MAX5052BEUA [MAXIM]

SMPS Controller ; SMPS控制器\n
MAX5052BEUA
型号: MAX5052BEUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SMPS Controller
SMPS控制器\n

控制器
文件: 总13页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2590; Rev 0; 10/02  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
General Description  
Features  
The MAX5052/MAX5053 current-mode PWM controllers  
contain all the control circuitry required for the design of  
wide-input-voltage isolated and nonisolated power  
supplies. The MAX5052 is well suited for universal input  
(rectified 85VAC to 265VAC) or telecom (-36VDC to  
-72VDC) power supplies. The MAX5053 is well suited for  
low-input-voltage (10.8VDC to 24VDC) power supplies.  
Available in a Tiny 8-Pin µMAX Package  
Current-Mode Control  
50W Output Power  
Universal Offline Input Voltage Range  
Rectified 85VAC to 265VAC (MAX5052)  
V Directly Driven from 10.8V to 24V Input  
IN  
The MAX5052/MAX5053 contain an internal error ampli-  
fier that regulates the tertiary winding output voltage.  
This implements a primary-side regulated, isolated  
power supply, eliminating the need for an optocoupler.  
An input undervoltage lockout (UVLO) is provided for  
programming the input-supply start voltage and to  
ensure proper operation during brownout conditions.  
The input-supply start voltage is externally programma-  
ble with a voltage-divider. To shutdown the device, the  
UVLO pin is pulled low. Internal digital soft-start  
reduces output voltage overshoot. The internal thermal  
shutdown circuit protects the device in the event the  
junction temperature exceeds +130°C.  
(MAX5053)  
Digital Soft-Start  
Programmable Input Startup Voltage  
Internal Bootstrap UVLO with Large Hysteresis  
(MAX5052)  
Internal Error Amplifier with 1% Accurate  
Reference  
Thermal Shutdown  
45µA (typ) Startup Supply Current  
1.4mA (typ) Operating Supply Current  
Fixed Switching Frequency of 262kHz 12%  
The MAX5052 has an internal bootstrap UVLO with  
large hysteresis that requires a minimum voltage of  
23.6V for startup. The MAX5053 does not have the  
internal bootstrap UVLO and can be biased directly  
from a minimum voltage of 10.8V.  
50% Maximum Duty-Cycle Limit  
(MAX5052A/MAX5053A)  
75% Maximum Duty-Cycle Limit  
(MAX5052B/MAX5053B)  
The 262kHz switching frequency is internally trimmed to  
12ꢀ accuracyꢁ this allows the optimization of the  
magnetic and filter components resulting in compact,  
cost-effective power supplies. The MAX5052A/  
MAX5053A are offered with a 50ꢀ maximum duty-cycle  
limit. The MAX5052B/MAX5053B are offered with a 75ꢀ  
maximum duty-cycle limit. These devices are available  
in 8-pin µMAX packages and operate over the -40°C to  
+85°C temperature range.  
60ns Cycle-by-Cycle Current-Limit Response Time  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
MAX5052AEUA  
MAX5052BEUA  
MAX5053AEUA  
MAX5053BEUA  
8 µMAX  
8 µMAX  
8 µMAX  
Warning: The MAX5052/MAX5053 are designed to work with  
high voltages. Exercise caution.  
Applications  
Universal Input AC  
Power Supplies  
Industrial Power  
Conversion  
Pin Configuration  
Isolated Telecom Power  
Supplies  
Isolated Keep-Alive  
Circuits  
TOP VIEW  
Networking Systems  
12V Boost Regulators  
12V SEPIC Regulators  
UVLO/EN  
FB  
1
2
3
4
8
7
6
5
V
V
IN  
Computer Systems/  
Servers  
CC  
MAX5052  
MAX5053  
COMP  
CS  
NDRV  
GND  
Functional Diagram/Typical Operating Circuit/Selector  
Guide appear at end of data sheet.  
µMAX  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND .............................................................-0.3V to +30V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range ............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
CC  
to GND............................................................-0.3V to +13V  
FB, COMP, UVLO, CS to GND .................................-0.3V to +6V  
NDRV to GND.............................................-0.3V to (V + 0.3V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin µMAX (derate 4.5mW/°C above +70°C)..............362mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +12V (for MAX5052, V must first be brought up to 23.6V for startup), 10nF bypass capacitors at V and V , C  
= 0,  
IN  
IN  
IN  
CC  
NDRV  
V
UVLO  
= +1.4V, V = +1.0V, V  
= floating, V = 0V, typical values are measured at T = +25°C, T = -40°C to + 85°C, unless  
COMP CS A A  
FB  
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
UNDERVOLTAGE LOCKOUT/STARTUP  
Bootstrap UVLO Wake-Up Level  
Bootstrap UVLO Shutdown Level  
