MAX5090AATE+ [MAXIM]

2A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converters; 2A , 76V ,高效MAXPower降压型DC -DC转换器
MAX5090AATE+
型号: MAX5090AATE+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

2A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converters
2A , 76V ,高效MAXPower降压型DC -DC转换器

转换器
文件: 总17页 (文件大小:658K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3872; Rev 0; 3/06  
2A, 76V, High-Efficiency  
MAXPower Step-Down DC-DC Converters  
General Description  
Features  
Wide Input Voltage Range: 6.5V to 76V  
The MAX5090A/B/C easy-to-use, high-efficiency, high-  
voltage step-down DC-DC converters operate from an  
input voltage up to 76V, and consume only 310µA qui-  
escent current at no load. This pulse-width-modulated  
(PWM) converter operates at a fixed 127kHz switching  
frequency at heavy loads, and automatically switches  
to pulse-skipping mode to provide low quiescent cur-  
rent and high efficiency at light loads. The MAX5090  
includes internal frequency compensation simplifying  
circuit implementation. The device can also be syn-  
chronized with external system clock frequency in a  
noise-sensitive application. The MAX5090 uses an  
internal low on-resistance and a high-voltage DMOS  
transistor to obtain high efficiency and reduce overall  
system cost. This device includes undervoltage lock-  
out, cycle-by-cycle current limit, hiccup-mode output  
short-circuit protection, and overtemperature shutdown.  
Fixed (3.3V, 5V) and Adjustable (1.265V to 11V)  
Output-Voltage Versions  
2A Output Current  
Efficiency Up to 92%  
Internal 0.26High-Side DMOS FET  
310µA Quiescent Current at No Load  
19µA Shutdown Current  
Internal Frequency Compensation  
Fixed 127kHz Switching Frequency  
External Frequency Synchronization  
Thermal Shutdown and Short-Circuit Current Limit  
-40°C to +125°C Automotive Temperature Range  
16-Pin (5mm x 5mm) Thin QFN Package  
Capable of Dissipating 2.67W at +70°C  
The MAX5090 delivers up to 2A output current. External  
shutdown is included, featuring 19µA (typ) shutdown  
current. The MAX5090A/MAX5090B versions have fixed  
output voltages of 3.3V and 5V, respectively, while the  
MAX5090C features an adjustable 1.265V to 11V output  
voltage.  
Ordering Information  
OUTPUT  
VOLTAGE  
(V)  
TEMP  
RANGE  
PIN-  
PACKAGE*  
PART  
The MAX5090 is available in a space-saving 16-pin thin  
QFN package (5mm x 5mm) and operates over the  
automotive temperature range (-40°C to +125°C).  
MAX5090AATE+ -40°C to +125°C 16 TQFN-EP**  
3.3  
MAX5090AATE -40°C to +125°C 16 TQFN-EP**  
MAX5090BATE+ -40°C to +125°C 16 TQFN-EP**  
MAX5090BATE -40°C to +125°C 16 TQFN-EP**  
3.3  
5.0  
5.0  
Applications  
Automotive  
Industrial  
Ordering Information continued at end of data sheet.  
*The package code is T1655-3.  
**EP = Exposed pad.  
Distributed Power  
+Denotes lead-free package.  
Typical Operating Circuit  
Pin Configuration  
TOP VIEW  
12  
EP  
11  
10  
9
V
IN  
7.5V TO 76V  
R
IN  
10Ω  
FB  
C
IN  
68µF  
8
7
6
5
DRAIN 13  
DRAIN 14  
N.C. 15  
C
BYPASS  
0.47µF  
V
OUT  
100µH  
5V/2A  
V
DRAIN  
IN  
SS  
LX  
MA5090  
ON/OFF  
C
C
BST  
0.22µF  
OUT  
100µF  
D1  
PDS5100H  
SYNC  
VD  
BST  
FB  
MAX5090B  
16  
N.C.  
SS  
SYNC  
SGND  
C
SS  
VD  
0.047µF  
PGND  
1
2
3
4
3.3µF  
TQFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to PGND, unless otherwise specified.)  
V
Short-Circuit Duration………………………… ...Continuous  
OUT  
V
, DRAIN .............................................................-0.3V to +80V  
VD Short-Circuit Duration………….............................Continuous  
IN  
SGND, PGND.………………………………………-0.3V to +0.3V  
LX.................................................................-0.8V to (V + 0.3V)  
BST ...............................................................-0.3V to (V + 10V)  
BST to LX................................................................-0.3V to +10V  
ON/OFF........................................................-0.3V to (V + 0.3V)  
Continuous Power Dissipation (T = +70°C)*  
A
IN  
IN  
16-Pin TQFN (derate 33.3mW/°C above +70°C) ........2.667W  
Operating Junction Temperature Range...........-40°C to +125°C  
Storage Temperature Range .........................…-65°C to +150°C  
Junction Temperature……...……………………………….+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
VD, SYNC ...............................................................-0.3V to +12V  
SS…………………………………………………………-0.3 to +4V  
FB  
MAX5090A/MAX5090B…………….……… ...….-0.3V to +15V  
MAX5090C................1mA (internally clamped to +2V, -0.3V)  
*As per JEDEC 51 Standard Multilayer Board.  
Stresses beyond those listed under "Absolute Maximum Ratings" may cause damage to the device. These are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maxi-  
