MAX5231AEEE+ [MAXIM]

暂无描述;
MAX5231AEEE+
型号: MAX5231AEEE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总18页 (文件大小:972K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2332; Rev 1; 9/03  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
General Description  
Features  
The MAX5230/MAX5231 low-power, dual 12-bit voltage-  
output digital-to-analog converters (DACs) feature an  
internal 3ppm/°C precision bandgap voltage reference  
and precision output amplifiers. The MAX5231 operates  
on a single 5V supply with an internal 2.5V reference and  
features a 4.095V full-scale output range. The MAX5230  
operates on a single 3V supply with an internal 1.25V ref-  
erence and features a 2.0475V full-scale output range.  
The MAX5231 consumes only 470µA while the MAX5230  
consumes only 420µA of supply current. Both devices  
feature low-power (2µA) software- and hardware-  
enabled shutdown modes.  
Internal 3ppm/°C Precision Bandgap Reference  
2.465V (MAX5231)  
1.234V (MAX5230)  
10ppm/°C (max) Full-Scale Output Range  
4.095V (MAX5231)  
2.0475V (MAX5230)  
Single-Supply Operation  
5V (MAX5231)  
3V (MAX5230)  
Low Supply Current  
470µA (MAX5231)  
420µA (MAX5230)  
The MAX5230/MAX5231 feature a 13.5MHz SPI™-,  
QSPI™-, and MICROWIRE™-compatible 3-wire serial  
interface. An additional data output (DOUT) allows for  
daisy-chaining and read back. Each DAC has a double-  
buffered digital input. The MAX5230/MAX5231 feature  
two software-selectable shutdown output impedances:  
1kor 200k. A power-up reset feature sets DAC out-  
puts at ground or at the midscale DAC code.  
13.5MHz SPI/QSPI/MICROWIRE-Compatible,  
3-Wire Serial Interface  
Pin-Programmable Power-Up Reset State to Zero  
or Midscale Output Voltage  
Programmable Shutdown Modes with 1kor  
200kInternal Output Loads  
The MAX5230/MAX5231 are specified over the extended  
temperature range (-40°C to +85°C) and are available in  
16-pin QSOP packages.  
Recalls Output State Prior to Shutdown or Reset  
Buffered Output Drives 5k|| 100pF Loads  
Space-Saving 16-Pin QSOP Package  
Applications  
Industrial Process Controls  
Automatic Test Equipment  
Digital Offset and Gain Adjustment  
Motion Control  
Ordering Information  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
TEMP RANGE  
µP-Controlled Systems  
MAX5230AEEE  
MAX5230BEEE  
MAX5231AEEE  
MAX5231BEEE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
0.5  
1
Pin Configuration  
0.5  
1
TOP VIEW  
OSA  
OUTA  
RSTV  
LDAC  
CLR  
1
2
3
4
5
6
7
8
16 OSB  
15 OUTB  
14  
V
DD  
Functional Diagram appears at end of data sheet.  
MAX5230  
MAX5231  
13 AGND  
12 REF  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor, Corp.  
CS  
11 PDL  
10 DOUT  
DIN  
SCLK  
9
DGND  
QSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to AGND, DGND...............................................-0.3V to +6V  
Maximum Current into Any Pin............................................50mA  
AGND to DGND.....................................................-0.3V to +0.3V  
Digital Inputs to DGND.............................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Digital Output (DOUT) to DGND...................-0.3V to V  
OUT_ to AGND .............................................-0.3V to V  
OS_ to AGND...................................................-4V to V  
+ 0.3V  
+ 0.3V  
+ 0.3V  
DD  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICSMAX5231  
(V  
= +4.5V to +5.5V, OS_ = AGND = DGND = 0, R = 5k, C = 100pF, T = T  
A
to T , unless otherwise noted. Typical values  
MAX  
DD  
L
L
A
MIN  
are at T = +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE  
Resolution  
N
12  
Bits  
MAX5231A  
MAX5231B  
0.5  
1
Integral Nonlinearity (Note 1)  
INL  
LSB  
Differential Nonlinearity  
Offset Error (Note 2)  
DNL  
1
LSB  
mV  
V
3
OS  
Offset-Temperature Coefficient (Note 3)  
Full-Scale Voltage  
TCV  
8
4.095  
3
µV/°C  
V
OS  
V
Code = FFF hex, T = +25°C  
4.070  
4.120  
10  
FS  
A
MAX5231A  
Full-Scale Temperature Coefficient  
(Note 3)  
TCV  
ppm/°C  
FS  
MAX5231B (Note 6)  
10  
30  
Power-Supply Rejection  
DC Crosstalk (Note 4)  
REFERENCE  
PSR  
4.5V V 5.5V  
175  
500  
100  
µV  
µV  
DD  
Output Voltage  
V
2.465  
3
V
REF  
MAX5231A  
MAX5231B  
Output-Voltage Temperature  
Coefficient (Note 3)  
TCV  
ppm/°C  
REF  
10  
0.1  
4
Reference External Load Regulation  
Reference Short-Circuit Current  
DIGITAL INPUTS  
V
/I  
0 I  
100µA (sourcing)  
2
µV/µA  
mA  
OUT OUT  
OUT  
Input High Voltage  
V