UVLO/EN Wake-Up Threshold  
UVLO/EN Shutdown Threshold  
UVLO/EN Input Current  
V
V
V
V
rising (MAX5052 only)  
falling (MAX5052 only)  
19.68  
9.05  
21.6  
9.74  
1.28  
1.23  
25  
23.60  
10.43  
1.371  
1.291  
V
V
SUVR  
SUVF  
ULR2  
IN  
IN  
V
UVLO/EN rising  
UVLO/EN falling  
1.188  
1.168  
V
V
V
ULF2  
I
T = +125°C  
J
nA  
mV  
UVLO  
UVLO/EN Hysteresis  
50  
V
Supply Current In  
V
= +19V, for MAX5052 only when in  
IN  
IN  
I
45  
90  
24  
µA  
V
START  
Undervoltage Lockout  
bootstrap UVLO  
V
Range  
V
10.8  
IN  
IN  
t
UVLO/EN steps up from +1.1V to +1.4V  
UVLO/EN steps down from +1.4V to +1.1V  
12  
1.8  
5
EXTR  
UVLO/EN Propagation Delay  
µs  
t
EXTF  
t
V
V
steps up from +9V to +24V  
BUVR  
IN  
IN  
Bootstrap UVLO Propagation  
Delay  
µs  
t
steps down from +24V to +9V  
1
BUVF  
INTERNAL SUPPLY  
V
= +10.8V to +24V, sinking 1µA to 20mA  
IN  
V
Regulator Set Point  
V
7
10.5  
V
CC  
CCSP  
from V  
CC  
V
Supply Current After Startup  
I
V = +24V  
IN  
1.4  
2.5  
90  
mA  
µA  
IN  
IN  
Shutdown Supply Current  
UVLO/EN = low  
GATE DRIVER  
R
Measured at NDRV sinking, 100mA  
Measured at NDRV sourcing, 20mA  
2
4
4
ON(LOW)  
Driver Output Impedance  
R
12  
ON(HIGH)  
Driver Peak Sink Current  
Driver Peak Source Current  
PWM COMPARATOR  
Comparator Offset Voltage  
CS Input Bias Current  
1
A
A
0.65  
VO  
V
V
V
- V  
CS  
1.15  
-2  
1.38  
1.70  
+2  
V
PWM  
COMP  
I
= 0V  
µA  
ns  
ns  
CS  
CS  
CS  
Comparator Propagation Delay  
Minimum On-Time  
t
= +0.1V  
60  
PWM  
t
150  
ON(MIN)  
2
_______________________________________________________________________________________  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +12V (for MAX5052, V must first be brought up to 23.6V for startup), 10nF bypass capacitors at V and V , C  
= 0,  
IN  
IN  
IN  
CC  
NDRV  
V
UVLO  
= +1.4V, V = +1.0V, V  
= floating, V = 0V, typical values are measured at T = +25°C, T = -40°C to + 85°C, unless  
COMP CS A A  
FB  
otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CURRENT-LIMIT COMPARATOR  
Current-Limit Trip Threshold  
CS Input Bias Current  
V
262  
-2  
291  
320  
+2  
mV  
µA  
CS  
I
V
= 0V  
CS  
CS  
Propagation Delay From  
Comparator Input to NDRV  
t
50mV overdrive  
60  
ns  
kHz  
%
PWM  
Switching Frequency  
f
230  
262  
50  
290  
50.5  
76  
SW  
MAX505_A  
MAX505_B  
Maximum Duty Cycle  
D
MAX  
75  
V
CLAMP VOLTAGE  
IN  
V
Clamp Voltage  
V
2mA sink current  
24.1  
26.1  
29.0  
V
IN  
INC  
ERROR AMPLIFIER  
Voltage Gain  
R
R
R
= 100k  
80  
2
dB  
MHz  
LOAD  
LOAD  
LOAD  
Unity-Gain Bandwidth  
Phase Margin  
= 100k, C  
= 100k, C  
= 200pF  
= 200pF  
LOAD  
65  
degrees  
mV  
LOAD  
FB Input Offset Voltage  
3
High  
Low  
2.2  
0.4  
3.5  
1.1  
COMP Pin Clamp Voltage  
V
Source Current  
0.5  
mA  
mA  
V
Sink Current  
0.5  
Reference Voltage  
V
(Note 2)  
1.218  
1.230  
8
1.242  
50  
REF  
Input Bias Current  
nA  
mA  
COMP Short-Circuit Current  
THERMAL SHUTDOWN  
Thermal-Shutdown Temperature  
Thermal Hysteresis  
130  
25  
°C  
°C  
DIGITAL SOFT-START  
clock  
cycles  
Soft-Start Duration  
15,872  
Reference Voltage Steps During  
Soft-Start  
31  
40  
steps  
mV  
Reference Voltage Step  
Note 1: All devices are 100% tested at T = +85°C. All limits over temperature are guaranteed by characterization.  
A
Note 2: V  
is measured with FB connected to the COMP pin (see Functional Diagram).  
REF  
_______________________________________________________________________________________  
3
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
Typical Operating Characteristics  
(UVLO = +1.4V, V = +1V, V  
= floating, V = 0V, T = +25°C, unless otherwise noted.)  
FB  
COMP  
CS  
A
BOOTSTRAP UVLO WAKE-UP LEVEL  
vs. TEMPERATURE  
BOOTSTRAP UVLO SHUTDOWN LEVEL  
vs. TEMPERATURE  
UVLO/EN WAKE-UP THRESHOLD  
vs. TEMPERATURE  
21.60  
21.55  
21.50  
21.45  
21.40  
21.35  
21.30  
10.1  
10.0  
9.9  
1.280  
1.275  
1.270  
1.265  
1.260  
1.255  
1.250  
MAX5052 V RISING  
MAX5052 V FALLING  
UVLO/EN RISING  
IN  
IN  
9.8  
9.7  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
UVLO/EN SHUTDOWN THRESHOLD  
vs. TEMPERATURE  
V
SUPPLY CURRENT AFTER STARTUP  
vs. TEMPERATURE  
V
SUPPLY CURRENT IN UNDERVOLTAGE  
LOCKOUT vs. TEMPERATURE  
IN  
IN  
1.30  
1.25  
1.20  
1.15  
1.10  
1.5  
1.4  
1.3  
1.2  
1.1  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
UVLO/EN FALLING  
V = 24V  
IN  
V
= 19V  
IN  
MAX5052 WHEN IN BOOTSTRAP UVLO  
MAX5053 WHEN UVLO/EN IS LOW  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
REGULATOR SET POINT  
