MAX488CUA+T [MAXIM]

暂无描述;
MAX488CUA+T
型号: MAX488CUA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总16页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0410; Rev 3; 7/96  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
35–9/MAX1487E  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
ESD Protection: ±15kV—Human Body Model  
The MAX481E, MAX483E, MAX485E, MAX487E–MAX491E,  
and MAX1487E are low-power transceivers for RS-485 and  
RS-422 communications in harsh environments. Each driver  
output and receiver input is protected against ±15kV electro-  
static discharge (ESD) shocks, without latchup. These parts  
c onta in one d rive r a nd one re c e ive r. The MAX483E,  
MAX487E, MAX488E, and MAX489E feature reduced slew-  
rate drivers that minimize EMI and reduce reflections caused  
by improperly terminated cables, thus allowing error-free  
data transmission up to 250kbps. The driver slew rates of the  
MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E  
are not limited, allowing them to transmit up to 2.5Mbps.  
Slew-Rate Limited for Error-Free Data  
Transmission (MAX483E/487E/488E/489E)  
Low Quiescent Current:  
120µA (MAX483E/487E/488E/489E)  
230µA (MAX1487E)  
300µA (MAX481E/485E/490E/491E)  
-7V to +12V Common-Mode Input Voltage Range  
Three-State Outputs  
30ns Propagation Delays, 5ns Skew  
(MAX481E/485E/490E/491E/1487E)  
These transceivers draw as little as 120µA supply current  
when unloaded or when fully loaded with disabled drivers  
(s e e Se le c tion Ta b le ). Ad d itiona lly, the MAX481E,  
MAX483E, and MAX487E have a low-current shutdown  
mode in which they consume only 0.5µA. All parts operate  
from a single +5V supply.  
Full-Duplex and Half-Duplex Versions Available  
Allows up to 128 Transceivers on the Bus  
(MAX487E/MAX1487E)  
Drivers are short-circuit current limited, and are protected  
against excessive power dissipation by thermal shutdown  
circuitry that places their outputs into a high-impedance  
state. The receiver input has a fail-safe feature that guaran-  
tees a logic-high output if the input is open circuit.  
Current Limiting and Thermal Shutdown for  
Driver Overload Protection  
The MAX487E and MAX1487E feature quarter-unit-load  
receiver input impedance, allowing up to 128 transceivers  
on the bus. The MAX488E–MAX491E are designed for full-  
duplex communications, while the MAX481E, MAX483E,  
MAX485E, MAX487E, and MAX1487E are designed for half-  
duplex applications. For applications that are not ESD sen-  
sitive se e the p in- a nd func tion-c ompa tible MAX481,  
MAX483, MAX485, MAX487–MAX491, and MAX1487.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX481ECPA  
MAX481ECSA  
MAX481EEPA  
MAX481EESA  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
8 Plastic DIP  
8 SO  
________________________Ap p lic a t io n s  
Low-Power RS-485 Transceivers  
Ordering Information continued on last page.  
Low-Power RS-422 Transceivers  
Level Translators  
Transceivers for EMI-Sensitive Applications  
Industrial-Control Local Area Networks  
______________________________________________________________S e le c t io n Ta b le  
RECEIVER/  
DRIVER  
ENABLE  
QUIESCENT  
CURRENT  
(µA)  
NUMBER OF  
TRANSMITTERS  
ON BUS  
PART  
NUMBER  
HALF/FULL DATA RATE SLEW-RATE LOW-POWER  
PIN  
COUNT  
DUPLEX  
(Mbps)  
LIMITED  
SHUTDOWN  
MAX481E  
MAX483E  
MAX485E  
MAX487E  
MAX488E  
MAX489E  
MAX490E  
MAX491E  
MAX1487E  
Half  
Half  
Half  
Half  
Full  
Full  
Full  
Full  
Half  
2.5  
0.25  
2.5  
No  
Yes  
No  
Yes  
Yes  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
300  
120  
300  
120  
120  
120  
300  
300  
230  
32  
32  
8
8
32  
8
0.25  
0.25  
0.25  
2.5  
Yes  
Yes  
Yes  
No  
128  
32  
8
8
Yes  
No  
32  
14  
8
32  
2.5  
No  
Yes  
Yes  
32  
14  
8
2.5  
No  
128  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V ).............................................................12V  
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)..800mW  
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW  
14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW  
Operating Temperature Ranges  
MAX4_ _C_ _/MAX1487EC_ A .............................0°C to +70°C  
MAX4_ _E_ _/MAX1487EE_ A...........................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