mum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +12V, V  
= +12V, V  
= 0V, I  
= 0, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at  
IN  
ON/OFF  
SYNC  
OUT  
A
J
T
A
= +25°C. See the Typical Operating Circuit.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
6.5  
TYP  
MAX UNITS  
Input Voltage Range  
Undervoltage Lockout  
UVLO Hysteresis  
V
76.0  
6.45  
V
V
V
IN  
UVLO  
UVLO  
V
rising  
5.70  
6.17  
0.5  
3.3  
5.0  
5.0  
IN  
HYS  
MAX5090A  
MAX5090B  
MAX5090B  
V
V
V
= 6.5V to 76V, I  
= 7.5V to 76V, I  
= 0 to 2A  
= 0 to 2A  
3.20  
4.85  
3.39  
5.15  
IN  
IN  
IN  
OUT  
Output Voltage  
V
V
OUT  
OUT  
= 7V to 76V, I  
= 0 to 1A  
4.85  
5.15  
OUT  
Output Voltage Range  
Feedback Voltage  
V
MAX5090C only  
MAX5090C, V = 6.5V to 76V  
1.265  
1.191  
11.000  
1.265  
V
V
OUT  
V
1.228  
80  
FB  
IN  
MAX5090A  
MAX5090B  
MAX5090C  
MAX5090A  
MAX5090B  
MAX5090C  
MAX5090A  
MAX5090B  
MAX5090C  
MAX5090A  
MAX5090B  
MAX5090C  
V
V
V
V
V
V
V
V
V
V
V
V
= 12V, I  
= 12V, I  
= 1A  
= 1A  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
OUT  
Efficiency  
η
88  
%
= 12V, V  
= 5V, I  
= 1A  
88  
OUT  
OUT  
= 6.5V to 28V  
= 7V to 28V  
310  
310  
310  
310  
310  
310  
310  
310  
310  
19  
550  
550  
550  
570  
570  
570  
650  
650  
650  
45  
Quiescent Supply Current  
(Note 2)  
I
µA  
µA  
Q
Q
Q
= 6.5V to 28V  
= 6.5V to 40V  
= 7V to 40V  
Quiescent Supply Current  
(Note 2)  
I
I
= 6.5V to 40V  
= 6.5V to 76V  
= 7V to 76V  
Quiescent Supply Current  
(Note 2)  
µA  
µA  
= 6.5V to 76V  
Shutdown Current  
I
V
= 0V, V = 14V  
ON/OFF IN  
SHDN  
SOFT-START  
Default Internal Soft-Start  
Period  
C
= 0  
700  
10  
µs  
SS  
Soft-Start Charge Current  
I
4.5  
16.0  
µA  
SS  
2
_______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +12V, V  
= +12V, V  
= 0V, I  
= 0, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at  
IN  
ON/OFF  
SYNC  
OUT  
A
J
T
A
= +25°C. See the Typical Operating Circuit.) (Note 1)  
PARAMETER  
Soft-Start Reference Voltage  
INTERNAL SWITCH/CURRENT LIMIT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
1.23  
1.46  
1.65  
V
SS(REF)  
Peak Switch Current Limit  
Switch Leakage Current  
Switch On-Resistance  
PFM Threshold  
I
(Note 3)  
2.4  
-10  
3.3  
5.0  
+10  
0.4  
A
µA  
LIM  
I
V
= 76V, V  
= 0V, V = 0V  
ON/OFF LX  
OL  
IN  
R
I
= 1A  
0.26  
60  
DS(ON)  
SWITCH  
I
Minimum switch current in any cycle  
1
300  
mA  
PFM  
Minimum switch current in any cycle at T +25°C  
(Note 4)  
J
PFM Threshold  
I
14  
300  
mA  
nA  
PFM  
FB Input Bias Current  
I
MAX5090C, V = 1.2V  
FB  
-150  
+0.1  
1.38  
+150  
B
ON/OFF CONTROL INPUT  
ON/OFF Input-Voltage  
Threshold  
V
Rising trip point  
1.180  
1.546  
V
ON/OFF  
ON/OFF Input-Voltage  
Hysteresis  
V
100  
10  
mV  
nA  
HYST  
ON/OFF Input Current  
I
V
V
= 0V to V  
ON/OFF IN  
100  
ON/OFF  
OSCILLATOR/SYNCHRONIZATION  
Oscillator Frequency  
Synchronization  
f
106  
119  
80  
127  
95  
150  
200  
kHz  
kHz  
%
0SC  
f
SYNC  
Maximum Duty Cycle  
SYNC High-Level Voltage  
SYNC Low-Level Voltage  
SYNC Minimum Pulse Width  
SYNC Input Leakage  
D
= 6.5V to 76V, V  
11V  
MAX  
IN  
OUT  
2.0  
V
0.8  
350  
+1  
V
ns  
µA  
-1  
INTERNAL VOLTAGE REGULATOR  
Regulator Output Voltage  
Dropout Voltage  
VD  
V
= 9V to 76V, I  
= 0  
7.0  
7.8  
0.5  
10  
8.4  
V
V
IN  
OUT  
6.5V V 8.5V, I  
= 15mA  
IN  
OUT  
Load Regulation  
VD/I  
0 to 15mA  
VD  
PACKAGE THERMAL CHARACTERISTICS  
Thermal Resistance  
(Junction to Ambient)  
θ
TQFN package (JEDEC 51)  
Temperature rising  
30  
°C/W  
JA  
THERMAL SHUTDOWN  
Thermal-Shutdown Junction  
Temperature  
T
+175  
20  
°C  
°C  
SH  
Thermal-Shutdown  
Hysteresis  
T
HYST  
Note 1: All limits at -40°C are guaranteed by design, not production tested.  
Note 2: For total current consumption during switching (at no load), also see the Typical Operating Characteristics.  
Note 3: Switch current at which the current-limit circuit is activated.  
Note 4: Limits are guaranteed by design.  
_______________________________________________________________________________________  
3
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Typical Operating Characteristics  
(V = 12V, V  
=12V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See the Typical  
A J A  
IN  
ON/OFF  
Operating Circuit, if applicable.)  
V
vs. TEMPERATURE  
V
vs. TEMPERATURE  
OUT  
LINE REGULATION  
(MAX5090AATE, V = 3.3V)  
OUT  
(MAX5090BATE, V = 5V)  
(MAX5090AATE, V  
= 3.3V)  
OUT  
OUT  
OUT  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
I
= 0  
I
= 0  
OUT  
OUT  
I
= 0  
OUT  
I
= 2A  
OUT  
I
= 2A  
OUT  
I
= 2A  
OUT  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
6.5  