vs. TEMPERATURE  
CURRENT-LIMIT TRIP THRESHOLD  
vs. TEMPERATURE  
V
REGULATOR SET POINT  
vs. TEMPERATURE  
CC  
CC  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
310  
305  
300  
295  
290  
285  
280  
275  
270  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
TOTAL NUMBER OF  
DEVICES = 100  
V
= 10.8V  
V
= 19V  
IN  
IN  
+3σ  
NO LOAD  
NDRV OUTPUT IS NOT  
SWITCHING, V = 1.5V  
FB  
10mA LOAD  
20mA LOAD  
MEAN  
NDRV OUTPUT IS  
SWITCHING  
-3σ  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
Typical Operating Characteristics (continued)  
(UVLO = +1.4V, V = +1V, V  
= floating, V = 0V, T = +25°C, unless otherwise noted.)  
CS A  
FB  
COMP  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
CURRENT-LIMIT TRIP THRESHOLD  
280  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
TOTAL NUMBER OF  
DEVICES = 100  
TOTAL NUMBER OF  
DEVICES = 200  
TOTAL NUMBER OF  
DEVICES = 200  
+3σ  
275  
270  
265  
260  
255  
250  
245  
240  
MEAN  
-3σ  
0
0
-40  
-20  
0
20  
40  
60  
80  
230  
240  
250  
260  
270  
280  
290  
260  
270  
280  
290  
300  
310  
320  
TEMPERATURE (°C)  
SWITCHING FREQUENCY (kHz)  
CURRENT-LIMIT TRIP THRESHOLD (mV)  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
PROPAGATION DELAY FROM CURRENT-LIMIT  
COMPARATOR INPUT TO NDRV vs. TEMPERATURE  
75  
UVLO/EN PROPAGATION DELAY  
vs. TEMPERATURE  
1.230  
1.229  
1.228  
1.227  
1.226  
1.225  
14  
13  
12  
11  
10  
9
8
7
6
5
V
= 12V  
IN  
UVLO/EN RISING  
70  
65  
60  
55  
50  
4
3
2
1
UVLO/EN FALLING  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT CURRENT  
vs. INPUT CLAMP VOLTAGE  
INPUT CLAMP VOLTAGE  
vs. TEMPERATURE  
NDRV OUTPUT IMPEDANCE  
vs. TEMPERATURE  
10  
9
8
7
6
5
4
3
2
1
0
27.0  
26.8  
26.6  
26.4  
26.2  
26.0  
25.8  
25.6  
25.4  
25.2  
25.0  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
I
= 2mA  
V
= 24V  
IN  
IN  
SINKING 100mA  
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0  
INPUT VOLTAGE (V)  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
Typical Operating Characteristics (continued)  
(UVLO = +1.4V, V = +1V, V  
= floating, V = 0V, T = +25°C, unless otherwise noted.)  
CS A  
FB  
COMP  
ERROR AMP OPEN-LOOP GAIN  
AND PHASE vs. FREQUENCY  
NDRV OUTPUT IMPEDANCE  
vs. TEMPERATURE  
MAX5052 toc20  
120  
100  
80  
50  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
V
= 24V  
SOURCING 20mA  
IN  
30  
10  
GAIN  
60  
-10  
-30  
-50  
-70  
-90  
-110  
-130  
-150  
-170  
40  
20  
0
PHASE  
-20  
-40  
-60  
-80  
-100  
0.1  
1
10  
100  
1k  
10k 100k 1M 10M 100M  
-40  
-20  
0
20  
40  
60  
80  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
Externally Programmable Undervoltage Lockout. UVLO programs the input start voltage. Connect UVLO to  
GND to disable the device.  
1
UVLO/EN  
2
3
FB  
Error-Amplifier Inverting Input  
Error-Amplifier Output  
COMP  
Current-Sense Connection for PWM Regulation and Overcurrent Protection. Connect to high side of sense  
resistor. An RC filter may be necessary to eliminate leading-edge spikes.  
4
CS  
5
6
7
GND  
Power-Supply Ground  
NDRV  
External N-Channel MOSFET Gate Connection  
V
Gate-Drive Supply. Internally regulated down from V . Decouple with a 10nF or larger capacitor to GND.  
IN  
CC  
IC Supply. Decouple with a 10nF or larger capacitor to GND. For bootstrapped operation (MAX5052)  
8
V
connect a startup resistor from the input supply line to V . Connect the bias winding supply to this point as  
IN  
IN  
well (see the Typical Operating Circuit). For the MAX5053, connect V directly to 10.8V to 24V supply.  
IN  
supplies increases their input supply current as the  
input voltage drops in order to keep the output power  
Detailed Description  
The MAX5052/MAX5053 are current-mode PWM con-  
trollers that have been specifically designed for use in  
isolated and nonisolated power-supply applications. A  
bootstrap UVLO with a large hysteresis (11.9V), very  
low startup current, and low operating current result in  
efficient universal-input power supplies. In addition to  
the internal bootstrap UVLO, these devices also offer  
programmable input startup voltage programmed  
through the UVLO/EN pin. This feature is useful in pre-  
venting the power supply from entering a brownout  
condition, in case the input voltage drops below its  
minimum value. This is important since switching power  
constant. The MAX5052 is well suited for universal input  
(rectified 85VAC to 265VAC) or telecom (-36VDC to  
-72VDC) power supplies. The MAX5053 is well suited for  
