MAX5100 [MAXIM]

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs; + 2.7V至+ 5.5V ,低功耗,四通道,并行8位DAC,具有轨至轨电压输出
MAX5100
型号: MAX5100
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs
+ 2.7V至+ 5.5V ,低功耗,四通道,并行8位DAC,具有轨至轨电压输出

文件: 总8页 (文件大小:402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1557; Rev 0; 10/99  
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
General Description  
Features  
The MAX5100 parallel-input, voltage-output, quad 8-bit  
digital-to-analog converter (DAC) operates from a sin-  
gle +2.7V to +5.5V supply and comes in a space-sav-  
ing 20-pin TSSOP package. Internal precision buffers  
swing Rail-to-Rail®, and the reference input range  
includes both ground and the positive rail. All four  
DACs share a common reference input.  
+2.7V to +5.5V Single-Supply Operation  
Ultra-Low Supply Current  
0.4mA while Operating  
1nA in Shutdown Mode  
Ultra-Small 20-Pin TSSOP Package  
Ground to V  
Reference Input Range  
DD  
The MAX5100 provides double-buffered logic inputs:  
four 8-bit buffer registers followed by four 8-bit DAC  
registers. This keeps the DAC outputs from changing  
during the write operation. An asynchronous control  
pin, LDAC, allows for simultaneous updating of the  
DAC registers.  
Output Buffer Amplifiers Swing Rail-to-Rail  
Double-Buffered Registers for Synchronous  
Updating  
Power-On Reset Sets All Registers to Zero  
The MAX5100 features a shutdown mode that reduces  
current to 1nA, as well as a power-on reset mode that  
resets all registers to code 00 hex on power-up.  
Ordering Information  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX5100AEUP -40°C to +85°C 20 TSSOP  
MAX5100BEUP -40°C to +85°C 20 TSSOP  
1
2
Applications  
Digital Gain and Offset Adjustments  
Programmable Attenuators  
Portable Instruments  
Pin Configuration  
TOP VIEW  
OUTB  
OUTA  
1
2
3
4
5
6
7
8
9
20 OUTC  
19 OUTD  
18 GND  
17 A0  
Power-Amp Bias Control  
V
DD  
REF  
SHDN  
WR  
MAX5100  
16 A1  
15 LDAC  
D7  
14  
D0  
D6  
13 D1  
12 D2  
11 D3  
D5  
D4 10  
TSSOP  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range  
D_, A_, WR, SHDN, LDAC to GND...........................-0.3V to +6V  
REF to GND................................................-0.3V to (V + 0.3V)  
MAX5100_EUP ..............................................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
OUT_ to GND ...........................................................-0.3V to V  
DD  
Maximum Current into Any Pin ......................................... 50mA  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin TSSOP (derate 7.0mW/°C above +70°C) .......559mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= +2.7V to +5.5V, R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= V  
DD REF  
DD  
REF  
L
L
A
MIN  
MAX  
= +3V and T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC ACCURACY  
Resolution  
8
Bits  
MAX5100A  
MAX5100B  
1
Integral Nonlinearity (Note 1)  
INL  
LSB  
2
Differential Nonlinearity (Note 1)  
Zero-Code Error  
DNL  
ZCE  
Guaranteed monotonic  
Code = 00 hex  
1
LSB  
mV  
20  
Zero-Code-Error Supply  
Rejection  
Code = 00 hex, V  
= 2.7V to 5.5V  
10  
1
mV  
DD  
Zero-Code Temperature  
Coefficient  
Code = 00 hex  
Code = F0 hex  
Code = F0 hex  
10  
µV/°C  
%
Gain Error (Note 2)  
Gain-Error Temperature  
Coefficient  
0.001  
LSB/°C  
V
V
= 2.7V to 3.6V,  
= 2.5V  
DD  
REF  
1
1
Power-Supply Rejection  
Code = FF hex  
LSB  
V
V
= 4.5V to 5.5V,  
= 4.096V  
DD  
REF  