16  
26  
36  
46  
(V)  
56  
66  
76  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
V
IN  
LOAD REGULATION  
LOAD REGULATION  
(MAX5090AATE, V = 3.3V)  
(MAX5090BATE, V  
= 5V)  
OUT  
OUT  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
5.15  
5.10  
5.05  
5.00  
V
= 76V  
IN  
I
= 0  
OUT  
V
= 76V  
IN  
V
= 24V  
IN  
V
= 24V  
4.95  
4.90  
4.85  
V
IN  
= 6.5V  
IN  
V
= 6.5V  
IN  
I
= 2A  
OUT  
56  
0.1  
1
10  
100  
(mA)  
1000  
10,000  
0.1  
1
10  
100  
(mA)  
1000  
10,000  
6.5  
16  
26  
36  
46  
(V)  
66  
76  
I
V
LOAD  
I
IN  
LOAD  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
OUTPUT CURRENT LIMIT vs. TEMPERATURE  
(MAX5090AATE)  
(MAX5090AATE, V  
= 3.3V)  
(MAX5090BATE, V  
= 5V)  
OUT  
OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 3.3V  
OUT  
5% DROP IN V  
PULSED OUTPUT LOAD  
OUT  
V
= 6.5V  
IN  
V
= 6.5V  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 24V  
IN  
V
= 24V  
IN  
V
= 48V  
IN  
V
= 48V  
IN  
V
= 76V  
IN  
V
= 76V  
IN  
0
400  
800  
1200  
1600  
2000  
0
400  
800  
1200  
1600  
2000  
-50 -25  
0
25 50 75 100 125 150  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
AMBIENT TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 12V, V  
=12V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See the Typical  
IN  
ON/OFF  
A
J
A
Operating Circuit, if applicable.)  
OUTPUT CURRENT LIMIT vs. TEMPERATURE  
(MAX5090BATE)  
OUTPUT CURRENT LIMIT vs. INPUT VOLTAGE  
(MAX5090BATE)  
OUTPUT CURRENT LIMIT vs. INPUT VOLTAGE  
(MAX5090AATE)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
V
= 5V  
V
= 3.3V  
OUT  
OUT  
V
= 5V  
OUT  
5% DROP IN V  
PULSED OUTPUT LOAD  
5% DROP IN V  
PULSED OUTPUT LOAD  
OUT  
OUT  
5% DROP IN V  
PULSED OUTPUT LOAD  
OUT  
-50 -25  
0
25 50 75 100 125 150  
6.5  
16  
26  
36  
46  
56  
66  
76  
6.5  
16  
26  
36  
46  
56  
66  
76  
AMBIENT TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
SHUTDOWN CURRENT vs. TEMPERATURE  
(MAX5090AATE)  
NO-LOAD SUPPLY CURRENT vs. INPUT VOLTAGE  
NO-LOAD SUPPLY CURRENT vs. TEMPERATURE  
(MAX5090AATE)  
(MAX5090AATE)  
30  
26  
22  
18  
14  
10  
600  
600  
V
OUT  
= 3.3V  
V
OUT  
= 3.3V  
V
= 3.3V  
OUT  
550  
500  
450  
400  
350  
300  
550  
500  
450  
400  
350  
300  
-50 -25  
0
25 50 100 125 150 175  
-50 -25  
0
25 50 75 100 125 150  
6.5  
16  
26  
36  
46  
56  
66  
76  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. INPUT VOLTAGE  
OUTPUT VOLTAGE  
vs. INPUT VOLTAGE  
LOAD-TRANSIENT RESPONSE  
(MAX5090AATE)  
MAX5090 toc18  
45  
40  
35  
30  
25  
20  
15  
10  
5
13  
11  
9
V
= 3.3V  
V
= 3.3V  
OUT  
MAX5090CATE  
OUT  
V
V
= 11V  
= V  
OUT  
ON/OFF  
IN  
A
I
= 2A  
OUT  
I
= 1A  
OUT  
6
I
= 0A  
OUT  
B
3
0
0
6.5 16  
26  
36  
46  
56  
66  
76  
5
6
7
8
9
10 11 11.5 12 12.5 13  
(V)  
400µs/div  
A: V , 200mV/div, AC-COUPLED  
INPUT VOLTAGE (V)  
V
IN  
OUT  
B: I , 1A/div, 1A TO 2A  
OUT  
_______________________________________________________________________________________  
5
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 12V, V  
=12V, T = T = -40°C to +125°C, unless otherwise noted. Typical values are at T = +25°C. See the Typical  
IN  
ON/OFF  
A
J
A
Operating Circuit, if applicable.)  
LOAD-TRANSIENT RESPONSE  
(MAX5090AATE)  
LX WAVEFORMS  
(MAX5090AATE)  
LX WAVEFORMS  
(MAX5090AATE)  
MAX5090 toc20  
MAX5090 toc19  
MAX5090 toc21  
V
OUT  
= 3.3V  
A
A
A
B
V = 3.3V  
OUT  
V
OUT  
= 3.3V  
B
0
B
400µs/div  
4µs/div  
4µs/div  
A: V , 200mV/div, AC-COUPLED  
OUT  
B: I , 500mA/div, 0.1A TO 1A  
OUT  
A: SWITCH VOLTAGE (LX PIN), 20mV/div (V = 48V)  
IN  
A: SWITCH VOLTAGE, 20V/div (V = 48V)  
IN  
B: INDUCTOR CURRENT, 2A/div (I = 2A)  
B: INDUCTOR CURRENT, 200mA/div (I = 75mA)  
0
0
LX WAVEFORM  
(MAX5090AATE)  
STARTUP WAVEFORM  
STARTUP WAVEFORM  
(I  
= 0)  
(I  
= 2A)  
OUT  
OUT  
MAX5090 toc22  
MAX5090 toc23  
MAX5090 toc24  
V
OUT  
= 3.3V  
A
A
B
A
B
B
C
SS  
= 0.047µF  
C
SS  
= 0.047µF  
4µs/div  
4ms/div  
4ms/div  
A: SWITCH VOLTAGE, 20V/div (V = 48V)  
IN  
A: V  
ON/OFF  
, 2V/div  
A: V  
ON/OFF  
, 2V/div  
B: INDUCTOR CURRENT, 200mA/div (I  
= 0)  
B: V , 1V/div  
OUT  
B: V , 1V/div  
OUT  
OUT  
PEAK SWITCH CURRENT  
vs. INPUT VOLTAGE  
SYNCHRONIZATION  
SYNCHRONIZATION  
MAX5090 toc26  
MAX5090 toc27  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
f
= 119kHz  
SYNC  
MAX5090AATE  
f
= 200kHz  
SYNC  
V
= 3.3V  
OUT  
5% DROP IN V  
OUT  
SYNC  
2V/div  
SYNC  
2V/div  
PULSED OUTPUT LOAD  
LX  
10V/div  
LX  
10V/div  
6.5  
16  
26  
36  
46  
56  
66  
76  
2µs/div  
1µs/div  
INPUT VOLTAGE (V)  
6
_______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Pin Description  
PIN  
1, 2  
3
NAME  
LX  
FUNCTION  
Source Connection of Internal High-Side Switch  