–  
Control Input Voltage (RE, DE)...................-0.5V to (V + 0.5V)  
CC  
CC  
Driver Input Voltage (DI).............................-0.5V to (V + 0.5V)  
Driver Output Voltage (Y, Z; A, B) ..........................-8V to +12.5V  
Receiver Input Voltage (A, B).................................-8V to +12.5V  
Receiver Output Voltage (RO)....................-0.5V to (V + 0.5V)  
CC  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ....727mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(V = 5V ±5%, T = T  
to T , unless otherwise noted.) (Notes 1, 2)  
MAX  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Driver Output (no load)  
V
OD1  
5
V
R = 50(RS-422)  
2
Differential Driver Output  
(with load)  
V
OD2  
V
R = 27(RS-485), Figure 8  
1.5  
5
Change in Magnitude of Driver  
Differential Output Voltage for  
Complementary Output States  
V  
R = 27or 50, Figure 8  
0.2  
V
V
V
OD  
Driver Common-Mode Output  
Voltage  
V
OC  
R = 27or 50, Figure 8  
R = 27or 50, Figure 8  
3
Change in Magnitude of Driver  
Common-Mode Output Voltage  
for Complementary Output States  
V  
OD  
0.2  
–  
Input High Voltage  
Input Low Voltage  
Input Current  
V
IH  
DE, DI, RE  
2.0  
V
V
–  
V
IL  
DE, DI, RE  
0.8  
±2  
–  
I
IN1  
DE, DI, RE  
µA  
DE = 0V;  
V
= 12V  
= -7V  
1.0  
IN  
V
CC  
= 0V or 5.25V,  
mA  
all devices except  
MAX487E/MAX1487E  
Input Current  
(A, B)  
V
IN  
-0.8  
I
IN2  
V
= 12V  
= -7V  
0.25  
-0.2  
IN  
MAX487E/MAX1487E,  
mA  
V
DE = 0V, V = 0V or 5.25V  
CC  
V
IN  
Receiver Differential Threshold  
Voltage  
V
TH  
-7V V 12V  
-0.2  
3.5  
0.2  
CM  
Receiver Input Hysteresis  
V  
TH  
V
CM  
= 0V  
70  
mV  
V
Receiver Output High Voltage  
Receiver Output Low Voltage  
V
I = -4mA, V = 200mV  
O ID  
OH  
V
OL  
I
= 4mA, V = -200mV  
0.4  
±1  
V
O
ID  
Three-State (high impedance)  
Output Current at Receiver  
I
0.4V V 2.4V  
µA  
kΩ  
kΩ  
OZR  
O
-7V V 12V, all devices except  
MAX487E/MAX1487E  
CM  
12  
48  
Receiver Input Resistance  
R
IN  
-7V V 12V, MAX487E/MAX1487E  
CM  
35–9/MAX1487E  
2
_______________________________________________________________________________________  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
35–9/MAX1487E  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V ±5%, T = T  
to T , unless otherwise noted.) (Notes 1, 2)  
MAX  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX488E/MAX489E,  
120  
250  
–  
DE, DI, RE = 0V or V  
CC  
MAX490E/MAX491E,  
–  
DE, DI, RE = 0V or V  
300  
500  
CC  
DE = V  
500  
300  
300  
230  
350  
250  
120  
0.5  
900  
500  
500  
400  
650  
400  
250  
10  
CC  
MAX481E/MAX485E,  
–  
No-Load Supply Current  
(Note 3)  
RE = 0V or V  
CC  
I
µA  
CC  
DE = 0V  
DE = V  
CC  
MAX1487E,  
–  
RE = 0V or V  
CC  
DE = 0V  
MAX483E  
MAX487E  
DE = V  
MAX483E/MAX487E,  
–  
RE = 0V or V  
CC  
CC  
DE = 0V  
–  
Supply Current in Shutdown  
Driver Short-Circuit Current,  
I
MAX481E/483E/487E, DE = 0V, RE = V  
µA  
SHDN  
CC  
I
-7V V 12V (Note 4)  
35  
250  
mA  
OSD1  
O
V
O
= High  
Driver Short-Circuit Current,  
= Low  
I
-7V V 12V (Note 4)  
35  
7
250  
95  
mA  
OSD2  
O
V
O
Receiver Short-Circuit Current  
ESD Protection  
I
0V V V  
mA  
kV  
OSR  
O
CC  
A, B, Y and Z pins, tested using Human Body Model  
±15  
SWITCHING CHARACTERISTICS—MAX481E/MAX485E, MAX490E/MAX491E, MAX1487E  
(V = 5V ±5%, T = T  
to T , unless otherwise noted.) (Notes 1, 2)  
MAX  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Figures 10 and 12, R = 54,  
MIN  
10  
TYP  
40  
40  
5
MAX  
60  
UNITS  
ns  
t
PLH  
PHL  
DIFF  
Driver Input to Output  
C
= C = 100pF  
L2  
t
L1  
10  
60  
Driver Output Skew to Output  
Driver Rise or Fall Time  
t
Figures 10 and 12, R  
= 54, C = C = 100pF  
10  
ns  
SKEW  
DIFF  
L1  
L2  
Figures 10 and 12,  
MAX481E, MAX485E, MAX1487E  
MAX490EC/E, MAX491EC/E  
3
5
20  
20  
40  
25  
t , t  
R = 54,  
DIFF  
ns  
R
F
C
= C = 100pF  
L1  
L2  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
Figures 11 and 13, C = 100pF, S2 closed  
45  
45  
45  
45  
70  
70  
70  
70  
ns  
ns  
ns  
ns  
ZH  
L
t
Figures 11 and 13, C = 100pF, S1 closed  
L
ZL  
LZ  
HZ  
t
Figures 11 and 13, C = 15pF, S1 closed  
L
t
Figures 11 and 13, C = 15pF, S2 closed  
L
Figures 10 and 14,  