low-input-voltage (10.8VDC to 24VDC) power supplies.  
Power supplies designed with the MAX5052 use a  
high-value startup resistor, R1, that charges a reservoir  
capacitor, C1 (see Figure 1). During this initial period,  
while the voltage is less than the internal bootstrap  
UVLO threshold, the device typically consumes only  
45µA of quiescent current. This low startup current and  
the large bootstrap UVLO hysteresis helps to minimize  
6
_______________________________________________________________________________________  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
(max). V is the value of the input-supply voltage  
IN  
where the power supply must start.  
D1  
T1  
V
SUPPLY  
D2  
V
OUT  
R5  
V
V  
ULR2  
IN  
R2 =  
× R3  
R2  
V
R1  
C1  
ULR2  
C4  
Q1  
where I  
is the UVLO/EN pin input current (50nA),  
UVLO  
V
V
NDRV  
CS  
IN  
and V  
is the UVLO/EN wake-up threshold.  
ULR2  
MAX5052  
CC  
C2  
MAX5052 Bootstrap  
Undervoltage Lockout  
C3  
R4  
GND  
R6  
COMP  
FB  
In addition to the externally programmable UVLO func-  
tion offered in both the MAX5052 and MAX5053, the  
MAX5052 has an additional internal bootstrap UVLO  
that is very useful when designing high-voltage power  
supplies (see the Functional Diagram). This allows the  
device to bootstrap itself during initial power-up. The  
UVLO/EN  
R3  
0V  
MAX5052 attempts to start when V exceeds the boot-  
IN  
Figure 1. Nonisolated Power Supply with Programmable Input-  
Supply Start Voltage  
strap UVLO threshold of 21.6V.  
During startup, the UVLO circuit keeps the CPWM com-  
parator, ILIM comparator, oscillator, and output driver  
the power dissipation across R1 even at the high end of  
the universal AC input voltage (265VAC).  
shut down to reduce current consumption. Once V  
IN  
The MAX5052/MAX5053 include a cycle-by-cycle cur-  
rent limit that turns off the gate drive to the external  
MOSFET during an overcurrent condition. When using  
the MAX5052 in the bootstrapped mode (if the power-  
supply output is shorted), the tertiary winding voltage  
drops below the 10V threshold causing the UVLO to  
turn off the gate drive to the external power MOSFET.  
This reinitiates a startup sequence with soft-start.  
reaches 21.6V, the UVLO circuit turns on both the CPWM  
and ILIM comparators, as well as the oscillator, and  
allows the output driver to switch. If V drops below  
IN  
9.7V, the UVLO circuit will shut down the CPWM com-  
parator, ILIM comparator, oscillator, and output driver  
returning the MAX5052/MAX5053 to the startup mode.  
MAX5052 Startup Operation  
Normally V is derived from a tertiary winding of the  
IN  
transformer. However, at startup there is no energy  
delivered through the transformer, hence, a special  
bootstrap sequence is required. Figure 2 shows the  
MAX5052/MAX5053  
Undervoltage Lockout  
The MAX5052/MAX5053 have an input voltage  
UVLO/EN pin. The threshold for this UVLO is 1.28V.  
Before any operation can commence, the voltage on  
this pin has to exceed 1.28V. The UVLO circuit keeps  
the CPWM comparator, ILIM comparator, oscillator,  
and output driver shut down to reduce current con-  
sumption (see the Functional Diagram).  
voltages on V and V  
during startup. Initially, both  
CC  
IN  
V
and V  
are 0V. After the line voltage is applied,  
IN  
CC  
C1 charges through the startup resistor, R1, to an inter-  
mediate voltage. At this point, the internal regulator  
begins charging C2 (see Figure 1). The MAX5052 uses  
only 45µA of the current supplied by R1, and the  
remaining input current charges C1 and C2. The charg-  
Use this UVLO function to program the input-supply  
start voltage. For example, a reasonable start voltage  
for a 36V to 72V telecom range might be set at 34V.  
Calculate the divider resistor values, R2 and R3 (see  
Figure 1) by using the following formulas:  
ing of C2 stops when the V  
voltage reaches approxi-  
CC  
mately 9.5V, while the voltage across C1 continues  
rising until it reaches the wake-up level of 21.6V. Once  
V
exceeds the bootstrap UVLO threshold, NDRV  
IN  
begins switching the MOSFET and transfers energy to  
the secondary and tertiary outputs. If the voltage on the  
tertiary output builds to higher than 9.9V (the bootstrap  
UVLO lower threshold), then startup has been accom-  
plished and sustained operation commences.  
V
× V  
ULR2  
IN  
V  
R3 ≅  
500 × I  
V
(
)
UVLO IN  
ULR2  
The value of R3 is calculated to minimize the voltage-  
drop error across R2 as a result of the input bias cur-  
rent of the UVLO/EN pin. V  
= 1.28V, I  