0.7 x V  
V
V
IH  
DD  
Input Low Voltage  
V
0.3 x V  
1
IL  
DD  
Input Hysteresis  
V
200  
8
mV  
µA  
pF  
HYS  
Input Leakage Current  
Input Capacitance  
I
Digital inputs = 0 or V  
DD  
IN  
C
IN  
DIGITAL OUTPUTS  
Output High Voltage  
V
I
= 2mA  
SOURCE  
4.25  
V
V
OH  
Output Low Voltage  
V
I = 2mA  
SINK  
0.2  
OL  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
SR  
0.6  
V/µs  
2
_______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
ELECTRICAL CHARACTERISTICSMAX5231 (continued)  
(V  
= +4.5V to +5.5V, OS_ = AGND = DGND = 0, R = 5k, C = 100pF, T = T  
A
to T , unless otherwise noted. Typical values  
MAX  
DD  
L
L
A
MIN  
are at T = +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
To 0.5LSB, V  
MIN  
TYP  
MAX  
UNITS  
=
4V  
0.25V  
STEP  
Voltage-Output Settling Time  
10  
µs  
(V  
DD  
- 0.25V) V  
OUT  
Output-Voltage Swing (Note 5)  
OS_ Input Resistance  
0 to V  
V
DD  
R
83  
121  
kΩ  
OS  
Time Required for Output to Settle After  
Turning on V (Note 6)  
DD  
95  
400  
400  
160  
µs  
µs  
µs  
Time Required for Output to Settle After  
Exiting Full Power-Down (Note 6)  
95  
12  
Time Required for Output to Settle After  
Exiting DAC Power-Down (Note 6)  
CS = V , f  
= 100kHz,  
DD SCLK  
Digital Feedthrough  
5
nV-s  
nV-s  
V
= 5V  
P-P  
SCLK  
Major-Carry Glitch Energy  
POWER SUPPLIES  
90  
Power-Supply Voltage  
V
4.5  
5.5  
525  
5
V
DD  
Power-Supply Current (Note 7)  
I
470  
1.4  
µA  
DD  
Full power-down mode  
Power-Supply Current in Power-Down  
and Shutdown Modes (Note 7)  
One DAC shutdown mode  
Both DACs shutdown mode  
350  
235  
390  
260  
µA  
ELECTRICAL CHARACTERISTICSMAX5230  
(V  
= +2.7V to +3.6V, OS_ = AGND = DGND = 0, R = 5k, C = 100pF, T = T  
A
to T , unless otherwise noted. Typical values  
MAX  
DD  
L
L
A
MIN  
are at T = +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
N
12  
Bits  
MAX5230A  
MAX5230B  
0.5  
1
Integral Nonlinearity (Note 1)  
INL  
LSB  
Differential Nonlinearity  
Offset Error (Note 2)  
DNL  
1
LSB  
mV  
V
3
OS  
Offset-Temperature Coefficient (Note 3)  
Full-Scale Voltage  
TCV  
8
2.0475  
3
µV/°C  
V
OS  
V
Code = FFF hex, T = +25°C  
2.0350  
2.0600  
10  
FS  
A
MAX5230A  
Full-Scale Temperature Coefficient  
(Note 3)  
TCV  
ppm/°C  
FS  
MAX5230B (Note 6)  
10  
30  
Power-Supply Rejection  
DC Crosstalk (Note 4)  
REFERENCE  
PSR  
2.7V V 3.6V  
175  
500  
100  
µV  
µV  
DD  
Output Voltage  
V
1.234  
3
V
REF  
MAX5230A  
MAX5230B  
Output-Voltage Temperature  
Coefficient (Note 3)  
TCV  
ppm/°C  
REF  
10  
_______________________________________________________________________________________  
3
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
ELECTRICAL CHARACTERISTICSMAX5230 (continued)  
(V  
= +2.7V to +3.6V, OS_ = AGND = DGND = 0, R = 5k, C = 100pF, T = T  
A
to T , unless otherwise noted. Typical values  
MAX  
DD  
L
L
A
MIN  
are at T = +25°C.)  
PARAMETER  
SYMBOL  
/I  
CONDITIONS  
100µA (sourcing)  
OUT  
MIN  
TYP  
0.1  
4
MAX  
UNITS  
µV/µA  
mA  
Reference External Load Regulation  
Reference Short-Circuit Current  
DIGITAL INPUTS  
V
0 I  
2
OUT OUT  
Input High Voltage  
V
0.7 x V  
V
V
IH  
DD  
Input Low Voltage  
V
0.3 x V  
1
IL  
DD  
Input Hysteresis  
V
200  
8
mV  
µA  
pF  
HYS  
Input Leakage Current  
Input Capacitance  
I
Digital inputs = 0 or V  
DD  
IN  
C
IN  
DIGITAL OUTPUTS  
Output High Voltage  
V
I
= 2mA  
SOURCE  
2.3  
V
V
OH  
Output Low Voltage  
V
I = 2mA  
SINK  
0.25  
OL  
DYNAMIC PERFORMANCE  
Voltage-Output Slew Rate  
SR  
0.6  
10  
V/µs  
µs  
To 0.5 LSB, V  
=
2V  
0.25V  
STEP  
Voltage-Output Settling Time  
(V  
DD  
- 0.25V) V  
OUT  
Output-Voltage Swing (Note 5)  
OS_ Input Resistance  
0 to V  
V
DD  
R
83  
121  
kΩ  
OS  
Time Required for Output to Settle After  
Turning on V (Note 6)  
DD  
95  
400  
400  
160  
µs  
µs  
µs  
Time Required for Output to Settle After  
Exiting Full Power-Down (Note 6)  
95  
12  
Time Required for Output to Settle After  
Exiting DAC Power-Down (Note 6)  
CS =V , f  
= 100kHz,  
DD SCLK  
Digital Feedthrough  
5
nV-s  
nV-s  
V
= 3V  
P-P  
SCLK  
Major-Carry Glitch Energy  
90  
4
_______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
ELECTRICAL CHARACTERISTICSMAX5230 (continued)  
(V  
= +2.7V to +3.6V, OS_ = AGND = DGND = 0, R = 5k, C = 100pF, T = T  
A
to T , unless otherwise noted. Typical values  
MAX  
DD  
L
L
A
MIN  
are at T = +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLIES  
Power-Supply Voltage  