REFERENCE INPUT  
Input Voltage Range  
Input Resistance  
Input Capacitance  
DAC OUTPUTS  
0
V
V
DD  
320  
460  
15  
600  
kΩ  
pF  
Output Voltage Range  
R = ∞  
L
0
V
REF  
V
DIGITAL INPUTS  
V
V
= 2.7V to 3.6V  
2
3
DD  
Input High Voltage  
V
IH  
V
= 3.6V to 5.5V  
DD  
Input Low Voltage  
Input Current  
V
0.8  
1.0  
V
IL  
I
IN  
V
IN  
= V or GND  
µA  
pF  
DD  
Input Capacitance  
C
IN  
10  
2
_______________________________________________________________________________________  
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= +2.7V to +5.5V, R = 10k, C = 100pF, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= V  
DD REF  
DD  
REF  
L
L
A
MIN  
MAX  
= +3V and T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE  
Output Voltage Slew Rate  
From code 00 to code F0 hex  
0.6  
6
V/µs  
µs  
Output Settling Time (Note 3)  
To 1/2LSB, from code 10 to code F0 hex  
Channel-to-Channel Isolation  
(Note 4)  
Code 00 to code FF hex  
Code 00 to code FF hex  
Code 80 hex to code 7F hex  
500  
0.5  
90  
nVs  
nVs  
nVs  
Digital Feedthrough (Note 5)  
Digital-to-Analog Glitch Impulse  
REF = 2.5Vp-p at  
1kHz  
70  
60  
V
V
= 1.5V,  
= 3V,  
REF(DC)  
DD  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
dB  
REF = 2.5Vp-p at  
10kHz  
code = FF hex  
REF = 0.5Vp-p, V  
= 1.5V,  
REF(DC)  
Multiplying Bandwidth  
650  
kHz  
V
DD  
= 3V, -3dB bandwidth  
Wideband Amplifier Noise  
Shutdown Recovery Time  
Time to Shutdown  
60  
13  
20  
µV  
RMS  
t
To 1/2LSB of final value of V  
µs  
µs  
SDR  
OUT  
t
I
< 5µA  
SDN  
DD  
POWER SUPPLIES  
Power-Supply Voltage  
V
2.7  
5.5  
700  
1
V
DD  
Supply Current (Note 6)  
Shutdown Current  
I
370  
µA  
µA  
DD  
0.001  
DIGITAL TIMING (Figure 1) (Note 7)  
t
5
0
ns  
ns  
ns  
ns  
ns  
ns  
Address to WR Setup  
Address to WR Hold  
Data to WR Setup  
AS  
t
AH  
t
t
25  
0
DS  
Data to WR Hold  
DH  
WR  
t
20  
20  
WR Pulse Width  
t
LD  
LDAC Pulse Width (Note 8)  
Note 1: Reduced digital code range (code 00 hex to code F0 hex) due to swing limitations when the output amplifier is loaded.  
Note 2: Gain error is: [100 (V - ZCE - V ) / V ]. Where V is the DAC output voltage with input code F0 hex,  
F0,meas  
F0,ideal  
REF  
F0,meas  
and V  
is the ideal DAC output voltage with input code F0 hex (i.e., VREF · 240 / 256).  
F0,ideal  
Note 3: Output settling time is measured from the 50% point of the falling edge of WR to 1/2LSB of V  
’s final value.  
OUT  
Note 4: Channel-to-channel isolation is defined as the glitch energy at a DAC output in response to a full-scale step change on any  
other DAC output. The measured channel has a fixed code of 80 hex.  
Note 5: Digital feedthrough is defined as the glitch energy at any DAC output in response to a full-scale step change on all eight  
data inputs with WR at V  
.
DD  
Note 6: R = , digital inputs at GND or V  
.
L
DD  
Note 7: Timing measurement reference level is (V + V ) / 2.  
IH  
IL  
Note 8: If LDAC is activated prior to WR’s rising edge, it must stay low for t (or longer) after WR goes high.  
LD  
_______________________________________________________________________________________  
3
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
ADDRESS  
ADDRESS VALID  
t
t
t
AH-  
AS  
WR  
WR  
t
LD  
LDAC (NOTE 8)  
t
t
DH-  
DS-  
DATA  
DATA VALID  
Figure 1. Timing Diagram  
Typical Operating Characteristics  
(V  
= V  
= +3V, R = 10k, C = 100pF, code = FF hex, T = +25°C, unless otherwise noted.)  
DD  
REF  
L
L
A