MAX481E, MAX485E, MAX1487E  
MAX490EC/E, MAX491EC/E  
20  
20  
60  
60  
200  
150  
Receiver Input to Output  
t
, t  
R = 54,  
DIFF  
ns  
PLH PHL  
C
= C = 100pF  
L1  
L2  
Figures 10 and 14, R  
= 54,  
| t  
- tPHL | Differential  
DIFF  
PLH  
t
5
ns  
SKD  
C
= C = 100pF  
L2  
L1  
Receiver Skew  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable Time from Low  
Receiver Disable Time from High  
Maximum Data Rate  
t
Figures 9 and 15, C = 15pF, S1 closed  
20  
20  
20  
20  
50  
50  
50  
50  
ns  
ns  
ZL  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
RL  
ZH  
t
LZ  
Figures 9 and 15, C = 15pF, S1 closed  
ns  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
RL  
ns  
HZ  
f
2.5  
50  
Mbps  
ns  
MAX  
Time to Shutdown  
t
MAX481E (Note 5)  
200  
600  
SHDN  
_______________________________________________________________________________________  
3
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
SWITCHING CHARACTERISTICS—MAX481E/MAX485E, MAX490E/MAX491E, MAX1487E  
(continued)  
(V = 5V ±5%, T = T  
to T , unless otherwise noted.) (Notes 1, 2)  
MAX  
CC  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Figures 11 and 13, C = 100pF, S2 closed  
MIN  
TYP  
MAX  
UNITS  
Driver Enable from Shutdown to  
Output High (MAX481E)  
t
t
t
t
45  
100  
ns  
ZH(SHDN)  
ZL(SHDN)  
ZH(SHDN)  
ZL(SHDN)  
L
Driver Enable from Shutdown to  
Output Low (MAX481E)  
Figures 11 and 13, C = 100pF, S1 closed  
45  
100  
1000  
1000  
ns  
ns  
ns  
L
Receiver Enable from Shutdown  
to Output High (MAX481E)  
Figures 9 and 15, C = 15pF, S2 closed,  
L
A - B = 2V  
225  
225  
Receiver Enable from Shutdown  
to Output Low (MAX481E)  
Figures 9 and 15, C = 15pF, S1 closed,  
L
B - A = 2V  
SWITCHING CHARACTERISTICS—MAX483E, MAX487E/MAX488E/MAX489E  
(V = 5V ±5%, T = T  
to T , unless otherwise noted.) (Notes 1, 2)  
MAX  
CC  
A
MIN  
PARAMETER  
Driver Input to Output  
SYMBOL  
CONDITIONS  
MIN  
250  
250  
TYP  
800  
800  
MAX  
2000  
2000  
UNITS  
t
t
PLH  
PHL  
Figures 10 and 12, R  
= 54,  
DIFF  
DIFF  
DIFF  
ns  
C
= C = 100pF  
L2  
L1  
Figures 10 and 12, R  
= C = 100pF  
= 54,  
= 54,  
Driver Output Skew to Output  
Driver Rise or Fall Time  
t
20  
800  
ns  
ns  
SKEW  
C
L1  
L2  
Figures 10 and 12, R  
= C = 100pF  
t , t  
250  
2000  
R
F
C
L1  
L2  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
Figures 11 and 13, C = 100pF, S2 closed  
250  
250  
300  
300  
250  
250  
2000  
2000  
3000  
3000  
2000  
2000  
ns  
ns  
ns  
ns  
ZH  
L
t
Figures 11 and 13, C = 100pF, S1 closed  
L
ZL  
LZ  
HZ  
t
Figures 11 and 13, C = 15pF, S1 closed  
L
t
Figures 11 and 13, C = 15pF, S2 closed  
L
t
t
PLH  
PHL  
Figures 10 and 14, R  
= 54,  
DIFF  
Receiver Input to Output  
ns  
ns  
C
= C = 100pF  
L2  
L1  
Figures 10 and 14, R  
= C = 100pF  
= 54,  
I t  
- tPHL I Differential  
DIFF  
PLH  
t
100  
SKD  
C
L1  
L2  
Receiver Skew  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable Time from Low  
Receiver Disable Time from High  
Maximum Data Rate  
t
Figures 9 and 15, C = 15pF, S1 closed  
25  
25  
25  
25  
50  
50  
50  
50  
ns  
ns  
ZL  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
RL  
ZH  
t
LZ  
Figures 9 and 15, C = 15pF, S1 closed  
ns  
RL  
t
Figures 9 and 15, C = 15pF, S2 closed  
ns  
HZ  
RL  
f
t
, t < 50% of data period  
PLH PHL  
250  
50  
kbps  
ns  
MAX  
Time to Shutdown  
t
MAX483E/MAX487E (Note 5)  
200  
600  
SHDN  
Driver Enable from Shutdown to  
Output High  
MAX483E/MAX487E, Figures 11 and 13,  
t
t
2000  
ns  
ns  
ns  
ns  
ZH(SHDN)  
C
= 100pF, S2 closed  
L
Driver Enable from Shutdown to  
Output Low  
MAX483E/MAX487E, Figures 11 and 13,  
= 100pF, S1 closed  
t
2000  
2500  
2500  
ZL(SHDN)  
ZH(SHDN)  
C
L
Receiver Enable from Shutdown  
to Output High  
MAX483E/MAX487E, Figures 9 and 15,  
= 15pF, S2 closed  
C
L
Receiver Enable from Shutdown  
to Output Low  
MAX483E/MAX487E, Figures 9 and 15,  
= 15pF, S1 closed  
t
ZL(SHDN)  
C
35–9/MAX1487E  
L
4
_______________________________________________________________________________________  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
35–9/MAX1487E  
NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICS  
Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device  
ground unless otherwise specified.  