Power-Supply Current (Note 7)  
V
2.7  
3.6  
475  
5
V
DD  
I
420  
0.9  
µA  
DD  
Full power-down mode  
Power-Supply Current in Power-Down  
and Shutdown Modes (Note 7)  
µA  
One DAC shutdown mode  
320  
220  
360  
245  
Both DACs shutdown mode  
Note 1: Accuracy is guaranteed as shown in the following table:  
ACCURACY GUARANTEED  
V
DD  
(V)  
FROM CODE  
TO CODE  
4095  
3
5
20  
10  
4095  
Note 2: Offset is measured at the code closest to 10mV.  
Note 3: Temperature coefficient is determined by the box method in which the maximum V  
over the temperature range is  
OUT  
divided by T.  
Note 4: DC crosstalk is measured as follows: set DAC A to midscale, and DAC B to zero, and measure DAC A output; then change  
DAC B to full scale, and measure V for DAC A. Repeat the same measurement with DAC A and DAC B interchanged.  
OUT  
DC crosstalk is the maximum V  
measured.  
OUT  
Note 5: Accuracy is better than 1LSB for V  
= 10mV to V  
- 180mV.  
DD  
OUT_  
Note 6: Guaranteed by design, not production tested.  
Note 7: R = and digital inputs are at either V  
or DGND.  
DD  
LOAD  
TIMING CHARACTERISTICSMAX5231  
(V  
= +4.5V to +5.5V, AGND = DGND = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
(Figures 1 and 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
74  
30  
30  
30  
0
TYP  
MAX  
UNITS  
ns  
SCLK Clock Period  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
DIN Setup Time  
t
ns  
t
CL  
ns  
t
ns  
CSS  
CSH  
t
ns  
t
30  
0
ns  
DS  
DIN Hold Time  
t
ns  
DH  
C
C
C
C
= 200pF  
= 100pF  
= 200pF  
= 100pF  
45  
30  
45  
30  
100  
100  
SCLK Rise to DOUT Valid  
Propagation Delay Time  
LOAD  
LOAD  
LOAD  
LOAD  
t
t
ns  
ns  
DO1  
DO2  
SCLK Fall to DOUT Valid  
Propagation Delay Time  
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold Time  
CS Pulse Width High  
t
t
10  
30  
75  
30  
40  
ns  
ns  
ns  
ns  
ns  
CS0  
CS1  
t
CSW  
LDAC Pulse Width Low  
t
LDL  
CS Rise to LDAC Rise Hold Time  
t
(Note 8)  
CSLD  
_______________________________________________________________________________________  
5
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
TIMING CHARACTERISTICSMAX5230  
(V  
= +2.7V to +3.6V, AGND = DGND = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD  
A
MIN  
(Figures 1 and 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
74  
30  
30  
30  
0
TYP  
MAX  
UNITS  
ns  
SCLK Clock Period  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Fall to SCLK Rise Setup Time  
SCLK Rise to CS Rise Hold Time  
DIN Setup Time  
t
ns  
t
ns  
CL  
t
ns  
CSS  
CSH  
t
ns  
t
30  
0
ns  
DS  
DIN Hold Time  
t
ns  
DH  
C
C
C
C
= 200pF  
= 100pF  
= 200pF  
= 100pF  
60  
45  
60  
45  
200  
200  
SCLK Rise to DOUT Valid  
Propagation Delay Time  
LOAD  
LOAD  
LOAD  
LOAD  
t
ns  
ns  
DO1  
DO2  
SCLK Fall to DOUT Valid  
Propagation Delay Time  
t
SCLK Rise to CS Fall Delay  
CS Rise to SCLK Rise Hold Time  
CS Pulse Width High  
t
t
10  
30  
75  
30  
75  
ns  
ns  
ns  
ns  
ns  
CS0  
CS1  
t
CSW  
LDAC Pulse Width Low  
t
LDL  
CS Rise to LDAC Rise Hold Time  
t
(Note 8)  
CSLD  
Note 8: This timing requirement applies only to CS rising edges, which execute commands modifying the DAC input register  
contents.  
Typical Operating Characteristics  
(V  
DD  
= +3V (MAX5230), V  
= +5V (MAX5231), R = 5k, C = 100pF, OS_ = AGND, both DACs enabled with full-scale output code,  
DD  
L
L
T
A
= +25°C, unless otherwise noted.)  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (MAX5230)  
0.15  
INTEGRAL NONLINEARITY  
vs. DIGITAL INPUT CODE (MAX5231)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (MAX5230)  
0.208  
0.086  
0.15  
0.10  
0.05  
0
0.10  
0.05  
0
-0.037  
-0.160  
-0.283  
-0.05  
-0.10  
-0.15  
-0.05  
-0.10  
-0.15  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
6
_______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3V (MAX5230), V  
= +5V (MAX5231), R = 5k, C = 100pF, OS_ = AGND, both DACs enabled with full-scale output code,  
DD  
L
L
T
A
= +25°C, unless otherwise noted.)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL INPUT CODE (MAX5231)  
0.15  
SUPPLY CURRENT vs. TEMPERATURE  
(MAX5230)  
SUPPLY CURRENT vs. TEMPERATURE  
(MAX5231)  
450  
440  
430  
420  
410  
400  
450  
440  
430  
420  
410  
400  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(MAX5230)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(MAX5231)  
FULL POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5230)  
430  
425  
420  
415  
410  
405  
400  
490  