Boost Capacitor Connection. Connect a 0.22µF ceramic capacitor from BST to LX.  
BST  
4
V
Input Voltage. Bypass V to SGND with a low-ESR capacitor as close to the device as possible.  
IN  
IN  
5
VD  
Internal Regulator Output. Bypass VD to PGND with a 3.3µF/10V or greater ceramic capacitor.  
Synchronization Input. Connect SYNC to an external clock for synchronization. Connect to SGND to  
select the internal 127kHz switching frequency.  
6
7
SYNC  
Soft-Start Capacitor Connection. Connect an external capacitor from SS to SGND to adjust the soft-  
start time.  
SS  
FB  
Output Sense Feedback Connection.  
For fixed output voltage (MAX5090A/MAX5090B), connect FB to V  
.
OUT  
8
9
For adjustable output voltage (MAX5090C), use an external resistive voltage-divider to set V  
regulating set point is 1.228V.  
. V  
OUT FB  
Shutdown Control Input. Pull ON/OFF low to put the device in shutdown mode. Drive ON/OFF high for  
ON/OFF  
normal operation. Connect ON/OFF to V with short leads for always-on operation.  
IN  
10  
11, 15, 16  
12  
SGND  
N.C.  
Signal Ground. SGND must be connected to PGND for proper operation.  
No Connection. Not internally connected.  
Power Ground  
PGND  
DRAIN  
13, 14  
Internal High-Side Switch Drain Connection  
Exposed Pad. Solder EP to SGND plane to aid in heat dissipation. Do not use as the only electrical  
ground connection.  
EP  
Detailed Description  
R1  
R2  
The MAX5090 step-down DC-DC converter operates  
from a 6.5V to 76V input voltage range. A unique volt-  
age-mode control scheme with voltage feed-forward  
and an internal switching DMOS FET provides high effi-  
ciency over a wide input voltage range. This pulse-  
width-modulated converter operates at a fixed 127kHz  
switching frequency or can be synchronized with an  
external system clock frequency. The device also fea-  
tures automatic pulse-skipping mode to provide high  
efficiency at light loads. Under no load, the MAX5090  
consumes only 310µA, and in shutdown mode, con-  
sumes only 20µA. The MAX5090 also features under-  
voltage-lockout, hiccup-mode output short-circuit  
protection and thermal shutdown.  
V
= 1 +  
x 1.38  
UVLO(TH)  
Set the external V  
to greater than 6.45V. The  
maximum recommended value for R2 is less than 1M.  
UVLO(TH)  
ON/OFF is a logic input and can be safely driven to the  
full V range. Connect ON/OFF to V for automatic  
IN  
IN  
startup. Drive ON/OFF to ground to shut down the  
MAX5090. Shutdown forces the internal power MOSFET  
off, turns off all internal circuitry, and reduces the V  
IN  
supply current to 20µA (typ). The ON/OFF rising thresh-  
old is 1.546V (max). Before any operation begins, the  
voltage at ON/OFF must exceed 1.546V. The ON/OFF  
input has 100mV hysteresis.  
If the external UVLO threshold setting divider is not  
used, an internal undervoltage-lockout feature monitors  
ON/OFF/Undervoltage Lockout (UVLO)  
Use the ON/OFF function to program the external UVLO  
threshold at the input. Connect a resistive voltage-  
the supply voltage at V and allows the operation to  
IN  
start when V rises above 6.45V (max). The internal  
IN  
divider from V to SGND with the center node to  
IN  
UVLO rising threshold is set at 6.17V with 0.5V hystere-  
ON/OFF, as shown in Figure 1. Calculate the threshold  
value by using the following formula:  
sis. The V and V  
voltages must be above 6.5V  
ON/OFF  
IN  
and 1.546V, respectively, for proper operation.  
_______________________________________________________________________________________  
7
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Simplified Functional Diagram  
DRAIN  
ON/OFF  
V
IN  
ENABLE  
REGULATOR  
(FOR ANALOG)  
IREF-PFM  
IREF-LIM  
CPFM  
CILIM  
1.38V  
HIGH-SIDE  
CURRENT SENSE  
REGULATOR  
(FOR DRIVER)  
VD  
VREF  
OSC  
RAMP  
CLKI  
RMP  
BST  
SRMP  
SYNC  
SRAMP  
MUX  
SCK  
SS  
CLK  
MIN  
N
FB  
RAMP  
CONTROL  
LOGIC  
*R  
H
TYPE 3  
COMPENSATION  
LX  
x1  
CPWM  
EAMP  
*R  
L
THERMAL  
SHUTDOWN  
PGND  
MAX5090  
*R = 0AND R = FOR MAX5090C  
H
L
SGND  
8
_______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Boost High-Side Gate Drive (BST)  
Connect a flying bootstrap capacitor between LX and  
BST to provide the gate-drive voltage to the high-side  
n-channel DMOS switch. The capacitor is alternately  
charged from the internally regulated output-voltage VD  
and placed across the high-side DMOS driver. Use a  
0.22µF, 16V ceramic capacitor located as close to the  
device as possible.  
Soft-Start (SS)  
The MAX5090 provides the flexibility to externally pro-  
gram a suitable soft-start time for a given application.  
Connect an external capacitor from SS to SGND to use  
the external soft-start. Soft-start gradually ramps up the  
