacitor between CSUB and  
SUBOUT to set the lowpass filter cutoff frequency. See the Subwoofer Ouput section for more  
details.  
17  
11  
CSUB  
I.C.  
18, 32  
12, 26  
Internally Connected. Connect to DGND.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
TSSOP  
TQFN  
Active-Low Mute Control Input. Toggles state between muted and not muted. When in the mute  
state, all wipers are moved to the low end of the volume potentiometers. The last state is restored  
when MUTE is toggled again. The power-on state is not muted. MUTE is internally pulled up with  
19  
13  
MUTE  
50kΩ to V  
.
LOGIC  
Active-Low Downward Volume Control Input. Press VOLDN to decrease the volume. This  
simultaneously moves left and right volume wipers towards higher attenuation. VOLDN is  
20  
21  
14  
15  
VOLDN  
internally pulled up with 50kΩ to V  
.
LOGIC  
Active-Low Upward Volume Control Input. Press VOLUP to increase the volume. This  
simultaneously moves the left and right volume wipers towards the the lower attenuation.  
VOLUP  
BALL  
VOLUP is internally pulled up with 50kΩ to V  
.
LOGIC  
Active-Low Left Balance Control Input. Press BALL to move the balance towards the left channel.  
BALL is internally pulled up with 50kΩ to V  
22  
23  
16  
17  
.
LOGIC  
Active-Low Right Balance Control Input. Press BALR to move the balance towards the right  
BALR  
channel. BALR is internally pulled up with 50kΩ to V  
.
LOGIC  
24  
25  
18  
19  
DGND  
Digital Ground  
V
Digital Power-Supply Input. Bypass with 0.1µF to DGND.  
LOGIC  
Active-Low Shutdown Control Input. In shutdown mode, the MAX5406 stores every wiper’s last  
position. Each wiper moves to the highest attenuation level of its corresponding potentiometer.  
Terminating shutdown mode restores every wiper to its previous setting. In shutdown, the  
MAX5406 does not acknowledge any pushbutton command.  
26  
27  
20  
21  
SHDN  
Active-Low Downward Bass Control Input. Press BASSDN to decrease bass boost. Bass boost  
emphasizes the signal’s low-frequency components. BASSDN is internally pulled up with 50kΩ to  
BASSDN  
BASSUP  
V
. To implement a bass-boost button, connect BASSDN to BASSUP. Presses then toggle  
LOGIC  
the state between flat and full bass boost on each button press.  
Active-Low Upward Bass Control Input. Press BASSUP to increase bass boost. Bass boost  
emphasizes the signal’s low frequency components. BASSUP is internally pulled up with 50kΩ to  
28  
29  
22  
V
. To implement a bass-boost button, connect BASSUP to BASSDN. Presses then toggle  
LOGIC  
the state between flat and full bass boost on each button press.  
Active-Low Downward Treble Control Input. Press TREBDN to decrease the treble boost. Treble  
23  
TREBDN boost emphasizes the signal’s high-frequency components. TREBDN is internally pulled up with  
50kΩ to V  
.
LOGIC  
Active-Low Upward Treble Control Input. Press TREBUP to increase the treble boost. Treble  
30  
31  
33  
24  
25  
27  
TREBUP boost emphasizes the signal’s high-frequency components. TREBUP is internally pulled up with  
50kΩ to V  
.
LOGIC  
Active-Low Ambience Switch Control Input. Drive AMB low to toggle on/off the ambience  
function. AMB is internally pulled up with 50kΩ to V  
AMB  
.
LOGIC  
Subwoofer Right-Channel Highpass Filter Capacitor Negative Terminal. Connect a capacitor  
between CRSN and CRSP to set the highpass cutoff frequency at SUBOUT. See the Subwoofer  
Ouput section for more details.  
CRSN  