Note 2: All typical specifications are given for V = 5V and T = +25°C.  
CC  
A
Note 3: Supply current specification is valid for loaded transmitters when DE = 0V.  
Note 4: Applies to peak current. See Typical Operating Characteristics.  
Note 5: The MAX481E/MAX483E/MAX487E are put into shutdown by bringing RE high and DE low. If the inputs are in this state for  
–  
less than 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are  
guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = 5V, T = +25°C, unless otherwise noted.)  
CC  
A
OUTPUT CURRENT vs.  
RECEIVER OUTPUT LOW VOLTAGE  
OUTPUT CURRENT vs.  
RECEIVER OUTPUT HIGH VOLTAGE  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
50  
-25  
-20  
-15  
-10  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
45  
40  
35  
I
RO  
= 8mA  
30  
25  
20  
15  
3.4  
3.2  
3.0  
10  
5
-5  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT HIGH VOLTAGE (V)  
-60 -40 -20  
0
20 40 60 80 100  
OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
RECEIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
DRIVER OUTPUT CURRENT vs.  
DIFFERENTIAL OUTPUT VOLTAGE  
90  
80  
70  
60  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
I
RO  
= 8mA  
50  
40  
30  
0.2  
0.1  
0
20  
10  
0
-60 -40 -20  
0
20 40 60 80 100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = 5V, T = +25°C, unless otherwise noted.)  
CC  
A
OUTPUT CURRENT vs.  
DRIVER OUTPUT LOW VOLTAGE  
OUTPUT CURRENT vs.  
DRIVER OUTPUT HIGH VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
140  
120  
-100  
-90  
-80  
-70  
2.3  
R = 54  
2.2  
2.1  
2.0  
1.9  
100  
-60  
-50  
80  
60  
-40  
-30  
1.8  
1.7  
40  
20  
0
-20  
-10  
0
1.6  
1.5  
0
2
4
6
8
10  
12  
-8  
-6  
-4  
-2  
0
2
4
6
-60 -40 -20  
0
20 40 60 80 100  
OUTPUT LOW VOLTAGE (V)  
OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
MAX481E/MAX485E/MAX490E/MAX491E  
SUPPLY CURRENT vs. TEMPERATURE  
MAX1487E  
SUPPLY CURRENT vs. TEMPERATURE  
MAX483E/MAX487EMAX489E  
SUPPLY CURRENT vs. TEMPERATURE  
600  
500  
400  
300  
200  
600  
500  
400  
300  
200  
600  
500  
400  
300  
200  
MAX481E/MAX485E; DE = VCC, RE = X  
MAX483E; DE = VCC, RE = X  
MAX487E; DE = VCC, RE = X  
MAX1487E; DE = VCC, RE = X  
MAX1487E; DE = 0V, RE = X  
MAX485E; DE = 0, RE = X,  
MAX481E; DE = RE = 0  
MAX490E/MAX491E; DE = RE = X  
MAX483E/MAX487E; DE = RE = 0,  
MAX488E/MAX489E; DE = RE = X  
100  
0
100  
0
100  
0
MAX481E; DE = 0, RE = V  
CC  
MAX483E/MAX487E; DE = 0, RE = V  
CC  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
35–9/MAX1487E  
6
_______________________________________________________________________________________  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
335–9/MAX1487E5–9/MAX1487E  
______________________________________________________________P in De s c rip t io n  
PIN  
MAX481E/MAX483E  
MAX485E/MAX487E  
MAX1487E  
NAME  
FUNCTION  
MAX488E  
MAX490E  
MAX489E  
MAX491E  
Receiver Output: If A > B by 200mV, RO will be high;  
If A < B by 200mV, RO will be low.  
1
2
2
2
3
RO  
–  
Receiver Output Enable. RO is enabled when RE is  
–  
–  
RE  
low; RO is high impedance when RE is high.  
Driver Output Enable. The driver outputs, Y and Z, are  
enabled by bringing DE high. They are high imped-  
ance when DE is low. If the driver outputs are enabled,  
3
4
4
DE  
the parts function as line drivers. While they are high  
–—–  
impedance, they function as line receivers if RE is low.  