= 50nA  
UVLO  
ULR2  
_______________________________________________________________________________________  
7
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
where I is the MAX5052s internal supply current after  
IN  
startup (1.4mA), Q  
is the total gate charge for Q1,  
gtot  
V
CC  
f
is the MAX5052s switching frequency (262kHz),  
is the bootstrap UVLO hysteresis (12V) and t is  
ss  
SW  
2V/div  
V
hyst  
the internal soft-start time (60ms).  
MAX5052  
IN  
5V/div  
For example:  
V
PIN  
I = (8nC) (262kHz) 2.1mA  
g
0V  
1.4mA +2.1mA 60ms  
) (  
(
)
=17.5µF  
C1=  
12V  
(
)
choose 15µF standard value.  
Assuming C1 > C2, calculate the value of R1 as follows:  
× C1  
100ms/div  
Figure 2. V and V  
During Startup when Using the  
CC  
MAX5052 in Bootstrapped Mode (Figure 1)  
IN  
V
SUVR  
I
=
C1  
500ms  
(
)
If V drops below 9.9V before startup is complete, the  
IN  
device goes back to low-current UVLO. In this case,  
increase the value of C1 in order to store enough energy  
to allow for the voltage at tertiary winding to build up.  
V
V  
IN(MIN)  
SUVR  
R1=  
I
+ I  
START  
C1  
Startup Time Considerations For Power  
Supplies Using the MAX5052  
where V  
is the minimum input supply voltage for  
IN(MIN)  
the application (36V for telecom), V  
is the boot-  
SUVR  
The V bypass capacitor, C1, supplies current imme-  
IN  
strap UVLO wake-up level (23.6V max.), I  
is the  
START  
diately after wake up (see Figure 1). The size of C1 and  
the connection configuration of the tertiary winding  
determine the number of cycles available for startup.  
Large values of C1 increase the startup time but also  
supply gate charge for more cycles during initial start-  
V
IN  
supply current at startup (90µA, max).  
For example:  
24V 15µF  
(
) (  
)
= 0.72mA  
I
=
(
C1  
500ms  
up. If the value of C1 is too small, V drops below 9.9V  
IN  
(
)
because NDRV does not have enough time to switch  
and build up sufficient voltage across the tertiary output  
which powers the device. The device goes back into  
UVLO and does not start. Use a low-leakage capacitor  
for C1 and C2.  
36V 12V  
)
(
)
R1=  
= 29.6kΩ  
0.72mA + 90µA  
(
)
(
)
choose 32kstandard value.  
As a rule of thumb, offline power supplies keep typical  
startup times to less than 500ms even in low-line condi-  
tions (85VAC input for universal offline or 36VDC for  
telecom applications). Size the startup resistor, R1, to  
supply both the maximum startup bias of the device  
(90µA) and the charging current for C1 and C2. The  
bypass capacitor, C2, must charge to 9.5V and C1 to  
24V, all within the desired time period of 500ms.  
Because of the internal 60ms soft-start time of the  
MAX5052, C1 must store enough charge to deliver cur-  
rent to the device for at least this much time. To calcu-  
late the approximate amount of capacitance required,  
use the following formula:  
Choose a higher value for R1 than the one calculated  
above if longer startup time can be tolerated in order to  
minimize power loss on this resistor.  
The above startup method is applicable to a circuit simi-  
lar to the one shown in Figure 1. In this circuit, the tertiary  
winding has the same phase as the output windings.  
Thus, the voltage on the tertiary winding at any given  
time is proportional to the output voltage and goes  
through the same soft-start period as the output voltage.  
The minimum discharge voltage of C1 from 22V to 10V  
must be greater than the soft-start time of 60ms.  
Another method for bootstrapping the power supply is to  
have a separate bias winding than the one used for reg-  
ulating the output voltage and to connect the bias wind-  
ing so that it is in phase with the MOSFET ON time (see  
Figure 3). The amount of capacitance required is much  
I
= Q  
× f  
SW  
g
gtot  
IN  
I
(
+ I  
t
(
)
)
g
SS  
C1=  
V
hyst  
8
_______________________________________________________________________________________  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
D1  
T1  
+V  
IN  
D2  
V
OUT  
R2  
R1  
C1  
C4  
Q1  
U1  
V
V
NDRV  
CS  
IN  
R8  
R9  
C3  
MAX5052  
CC  
U2  
OPTO LED  
R7  
U2  
R4  
GND  
OPTO TRANS  
COMP  
FB  
U3  
TL431  
R5  
UVLO/EN  
R10  
R3  
R6  
C2  
-V  
IN  
Figure 3. Secondary-Side Regulated, Isolated Power Supply  
smaller. However, in this mode, the input voltage range  
has to be roughly 2:1. Another consideration is if the bias  
winding is in phase with the output, then the power sup-  
ply hiccups and soft-start under output short-circuit con-  
ditions. Whereas, this property is lost if the bias winding  