Subwoofer Right-Channel Highpass Filter Capacitor Positive Terminal. Connect a capacitor  
between CRSP and CRSN to set the highpass cutoff frequency at SUBOUT. See the Subwoofer  
Ouput section for more details.  
34  
35  
28  
29  
CRSP  
ROUT  
Right-Channel Output  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
TSSOP  
TQFN  
Right-Channel Bass Tone Control Capacitor Terminal 2. Connect a nonpolorized capacitor  
between CBR2 and CBR1 to set the bass cutoff frequency. See the Tone Control section for  
more details.  
36  
30  
CBR2  
Right-Channel Bass Tone Control Capacitor Terminal 1. Connect a capacitor between CBR1 and  
CBR2 to set the bass cutoff frequency. See the Tone Control section for more detail.  
37  
38  
39  
40  
31  
32  
33  
34  
CBR1  
CTR2  
CTR1  
AMBRI  
LPR  
Right-Channel Treble Tone Control Capacitor Terminal 2. Connect a capacitor between CTR2  
and CTR1 to set the treble cutoff frequency. See the Tone Control section for more details.  
Right-Channel Treble Tone Control Capacitor Terminal 1. Connect a capacitor between CTR1  
and CTR2 to set the treble cutoff frequency. See the Tone Control section for more details.  
Ambience Right-Channel Input. AMBRI provides the proper ambient effect at ROUT based on the  
gain between LPR and AMBRI. See the Ambience Control section for more details.  
Left Plus Right Output Signal. LPR output provides a signal that is a combination of the left and  
right input signals. See the Ambience Control section for more details.  
41  
42  
43  
35  
36  
37  
V
Positive Analog Supply Voltage. Bypass with a 0.1µF capacitor to system analog ground.  
DD  
Right-Channel High Terminal 2. Connect the source between R2_H and R2_L for differential  
signal. Connect the source to R2_H and tie R2_L to BIAS for single-ended signals.  
R2_H  
R2_L  
Right-Channel Low Terminal 2. Connect the source between R2_H and R2_L for differential  
signal. Connect R2_L to BIAS for single-ended signals.  
44  
45  
46  
47  
38  
39  
40  
41  
Right-Channel Low Terminal 1. Connect the source between R1_H and R1_L for differential  
signal. Connect R1_L to BIAS for single-ended signals.  
R1_L  
Right-Channel High Terminal 1. Connect the source between R1_H and R1_L for differential  
signal. Connect the source to R1_H and tie R1_L to BIAS for single-ended signals.  
R1_H  
CMSNS  
Common-Mode Voltage Sense. Connect to V  
to disable the internal bias generator and drive  
DD  
BIAS with external source to set output DC level.  
Internally Generated Bias Voltage. Connect CMSNS to V to enable the internally generated  
SS  
48  
42  
BIAS  
V
. V  
= (V  
+ V )/2. Connect a 0.1µF capacitor between BIAS and system analog  
BIAS BIAS  
DD SS  
ground as close to the device as possible. Do not use BIAS to drive external circuitry.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
V
DD  
LMR AMBLI  
CBL1 CBL2  
CTL1 CTL2  
LEFT  
LOG POT  
LEFT AMBIENCE  
SWITCH  
L1_H  
BASS/TREBLE OUTPUT STAGE  
SEE FIGURE 7  
RF FILTER  
LOUT  
CLSP  
CONTROLLED  
BY AMB  
L1_L  
L2_H  
L2_L  
RF FILTER  
CBIAS  
CMSNS  
BIAS  
BIAS  
GENERATOR  
CLSN  
R
R
LS  
R1_H  
R1_L  
RF FILTER  
RF FILTER  
SUBOUT  
RIGHT AMBIENCE  
SWITCH  
R2_H  
R2_L  
R
SUB  
CONTROLLED  
BY AMB  
RS  
CSUB  
CRSN  
CRSP  
ROUT  
MAX5406  
BASS/TREBLE OUTPUT STAGE  
SEE FIGURE 7  
RIGHT  
LOG POT  
DIGITAL INTERFACE  
CBR1 CBR2  
CTR1 CTR2  
BASSUPTREBUP  
VOLUP  
BALR  
VOLDN  
BALL  
SHDN  
LPR  
AMB  
V
SS  
DGND  
AMBRI  
V
TREBDN  
BASSDN  
MUTE  
LOGIC  
Figure 1. Block Diagram  