Driver Input. A low on DI forces output Y low and out-  
put Z high. Similarly, a high on DI forces output Y high  
and output Z low.  
3
5
DI  
5
4
5
6
6, 7  
9
GND  
Y
Ground  
Noninverting Driver Output  
Inverting Driver Output  
10  
Z
Noninverting Receiver Input and Noninverting Driver  
Output  
6
A
7
8
7
12  
A
B
B
Noninverting Receiver Input  
Inverting Receiver Input and Inverting Driver Output  
Inverting Receiver Input  
8
11  
1
14  
V
CC  
Positive Supply: 4.75V V 5.25V  
CC  
1, 8, 13  
N.C.  
No Connect—not internally connected  
_______________________________________________________________________________________  
7
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
MAX481E  
0.1µF  
MAX483E  
TOP VIEW  
DE  
MAX485E  
MAX487E  
MAX1487E  
DI  
R
R
1
2
3
4
RO  
RE  
DE  
DI  
1
2
3
4
RO  
RE  
DE  
DI  
8
8
7
6
5
V
CC  
B
Rt  
V
D
CC  
B
A
7
B
Rt  
6
A
A
RO  
R
D
D
5
GND  
GND  
RE  
DIP/SO  
NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE IS HIGH.  
TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.  
Figure 1. MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E Pin Configuration and Typical Operating Circuit  
0.1µF  
V
CC  
V
CC  
1
MAX488E  
MAX490E  
Y
Z
5
6
TOP VIEW  
3
2
Rt  
DI  
RO  
DI  
D
R
V
1
2
3
4
R
8
7
6
5
A
B
Z
CC  
RO  
DI  
8
7
A
B
Rt  
RO  
R
D
GND  
Y
D
DIP/SO  
4
GND  
GND  
NOTE: TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/SO PACKAGE.  
Figure 2. MAX488E/MAX490E Pin Configuration and Typical Operating Circuit  
V
CC  
DE  
V
CC  
RE  
TOP VIEW  
0.1µF  
4
14  
MAX489E  
MAX491E  
N.C.  
1
2
3
4
5
6
7
14  
V
CC  
9
Y
R
RO  
RE  
13 N.C.  
5
Rt  
DI  
RO  
D
R
10  
12  
11  
10  
9
A
Z
DE  
B
12  
11  
A
2
Rt  
DI  
Z
RO  
NC  
R
D
DI  
D
GND  
GND  
Y
B
1, 8, 13  
8
N.C.  
3
6, 7  
GND  
DIP/SO  
Figure 3. MAX489E/MAX491E Pin Configuration and Typical Operating Circuit  
_______________________________________________________________________________________  
RE  
GND DE  
35–9/MAX1487E  
8
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
35–9/MAX1487E  
__________Fu n c t io n Ta b le s (MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E)  
Table 1. Transmitting  
Table 2. Receiving  
INPUTS  
OUTPUTS  
INPUTS  
OUTPUT  
RE  
DE  
A-B  
RO  
RE  
DE  
DI  
Z
Y
0
0
> +0.2V  
1
X
1
1
0
1
0
0
0
0
0
< -0.2V  
Inputs open  
X
0
1
X
0
1
0
0
0
1
0
X
X
High-Z  
High-Z  
1
High-Z  
1
High-Z  
High-Z  
*
*
*
X = Don't care  
X = Don't care  
High-Z = High impedance  
Shutdown mode for MAX481E/MAX483E/MAX487E  
High-Z = High impedance  
Shutdown mode for MAX481E/MAX483E/MAX487E  
*
*
neers developed state-of-the-art structures to protect  
these pins against ESD of ±15kV without damage. The  
ESD structures withstand high ESD in all states: normal  
operation, shutdown, and powered down. After an ESD  
e ve nt, Ma xims MAX481E, MAX483E, MAX485E,  
MAX487E–MAX491E, and MAX1487E keep working  
without latchup.  
__________Ap p lic a t io n s In fo rm a t io n  
The MAX481E/MAX483E/MAX485E/MAX487E–MAX491E  
and MAX1487E are low-power transceivers for RS-485  
and RS-422 communications. These E” versions of the  
MAX481, MAX483, MAX485, MAX487–MAX491, and  
MAX1487 provide extra protection against ESD. The  
rugged MAX481E, MAX483E, MAX485E, MAX497E–  
MAX491E, and MAX1487E are intended for harsh envi-  
ronments where high-speed communication is important.  
These devices eliminate the need for transient suppres-  
sor diodes and the associated high capacitance loading.  
The standard (non-E”) MAX481, MAX483, MAX485,  
MAX487–MAX491, and MAX1487 are recommended for  
applications where cost is critical.  
ESD p rote c tion c a n b e te s te d in va rious wa ys ; the  
transmitter outputs and receiver inputs of this product  
family are characterized for protection to ±15kV using  
the Human Body Model.  
Other ESD test methodologies include IEC10004-2 con-  
tact discharge and IEC1000-4-2 air-gap discharge (for-  
merly IEC801-2).  