485  
480  
475  
470  
465  
460  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
NO LOAD  
2.7  
3.0  
3.3  
3.6  
4.50  
4.75  
5.00  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TWO-DACs SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5230)  
ONE-DAC SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5230)  
FULL POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5231)  
230  
225  
220  
215  
210  
205  
200  
330  
325  
320  
315  
310  
305  
300  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
NO LOAD  
NO LOAD  
NO LOAD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3V (MAX5230), V  
= +5V (MAX5231), R = 5k, C = 100pF, OS_ = AGND, both DACs enabled with full-scale output code,  
DD  
L
L
T
A
= +25°C, unless otherwise noted.)  
FULL-SCALE OUTPUT VOLTAGE  
vs. TEMPERATURE (MAX5230)  
TWO-DACs SHUTDOWN SUPPLY CURRENT  
ONE-DAC SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (MAX5231)  
vs. TEMPERATURE (MAX5231)  
2.0480  
2.0475  
2.0470  
2.0465  
2.0460  
255  
380  
375  
370  
365  
360  
355  
350  
250  
245  
240  
235  
230  
NO LOAD  
-15  
NO LOAD  
225  
NO LOAD  
-40  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FULL-SCALE OUTPUT VOLTAGE  
vs. TEMPERATURE (MAX5231)  
FULL-SCALE ERROR vs. RESISTIVE LOAD  
(MAX5230)  
FULL-SCALE ERROR vs. RESISTIVE LOAD  
(MAX5231)  
4.0940  
4.0935  
4.0930  
4.0925  
4.0920  
4.0915  
4.0910  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
CHANGE FROM  
NO LOAD  
CHANGE FROM  
NO LOAD  
NO LOAD  
-15  
-40  
10  
35  
60  
85  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
2.5  
3.5  
4.5  
5.5  
6.5  
7.5  
TEMPERATURE (°C)  
RESISTIVE LOAD (k)  
RESISTIVE LOAD (k)  
DYNAMIC RESPONSE RISE TIME  
(MAX5230)  
DYNAMIC RESPONSE RISE TIME  
(MAX5231)  
DYNAMIC RESPONSE FALL TIME  
(MAX5230)  
MAX5230/MAX5231 toc21  
MAX5230/MAX5231 toc19  
MAX5230/MAX5231 toc20  
3V  
3V  
V
CS  
2V/div  
V
5V  
CS  
2V/div  
V
CS  
5V/div  
0
0
0
2.048V  
4.096V  
2.048V  
V
V
V
OUT  
500mV/div  
OUT  
500mV/div  
OUT  
1V/div  
10mV  
10mV  
10mV  
2µs/div  
2µs/div  
2µs/div  
8
_______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3V (MAX5230), V  
= +5V (MAX5231), R = 5k, C = 100pF, OS_ = AGND, both DACs enabled with full-scale output code,  
DD L L  
T
A
= +25°C, unless otherwise noted.)  
DYNAMIC RESPONSE FALL TIME  
ANALOG CROSSTALK  
(MAX5230)  
ANALOG CROSSTALK  
(MAX5231)  
MAX5230/MAX5231 toc24  
(MAX5231)  
MAX5230/MAX5231 toc22  
MAX5230/MAX5231 toc23  
5V  
V
OUTA  
2V/div  
OUTA  
5V/div  
CS  
5V/div  
0
4.096V  
OUTB  
5mV/div  
AC-COUPLED  
OUTB  
5mV/div  
AC-COUPLED  
V
OUT  
1V/div  
10mV  
2µs/div  
400µs/div  
400µs/div  
DIGITAL FEEDTHROUGH  
(MAX5230)  
DIGITAL FEEDTHROUGH  
(MAX5231)  
MAJOR-CARRY TRANSITION  
(MAX5230)  
MAX5230/MAX5231 toc27  
MAX5230/MAX5231 toc25  
MAX5230/MAX5231 toc26  
SCLK  
2V/div  
SCLK  
5V/div  
CS  
5V/div  
OUTA  
100mV/div  
AC-COUPLED  
OUTA  
1mV/div  
AC-COUPLED  
OUTA  
1mV/div  
AC-COUPLED  
10µs/div  
10µs/div  
2µs/div  
MAJOR-CARRY TRANSITION  
(MAX5231)  
REFERENCE VOLTAGE  
vs. TEMPERATURE (MAX5230)  
REFERENCE VOLTAGE  
vs. TEMPERATURE (MAX5231)  
MAX5230/MAX5231 toc28  
1.2350  
1.2345  
1.2340  
1.2335  
1.2330  
2.4630  
2.4625  
2.4620  
2.4615  
2.4610  
CS  
5V/div  
OUTA  
100mV/div  
AC-COUPLED  
NO LOAD  
-15  
NO LOAD  
-15  
2µs/div  
-40  
10  
35  
60  
85  
-40  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Pin Description  
PIN  
1
NAME  
OSA  
FUNCTION  
DAC A Offset Adjust  
DAC A Output  
2
OUTA  
Reset Value Input  
3
RSTV  
1: Connect to V  
to select midscale as the reset value.  
DD  
0: Connect to DGND to select zero as the reset value.  
4
5
LDAC  
CLR  
Load DACs A and B  
Clear Input. Both DAC outputs go to zero or midscale. Clears both DAC internal registers (input  
register and DAC register) to its predetermined (RSTV) state.  
6
7
CS  
Chip-Select Input  
DIN  
Serial Data Input. Data is clocked in on the rising edge of SCLK.  
8
SCLK  
DGND  
DOUT  
PDL  
Serial Clock Input  
9
Digital Ground  
10  
11  
12  
13  
Serial Data Output  
Power-Down Lockout. Disables shutdown of both DACs when low.  
Reference Output. Reference provides a 2.465V (MAX5231) or 1.234V (MAX5230) nominal output.  
Analog Ground  
REF  
AGND  
Positive Power Supply. Bypass V  
with a 0.1µF capacitor in parallel with a 4.7µF capacitor to  
DD  
14  
V
DD  
AGND, and bypass V  
with a 0.1µF capacitor to DGND.  
DD  
15  
16  
OUTB  
OSB  
DAC B Output  
DAC B Offset Adjust  
COMMAND EXECUTED  