to control the audio-processor settings. The MAX5406  
provides differential buffered inputs with RF filters to maxi-  
mize noise reduction and a mixer to produce an equal  
amount of left and right input channels. In addition to a  
differential output, the MAX5406 provides a monophonic  
output at SUBOUT for systems with a subwoofer.  
Detailed Description  
The MAX5406 implements dual logarithmic potentiome-  
ters to control volume, dual potentiometers to control bal-  
ance, and dual linear digital potentiometers to set the tone  
(Figure 1). A debounced pushbutton interface is provided  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Table 1. Wiper Action vs. Pushbutton  
Contact Duration  
Table 2. Attenuator Position For Volume  
Potentiometers  
POSITION  
ATTENUATION (dB)  
CONTACT  
WIPER ACTION  
DURATION  
0
0
2
t < t  
No motion (debouncing) (Figures 2a and 2b)  
LPW  
1
Wiper changes position once (Figures 2a  
and 2b)  
2
4
t
≤ t ≤ 1s  
LPW  
…..  
…..  
20  
…..  
60  
62  
> 90  
Wiper changes position at a rate of 4Hz  
(Figure 3)  
1s ≤ t < 4s  
t ≥4s  
10 ( Power-on state)  
…..  
30  
Wiper changes position at a rate of 16Hz  
(Figure 3)  
31  
32 (Mute)  
Volume and Balance Interaction  
Up/Down Interface  
Volume and balance operation is simple. However, there  
are some interactions that occur at the extreme wiper  
positions. These interactions are described in this section  
of the data sheet.  
The MAX5406 features independent control inputs for  
volume, balance, ambience, and tone control. All control  
inputs are internally debounced for use with momentary  
contact SPST switches. All switch inputs are pulled up  
to V  
through 50kΩ resistors. The wiper setting  
LOGIC  
When the volume setting is at the maximum level, the first  
command to move the balance toward the left channel  
forces the right channel to decrease by 1dB. Subsequent  
pressing of BALL causes the right channel to decrease by  
2dB. At this position, shown in the right column of Figure  
6a, the left-channel volume is maximum, but the actual  
separation between L and R is 3dB.  
advances once per button press held for up to 1s (see  
Figures 2a and 2b). Maxim’s SmartWiper control circuitry  
allows the wiper to advance at a rate of 4Hz when an  
input is held low from 1s up to 4s, and at a rate of 16Hz if  
the contact is maintained for greater than 4s without the  
need of a µP (see Figure 3 and Table 1). The MAX5406  
ignores multiple buttons being pressed. A µP can also be  
used to control the MAX5406.  
At this position, pressing VOLDN restores the actual bal-  
ance setting only after VOLDN is pressed at least half as  
many times as BALL was (previously) pressed (shown in  
the middle and right column of Figure 6b) to increase the  
right-channel balance.  
Volume Control  
The MAX5406 implements dual logarithmic potentiom-  
eters for volume control that change the sound level by  
2dB per button push (see Table 2).  
The volume and balance interaction is similar when vol-  
ume setting is at the minimum level.  
In volume-control mode, the MAX5406’s wipers move up  
and down together (see Figure 4). The balance is unaf-  
fected (see the Balance Control section). Left and right bal-  
ance settings are maintained when adjusting the volume.  
Tone Control  
The MAX5406 implements a linear potentiometer to con-  
trol the bass and treble over a range of ±10dB using the  
recommended component values.  
Balance Control  