reference voltage seen by the error amplifier to control  
the output’s rate of rise and reduce the input surge cur-  
rent during startup. For soft-start time longer than 700µs,  
use the following equation to calculate the soft-start  
On startup, an internal low-side switch connects LX to  
capacitor (C ) required for the soft-start time (t ):  
SS  
SS  
ground and charges the BST capacitor to (VD - V  
).  
DIODE  
Once the BST capacitor is charged, the internal low-side  
switch is turned off and the BST capacitor voltage pro-  
vides the necessary enhancement voltage to turn on the  
high-side switch.  
6  
10×10  
× t  
SS  
C
=
SS  
1.46  
where t > 700µs and C is in Farads.  
SS  
SS  
Synchronization (SYNC)  
SYNC controls the oscillator frequency. Connect SYNC  
to SGND to select 127kHz operation. Use the SYNC  
input to synchronize to an external clock. SYNC has a  
guaranteed frequency range of 119kHz to 200kHz  
when using an external clock.  
The MAX5090 also provides an internal soft-start  
(700µs, typ) with a current source to charge an internal  
capacitor to rise up to the bandgap reference voltage.  
The internal soft-start voltage will eventually be pulled  
up to 3.4V. The internal soft-start reference also feeds  
to the error amplifier. The error amplifier takes the low-  
est voltage among SS, the internal soft-start voltage,  
and the bandgap reference voltage as the input refer-  
When SYNC is connected to SGND, the internal clock  
is used to generate a ramp with the amplitude in pro-  
portion to V and the period corresponding to the  
IN  
internal clock frequency to modulate the duty cycle of  
the high-side switch.  
ence for V  
.
OUT  
Soft-start occurs when power is first applied and when  
the device exits shutdown. The MAX5090 also goes  
through soft-start when coming out of thermal-overload  
If an external clock (SYNC clock) is applied at SYNC for  
four cycles, the MAX5090 selects the SYNC clock. The  
MAX5090 generates a ramp (SYNC ramp) with the  
protection. During a soft-start, if the voltage at SS (V  
)
SS  
is charged up to 1.46V in less than 700µs, the  
MAX5090 takes its default internal soft-start (700µs) to  
ramp up as its reference. After the SS and the internal  
soft-start ramp up over the bandgap reference, the  
error amplifier takes the bandgap reference.  
amplitude in proportion to V and the period corre-  
IN  
sponding to the SYNC clock frequency. The MAX5090  
initially blanks the SYNC ramp for 375µs (typ) to allow  
the ramp to reach its target amplitude (proportion to the  
V
supply). After the SYNC blanking time, the SYNC  
IN  
ramp and the SYNC clock switch to the PWM controller  
and replace the internal ramp and the internal clock,  
respectively. If the SYNC clock is removed for three  
internal clock cycles, the internal clock and the internal  
ramp switch back to the PWM controller.  
Thermal-Overload Protection  
The MAX5090 features integrated thermal-overload  
protection. Thermal-overload protection limits power  
dissipation in the device, and protects the device from  
a thermal overstress. When the die temperature  
exceeds +175°C, an internal thermal sensor signals the  
shutdown logic, turning off the internal power MOSFET,  
resetting the internal soft-start and allowing the IC to  
cool. The thermal sensor turns the internal power  
MOSFET back on after the IC’s die temperature cools  
down to +155°C, resulting in a pulsed output under  
continuous thermal-overload conditions.  
The minimum pulse-width requirement for the external  
clock is 350ns, and if the requirement is not met, the  
MAX5090 could ignore the clock as a noisy bounce.  
_______________________________________________________________________________________  
9
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
V
IN  
6.5V TO 76V  
R
IN  
10Ω  
C
68µF  
IN  
C
BYPASS  
0.47µF  
V
OUT  
R1  
R2  
100µH  
3.3V, 2A  
V
DRAIN  
IN  
LX  
ON/OFF  
C
OUT  
100µF  
D1  
PDS5100H  
0.22µF  
BST  
FB  
MAX5090A  
SS  
SYNC  
SGND  
0.047µF  
VD  
PGND  
3.3µF  
Figure 1. Fixed Output-Voltage Configuration  
V
IN  
7.5V TO 76V  
R
IN  
10Ω  
C
68µF  
IN  
C
BYPASS  
0.47µF  
V
OUT  
100µH  
5.25V, 2A  
V
IN  
DRAIN  
LX  
ON/OFF  
C
D1  
PDS5100H  
OUT  
0.22µF  
100µF  
R
3
BST  
MAX5090C  
FB  
SS  
SYNC  
0.047µF  
R
4
VD  
SGND  
PGND  
3.3µF  
Figure 2. Adjustable Output-Voltage Configuration  
10 ______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Thermal-overload protection is intended to protect the  
Table 1. Diode Selection  
MAX5090 in the event of a fault condition. For normal  
DIODE PART  
NUMBER  
circuit operation, do not exceed the absolute maximum  
V
(V)  
MANUFACTURER  
IN  
junction temperature rating of T = +150°C.  
J
B340LB  
RB051L-40  