CS  
SCLK  
1
8
9
16  
D5 D4 D3 D2 D1 D0 S0  
(1)  
DIN  
C1 C0  
D10 D9  
D11  
C2  
D8 D7  
D6  
DOUT  
(MODE 0)  
C2  
C1  
DOUT  
C2  
C1  
(MODE 1)  
Figure 1. Serial Interface Timing  
10 ______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
t
LDL  
t
CSLD  
LDAC  
t
CSW  
CS  
t
t
CSS  
CSO  
t
CSH  
t
CS1  
SCLK  
t
t
CL  
CH  
t
CP  
DIN  
t
t
DS  
DH  
t
t
D02  
D01  
DOUT  
Figure 2. Detailed Serial Interface Timing  
0.6V/µs and settle to 1/2LSB within 10µs with a load of  
5kin parallel with 100pF. Use the serial interface to  
set the shutdown output impedance of the amplifiers to  
1kor 200k.  
OS_ can be used to produce an offset voltage at the  
output. For instance, to achieve a 1V offset, apply -1V  
to OS_ to produce an output range from 1V to (1V +  
Detailed Description  
The MAX5230/MAX5231 12-bit, voltage-output DACs  
are easily configured with a 3-wire SPI-, QSPI-,  
MICROWIRE-compatible serial interface. The devices  
include a 16-bit data-in/data-out shift register and have  
an input consisting of an input register and a DAC reg-  
ister. In addition, these devices employ precision  
trimmed internal resistors to produce a gain of  
1.6384V/V, maximizing the output voltage swing, and a  
programmable-shutdown output impedance of 1kor  
200kThe full-scale output voltage is 4.095V for the  
MAX5231 and 2.0475V for the MAX5230. These  
devices produce a weighted output voltage proportion-  
V /V ). Note that the DACs output range is still lim-  
FS REF  
ited by the maximum output voltage specification.  
OS_  
121kΩ  
®
al to the digital input code with an inverted Rail-to-Rail  
ladder network (Figure 3).  
77.25kΩ  
Internal Reference  
The MAX5230/MAX5231 use an on-board precision  
bandgap reference to generate an output voltage of  
1.234V (MAX5230) or 2.465V (MAX5231). With a low  
temperature coefficient of only 3ppm/°C, REF can  
source up to 100µA and is stable for capacitive loads  
less than 35pF.  
OUT_  
R
R
R
2R  
D0  
2R  
D9  
2R  
D10  
2R  
2R  
D11  
1kΩ  
REF  
Output Amplifiers  
The output amplifiers have internal resistors that pro-  
AGND  
vide for a gain of 1.6384V/V when OS_ is connected to  
AGND. The output amplifiers have a typical slew rate of  
SHOWN FOR ALL ONES ON DAC  
Figure 3. Simplified DAC Circuit Diagram  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
______________________________________________________________________________________ 11  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
ously. The control bits and D11D8 allow the DACs to  
operate independently.  
Table 1. Serial Data Format  
MSB <------------16-bits of serial data ------------> LSB  
Send the 16-bit data as one 16-bit word (QSPI) or two  
3 Control Bits  
MSB .. 12 Data Bits... LSB  
D11 ..............................D0  
Sub-Bit  
S0  
8-bit packets (SPI, MICROWIRE), with CS low during  
this period. The control bits and D11D8 determine  
which registers update and the state of the registers  
when exiting shutdown. The 3-bit control and D11D8  
determine the following:  
C2C0  
Serial Interface  
The 3-wire serial interface (SPI, QSPI, MICROWIRE  
compatible) used in the MAX5230/MAX5231 allows for  
complete control of DAC operations (Figures 4 and 5).  
Figures 1 and 2 show the timing for the serial interface.  
The serial word consists of 3 control bits followed by 12  
data bits (MSB first) and 1 sub-bit as described in  
Tables 1, 2, and 3. When the 3 control bits are all zero  
or all 1, D11D8 are used as additional control bits,  
allowing for greater DAC functionality.  
Registers to be updated  
Selection of the power-down and shutdown modes  
The general timing diagram of Figure 1 illustrates data  
acquisition. Driving CS low enables the device to  
receive data. Otherwise the interface control circuitry is  
disabled. With CS low, data at DIN is clocked into the  
register on the rising edge of SCLK. As CS goes high,  
data is latched into the input and/or DAC registers,  
depending on the control bits and D11D8. The maxi-  
mum clock frequency guaranteed for proper operation  
is 13.5MHz. Figure 2 depicts a more detailed timing  
diagram of the serial interface.  
The digital inputs allow any of the following: loading the  
input register(s) without updating the DAC register(s),  
updating the DAC register(s) from the input register(s),  
or updating the input and DAC register(s) simultane-  
Table 2. Serial-Interface Programming Commands  
16-BIT SERIAL WORD  
FUNCTION  
C2  
0
C1  
0
C0  
1