In balance-control mode, the MAX5406 uses dual potenti-  
ometers to control balance for the left and right channels.  
Pressing BALR increases the right channel wiper by 1dB  
and decreases the left channel by 1dB. This causes the  
right channel to sound louder than the left channel by  
2dB. The overall volume remains constant when adjusting  
the balance (Figure 5).  
Note that the actual response achieved is determined by  
the values of both external and internal components and  
the design equations are somewhat interactive.  
Use the values shown in the Electrical Characteristics as a  
good starting point for choosing component values. These  
components yield shelf turnovers at 100Hz (bass) and 10kHz  
(treble) with a total ±10dB of boost at 100Hz and 10kHz. The  
shoulder or flat portion of the response is centered on 1kHz.  
The circuit in Figure 7 shows the internal structure of the  
tone-control system should modification to the response  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
t
WS  
VOLUP  
t
LPW  
WIPER  
MOTION  
Figure 2a. Single-Pulse Input  
t
HPW  
t
LPW  
VOLUP  
V
IH  
V
IL  
WIPER  
MOTION  
Figure 2b. Repetitive Input-Pulse Separation Time  
t
A2  
t
A1  
VOLUP  
V
IH  
V
IL  
1
1
1
1
1
1
WIPER  
f
f
f
A2  
f
f
f
MOTION  
A1  
A1  
A2  
A2  
A2  
Figure 3. Accelerated Wiper Motion  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
BALANCE SEPARATION  
MAINTAINED  
L
R
L
R
L
R
PRESS VOLUP  
PRESS VOLDN  
TWICE  
ONCE  
Figure 4. Basic Volume-Control Operation  
VOLUME LEVEL IS SET  
L
R
L
R
L
R
1dB PER STEP  
PRESS BALR  
ONCE  
1dB PER STEP  
PRESS BALR  
ONCE  
1dB PER STEP  
Figure 5. Basic Balance-Control Operation  
VOLUME LEVEL IS AT MAXIMUM  
L
R
L
R
L
R
1dB PER STEP  
PRESS BALL  
ONCE  
2dB PER STEP  
PRESS BALL  
AGAIN  
TO 6b  
a)  
1dB PER STEP  
BALANCE COMPENSATION ENDS  
L
R
L
R
L
R
2dB PER STEP  
PRESS VOLDN  
ONCE  
2dB PER STEP  
PRESS VOLDN  
ONCE  
b)  
2dB PER STEP  
FROM 6a  
Figure 6. Volume and Balance Interaction  
curve be desired. A combination of internal resistors and  
external capacitors determine the response of the circuit.  
where R  
eter (see Figure 7).  
, nominally 116kΩ, is the bass potentiom-  
BPOT  
Use the following equations to calculate the external  
capacitor values for the desired 3dB frequencies:  
1
f
=
TREBLE(3dB)  
2π ×R × C  
T
T_  
1
f
=
BASS(3dB)  
where R is nominally 3.5kΩ (see Figure 7).  
T
2π ×R  
× C  
B_  
BPOT  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
C
_SP  
C
B_  
+1  
+1  
-1  
C
B_1  
C
B_2  
40k  
116kΩ  
40k  
BUFFER  
INPUT  
AMBLI  
AMBRI  
LMR  
BASS POT  
+2  
C
C
T_1  
Figure 8. Matrix Surround Configuration  
C
T_  
_OUT  
TREBLE POT  
T_2  
TO BIAS  
+1  
+1  
-1  
3.5kΩ  
17kΩ  
3.5kΩ  
AMBLI  
AMBRI  
LMR  
AMBIENCE  
NETWORK  
Figure 7. Bass/Treble Output Stage  
Figure 9. Ambience Filter  
Alternatively, the following formulas can be used to  
calculate and design for the bass and treble turn-  
over frequencies:  
1
f
=
BASS(TURNOVER)  
+1  
+1  
2π ×R × C  
-1  
B
B_  
where R is nominally 40kΩ (see Figure 7)  
B
AMBLI  
AMBRI  
LPR  
PSEUDOSTEREO  
NETWORK  
1
f
=
TREBLE(TURNOVER)  
2π ×(R + R )× C  
T_  
T
B
Figure 10. Pseudostereo Filter  
Tables 3 and 4 show the effects of the external bass and  
treble capacitance on the maximum output attentuation.  
Table 3. Effect of Base Tone Control  
Capacitor (CB_) on Bass Boost/Bass  
Cut at 100Hz  
Table 4. Effect of Treble Tone Control  
Capacitor (CT_) on Treble Boost/Treble  
Cut at 10kHz  
C