MBRS340T3  
MBRM560  
RB095B-60  
MBRD360T4  
50SQ80  
Diodes Inc.  
Setting the Output Voltage  
6.5 to 36  
Central Semiconductor  
ON Semiconductor  
Diodes Inc.  
The MAX5090A/MAX5090B have preset output volt-  
ages of 3.3V and 5.0V, respectively. Connect FB to  
OUT  
V
for the preset output voltage (Figure 1).  
The MAX5090C offers an adjustable output voltage. Set  
the output voltage with a resistive divider connected  
from the circuit’s output to ground (Figure 2). Connect  
the center node of the divider to FB. Choose R4 less  
than 15k, then calculate R3 as follows:  
6.5 to 56  
6.5 to 76  
Central Semiconductor  
ON Semiconductor  
IR  
PDS5100H  
Diodes Inc.  
(V  
1.228)  
1.228  
rating greater than the highest expected output current.  
Use a rectifier with a voltage rating greater than the  
maximum expected input voltage, V . Use a low for-  
IN  
OUT  
R3 =  
x R4  
ward-voltage Schottky rectifier for proper operation and  
high efficiency. Avoid higher than necessary reverse-  
voltage Schottky rectifiers that have higher forward-volt-  
age drops. Use a Schottky rectifier with forward-voltage  
The MAX5090 features internal compensation for opti-  
mum closed-loop bandwidth and phase margin.  
Because of the internal compensation, the output must  
be sensed immediately after the primary LC.  
drop (V ) less than 0.55V and 0.45V at +25°C and  
F
Inductor Selection  
The MAX5090 is a fixed-frequency converter with fixed  
internal frequency compensation. The internal fixed  
compensation assumes a 100µH inductor and 100µF  
output capacitor with 50mESR. It relies on the loca-  
tion of the double LC pole and the ESR zero frequency  
for proper closed-loop bandwidth and the phase mar-  
gin at the closed-loop unity-gain frequency. See Table  
2 for proper component values. Usually, the choice of  
an inductor is guided by the voltage difference  
+125°C, respectively, and at maximum load current to  
avoid forward biasing of the internal parasitic body  
diode (LX to ground). See Figure 3 for forward-voltage  
drop vs. temperature of the internal body diode of the  
MAX5090. Internal parasitic body-diode conduction  
may cause improper operation, excessive junction tem-  
perature rise, and thermal shutdown. Use Table 1 to  
choose the proper rectifier at different input voltages  
and output current.  
Input Bypass Capacitor  
The discontinuous input current waveform of the buck  
converter causes large ripple currents in the input  
capacitor. The switching frequency, peak inductor cur-  
rent, and the allowable peak-to-peak voltage ripple  
reflecting back to the source dictate the capacitance  
requirement. The MAX5090 high switching frequency  
allows the use of smaller value input capacitors.  
between V and V  
, the required output current and  
OUT  
IN  
the operating frequency of the circuit. However, use the  
recommended inductors in Table 2 to ensure stable  
operation with optimum bandwidth.  
Use an inductor with a maximum saturation current rat-  
ing greater than or equal to the maximum peak current  
limit (5A). Use inductors with low DC resistance for a  
higher efficiency converter.  
The input ripple is comprised of V (caused by the  
Q
Selecting a Rectifier  
The MAX5090 requires an external Schottky rectifier as  
a freewheeling diode. Connect this rectifier close to the  
device using short leads and short PC board traces.  
The rectifier diode must fully conduct the inductor cur-  
rent when the power FET is off to have a full rectifier  
function. Choose a rectifier with a continuous current  
capacitor discharge) and V  
(caused by the ESR of  
ESR  
the capacitor). Use low-ESR aluminum electrolytic  
capacitors with high-ripple current capability at the input.  
Assuming that the contribution from the ESR and capaci-  
tor discharge is equal to 90% and10%, respectively, cal-  
culate the input capacitance and the ESR required for a  
specified ripple using the following equations:  
______________________________________________________________________________________ 11  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
V  
ESR  
ESR  
=
IN  
800  
I  
2
L
I
+
OUT  
700  
600  
500  
400  
300  
200  
100  
0
I
×D(1D)  
OUT  
C
=
IN  
V × f  
Q
SW  
where:  
(V V  
) × V  
×L  
IN  
OUT  
OUT  
I =  
L
V
× f  
IN SW  
V
OUT  
D =  
V
IN  
I
is the maximum output current of the converter  
OUT  
-40  
25  
100  
125  
150  
and f  
is the oscillator switching frequency (127kHz).  
SW  
TEMPERATURE (°C)  
For example, at V = 48V, V  
= 3.3V, the ESR and  
IN  
OUT  
input capacitance are calculated for the input peak-to-  
peak ripple of 100mV or less, yielding an ESR and  
capacitance value of 40mand 100µF, respectively.  