is in phase with the MOSFET ON time.  
1V/div  
Soft-Start  
The MAX5052/MAX5053 soft-start feature allows the load  
voltage to ramp up in a controlled manner, eliminating  
output voltage overshoot. Soft-start begins after UVLO is  
deasserted. The voltage applied to the noninverting  
node of the amplifier ramps from 0 to 1.23V in over a  
60ms soft-start timeout period. Figure 4 shows the 5V  
output of the power-supply circuit in Figure 5 during  
startup. Note the staircase increase of the output volt-  
age. This is a result of the digital soft-starting technique  
used. Unlike other devices, the MAX5052/MAX5053 ref-  
erence voltage to the internal amplifier is soft-started;  
this method results in superior control of the output volt-  
age under heavy- and light-load conditions.  
0V  
10ms/div  
Figure 4. Output Voltage Soft-Start During Initial Startup for the  
Circuit of Figure 5  
650mA/1000mA peak current, so select a MOSFET that  
yields acceptable conduction and switching losses.  
Internal Oscillator  
The internal oscillator switches at 1.048MHz and is  
divided down to 262kHz by two D flip-flops. The  
MAX5052A/MAX5053A invert the Q output of the last D  
flip-flop to provide a duty cycle of 50% (Figure 6). The  
MAX5052B/MAX5053B perform a logic NAND opera-  
tion on the Q outputs of both D flip-flops to provide a  
duty cycle of 75%.  
N-Channel MOSFET Switch Driver  
The NDRV pin drives an external N-channel MOSFET.  
The NDRV output is supplied by the internal regulator  
(V ), which is internally set to approximately 9.5V. For  
CC  
the universal input voltage range, the MOSFET used  
must be able to withstand the DC level of the high-line  
input voltage plus the reflected voltage at the primary of  
the transformer. For most offline applications that use the  
discontinuous flyback topology, this requires a MOSFET  
rated at 600V. NDRV can source/sink in excess of the  
_______________________________________________________________________________________  
9
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
IN  
FB_P  
T1  
D8  
D6  
D2  
VOUT2 (+15V/0.1A)  
L2  
9
10  
8
5
4
C5  
47µF  
25V  
C15  
1µF  
C16  
15µF  
35V  
R6  
33kΩ  
R7  
1.2kΩ  
R12  
1.2kΩ  
C12  
0.22µF  
D5  
D7*  
SGND  
OPEN  
+V  
IN  
VOUT1 (+5V/1.5A)  
+VIN  
D1  
L1  
3
2
1
7
6
C3  
C4  
C1  
1µF  
100V  
C2  
C13  
1µF  
C10*  
OPEN  
68µF  
22µF  
R8*  
OPEN  
D4  
1µF  
SGND  
6.3V  
6.3V  
100V  
C6  
0.0047µF  
D3*  
250VAC  
OPEN  
FB_P  
R1  
22.6kΩ  
1%  
IN  
2
8
FB  
V
IN  
C11  
C9  
2200pF  
R2  
2.49kΩ  
1%  
0.22µF  
6
R9  
5
4
8
7
4.3kΩ  
N1  
3
3
6
4
COMP  
NDRV  
CS  
U1  
1
2
R10  
0Ω  
C14  
0.022µF  
+V  
R11  
100Ω  
IN  
MAX5052A  
1
7
UVLO/EN  
C8  
OPEN  
R3  
R5  
1MΩ  
1%  
0.17Ω  
1%  
5
V
GND  
CC  
C7  
R4  
0.22µF  
42.2kΩ  
1%  
-VIN  
SHDN  
*COMPONENTS MARKED "OPEN" ARE OPTIONAL.  
(SEE MAX5052A EV KIT DATA SHEET.)  
JU1  
Figure 5. Primary Regulated, Dual-Output, Isolated Telecom Power Supply  
where V  
= 1.23V. The amplifiers noninverting input  
REF  
is internally connected to a digital soft-start circuit that  
gradually increases the reference voltage during start-  
up and is applied to this pin. This forces the output volt-  
age to come up in an orderly and well-defined manner  
under all load conditions.  
262kHz WITH 50%  
D
Q
Q
D
Q
Q
(MAX5052A/MAX5053A)  
OSCILLATOR  
1.048MHz  
262kHz WITH 75%  
(MAX5052B/MAX5053B)  
The error amplifier may also be used to regulate the ter-  
tiary winding output which implements a primary-side  
regulated, isolated power supply (see Figure 5).  
Calculate the output voltage using the following equation:  
Figure 6. Internal Oscillator  
Internal Error Amplifier  
The MAX5052/MAX5053 include an internal error ampli-  
fier that can be used to regulate the output voltage in  
the case of a nonisolated power supply (see Figure 1)  
Calculate the output voltage using the following equation:  
N
N
R1  
R2  
S
V
=
1 +  
V
+ V  
D6  
V  
D1  
OUT1  
REF  
T
R5  
R6  
where N is the number of secondary turns for V  
T
,
S
OUT1  
V
= 1 +  
V
REF  
OUT  
N is the number of tertiary winding turns, and both V  
D6  
and V are the diode drops at the respective outputs.  
D1  
10 ______________________________________________________________________________________  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
Current Limit  
Layout Recommendations  
All printed circuit board traces carrying switching cur-  
rents must be kept as short as possible, and the cur-  
rent loops they form must be minimized. The pins of the  