DAC ZERO-CODE OUTPUT VOLTAGE  
vs. SINK CURRENT  
DAC FULL-SCALE OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
SUPPLY CURRENT vs. TEMPERATURE  
340  
320  
300  
280  
260  
240  
220  
200  
180  
1.2  
6
5
4
3
2
1
0
1 DAC AT CODE 00 OR F0,  
3 DACS AT 00 (R = )  
L
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
DD  
= 5V; CODE = F0 HEX  
V
= 5V; CODE = 00 HEX  
DD  
V
= V = 5V  
REF  
DD  
V
= V = 3V  
REF  
DD  
V
= V = 3V  
REF  
DD  
V
= 3V; CODE = F0 HEX  
DD  
V
= V = 5V  
REF  
DD  
V
= 3V; CODE = 00 HEX  
DD  
0
2
4
6
8
10  
0
2
4
6
8
10  
-40 -20  
0
20  
40  
60  
80 100  
SINK CURRENT (mA)  
SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY CURRENT vs. REFERENCE VOLTAGE  
SUPPLY CURRENT vs. REFERENCE VOLTAGE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
AT DAC OUTPUT vs. REFERENCE AMPLITUDE  
(V = 3V)  
DD  
(V = 5V)  
DD  
300  
280  
260  
240  
220  
200  
180  
160  
140  
320  
300  
0
1 DAC AT CODE 00 OR F0, 3 DACS AT 00 (R = )  
V
= +3V  
DD  
1 DAC AT CODE 00 OR F0, 3 DACS AT 00 (R = )  
L
L
DAC CODE = FF HEX  
= SINE WAVE CENTERED AT 1.5V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
CODE = F0  
REF  
CODE = F0  
80kHz FILTER  
280  
260  
240  
220  
10kHz REF SIGNAL  
20kHz REF SIGNAL  
CODE = 00  
CODE = 00  
1kHz REF SIGNAL  
0.5 1.0  
REFERENCE AMPLITUDE (V  
200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE VOLTAGE (V)  
0
1.5  
2.0  
2.5  
REFERENCE VOLTAGE (V)  
)
p-p  
4
_______________________________________________________________________________________  
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
Typical Operating Characteristics (continued)  
(V  
= V  
= +3V, R = 10k, C = 100pF, code = FF hex, T = +25°C, unless otherwise noted.)  
DD  
REF  
L
L
A
REFERENCE INPUT  
FREQUENCY RESPONSE  
TOTAL HARMONIC DISTORTION PLUS NOISE  
AT DAC OUTPUT vs. REFERENCE FREQUENCY  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
(NEGATIVE)  
10  
0
V
= +3V  
CH1 = LDAC, 2V/div  
DD  
0
DAC CODE = FF HEX  
= SINE WAVE CENTERED AT 1.5V  
CH2 = V  
, 50mV/div,  
OUTA  
-10  
V
AC-COUPLED  
DAC CODE FROM  
80 TO 7F HEX  
REF  
-10  
1kHz FREQUENCY  
500kHz FILTER  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
1
2
-40  
-50  
REF = 0.5V  
p-p  
REF = 1V  
p-p  
-60  
-70  
REF = 2V  
10  
p-p  
CODE = FF HEX, REF IS 1V SIGNAL  
-80  
-90  
p-p  
V
= 1.5V  
REF  
1µs/div  
0.01  
0.1  
1
10  
1
100  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
(POSITIVE)  
DIGITAL FEEDTHROUGH GLITCH IMPULSE  
(0 TO 1 DIGITAL TRANSITION)  
DIGITAL FEEDTHROUGH GLITCH IMPULSE  
(1 TO 0 DIGITAL TRANSITION)  
CH1 = LDAC, 2V/div  
CH1 = D7, 2V/div  
OUTA  
AC-COUPLED  
0 TO 1 DIGITAL TRANSITION ON  
ALL DATA BITS (WITH WR HIGH,  
LDAC LOW)  
CH1 = D7, 2V/div  
OUTA  
AC-COUPLED  
1 TO 0 DIGITAL TRANSITION ON  
ALL DATA BITS (WITH WR HIGH,  
LDAC LOW)  
CH2 = V  
, 50mV/div,  
CH2 = V  
, 2mV/div,  
CH2 = V  
, 2mV/div,  
OUTA  
AC-COUPLED  
DAC CODE FROM  
7F TO 80 HEX  
1
2
1
2
1
2
1µs/div  
20ns/div  
20ns/div  
INTEGRAL AND DIFFERENTIAL NONLINEARITY  
vs. DIGITAL CODE  
POSITIVE SETTLING TIME  
NEGATIVE SETTLING TIME  
0.5  
R = ∞  
L
CH1 = WR, 2V/div  
CH1 = WR, 2V/div  
0.4  
0.3  
CH2 = V  
, 2V/div  
CH2 = V  
, 2V/div  
OUTA  
DAC CODE FROM  
OUTA  
DAC CODE FROM  
10 TO F0 HEX  
10 TO F0 HEX  
0.2  
DNL  
1
2
1
2
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
INL  
1µs/div  
1µs/div  
0
32 64 96 128 160 192 224 256  
DIGITAL CODE  
_______________________________________________________________________________________  
5