Figure 3. Forward-Voltage Drop vs. Temperature of the Internal  
Body Diode of MAX5090  
Low-ESR ceramic multilayer chip capacitors are recom-  
mended for size-optimized application. For ceramic  
capacitors assume the contribution from ESR and capaci-  
tor discharge is equal to 10% and 90%, respectively.  
Output Filter Capacitor  
The output capacitor C  
forms double pole with the  
OUT  
inductor and a zero with its ESR. The MAX5090’s inter-  
nal fixed compensation is designed for a 100µF capaci-  
tor, and the ESR must be from 20mto 100m. The  
use of an aluminum or tantalum electrolytic capacitor is  
recommended. See Table 2 to choose an output  
capacitor for stable operation.  
The input capacitor must handle the RMS ripple current  
without significant rise in the temperature. The maxi-  
mum capacitor RMS current occurs at approximately  
50% duty cycle. Ensure that the ripple specification of  
the input capacitor exceeds the worst-case capacitor  
RMS ripple current. Use the following equations to cal-  
culate the input capacitor RMS current:  
The output ripple is comprised of V  
(caused by the  
OQ  
capacitor discharge), and V  
(caused by the ESR  
OESR  
of the capacitor). Use low-ESR tantalum or aluminum  
electrolytic capacitors at the output. Use the following  
equations to calculate the contribution of output capac-  
itance and its ESR on the peak-to-peak output ripple  
voltage:  
2
2
I
= I  
I  
AVGin  
CRMS  
PRMS  
where:  
D
3
2
2
I
=
(I  
+ I  
) x  
PK DC  
PRMS  
PK  
DC + I xI  
V  
= ∆I x ESR  
V
I
OUT  
OESR  
L
OUT  
V
x
I
=
AVGin  
x η  
I  
IN  
L
V  
OQ  
I  
8xC  
x f  
SW  
L
2
OUT  
I
= I  
+
PK  
OUT  
The MAX5090 has a programmable soft-start time (t ).  
SS  
I  
2
L
I
= I  
DC  
OUT  
The output rise time is directly proportional to the out-  
put capacitor, output voltage, and the load. The output  
rise time also depends on the inductor value and the  
current-limit threshold. It is important to keep the output  
V
OUT  
D =  
V
IN  
I
is the input switch RMS current, I  
input average current, and η is the converter efficiency.  
The ESR of the aluminum electrolytic capacitor increas-  
es significantly at cold temperatures. Use a 1µF or  
greater value ceramic capacitor in parallel with the alu-  
minum electrolytic input capacitor, especially for input  
voltages below 8V.  
is the  
PRMS  
AVGin  
rise time at startup the same as the soft-start time (t  
)
SS  
to avoid output overshoot. Large output capacitors take  
longer than the programmed soft-start time (t ) and  
SS  
cause error-amplifier saturation. This results in output  
overshoot. Use greater than 2ms soft-start time for a  
100µF output capacitor.  
12 ______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
In a dynamic load application, the allowable deviation  
of the output voltage during the fast transient load dic-  
tates the output capacitance value and the ESR. The  
output capacitors supply the step-load current until the  
controller responds with a greater duty cycle. The  
2) Minimize lead lengths to reduce stray capacitance,  
trace resistance, and radiated noise. In particular,  
place the Schottky rectifier diode right next to the  
device. Also, place the BST and VD bypass capaci-  
tors very close to the device.  
response time (t  
) depends on the closed-  
RESPONSE  
3) Connect the exposed pad of the IC to the SGND  
plane. Do not make a direct connection between the  
exposed pad plane and SGND (pin 7) under the IC.  
Connect the exposed pad and pin 7 to the SGND  
plane separately. Connect the ground connection of  
the feedback resistive divider, ON/OFF threshold  
resistive divider, and the soft-start capacitor to the  
SGND plane. Connect the SGND plane and PGND  
plane at one point near the input bypass capacitor  
loop bandwidth of the converter. The resistive drop  
across the capacitor ESR and capacitor discharge  
cause a voltage droop during a step-load. Use a com-  
bination of low-ESR tantalum and ceramic capacitors  
for better transient load and ripple/noise performance.  
Use the following equations to calculate the deviation of  
output voltage due to the ESR and capacitance value  
of the output capacitor:  
at V .  
IN  
V  
= I  
x ESR  
OESR  
STEP OUT  
4) Use large SGND plane as a heatsink for the  
MAX5090. Use large PGND and LX planes as  
heatsinks for the rectifier diode and the inductor.  
I
x t  
STEP  
RESPONSE  
V  
=
OQ  
C
OUT  
where I  
is the load step and t  
is the  
RESPONSE  
STEP  
response time of the controller. Controller response  
time is approximately one-third of the reciprocal of the  
closed-loop unity-gain bandwidth, 20kHz typically.  
Board Layout Guidelines  
1) Minimize ground noise by connecting the anode of  
the Schottky rectifier, the input bypass capacitor  