The MAX481E, MAX485E, MAX490E, MAX491E, and  
MAX1487E can transmit and receive at data rates up to  
2.5Mbps, while the MAX483E, MAX487E, MAX488E,  
a nd MAX489E a re s p e c ifie d for d a ta ra te s up to  
250kb p s . The MAX488E–MAX491E a re full-d up le x  
transceivers, while the MAX481E, MAX483E, MAX487E,  
and MAX1487E are half-duplex. In addition, driver-  
enable (DE) and receiver-enable (RE) pins are included  
on the MAX481E, MAX483E, MAX485E, MAX487E,  
MAX489E, MAX491E, and MAX1487E. When disabled,  
the driver and receiver outputs are high impedance.  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test set-up, test methodology, and test results.  
Human Body Model  
Figure 4 shows the Human Body Model, and Figure 5  
shows the current waveform it generates when dis -  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
e s t, whic h is the n d is c ha rg e d into the te s t d e vic e  
through a 1.5kresistor.  
±1 5 k V ES D P ro t e c t io n  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The driver outputs and receiver inputs have  
extra protection against static electricity. Maxims engi-  
IEC1000-4-2  
The IEC1000-4-2 standard covers ESD testing and per-  
formance of finished equipment; it does not specifically  
refer to integrated circuits (Figure 6).  
_______________________________________________________________________________________  
9
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
R
C
1M  
R 1500Ω  
D
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
DISCHARGE  
RESISTANCE  
CHARGE CURRENT  
LIMIT RESISTOR  
AMPERES  
HIGH  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
36.8%  
100pF  
SOURCE  
10%  
0
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 4. Human Body ESD Test Model  
Figure 5. Human Body Model Current Waveform  
I
100%  
90%  
R
C
50M to 100M  
R 330Ω  
D
DISCHARGE  
RESISTANCE  
CHARGE CURRENT  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
150pF  
SOURCE  
10%  
t
t
r
= 0.7ns to 1ns  
30ns  
60ns  
Figure 6. IEC1000-4-2 ESD Test Model  
Figure 7. IEC1000-4-2 ESD Generator Current Waveform  
Y
1k  
TEST POINT  
R
RECEIVER  
OUTPUT  
V
CC  
S1  
S2  
V
OD  
C
RL  
1k  
15pF  
R
V
OC  
Z
Figure 8. Driver DC Test Load  
Figure 9. Receiver Timing Test Load  
35–9/MAX1487E  
10 ______________________________________________________________________________________  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
35–9/MAX1487E  
3V  
DE  
C
L1  
A
B
V
CC  
Y
Z
S1  
S2  
500Ω  
R
RO  
DIFF  
DI  
OUTPUT  
UNDER TEST  
V
ID  
RE  
C
L
C
L2  
Figure 10. Driver/Receiver Timing Test Circuit  
Figure 11. Driver Timing Test Load  
3V  
3V  
DE  
DI  
1.5V  
1.5V  
1.5V  
1.5V  
0V  
0V  
t
t
PHL  
PLH  
1/2 V  
O
t
LZ  
t
, t  
ZL(SHDN) ZL  
Z
Y, Z  
V
2.3V  
V
+0.5V  
O
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
V
OL  
Y
1/2 V  
O
V
= V (Y) - V (Z)  
DIFF  
Y, Z  
0V  
V
O
V
OH  
-0.5V  
2.3V  
V
DIFF  
90%  
90%  
0V  
-V  
10%  
10%  
O
t
, t  
t
HZ  
ZH(SHDN) ZH  
t
R
t
F
t
| t - t  
|
SKEW = PLH PHL  
Figure 12. Driver Propagation Delays  
Figure 13. Driver Enable and Disable Times (except MAX488E  
and MAX490E)  
3V  
RE  
1.5V  
1.5V  
0V  
V
OH  
t
t
, t  
RO  
LZ  
ZL(SHDN) ZL  
1.5V  
1.5V  
0V  
V
OL  
OUTPUT  
V
RO  
CC  
1.5V  
V
+ 0.5V  
- 0.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
OL  
t
t
PLH  
PHL  
V
ID  
A-B  
0V  
-V  
INPUT  
ID  
RO  
V
OH  
1.5V  
0V  
t
, t  
t
HZ  
ZH(SHDN) ZH  
Figure 14. Receiver Propagation Delays  
Figure 15. Receiver Enable and Disable Times (except MAX488E  
and MAX490E)  
______________________________________________________________________________________ 11  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
10dB/div  
10dB/div  
0Hz  
5MHz  
0Hz  
5MHz  
500kHz/div  
500kHz/div  
Figure 16. Driver Output Waveform and FFT Plot of  
Figure 17. Driver Output Waveform and FFT Plot of  
MAX485E/MAX490E/MAX491E/MAX1487E Transmitting a  
150kHz Signal  
MAX483E/MAX487E–MAX489E Transmitting a 150kHz Signal  
The major difference between tests done using the  
Human Body Model and IEC1000-4-2 is higher peak  
current in IEC1000-4-2, because series resistance is  
lower in the IEC1000-4-2 model. Hence, the ESD with-  
stand voltage measured to IEC1000-4-2 is generally  
lowe r tha n tha t me a s ure d us ing the Huma n Bod y  
Model. Figure 7 shows the current waveform for the 8kV  
IEC1000-4-2 ESD contact-discharge test.  