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
Pin Description  
PIN  
NAME  
OUTB  
OUTA  
FUNCTION  
1
DAC B Voltage Output  
2
3
DAC A Voltage Output  
V
DD  
Positive Supply Voltage. Bypass V  
to GND using a 0.1µF capacitor.  
DD  
4
REF  
SHDN  
WR  
Reference Voltage Input  
5
Shutdown. Connect SHDN to GND for normal operation.  
6
Write Input (active low). Use WR to load data into the DAC input latch selected by A0 and A1.  
7–14  
D7–D0  
Data Inputs 7–0  
Load DAC Input (active low). Drive the asynchronous LDAC input low to transfer the contents of all input  
latches to their respective DAC latch.  
15  
LDAC  
16  
17  
18  
19  
20  
A1  
A0  
DAC Address Select Bit (MSB)  
DAC Address Select Bit (LSB)  
Ground  
GND  
OUTD  
OUTC  
DAC D Voltage Output  
DAC C Voltage Output  
device out of shutdown, allow 13µs for the output to  
Detailed Description  
Digital-to-Analog Section  
stabilize.  
Output Buffer Amplifiers  
The DAC outputs are internally buffered by precision  
amplifiers with a typical slew rate of 0.6V/µs. The typical  
settling time to 1/2LSB at the output is 6µs when  
loaded with 10kin parallel with 100pF.  
The MAX5100 uses a matrix decoding architecture for  
the DACs. The external reference voltage is divided  
down by a resistor string placed in a matrix fashion.  
Row and column decoders select the appropriate tab  
from the resistor string to provide the needed analog  
voltages. The resistor network converts the 8-bit digital  
input into an equivalent analog output voltage in pro-  
portion to the applied reference voltage input. The  
resistor string presents a code-independent input  
impedance to the reference and guarantees a monoton-  
ic output.  
Reference Input  
The MAX5100 provides a code-independent input  
impedance on the REF input. The input impedance is  
typically 460kin parallel with 15pF, and the reference  
input voltage range is 0 to V . The reference input  
DD  
accepts positive DC signals as well as AC signals with  
The device can be used in multiplying applications.  
The voltages are buffered by rail-to-rail op amps con-  
nected in a follower configuration to provide a rail-to-rail  
output. The functional block diagram for the MAX5100  
is shown in Figure 2.  
peak values between 0 and V . The voltage at REF  
DD  
sets the full-scale output voltage for the DAC. The out-  
put voltage (V  
) for any DAC is represented by a  
OUT  
digitally programmable voltage source as follows:  
V
OUT  
= (N · V ) / 256  
B
REF  
Low-Power Shutdown Mode  
The MAX5100 features a shutdown mode that reduces  
current consumption to 1nA. A high voltage on the  
shutdown pin shuts down the DACs and the output  
amplifiers. In shutdown mode, the output amplifiers  
enter a high-impedance state. When bringing the  
where N is the numeric value of the DAC binary input  
B
code.  
Digital Inputs and Interface Logic  
In the MAX5100, address lines A0 and A1 select the  
DAC that receives data from D0–D7, as shown in Table 1.  
6
_______________________________________________________________________________________  
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
INPUT  
LATCH A  
DAC A  
LATCH  
DAC A  
OUTA  
OUTB  
OUTC  
OUTD  
INPUT  
LATCH B  
DAC B  
LATCH  
DAC B  
DAC C  
D0–D7  
INPUT  
LATCH C  
DAC C  
LATCH  
INPUT  
LATCH D  
DAC D  
LATCH  
DAC D  
AO  
A1  
CONTROL  
LOGIC  
MAX5100  
LDAC  
REF  
SHDN  
WR  
Figure 2. Functional Diagram  
Applications Information  