µMAX package have been placed to allow easy inter-  
facing to the external MOSFET.  
The current-sense resistor (R ), connected between  
CS  
the source of the MOSFET and ground, sets the current  
limit. The CS input has a voltage-trip level (V ) of  
CS  
291mV. Use the following equation to calculate the  
value of R  
:
CS  
V
CS  
For universal AC input design, all applicable safety reg-  
ulations must be followed. Offline power supplies may  
require UL, VDE, and other similar agency approvals.  
These agencies can be contacted for the latest layout  
and component rules.  
R
=
CS  
I
PRI  
Where I  
is the peak current in the primary that flows  
PRI  
through the MOSFET.  
When the voltage produced by this current (through the  
current-sense resistor) exceeds the current-limit com-  
parator threshold, the MOSFET driver (NDRV) quickly  
terminates the current ON-cycle, typically within 60ns.  
In most cases, a small RC filter is required to filter out  
the leading-edge spike on the sense waveform. Set the  
corner frequency at a few megahertz.  
Typically there are two sources of noise emission in a  
switching power supply: high di/dt loops and high dv/dt  
surfaces. For example, traces that carry the drain cur-  
rent often form high di/dt loops. Similarly, the heatsink  
of the MOSFET presents a dv/dt source, thus the sur-  
face area of the heatsink must be minimized as much  
as possible.  
To achieve best performance, a star ground connection  
is recommended to avoid ground loops. For example,  
the ground returns for the power-line input filter, power  
MOSFET switch, and sense resistor should be routed  
separately through wide copper traces to meet at a sin-  
gle-system ground connection.  
Applications Information  
Primary Regulated, Isolated  
Telecom Power Supply  
Figure 5 shows a complete design of a dual-output power  
supply with a telecom voltage range of 36V to 72V. An  
important aspect of this power supply is its primary-side  
regulation. This regulation, through the tertiary winding,  
also acts as bias winding for the MAX5052.  
Chip Information  
TRANSISTOR COUNT: 1449  
In the circuit of Figure 5, cross-regulation has been  
improved (tertiary and 5V outputs) by using chip induc-  
tors, L1 and L2, and R7||R2. R7||R2 presents enough  
loading on the tertiary winding output to allow 5% load  
regulation on the 5V output over a load current range  
from 150mA to 1.5A.  
PROCESS: BiCMOS  
L1  
D1  
5V OUTPUT LOAD REGULATION  
12V  
15V  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
R2  
C4  
Q1  
R5  
V
V
NDRV  
CS  
IN  
C1  
MAX5053  
CC  
C2  
C3  
R1  
GND  
R6  
COMP  
FB  
UVLO/EN  
R3  
4.0  
0.15 0.35 0.55 0.75 0.95 1.15 1.35  
0V  
I
(A)  
OUT  
Figure 7. Output Voltage Regulation for the Figure 5 Circuit  
Figure 8. 12V to 15V Out Boost Regulator  
______________________________________________________________________________________ 11  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
Functional Diagram  
V
IN  
V
V
CC  
IN  
CC  
V
IN  
CLAMP  
REGULATOR  
REG_OK  
26.1V  
BOOTSTRAP UVLO  
V
L
**  
DIGITAL  
SOFT-START  
REFERENCE  
1.23V  
21.6V  
9.74V  
(INTERNAL 5.25V SUPPLY)  
UVLO  
UVLO  
1.28V  
1.23V  
COMP  
DRIVER  
S
R
Q
FB  
NDRV  
GND  
ERROR  
AMP  
CPWM  
OSCILLATOR  
262kHz*  
CS  
1.4V  
VO  
PWM  
THERMAL  
SHUTDOWN  
V
CS  
0.3V  
MAX5052/MAX5053  
*MAX5052A/MAX5053A: 50% MAXIMUM DUTY CYCLE,  
MAX5052B/MAX5053B: 75% MAXIMUM DUTY CYCLE.  
**MAX5052 ONLY.  
ILIM  
Typical Operating Circuit  
Selector Guide  
D1  
BOOTSTRAP  
UVLO  
STARTUP  
VOLTAGE  
MAX DUTY  
CYCLE  
T1  
PART  
D2  
C4  
R7  
C5  
MAX5052A  
MAX5052B  
MAX5053A  
MAX5053B  
Yes  
Yes  
No  
22V  
22 V  
50%  
75%  
50%  
75%  
V
SUPPLY  
V
OUT  
R2  
R1  
C1  
D4  
10.8V*  
10.8V*  
Q1  
No  
V
V
NDRV  
CS  
IN  
*The MAX5053 does not have an internal bootstrap UVLO. The  
MAX5053 starts operation as long as the V pin is higher than  
MAX5052  
CC  
CC  
C2  
C3  
7V (the guaranteed output with a V pin voltage of 10.8V) and  
the UVLO/EN pin is high.  
IN  
R4  
GND  
R5  
R6  
COMP  
FB  
UVLO/EN  
R3  
0V  
12 ______________________________________________________________________________________  
Current-Mode PWM Controllers with an Error  
Amplifier for Isolated/Nonisolated Power Supplies  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50±0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6±0.1  
E
H
0.116  
0.188  
0.016  
0  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6±0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX5052|MAX5053