ground lead, and the output filter capacitor ground  
lead to a large PGND plane.  
______________________________________________________________________________________ 13  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Application Circuit  
V
IN  
R
IN  
C
IN  
C
BYPASS  
R1  
R2  
L1  
V
OUT  
V
DRAIN  
IN  
LX  
ON/OFF  
C
OUT  
D1  
C
BST  
BST  
FB  
MAX5090B  
SS  
SYNC  
SGND  
C
SS  
VD  
PGND  
3.3µF  
Figure 4. Fixed Output Voltage  
Table 2. Typical External Components Selection (Circuit of Figure 4)  
V
(V)  
V
(V)  
I
(A)  
EXTERNAL COMPONENTS  
IN  
OUT  
OUT  
MAX5090AATE  
C
C
C
C
= 2 x 68µF/100V EEVFK2A680Q, Panasonic  
IN  
= 0.47µF/100V, GRM21BR72A474KA, Murata  
BYPASS  
= 220µF/6.3V 6SVP220MX, Sanyo  
= 0.22µF/16V, GRM188R71C224K, Murata  
OUT  
BST  
6.5 to 76  
3.3  
2
R1 = 0Ω  
R2 = Open  
R
IN  
= 10, 1% (0603)  
D1 = PDS5100H, Diodes Inc.  
L1 = 47µH, DO5022P-473  
MAX5090BATE  
C
C
C
C
= 2 x 68µF/100V EEVFK2A680Q, Panasonic  
IN  
= 0.47µF/100V, GRM21BR72A474KA, Murata  
BYPASS  
= 100µF/6.3V 6SVP100M, Sanyo  
= 0.22µF/16V, GRM188R71C224K, Murata  
OUT  
BST  
7.5 to 76  
5
2
R1 = 0Ω  
R2 = Open  
R
IN  
= 10, 1% (0603)  
D1 = PDS5100H, Diodes Inc.  
L1 = 47µH, DO5022P-473  
14 ______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Table 2. Typical External Components Selection (Circuit of Figure 4) (continued)  
V
(V)  
V
(V)  
I
(A)  
EXTERNAL COMPONENTS  
= 330µF/50V EEVFK1H331Q, Panasonic  
IN  
OUT  
OUT  
MAX5090AATE  
C
C
C
C
IN  
= 0.47µF/50V, GRM21BR71H474KA, Murata  
BYPASS  
= 100µF/6.3V 6SVP100M, Sanyo  
OUT  
= 0.22µF/16V, GRM188R71C224K, Murata  
BST  
6.5 to 40  
3.3  
2
R1 = 0Ω  
R2 = Open  
R
IN  
= 10, 1% (0603)  
D1 = B360, Diodes Inc.  
L1 = 100µH, DO5022P-104  
MAX5090BATE  
C
C
C
C
= 330µF/50V EEVFK1H331Q, Panasonic  
IN  
= 0.47µF/50V, GRM21BR71H474KA, Murata  
BYPASS  
= 100µF/6.3V 6SVP100M, Sanyo  
OUT  
= 0.22µF/16V, GRM188R71C224K, Murata  
BST  
7.5 to 40  
5
2
R1 = 0Ω  
R2 = Open  
R
IN  
= 10, 1% (0603)  
D1 = B360, Diodes Inc.  
L1 = 100µH, DO5022P-104  
MAX5090CATE (V  
programmed to 11V)  
OUT  
C
C
C
C
= 330µF/50V EEVFK1H331Q, Panasonic  
IN  
= 0.47µF/50V, GRM21BR71H474KA, Murata  
BYPASS  
= 100µF/16V 16SVP100M, Sanyo  
= 0.22µF/16V, GRM188R71C224K, Murata  
OUT  
BST  
R1 = 910kΩ  
R2 = 100kΩ  
15 to 40  
11  
2
R3 = 88.2k, 1% (0603)  
R4 = 10k, 1% (0603)  
R
IN  
= 10, 1% (0603)  
D1 = B360, Diodes Inc.  
L1 = 100µH, DO5022P-104  
Table 3. Component Suppliers  
SUPPLIER  
WEBSITE  
AVX  
www.avxcorp.com  
www.coilcraft.com  
www.diodes.com  
Coilcraft  
Diodes Incorporated  
Panasonic  
Sanyo  
www.panasonic.com  
www.sanyo.com  
TDK  
www.component.tdk.com  
www.vishay.com  
Vishay  
______________________________________________________________________________________ 15  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
V
IN  
12V  
R
IN  
C
IN  
68µF  
C
BYPASS  
V
OUT  
100µH  
5V, 2A  
V
DRAIN  
IN  
LX  
ON/OFF  
D1  
B360  
C
OUT  
C
BST  
PTC  
100µF  
R
C
t
t
BST  
FB  
MAX5090B  
SS  
SYNC  
SGND  
C
SS  
VD  
PGND  
3.3µF  
*LOCATE PTC AS CLOSE TO HEAT-DISSIPATING COMPONENT AS POSSIBLE.  
Figure 5. Load-Temperature Monitoring with ON/OFF (Requires Accurate V  
)
IN  
Chip Information  
PROCESS: BCD  
Ordering Information (continued)  
OUTPUT  
VOLTAGE  
(V)  
PIN-  
PACKAGE*  
TRANSISTOR COUNT: 7893  
PART  
TEMP RANGE  
MAX5090CATE+ -40°C to +125°C 16 TQFN-EP**  
Adj  
Adj  
MAX5090CATE -40°C to +125°C 16 TQFN-EP**  
*The package code is T1655-3.  
**EP = Exposed pad.  
+Denotes lead-free package.  
16 ______________________________________________________________________________________  
2A, 76V, High-Efficiency MAXPower Step-Down  
DC-DC Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Heslington  

相关型号:

MAX5090AATE+T

暂无描述
MAXIM

MAX5090AATE-T

Switching Controller, Voltage-mode, 5A, 150kHz Switching Freq-Max, 5 X 5 MM, 0.8 MM HEIGHT, MO-220WHHB, TQFN-16
MAXIM

MAX5090AATE/V+

暂无描述
MAXIM

MAX5090AATE/V+T

Switching Controller
MAXIM

MAX5090BATE

2A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converters
MAXIM

MAX5090BATE+

2A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converters
MAXIM

MAX5090BATE+T

Switching Controller, Voltage-mode, 5A, 150kHz Switching Freq-Max, 5 X 5 MM, 0.8 MM HEIGHT, LEAD FREE, MO-220WHHB, TQFN-16
MAXIM

MAX5090CATE

2A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converters
MAXIM

MAX5090CATE+

2A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converters
MAXIM

MAX5090CATE+T

Switching Controller, Voltage-mode, 5A, 150kHz Switching Freq-Max, 5 X 5 MM, 0.8 MM HEIGHT, LEAD FREE, MO-220WHHB, TQFN-16
MAXIM

MAX5090CATE-T

2A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converters
MAXIM

MAX5090CATE/GG8

Switching Controller,
MAXIM