Table 1. MAX5100 Address Table (Partial)  
External Reference  
A1  
X
A0  
X
LATCH STATE  
LDAC WR  
The reference source resistance must be considerably  
less than the reference input resistance. To keep within  
H
H
H
L
Input and DAC data latched  
DAC A input latch transparent  
1LSB error in an 8-bit system, R must be less than  
S
L
L
R
/ 256. Hence, maintain a value of R <1kto  
REF  
S
ensure 8-bit accuracy. If V  
is DC only, bypass REF  
REF  
All 4 DACs’ DAC latches  
transparent  
L
L
H
L
X
L
X
L
to GND with a 0.1µF capacitor. Values greater than this  
improve noise rejection.  
DAC A input registers transpar-  
ent and all 4 DACs’ DAC  
latches transparent  
Power Sequencing  
The voltage applied to REF should not exceed V  
at  
DD  
any time. If proper power sequencing is not possible,  
H
H
H
L
L
L
L
H
H
H
L
DAC B input latch transparent  
DAC C input latch transparent  
DAC D input latch transparent  
connect an external Schottky diode between REF and  
V
DD  
to ensure compliance with the absolute maximum  
ratings.  
H
Power-Supply Bypassing and  
Ground Management  
H = High state, L = Low state, X = Don’t care  
Digital or AC transient signals on GND can create noise  
at the analog output. Return GND to the highest-quality  
When WR is low, the addressed DAC’s input latch is  
transparent. Data is latched when WR is high.  
ground available. Bypass V  
with a 0.1µF capacitor,  
DD  
The MAX5100 LDAC feature allows simultaneous  
updating of all four DACs. LDAC low latches the data in  
the data registers to the DAC registers. If simultaneous  
updating is not required, tie LDAC low to keep the DAC  
latches transparent. If WR and LDAC are low simultane-  
ously, avoid output glitches by ensuring that data is  
valid before the two signals go low. When the device  
located as close to V  
and GND as possible.  
DD  
Careful PC board ground layout minimizes crosstalk  
between the DAC outputs and digital inputs.  
Chip Information  
TRANSISTOR COUNT: 6848  
powers up (i.e., V  
ramps up), all latches are internal-  
DD  
ly preset with code 00 hex.  
_______________________________________________________________________________________  
7
+2.7V to +5.5V, Low-Power, Quad, Parallel  
8-Bit DAC with Rail-to-Rail Voltage Outputs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5100AEUP

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs
MAXIM

MAX5100AEUP+T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO20, 4.40 MM, 0.65 MM PITCH, ROHS COMPLIANT, ULTRA SMALL, MO-153AD, TSSOP-20
MAXIM

MAX5100BEUP

+2.7V to +5.5V, Low-Power, Quad, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs
MAXIM

MAX5100BEUP+

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO20, 4.40 MM, 0.65 MM PITCH, ULTRA SMALL, MO-153AD, TSSOP-20
MAXIM

MAX5100BEUP-T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO20, 4.40 MM, 0.65 MM PITCH, MO-153AD, TSSOP-20
MAXIM

MAX5101

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs
MAXIM

MAX5101AEUE

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs
MAXIM

MAX5101AEUE+

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO16, 4.40 MM, 0.65 MM PITCH, MO-153AC, TSSOP-16
MAXIM

MAX5101AEUE+T

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 6us Settling Time, PDSO16, 4.40 MM, MO-153AB, TSSOP-16
MAXIM

MAX5101BEUE

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs
MAXIM

MAX5101BEUE+

暂无描述
MAXIM

MAX5102

+2.7V to +5.5V, Low-Power, Dual, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs
MAXIM