D11..............D0  
12-bit DAC data  
12-bit DAC data  
S0*  
0
Load input register A; DAC registers are unchanged.  
Load input register A; all DAC registers are updated.  
0
1
0
0
Load all DAC registers from the shift register (start up both DACs  
with new data, and load the input registers).  
0
1
1
0
1
0
12-bit DAC data  
0
0
Update both DAC registers from their respective input registers (start  
up both DACs with data previously stored in the input registers).  
X X X X X X X X X X X X  
1
1
0
1
1
0
12-bit DAC data  
12-bit DAC data  
0
0
Load input register B; DAC registers are unchanged.  
Load input register B; all DAC registers are updated.  
Shut down both DACs, respectively, according to bits P1A and P1B  
(see Table 3). Internal bias and reference remain active.  
1
0
1
0
1
0
P1A P1B X X X X X X X X X X  
0 0 1 X X X X X X X X X  
0
0
Update DAC register A from input register A (start up DAC A with  
data previously stored in input register A).  
Full Power-Down. Power down the main bias generator and shut  
down both DACs, respectively, according to bits P1A and P1B (see  
Table 3).  
0
0
0
0 1 1 P1A P1B X X X X X X X  
0
Update DAC register B from input register B (start up DAC B with  
data previously stored in input register B).  
0
0
0
1 0 1 X X X X X X X X X  
0
0
0
0
0
0
0
0
0
0
0
0
0
1 1 0 P1A X X X X X X X X  
1 1 1 P1B X X X X X X X X  
1 0 0 0 X X X X X X X X  
1 0 0 1 X X X X X X X X  
0
0
0
0
Shut down DAC A according to bit P1A (see Table 3).  
Shut down DAC B according to bit P1B (see Table 3).  
Mode 0. DOUT clocked out on SCLK falling edge (default).  
Mode 1. DOUT clocked out on SCLK rising edge.  
X = Dont care.  
* S0 must be zero for proper operation.  
12 ______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Power-Down and Shutdown Modes  
5V  
As described in Tables 2 and 3, several serial interface  
commands put one or both of the DACs into shutdown  
mode. Shutdown modes are completely independent  
for each DAC. In shutdown, the amplifier output be-  
SS  
comes high impedance, and OUT_ terminates to OS_  
MOSI  
SCK  
I/O  
DIN  
SCLK  
CS  
through the 200k(typ) gain resistors. Optionally (see  
Tables 2 and 3), OUT_ can have an additional termina-  
tion of 1kto AGND.  
Full power-down mode shuts down the main bias gene-  
rator, reference, and both DACs. The shutdown impe-  
dance of the DAC outputs can still be controlled  
independently, as described in Tables 2 and 3.  
SPI/QSPI  
PORT  
MAX5230  
MAX5231  
A serial interface command exits shutdown mode and  
updates a DAC register. Each DAC can exit shutdown  
at the same time or independently (see Tables 2 and  
3). For example, if both DACs are shut down, updating  
the DAC A register causes DAC A to power up, while  
DAC B remains shut down. In full power-down mode,  
powering up either DAC also powers up the main bias  
generator and reference. To change from full power-  
down to both DACs shutdown requires the waking of at  
least one DAC between states.  
Figure 4. SPI/QSPI Interface Connections  
SK  
SO  
I/O  
SCLK  
DIN  
CS  
MICROWIRE  
PORT  
MAX5230  
MAX5231  
When powering up the MAX5230/MAX5231 (powering  
V
), allow 400µs (max) for the output to stabilize. When  
DD  
exiting full power-down mode, also allow 400µs (max) for  
the output to stabilize. When exiting DAC shutdown  
mode, allow 160µs (max) for the output to stabilize.  
Reset Value (RSTV) and  
Clear (CLR) Inputs  
Figure 5. Connections for MICROWIRE  
Driving CLR low asynchronously forces both DAC out-  
puts and all the internal registers (input registers and  
DAC registers) for both DACs to either zero or midscale,  
depending on the level at RSTV. RSTV = DGND sets the  
Load DAC Input (LDAC)  
Asserting LDAC asynchronously loads the DAC registers  
from their corresponding input registers (DACs that are  
shut down remain shut down). The LDAC input is totally  
asynchronous and does not require any activity on CS,  
SCLK, or DIN in order to take effect. If LDAC is asserted  
coincident with a rising edge of CS, which executes a  
serial command modifying the value of either DAC input  
register, then LDAC must remain asserted for at least  
30ns following the CS rising edge. This requirement  
applies only for serial commands that modify the value of  
the DAC input registers.  
zero value, and RSTV, = V  
sets the midscale value.  
DD  
The internal power-on reset circuit sets the DAC out-  
puts and internal registers to either zero or midscale  
when power is first applied to the device, depending on  