Current-Mode PWM Controllers with an Error Amplifier for Isolated/Nonisolated Power Supplies
MAXIM

MAX5053

Current-Mode PWM Controllers with an Error Amplifier for Isolated/Nonisolated Power Supplies
MAXIM

MAX5053AEUA

SMPS Controller
MAXIM

MAX5053AEUA+

Switching Controller, Current-mode, 290kHz Switching Freq-Max, BICMOS, PDSO8, MICRO MAX, SOP-8
MAXIM

MAX5053AEUA-T

Switching Controller, Current-mode, 290kHz Switching Freq-Max, BICMOS, PDSO8, MICRO MAX, SOP-8
MAXIM

MAX5053BEUA

SMPS Controller
MAXIM

MAX5053BEUA+T

Switching Controller, Current-mode, 290kHz Switching Freq-Max, BICMOS, PDSO8, MICRO MAX, SOP-8
MAXIM

MAX5053BEUA-T

Switching Controller, Current-mode, 290kHz Switching Freq-Max, BICMOS, PDSO8, MICRO MAX, SOP-8
MAXIM

MAX5054

4A, 20ns, Dual MOSFET Drivers
MAXIM

MAX5054AATA

4A, 20ns, Dual MOSFET Drivers
MAXIM

MAX5054AATA+

Buffer/Inverter Based MOSFET Driver, 4A, CMOS, PDSO8, 3 X 3 MM, ROHS COMPLIANT, TDFN-8
MAXIM

MAX5054AATA+T

Buffer/Inverter Based MOSFET Driver, 4A, CMOS, PDSO8, 3 X 3 MM, ROHS COMPLIANT, TDFN-8
MAXIM