(nF)  
CUT (dB)  
-11.79  
-11.25  
-11.05  
-10.95  
-10.85  
-10.60  
-10.57  
-10.10  
-9.66  
BOOST (dB)  
C
(nF)  
CUT (dB)  
BOOST (dB)  
B_  
0.00  
T_  
0.47  
11.81  
-7.80  
7.66  
0.47  
1.80  
2.20  
2.70  
3.30  
4.70  
6.80  
8.20  
11.26  
1.80  
2.20  
2.70  
3.30  
4.70  
6.80  
8.20  
Open  
-12.55  
-12.89  
-13.15  
-13.33  
-13.55  
-13.59  
-13.61  
-13.79  
12.58  
11.08  
12.95  
10.96  
13.18  
10.86  
13.34  
10.62  
13.58  
10.55  
13.61  
10.15  
13.63  
9.66  
13.75  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
SWITCH  
SWITCH  
SWITCH  
CONTACT CONTACT  
IS BOUNCING IS STABLE  
CONTACT  
IS BOUNCING  
READY TO ACCEPT  
ANOTHER BUTTON PRESS  
PUSHBUTTON PRESSED  
1
INPUT ACCEPTED  
0
t
HPW  
t
t
DEBOUNCE BY  
WAITING FOR  
WS  
LPW  
STABLE HIGH, t  
HPW  
WAIT FOR  
FIRST ZERO  
CROSSING OR  
DEBOUNCE BY  
WAITING FOR  
STABLE LOW,  
TIMEOUT, t  
WS  
t
LPW  
L1_H  
L1_L  
WIPER MOVES HERE  
(t  
+ t  
)
LPW WS  
Figure 11a. Wiper Transition Timing Diagram (No Zero Crossing Detected)  
a desk or inside a single enclosure. One way to compen-  
sate for this is to increase the apparent separation of the  
L and R signals arithmetically. The L and R signals can  
be modeled as a channel-specific component added to  
a monocomponent. To emphasize the channel-specific  
component, one needs to remove the opposite channel-  
specific component from the monocomponent.  
Ambience Control  
Use the ambience function for boom boxes, headphones,  
desktop speakers, or other audio products where the  
speakers are physically close together. A stereo signal  
is designed to be played over speakers that have a wide  
physical separation. The ears and brain combine the  
sound from these two sources to create a perception of  
sounds distributed in space. In the case of headphones,  
this wide physical separation does not exist, resulting in  
the sound apparently coming from somewhere inside the  
head. A similar situation exists when the speakers are not  
widely separated, for example when they are located on  
This function is accomplished with circuitry inside the  
MAX5406 and external network. Control the ambience  
effect with the AMB button that toggles between wide (full  
effect) and normal (no ambience effect). Use the following  
equations for matrix surround (fixed ambience):  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
SWITCH  
SWITCH  
SWITCH  
CONTACT CONTACT  
IS BOUNCING IS STABLE  
CONTACT  
IS BOUNCING  
READY TO ACCEPT  
ANOTHER BUTTON PRESS  
PUSHBUTTON PRESSED  
1
INPUT ACCEPTED  
0
t
HPW  
t
t
DEBOUNCE BY  
WAITING FOR  
WS  
LPW  
STABLE HIGH, t  
HPW  
WAIT FOR  
DEBOUNCE BY  
WAITING FOR  
FIRST ZERO  
CROSSING, t  
WS  
STABLE LOW, t  
IPW  
WIPER MOVES HERE  
WIPER MOTION  
Figure 11b. Wiper Transition Timing Diagram (Zero Crossing Detected)  
(L -R  
)
3
1
IN IN  
LOUT = L + F  
×
LOUT = L - R  
IN  
L(S)  
IN  
IN  
4
2
3
2
(L -R  
)
1
IN IN  
ROUT = R -F  
×
ROUT = R - L  
IN R(S)  
IN  
IN  
4
2
2
L
-R  
IN IN  
where  
is the signalat LMR.  
Use a passive filter network as shown in Figure 9 to filter  
and delay the LMR signal in more advanced applications.  
4
When F  
and F  
= 2 (LMR, AMBLI, and AMBRI are  
L(S)  
R(S)  
connected with the multiplier network of Figure 8), the  
equations become:  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Pseudostereo  
LEFT CHANNEL  
Pseudostereo creates a sound approximating stereo from  
a monophonic signal. Use the equations for pseudostereo  
response calculations:  
INPUT  
CLSP  
C
CLS  
(L + R  
)
IN  
CLSN  
IN  
LOUT = L + F  
×
IN  
L(S)  
R
LS  
4
V
BIAS  
(L + R  
)
IN  
IN  
SUBOUT  
ROUT = R -F  
×
IN R(S)  
4
R
RS  
R
SUB  
L
+ R  
4
IN  
IN  
C
CSUB  
where  
are the signals at LPR.  
CSUB  
Connect a pseudostereo network (F  
and F  
) as  
L(S)  
R(S)  
shown in Figure 10 to filter and delay the LPR signal and  
create the pseudo signal.  
CRSN  
RIGHT CHANNEL  
INPUT  
C
CRS  
Click/Pop Suppression  
CRSP  
The click/pop suppression feature reduces the audible  
noise (clicks and pops) that results from wiper transitions.  
The MAX5406 minimizes this noise by allowing the wiper  
position changes only when the potential across the pot is  
zero. Thus, the wiper changes position only when the volt-  
age at L_ is the same as the voltage at the correspond-  
ing H_. Each wiper has its own suppression and timeout  
circuitry (see Figure 11a). The MAX5406 changes wiper  
position after 32ms or when high = low, whichever occurs  
first (see Figure 11b).  
Figure 12. Subwoofer Output Stage  
scale. Successive pulses on MUTE toggle its setting.  
Activating the mute function forces all wipers to the low  
side of the potentiometer chain. Deactivating the mute  
function returns the wipers to their previous settings.  
MUTE is internally pulled high with a 50kΩ resistor  
to V  
.
LOGIC  
Multiple Button Pushes  
Power-On Reset  
The MAX5406 ignores simultaneous presses of two or  
more buttons. Pushing more than one button at the same  
time does not change the state of the wipers. Additionally,  
further key presses are ignored for 50ms after all keys  
have been released. The MAX5406 does not respond to  
any logic input until the blocking period ends.  
The MAX5406 initiates power-on reset when V  
below 2.2V and returns to normal operation when V  
falls  
LOGIC  
LOGIC  
= +2.7V. A power-on reset places the volume in the mute  
(-90dB) state and volume wipers gradually move to -20dB  
over a period of 0.7s in 2dB steps if no zero-crossing  
event is detected. All other controls remain in the 0dB  
position.  
Bias Generator  
The MAX5406 generates a midrail, (V  
+ V )/2 bias  
SS  
Shutdown (SHDN)  
DD  
voltage, for use with the input amplifiers.  
For normal single-supply operation and single-ended sig-  
nals, connect R1_L, L1_L, R2_L, and L2_L to V and  
The MAX5406 stores the current wiper setting of each  
potentiometer in shutdown mode. The wipers move to  
the mute position to minimize the signal out of LOUT and  
ROUT. Returning from shutdown mode restores all wipers  
to their previous settings. Button presses in shutdown are  
ignored.  
BIAS  
V
to ground.  
SS  
Enable the V  
generator by connecting CMSNS to  
BIAS  
V
or leave CMSNS unconnected. Disable the V  
SS  
BIAS  
generator by forcing CMSNS to V . For proper opera-  
DD  
Mute Function (MUTE)  
tion, do not use V  
to power other circuitry.  
BIAS  
The MAX5406 features a mute function that sets  
the volume typically 90dB attenuation relative to full  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Subwoofer Output  
Applications Information  
The subwoofer output of the MAX5406 combines and  
filters the left and right inputs for output to a subwoofer.  
Choose the capacitor values to set the bandpass filter to  
frequencies between 15Hz and 100Hz.  
Bass Boost  
Some simple products may not need a variable bass  
tone control. It may be desirable for such products  
to have a bass-boost pushbutton. Tie BASSUP and  
BASSDN together to provide a bass-boost feature. When  
tied together, the bass boost is toggled between 0dB and  
maximum by pressing BASSUP or BASSDN.  
Figure 12 shows the subwoofer output stage configura-  
tion. The subwoofer output is a monophonic signal pro-  
duced by adding the left and the right input signals. The  
amplifier of the subwoofer output stage produces a band-  
pass response. Use the following formulas to determine  
the cutoff frequencies for the bandpass filter:  
Unequal Source Levels  
Audio sources input to the MAX5406 may not have the  
same full-scale voltage swings. Use a resistor in series  
with the higher voltage swing input source to reduce the  
gain for that input.  
1
f
f
=
=
HIGHPASS  
LOWPASS  
2 × π ×R_S × C  
C_S  
For example, to reduce the gain by half, add a 10kΩ resis-  
tor in series with L1_H and R1_H, and a 20kΩ in series  
with L1_L and R1_L.  
1
2× π ×R  
× C  
CSUB  
CSUB  
where R is R or R and has the nominal value of  
RS  
_S  
LS  
Chip Information  
PROCESS: BiCMOS  
13.8kΩ, R  
has the nominal value of 10.6kΩ, and  
CSUB  
C
is C  
or C  
. The external capacitors are as  
C_S  
CLS  
CRS  
shown in Figure 12.  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Pin Configurations  
TOP VIEW  
CBIAS  
1
2
3
4
5
6
7
8
9
48 BIAS  
47 CMSNS  
46 R1_H  
45 R1_L  
44 R2_L  
43 R2_H  
V
SS  
L1_H  
L1_L  
MAX5406  
L2_L  
L2_H  
LMR  
33  
25  
36 35 34  
32 31  
29 28  
30  
27 26  
42  
V
DD  
R2_H 37  
24 TREBUP  
23 TREBDN  
22 BASSUP  
21 BASSDN  
AMBLI  
CTL1  
41 LPR  
38  
39  
40  
41  
R2_L  
R1_L  
40 AMBRI  
39 CTR1  
38 CTR2  
37 CBR1  
36 CBR2  
35 ROUT  
34 CRSP  
33 CRSN  
32 I.C.  
CTL2 10  
CBL1 11  
CBL2 12  
LOUT 13  
CLSN 14  
CLSP 15  
SUBOUT 16  
CSUB 17  
I.C. 18  
R1_H  
SHDN  
CMSNS  
20  
V
BIAS 42  
19  
18  
17  
16  
15  
14  
13  
LOGIC  
DGND  
BALR  
MAX5406  
CBIAS 43  
V
SS  
44  
45  
46  
47  
48  
L1_H  
BALL  
VOLUP  
VOLDN  
MUTE  
L1_L  
L2_L  
L2_H  
12  
1
2
3
4
5
6
8
9
10 11  
7
31 AMB  
MUTE 19  
VOLDN 20  
VOLUP 21  
BALL 22  
30 TREBUP  
29 TREBDN  
28 BASSUP  
27 BASSDN  
26 SHDN  
TQFN  
BALR 23  
DGND 24  
25  
V
LOGIC  
TSSOP  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Typical Application Circuit  
V
DD  
C
BIAS  
V
+ V  
SS  
DD  
X2  
X2  
( )  
2
V
SS  
MAX9761  
LMR  
L1_H  
AMBLI  
LPR AMBRI  
LOUT  
CBIAS  
V
DD  
BIAS  
CMSNS  
CELL PHONE, MP3,  
OR ACCESSORY  
CONNECTORS  
LEFT  
SPEAKER  
STEREO IN1  
BTL  
R1_H  
MUTE  
AMB  
RIGHT  
SPEAKER  
BTL  
ROUT  
V
DD  
VOLDN  
V
LOGIC  
VOLUP  
BALL  
SHDN  
CTR1  
CTR2  
DGND  
MAX5406  
STEREO  
HEADPHONE  
JACK  
C
CTR  
LEFT  
BALR  
CTL1  
CTL2  
CSUB  
SENSE  
RIGHT  
C
CTL  
TREBDN  
TREBUP  
BASSDN  
BASSUP  
C
CSUB  
SUBOUT  
L2_H  
DGND  
STEREO IN2 (AUX)  
R2_H  
V
LOGIC  
CLSP CLSN DGND  
CBR1CBR2 CBL1 CBL2 CRSPCRSN  
V
SS  
*
+2.7V TO V  
DD  
C
CBL  
C
CRS  
C
CLS  
C
CBR  
*OPTIONAL  
TYPICAL APPLICATION CIRCUIT SHOWS MAX5406 INTERNAL BIAS VOLTAGE OPERATION AND AUXILLIARY INPUT MIXING.  
Chip Information  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
Refer to  
Application  
Note 1891  
48 TSSOP  
48 TQFN  
U48-1  
21-0144  
21-0155  
Refer to  
Application  
Note 1891  
T4877-6  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX5406  
Audio Processor with Pushbutton Interface  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
5/06  
4/14  
Initial release  
Removed automotive references on page 1  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
25  

相关型号:

MAX5407

32-Tap Audio Logarithmic Taper Digital Potentiometer
MAXIM

MAX5407EKA

32-Tap Audio Logarithmic Taper Digital Potentiometer
MAXIM

MAX5407EKA+T

Digital Potentiometer, 1 Func, 20000ohm, Increment/decrement Control Interface, 32 Positions, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX5408

Dual, Audio, Log Taper Digital Potentiometers
MAXIM

MAX5408-MAX5411

Dual, Audio, Log Taper Digital Potentiometers
MAXIM

MAX5408EEE

Dual, Audio, Log Taper Digital Potentiometers
MAXIM

MAX5408EEE+

Digital Potentiometer, 2 Func, 10000ohm, 3-wire Serial Control Interface, 32 Positions, BICMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137, QSOP-16
MAXIM

MAX5408EEE+T

Digital Potentiometer, 2 Func, 10000ohm, 3-wire Serial Control Interface, 32 Positions, BICMOS, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137, QSOP-16
MAXIM

MAX5408EGE

DIGITAL POTENTIOMETER|BICMOS|LLCC|16PIN|CERAMIC
MAXIM

MAX5408EGE-T

Digital Potentiometer, 2 Func, 10000ohm, 3-wire Serial Control Interface, 32 Positions, BICMOS, CQCC16, 4 X 4 MM, 0.90 MM HEIGHT, QFN-16
MAXIM

MAX5408ETE

Dual, Audio, Log Taper Digital Potentiometers
MAXIM

MAX5408ETE+

暂无描述
MAXIM