MAX4 8 3 E/MAX4 8 7 E/MAX4 8 8 E/MAX4 8 9 E:  
Re d u c e d EMI a n d Re fle c t io n s  
The MAX483E and MAX487E–MAX489E are slew-rate  
limite d , minimizing EMI a nd re d uc ing re fle c tions  
caused by improperly terminated cables. Figure 16  
shows the driver output waveform and its Fourier analy-  
s is of a 150kHz s ig na l tra ns mitte d b y a MAX481E,  
MAX485E, MAX490E, MAX491E, or MAX1487E. High-  
frequency harmonics with large amplitudes are evident.  
Figure 17 shows the same information displayed for a  
MAX483E, MAX487E, MAX488E, or MAX489E transmit-  
ting under the same conditions. Figure 17s high-fre-  
quency harmonics have much lower amplitudes, and  
the potential for EMI is significantly reduced.  
The air-gap test involves approaching the device with a  
charged probe. The contact-discharge method connects  
the probe to the device before the probe is energized.  
Machine Model  
The Ma c hine Mod e l for ESD te s ts a ll p ins us ing a  
200pF storage capacitor and zero discharge resis -  
tance. Its objective is to emulate the stress caused by  
contact that occurs with handling and assembly during  
manufacturing. Of course, all pins require this protec-  
tion during manufacturingnot just inputs and outputs.  
Therefore, after PC board assembly, the Machine Model  
is less relevant to I/O ports.  
Lo w -P o w e r S h u t d o w n Mo d e  
(MAX4 8 1 E/MAX4 8 3 E/MAX4 8 7 E)  
A low-power shutdown mode is initiated by bringing  
both RE high and DE low. The devices will not shut  
down unless both the driver and receiver are disabled.  
In shutdown, the devices typically draw only 0.5µA of  
supply current.  
MAX4 8 7 E/MAX1 4 8 7 E:  
1 2 8 Tra n s c e ive rs o n t h e Bu s  
RE and DE may be driven simultaneously; the parts are  
guaranteed not to enter shutdown if RE is high and DE  
is low for less than 50ns. If the inputs are in this state  
for at least 600ns, the parts are guaranteed to enter  
shutdown.  
The 48k, 1/4-unit-load receiver input impedance of the  
MAX487E and MAX1487E allows up to 128 transceivers  
on a bus, compared to the 1-unit load (12kinput  
impedance) of standard RS-485 drivers (32 transceivers  
maximum). Any combination of MAX487E/MAX1487E  
and other RS-485 transceivers with a total of 32 unit  
loads or less can be put on the bus. The MAX481E,  
MAX483E, MAX485E, and MAX488E–MAX491E have  
standard 12kreceiver input impedance.  
For the MAX481E, MAX483E, and MAX487E, the t  
ZH  
and t enable times assume the part was not in the  
ZL  
low-power shutdown state (the MAX485E, MAX488E–  
MAX491E, and MAX1487E can not be shut down). The  
t
a nd t  
e na b le time s a s s ume the  
ZH(SHDN)  
ZL(SHDN)  
35–9/MAX1487E  
parts were shut down (see Electrical Characteristics).  
12 ______________________________________________________________________________________  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
35–9/MAX1487E  
delay times. Typical propagation delays are shown in  
Figures 19–22 using Figure 18s test circuit.  
The difference in receiver delay times, t  
- t  
, is  
PHL  
PLH  
typ ic a lly und e r 13ns for the MAX481E, MAX485E,  
MAX490E, MAX491E, and MAX1487E, and is typically  
le s s tha n 100ns for the MAX483E a nd MAX487E–  
MAX489E.  
100pF  
Z
B
A
TTL IN  
t , t < 6ns  
RECEIVER  
OUT  
D
R
R
F
R = 54Ω  
Y
The driver skew times are typically 5ns (10ns max) for  
the MAX481E, MAX485E, MAX490E, MAX491E, and  
MAX1487E, and are typically 100ns (800ns max) for the  
MAX483E and MAX487E–MAX489E.  
100pF  
Typ ic a l Ap p lic a t io n s  
The MAX481E, MAX483E, MAX485E, MAX487E–  
MAX491E, and MAX1487E transceivers are designed for  
bidirectional data communications on multipoint bus  
transmission lines. Figures 25 and 26 show typical net-  
work application circuits. These parts can also be used as  
line repeaters, with cable lengths longer than 4000 feet.  
Figure 18. Receiver Propagation Delay Test Circuit  
It takes the drivers and receivers longer to become  
enabled from the low-power shutdown state (t ),  
ZH(SHDN  
To minimize reflections, the line should be terminated at  
both ends in its characteristic impedance, and stub  
lengths off the main line should be kept as short as possi-  
ble. The slew-rate-limited MAX483E and MAX487E–  
MAX489E are more tolerant of imperfect termination.  
t
) than from the operating mode (t , t ). (The  
ZL(SHDN)  
ZH ZL  
parts are in operating mode if the RE, DE inputs equal a  
logical 0,1 or 1,1 or 0, 0.)  