the level at RSTV as described in the preceding para-  
graph. The DAC outputs are enabled after power is first  
applied. In order to obtain the midscale value on  
power-up (RSTV = V ), the voltage on RSTV must rise  
DD  
simultaneously with the V  
supply.  
DD  
Power-Down Lockout Input (PDL)  
Driving PDL low disables shutdown of either DAC. When  
PDL is low, serial commands to shut down either DAC are  
ignored. When either DAC is in shutdown mode, a high-  
to-low transition on PDL brings the DACs and the refer-  
ence out of shutdown with DAC outputs set to the state  
prior to shutdown.  
Table 3. P1 Shutdown Modes  
P1 (A/B)  
SHUTDOWN MODE  
0
1
Shut down with internal 1kload to GND  
Shut down with internal 200kload to GND  
______________________________________________________________________________________ 13  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Offset Error  
Applications Information  
The offset error (Figure 6c) is the difference between  
the ideal and the actual offset point. For a DAC, the off-  
set point is the step value when the digital input is zero.  
This error affects all codes by the same amount and  
can usually be compensated for by trimming.  
Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity (Figure 6a) is the deviation of the val-  
ues on an actual transfer function from a straight line.  
This straight line can be either a best-straight-line fit  
(closest approximation to the actual transfer curve) or a  
line drawn between the endpoints of the transfer func-  
tion, once offset and gain errors have been nullified. For  
a DAC, the deviations are measured at every single step.  
Gain Error  
Gain error (Figure 6d) is the difference between the  
ideal and the actual full-scale output voltage on the  
transfer curve, after nullifying the offset error. This error  
alters the slope of the transfer function and corre-  
sponds to the same percentage error in each step.  
Differential Nonlinearity (DNL)  
Differential nonlinearity (Figure 6b) is the difference  
between an actual step height and the ideal value of  
1LSB. If the magnitude of the DNL is less than 1LSB, the  
DAC guarantees no missing codes and is monotonic.  
Settling Time  
The settling time is the amount of time required from the  
start of a transition, until the DAC output settles to its new  
output value within the converters specified accuracy.  
7
6
6
1LSB  
5
4
5
DIFFERENTIAL LINEARITY  
ERROR (-1/4LSB)  
4
AT STEP  
011 (1/2LSB )  
3
2
3
2
1
0
1LSB  
DIFFERENTIAL  
LINEARITY ERROR (+1/4LSB)  
AT STEP  
001 (1/4LSB )  
1
0
000  
001  
010  
011  
100  
101  
000 001 010 011 100 101 110 111  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 6a. Integral Nonlinearity  
Figure 6b. Differential Nonlinearity  
IDEAL FULL-SCALE OUTPUT  
7
6
5
ACTUAL  
3
2
1
0
DIAGRAM  
GAIN ERROR  
(-1 1/4LSB)  
IDEAL DIAGRAM  
IDEAL DIAGRAM  
ACTUAL  
FULL-SCALE  
OUTPUT  
ACTUAL  
OFFSET  
POINT  
OFFSET ERROR  
(+1 1/4LSB)  
4
0
IDEAL OFFSET  
POINT  
000 100  
101  
110  
111  
000  
001  
010  
011  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
Figure 6d. Gain Error  
Figure 6c. Offset Error  
14 ______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Table 4. Unipolar Code Table  
V+  
DAC CONTENTS  
ANALOG OUTPUT (V)  
5V/3V  
REF  
PHOTODIODE  
MSB  
LSB  
MAX5230  
MAX5231  
V
DD  
OS_  
1111 1111 1  
1000 0000 0  
1000 0000 0  
0111 1111 1  
0000 0000  
111 (0)  
001 (0)  
000 (0)  
111 (0)  
001 (0)  
000 (0)  
2.04750  
1.02425  
1.02375  
1.02325  
0.00050  
0
4.0950  
2.0485  
2.0475  
2.0465  
0.0010  
0
REF  
121kΩ  
V+  
V-  
77.25kΩ  
0000 0000 0  
V
OUT  
OUT_  
DAC_  
Digital Feedthrough  
Digital feedthrough is noise generated on the DACs  
output when any digital input transitions. Proper board  
layout and grounding significantly reduce this noise,  
but there is always some feedthrough caused by the  
DAC itself.  
MAX5230  
MAX5231  
1kΩ  
R
PULLDOWN  
AGND  
DGND  
Unipolar Output  
Figure 7 shows the MAX5230/MAX5231 configured for  
unipolar, rail-to-rail operation. The MAX5231 produces  
a 0 to 4.095V output, while the MAX5230 produces 0 to  
2.0475V output. Table 4 lists the unipolar output codes.  
Figure 8. Digital Calibration  
Digital Calibration and  
Threshold Selection  
Figure 8 shows the MAX5230/MAX5231 in a digital cali-  
bration application. With a bright light value applied to  
the photodiode (on), the DAC is digitally ramped until it  
trips the comparator. The microprocessor (µP) stores  
this highcalibration value. Repeat the process with a  
dim light (off) to obtain the dark current calibration. The  
µP then programs the DAC to set an output voltage at  
the midpoint of the two calibrated values. Applications  
include tachometers, motion sensing, automatic read-  
ers, and liquid clarity analysis.  
5V/3V  
REF  
V
DD  
OS_  
REF  
121kΩ  
77.25kΩ  
OUT_  
DAC_  
Sharing a Common DIN Line  
Several MAX5230/MAX5231s may share one common  
DIN signal line (Figure 9). In this configuration, the data  
bus is common to all devices; data is not shifted through  
a daisy-chain. The SCLK and DIN lines are shared by all  
devices, but each IC needs its own dedicated CS line.  
MAX5230  
MAX5231  
1kΩ  
AGND  
GAIN = 1.6384V/V  
DGND  
Daisy-Chaining Devices  
Any number of MAX5230/MAX5231s can be daisy-  
chained by connecting the serial data output (DOUT) of  
one device to the digital input (DIN) of the following  
device in the chain (Figure 10).  
Figure 7. Unipolar Output Circuit (Rail-to-Rail)  
______________________________________________________________________________________ 15  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
DIN  
SCLK  
CS1  
CS2  
CS3  
TO OTHER  
SERIAL DEVICES  
CS  
CS  
CS  
MAX5230  
MAX5231  
MAX5230  
MAX5231  
MAX5230  
MAX5231  
SCLK  
DIN  
SCLK  
DIN  
SCLK  
DIN  
Figure 9. Multiple MAX5230/MAX5231s Sharing a Common DIN Line  
SCLK  
CS  
CS  
CS  
CS  
TO OTHER  
SERIAL DEVICES  
MAX5230  
MAX5231  
MAX5230  
MAX5231  
MAX5230  
MAX5231  
SCLK  
SCLK  
SCLK  
DIN  
DIN  
DIN  
DOUT  
DOUT  
DOUT  
DIN  
Figure 10. Daisy-Chaining MAX5230/MAX5231 Devices  
grounding techniques, such as a multilayer board with a  
low-inductance ground plane or star connect all ground  
return paths back to the MAX5230/MAX5231 AGND.  
Carefully lay out the traces between channels to reduce  
AC cross-coupling and crosstalk. Wire-wrapped boards  
and sockets are not recommended. If noise becomes  
an issue, shielding may be required.  
Power-Supply and Bypassing  
Considerations  
On power-up, the input and DAC registers are cleared  
to either zero (RSTV = DGND) or midscale (RSTV =  
DD  
V
). Bypass V  
with a 4.7µF capacitor in parallel  
DD  
with a 0.1µF capacitor to AGND, and bypass V  
with  
DD  
a 0.1µF capacitor to DGND. Minimize lead lengths to  
reduce lead inductance.  
Chip Information  
TRANSISTOR COUNT: 4745  
Grounding and Layout Considerations  
Digital and AC transient signals on AGND or DGND can  
create noise at the output. Connect AGND and DGND  
to the highest quality ground available. Use proper  
PROCESS: BiCMOS  
16 ______________________________________________________________________________________  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Functional Diagram  
DOUT  
CS DIN SCLK  
V
DD  
AGND  
DGND  
121kΩ  
OSA  
77.25kΩ  
AMP A  
OUTA  
DAC A  
SR  
CONTROL  
16-BIT  
SHIFT REGISTER  
PDL  
1kΩ  
1kSHUTDOWN  
LDAC  
RSTV  
CLR  
DECODE  
CONTROL  
121kΩ  
OSB  
1
77.25kΩ  
INPUT  
REGISTERS  
DAC  
REGISTER  
AMP B  
OUTB  
DAC B  
1kSHUTDOWN  
2.5V (1.25V)  
2X  
(1X)  
1.25V  
BANDGAP  
REFERENCE  
REFERENCE  
BUFFER  
MAX5230  
MAX5231  
( ) FOR MAX5230 ONLY  
REF  
______________________________________________________________________________________ 17  
3V/5V, 12-Bit, Serial Voltage-Output Dual DACs  
with Internal Reference  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
E
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5231AEEE-T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX5231BEEE

3V/5V, 12-Bit, Serial Voltage-Output Dual DACs with Internal Reference
MAXIM

MAX5231BEEE+

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX5231BEEE+T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX5231BEEE-T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, QSOP-16
MAXIM

MAX5232

3V/5V, 10-Bit, Serial Voltage-Output Dual DACs with Internal Reference
MAXIM

MAX5232EEE

3V/5V, 10-Bit, Serial Voltage-Output Dual DACs with Internal Reference
MAXIM

MAX5232EEE+

3V/5V, 10-Bit, Serial Voltage-Output Dual DACs with Internal Reference
MAXIM

MAX5232EEE-T

D/A Converter, 1 Func, Serial Input Loading, 10us Settling Time, PDSO16, 0.150 INCH, 0.025 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX5232_09

3V/5V, 10-Bit, Serial Voltage-Output Dual DACs with Internal Reference
MAXIM

MAX5233

3V/5V.10-Bit.Serial Voltage-Output Dual DACs with Internal Reference
MAXIM

MAX5233EEE

3V/5V, 10-Bit, Serial Voltage-Output Dual DACs with Internal Reference
MAXIM