Drive r Ou t p u t P ro t e c t io n  
Excessive output current and power dissipation caused  
by faults or by bus contention are prevented by two  
mechanisms. A foldback current limit on the output stage  
provides immediate protection against short circuits over  
the whole common-mode voltage range (see Typical  
Operating Characteristics). In addition, a thermal shut-  
down circuit forces the driver outputs into a high-imped-  
ance state if the die temperature rises excessively.  
Bypass the V pin with 0.1µF.  
CC  
Is o la t e d RS -4 8 5  
For isolated RS-485 applications, see the MAX253 and  
MAX1480 data sheets.  
Lin e Le n g t h vs . Da t a Ra t e  
The RS-485/RS-422 standard covers line lengths up to  
4000 feet. Figures 23 and 24 show the system differen-  
tial voltage for the parts driving 4000 feet of 26AWG  
twisted-pair wire at 110kHz into 100loads.  
P ro p a g a t io n De la y  
Many digital encoding schemes depend on the differ-  
e nc e b e twe e n the d rive r a nd re c e ive r p rop a g a tion  
______________________________________________________________________________________ 13  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
A
B
500mV/div  
500mV/div  
A
B
RO  
5V/div  
RO  
5V/div  
25ns/div  
25ns/div  
Figure 20. MAX481E/MAX485E/MAX490E/MAX491E/  
Figure 19. MAX481E/MAX485E/MAX490E/MAX1487E Receiver  
MAX1487E Receiver t  
PLH  
t
PHL  
B
A
500mV/div  
B
500mV/div  
A
RO  
5V/div  
RO  
5V/div  
200ns/div  
200ns/div  
Figure 21. MAX483E/MAX487E–MAX489E Receiver t  
Figure 22. MAX483E/MAX487E–MAX489E Receiver t  
PHL  
PLH  
DI  
5V  
DI  
5V  
0V  
0V  
1V  
0
0
V - V  
V - V  
B
A
A
B
-1V  
-1V  
DO  
5V  
0V  
5V  
0V  
DO  
2µs/div  
2µs/div  
Figure 23. MAX481E/MAX485E/MAX490E/MAX491E/  
MAX1487E System Differential Voltage at 110kHz Driving  
4000ft of Cable  
Figure 24. MAX483E/MAX1487E–MAX489E System Differential  
Voltage at 110kHz Driving 4000ft of Cable  
35–9/MAX1487E  
14 ______________________________________________________________________________________  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
35–9/MAX1487E  
120Ω  
120Ω  
DE  
DI  
B
A
B
A
DI  
D
D
DE  
B
A
B
A
RO  
RE  
RO  
RE  
R
R
R
R
D
D
MAX481E  
MAX483E  
MAX485E  
MAX487E  
MAX1487E  
DI  
DE RO RE  
DI  
DE RO RE  
Figure 25. MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E Typical Half-Duplex RS-485 Network  
A
Y
120Ω  
120Ω  
120Ω  
120Ω  
RO  
RE  
R
DI  
D
B
Z
Z
B
DE  
DE  
RE  
RO  
DI  
R
D
Y
A
Y
Z
B
A
Y
Z
B
A
R
R
D
DI  
D
DI  
MAX488E  
MAX489E  
MAX490E  
MAX491E  
DE RE RO  
DE RE RO  
NOTE: RE AND DE ON MAX489E/MAX491E ONLY.  
Figure 26. MAX488E–MAX491E Full-Duplex RS-485 Network  
______________________________________________________________________________________ 15  
±1 5 k V ES D-P ro t e c t e d , S le w -Ra t e -Lim it e d ,  
Lo w -P o w e r, RS -4 8 5 /RS -4 2 2 Tra n s c e ive rs  
___________________________________________Ord e rin g In fo rm a t io n (c o n t in u e d )  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
14 Plastic DIP  
14 SO  
MAX483ECPA  
MAX483ECSA  
MAX483EEPA  
MAX483EESA  
MAX485ECPA  
MAX485ECSA  
MAX485EEPA  
MAX485EESA  
MAX487ECPA  
MAX487ECSA  
MAX487EEPA  
MAX487EESA  
MAX488ECPA  
MAX488ECSA  
MAX488EEPA  
MAX488EESA  
MAX489ECPD  
MAX489ECSD  
MAX489EEPD  
MAX489EESD  
MAX490ECPA  
MAX490ECSA  
MAX490EEPA  
MAX490EESA  
MAX491ECPD  
MAX491ECSD  
MAX491EEPD  
MAX491EESD  
MAX1487ECPA  
MAX1487ECSA  
MAX1487EEPA  
MAX1487EESA  
14 Plastic DIP  
14 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
14 Plastic DIP  
14 SO  
8 Plastic DIP  
8 SO  
14 Plastic DIP  
14 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
8 Plastic DIP  
8 SO  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 295  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
35–9/MAX1487E  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY