MAX4806 [MAXIM]

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers;
MAX4806
型号: MAX4806
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers

文件: 总20页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4366; Rev 0; 11/08  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
General Description  
Features  
The MAX4806/MAX4807/MAX4808 integrated circuits  
generate high-voltage, high-frequency, unipolar or bipo-  
lar pulses from low-voltage logic inputs. These dual  
pulsers feature independent logic inputs, independent  
high-voltage pulser outputs with active clamps, and  
independent high-voltage supply inputs.  
Highly Integrated, High-Voltage, High-Frequency  
Unipolar/Bipolar Pulser  
6Ω Output Impedance and 2A (min) Output  
Current  
20Ω Active Clamp  
The MAX4806/MAX4807/MAX4808 feature a 6Ω output  
impedance for the high-voltage outputs, and a 20Ω  
impedance for the active clamp. The high-voltage out-  
puts are guaranteed to provide 2A of output current.  
Pulser and Clamp Overvoltage Protection  
(MAX4806/MAX4807)  
0 to +220V Unipolar or ±±±0V Bipolar Outputs  
All devices use three logic inputs per channel to control  
the positive and negative pulses and active clamp. Also  
included are two independant enable inputs. Disabling  
EN_ ensures the output MOSFETs are not accidentally  
turned on during fast power-supply ramping. This allows  
for faster ramp times and smaller delays between puls-  
ing modes. A low-power shutdown mode reduces  
power consumption to less than 1µA. All digital inputs  
are CMOS compatible.  
Matched Rise/Fall Times and Matched  
Propagation Delays  
CMOS-Compatible Logic Inputs  
56-Pin, 7mm x 7mm, TQFN Package  
Pin Configuration  
The MAX4806 includes clamp output overvoltage pro-  
tection, while the MAX4807 features both pulser output  
and clamp output overvoltage protection. The MAX4808  
does not provide overvoltage protection (see the  
Ordering Information/Selector Guide).  
TOP VIEW  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
The MAX4806/MAX4807/MAX4808 are available in a  
56-pin (7mm x 7mm), TQFN exposed-pad package and  
are specified over the 0°C to +70°C commercial tem-  
perature range.  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
C
GND  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
DP2  
GND  
V
CC2  
V
INN2  
INC2  
INP2  
EN2  
CC2  
GC2  
DC2  
C
C
Applications  
Ultrasound Medical  
Imaging  
Flaw Detection  
V
EE2  
Piezoelectric Drivers  
Test Instruments  
V
AGND  
SHDN  
EN1  
DD  
Industrial Sensors  
MAX4806  
MAX4807  
MAX4808  
V
SS  
EE1  
V
Ordering Information/  
Selector Guide  
OUTPUT  
C
C
V
INP1  
DC1  
GC1  
CC1  
18 INC1  
17 INN1  
*EP  
PROTECTED  
PIN-  
GND 55  
56  
16  
V
CC1  
+
PART  
CURRENT  
(A)  
OUTPUTS  
PACKAGE  
C
15 GND  
DP1  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
MAX4806CTN+ OCP_, OCN_  
2
2
2
56 TQFN-EP**  
56 TQFN-EP**  
56 TQFN-EP**  
OCP_, OCN_,  
MAX4807CTN+  
OP_, ON_  
TQFN  
7mm x 7mm  
MAX4808CTN+*  
None  
Note: All devices are specified over the 0°C to +70°C operat-  
ing temperature range.  
*EP = EXPOSED PAD; CONNECT EP TO V  
.
SS  
+Denotes a lead-free/RoHS-compliant package.  
*Future product. Contact factory for availability.  
**EP = Exposed pad.  
Warning: The MAX4806/MAX4807/MAX4808 are designed to  
operate with high voltages. Exercise caution.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim Direct at ±-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND.)  
C
, C  
, C  
Voltage .....................................-0.3V to V  
DC_ DP_ DN_ CC_  
V
V
V
V
V
V
V
Logic Supply Voltage........................................-0.3V to +6V  
Peak Current per Output Channel...................................... 3.0A  
DD  
Output Driver Positive Supply Voltage..........-0.3V to +15V  
Output Driver Negative Supply Voltage.........-15V to +0.3V  
High Positive Supply Voltage.......................-0.3V to +230V  
High Negative Supply Voltage....................-230V to +0.3V  
Continuous Power Dissipation (T = +70°C) (Note 1)  
CC_  
EE_  
PP_  
NN_  
A
56-Pin TQFN (derate 40mW/°C above +70°C) ..........3200mW  
Thermal Resistance (Note 2)  
θ
JC  
.............................................................................+25°C/W  
............................................................................+0.8°C/W  
JA  
θ
Voltage................................................(V  
- 250V) to V  
SS  
PP_  
NN_  
- V  
, V  
NN1 PP2  
- V Supply Voltage............-0.3V to +250V  
Operating Temperature Range...............................0°C to +70°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
PP1  
NN2  
INP_, INN_, INC_, EN_, SHDN Logic Input..-0.3V to (V + 0.3V)  
OP_, OCP_, OCN_, ON_...........(-0.3V + V  
C
C
C
DD  
) to (-0.3V to V  
) to (+15V + V  
Voltage .............................(+0.3V + V ) to (-15V + V  
)
)
)
NN_  
NN_  
PP_  
PP_  
NN_  
PP_  
Voltage............................(-0.3V + V  
GN_  
GP_  
GC_  
Voltage...........................................................-15V to +15V  
Note ±: This specification is based on the thermal characteristic of the package, the maximum junction temperature, and the setup  
described by JEDEC 51. The maximum power dissipation for the MAX4806/MAX4807/MAX4808 might be limited by the thermal  
protection included in the device.  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +2.7V to +6V, V  
= +4.75V to +12.6V, V  
= -12.6V to -4.75V, V  
= -200V to 0V, V  
= 0V to (V + 200V), V the lower  
NN_ SS  
DD  
CC_  
, T = T = T  
EE_  
NN_  
PP_  
of V  
or V  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
NN1  
NN2  
A
J
MIN  
MAX A  
PARAMETER  
POWER SUPPLY (V , V  
SYMBOL  
, V _, V , V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
67/MAX408  
)
DD CC_ EE  
PP_ NN_  
Logic Supply Voltage  
V
+2.7  
+4.75  
-12.6  
+3  
+12  
-12  
+6  
V
V
V
DD  
Positive Drive Supply Voltage  
Negative Drive Supply Voltage  
V
+12.6  
-4.75  
CC_  
V
EE_  
PP_  
NN_  
V
+
NN_  
220  
High-Side Supply Voltage  
Low-Side Supply Voltage  
V
0
V
V
-200  
0
0
V
V
V
- V  
Supply Voltage  
+220  
PP_  
NN_  
SUPPLY CURRENT (Single Channel)  
V
= V  
= 0, V = 0  
SHDN  
1
INN_  
EN_  
INP_  
V
Supply Current  
I
µA  
µA  
DD  
DD  
V
V
= V , V  
= V , V  
= 0 or  
DD SHDN  
DD INC_  
100  
350  
1
, V  
DD INN_  
= V  
, f = 5MHz  
INP_  
V
= 0, channel 1 and channel 2  
SHDN  
V
= V , V  
= V , channel 1 and  
DD  
EN_  
DD SHDN  
130  
18  
200  
channel 2  
V
V
V
= V , V  
= V , V  
= 0 or  
, f = 5MHz, V = 5V,  
INP_ CC  
EN_  
DD SHDN  
DD INC_  
V
Supply Current  
I
CC_  
CC_  
, V  
DD INN_  
= V  
= 3V, only one channel switching  
DD  
mA  
V
V
V
= V , V  
= V , V  
= 0 or  
EN_  
DD SHDN  
DD INC_  
, V  
DD INN_  
= V  
, f = 5MHz, V  
= 12V,  
CC_  
44  
INP_  
= 3V, only one channel switching  
DD  
2
_______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +6V, V  
= +4.75V to +12.6V, V  
= -12.6V to -4.75V, V  
= -200V to 0V, V  
= 0V to (V + 200V), V the lower  
NN_ SS  
DD  
CC_  
, T = T = T  
EE_  
NN_  
PP_  
of V  
or V  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
NN1  
NN2  
A
J
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
= 0, channel 1 and channel 2  
1
SHDN  
= V , V  
= V , channel 1 and  
DD  
EN_  
DD SHDN  
1
channel 2  
V
V
= V , V  
= V , V  
, f = 5MHz, V  
= 0 or  
= -5V,  
EE_  
EN_  
DD SHDN  
DD INC_  
V
Supply Current  
I
µA  
EE_  
EE_  
, V  
= V  
200  
DD INN_  
INP_  
only 1 channel switching  
V
V
= V , V  
= V , V  
, f = 5MHz, V  
= 0 or  
= -12V,  
EE_  
EN_  
DD SHDN  
DD INC_  
, V  
= V  
200  
DD INN_  
INP_  
only 1 channel switching  
V
= 0, channel 1 and channel 2  
1
SHDN  
µA  
mA  
µA  
V
= V , V  
= V , channel 1 and  
DD  
EN_  
DD SHDN  
90  
13  
160  
channel 2  
V
V
= V , V  
= V , V  
= 0 or V  
,
DD  
EN_  
DD SHDN  
DD INC_  
= V  
, f = 5MHz, V  
INP_  
= +5V, V  
=
INN_  
PP_  
NN_  
V
Supply Current  
I
PP_  
PP_  
-5V, no load, only 1 channel switching  
V
V
= V , V  
= V , V  
= 0 or V  
,
DD  
EN_  
PP_  
DD SHDN  
DD INC_  
= +80V, V  
= -80V, pulse repetition  
NN_  
0.65  
frequency = 10kHz, f = 10MHz, four periods,  
no load, only 1 channel switching  
V
= 0, channel 1 and channel 2  
1
SHDN  
V
= V , V  
= V , channel 1 and  
DD  
EN_  
DD SHDN  
40  
13  
80  
channel 2  
V
V
V
= V , V  
= V , V  
= 0 or  
EN_  
DD SHDN  
DD INC_  
, V  
DD INN_  
= V  
, f = 5MHz, V  
= -5V,  
NN_  
INP_  
V
Supply Current  
I
NN_  
NN_  
= +5V, no load, only 1 channel  
PP_  
mA  
V
V
= V , V  
= +80V, V  
= V , V  
= -80V, pulse repetition  
= 0 or V  
,
DD  
EN_  
PP_  
DD SHDN  
DD INC_  
NN_  
0.65  
frequency = 10kHz, f = 10MHz, four periods,  
no load, only 1 channel switching  
LOGIC INPUTS (EN_, SHDN, INN_, INP_, INC_)  
Low-Level Input Voltage  
High-Level Input Voltage  
Logic-Input Capacitance  
Logic-Input Leakage  
OUTPUT (OUT_)  
V
0.25 x V  
V
V
IL  
IH  
IN  
IN  
DD  
V
0.75 x V  
DD  
C
5
pF  
µA  
I
V
= 0 or V  
1
IN  
DD  
No load at OUT_  
V
V
PP_  
NN_  
Unprotected outputs (see the Ordering  
Information/Selector Guide), 100mA load  
V
+
V
-
NN_  
1.5  
PP_  
1.5  
OUT_ Output Voltage Range  
V
V
OUT_  
Protected outputs (see the Ordering  
Information/Selector Guide), 100mA load  
V
+
V
-
NN_  
2.5  
PP_  
2.5  
I
= -100mA, V  
= +12V 5%, DC-coupled  
5
5
12  
12  
OP_  
CC_  
Low-Side Small-Signal Output  
Impedance (MAX4806)  
R
Ω
OUT_LS  
I
= -100mA, V  
= +5V 5%, DC-coupled  
OP_  
CC_  
_______________________________________________________________________________________  
3
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +6V, V  
= +4.75V to +12.6V, V  
= -12.6V to -4.75V, V  
= -200V to 0V, V  
= 0V to (V + 200V), V the lower  
NN_ SS  
DD  
CC_  
, T = T = T  
EE_  
NN_  
PP_  
of V  
or V  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
NN1  
NN2  
A
J
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
= -100mA, V = +12V 5%, DC-coupled  
MIN  
TYP  
MAX  
13  
UNITS  
I
6
6
6
8
7
9
OP_  
CC_  
Low-Side Small-Signal Output  
Impedance (MAX4807)  
R
Ω
OUT_LS  
OUT_HS  
OUT_HS  
I
= -100mA, V  
= +5V 5%, DC-coupled  
13  
OP_  
CC_  
I
= -100mA, V  
= +12V 5%, DC-coupled  
12  
OP_  
CC_  
High-Side Small-Signal Output  
Impedance (MAX4806)  
R
R
Ω
Ω
I
= -100mA, V  
= +5V 5%, DC-coupled  
15  
OP_  
CC_  
I
= -100mA, V  
= +12V 5%, DC-coupled  
13  
OP_  
CC_  
High-Side Small-Signal Output  
Impedance (MAX4807)  
I
= -100mA, V  
= +5V 5%, DC-coupled  
17  
OP_  
CC_  
Low-Side Output Current  
High-Side Output Current  
I
V
V
= +12V 5%, V  
= +12V 5%, V  
- V  
- V  
= 100V  
= 100V  
2
2
A
A
OL  
CC_  
CC_  
OUT_  
NN_  
I
OH  
OUT_  
PP_  
OP_, ON_, OCP_ and OCN_  
connected together;  
MAX4806  
MAX4807  
110  
70  
Off-Output Capacitance  
C
pF  
µA  
O(OFF)  
V
= +100V, V  
= -100V  
PP_  
NN_  
V
= -100V, V  
= 100V, EN_ = 0,  
NN_  
PP_  
Off-Output Leakage Current  
I
LK  
-1  
+1  
40  
OUT_ = -100V to +100V  
I
= -30mA, DC-coupled, V  
= +12V  
CC_  
OCN_  
20  
20  
20  
33  
5%, V  
= -V  
CC_  
EE_  
Low-Side Signal-Clamp Output  
Impedance  
R
Ω
Ω
CLS  
I
= -30mA, DC-coupled, V  
= +5V  
OCN_  
CC_  
50  
5%, V  
= -V  
CC_  
EE_  
I
= -30mA, DC-coupled, V  
= +12V  
CC_  
OCP_  
40  
5%, V  
= -V  
CC_  
EE_  
High-Side Signal-Clamp Output  
Impedance  
R
CHS  
I
= -30mA, DC-coupled, V  
= +5V  
OCP_  
CC_  
67/MAX408  
50  
5%, V  
= -V  
CC_  
EE_  
V
= +12V 5%, V  
= -V  
= -V  
= -V  
= -V  
, I  
=
CC_  
EE_  
EE_  
EE_  
EE_  
CC_ CGN_  
100  
10  
Ω
kΩ  
Ω
10mA, V  
= 0  
EN_  
Low-Side Gate Short Impedance  
High-Side Gate Short Impedance  
R
LSH  
V
= +12V 5%, V  
, I  
CC_ CGN_  
=
=
=
CC_  
5
5
7.5  
7.5  
10mA, EN_ = V  
DD  
V
= +12V 5%, V  
, I  
CC_ CGN_  
CC_  
100  
10  
10mA, V  
= 0  
EN_  
R
HSH  
V
= +12V 5%, V  
, I  
CC_ CGN_  
CC_  
kΩ  
10mA, EN_ = V  
DD  
THERMAL SHUTDOWN  
Thermal Shutdown  
T
Junction temperature rising  
+155  
20  
°C  
°C  
SHDN  
Thermal-Shutdown Hysteresis  
DYNAMIC CHARACTERISTICS (R = ±00Ω, C = ±00pF, unless otherwise noted. See Figures 4–7.)  
L
L
Logic Input to Output Rise  
Propagation Delay  
V
= +12V, V  
= +5V, V  
= +5V, V  
= +5V, V  
= +5V, V  
= -5V,  
= -5V,  
= -5V,  
= -5V,  
CC_  
PP_  
PP_  
PP_  
PP_  
NN_  
NN_  
NN_  
NN_  
t
t
15  
15  
15  
15  
ns  
ns  
ns  
ns  
PLH  
Figure 4  
Logic Input to Output Fall  
Propagation Delay  
V
CC_  
Figure 4  
= +12V, V  
PHL  
Logic Input to Output Rise  
Propagation Delay  
V
CC_  
Figure 4  
= +12V, V  
t
POH  
Logic Input to Output Fall  
Propagation Delay  
V
CC_  
Figure 4  
= +12V, V  
t
POL  
4
_______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +2.7V to +6V, V  
= +4.75V to +12.6V, V  
= -12.6V to -4.75V, V  
= -200V to 0V, V  
= 0V to (V + 200V), V the lower  
NN_ SS  
DD  
CC_  
, T = T = T  
EE_  
NN_  
PP_  
of V  
or V  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 3)  
NN1  
NN2  
A
J
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Logic Input to Output-Rise  
Propagation Delay Clamp  
V
= +12V, V  
= +5V, V  
= -5V,  
= -5V,  
CC_  
PP_  
NN_  
t
15  
15  
ns  
PLO  
Figure 4  
Logic Input to Output-Fall  
Propagation Delay Clamp  
V
CC_  
Figure 4  
= +12V, V  
= +5V, V  
PP_  
NN_  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PHO  
V
V
V
V
V
V
= +100V, V  
= -100V, V  
= +12V  
PP_  
NN_  
CC_  
CC_  
CC_  
CC_  
CC_  
CC_  
OUT_ Rise Time (GND to V  
)
t
20  
35  
35  
20  
35  
35  
PP_  
R0P  
RN0  
RNP  
5%, V  
= - V  
, Figure 4  
CC_  
EE_  
= +100V, V  
= -100V, V  
= +12V  
= +12V  
= +12V  
= +12V  
= +12V  
PP_  
NN_  
OUT_ Rise Time (V  
OUT_ Rise Time (V  
to GND)  
NN_  
NN_  
5%, V  
= - V  
, Figure 4  
CC_  
EE_  
= +100V, V  
= -100V, V  
PP_  
NN_  
to V  
)
t
PP_  
5%, V  
= - V  
, Figure 4  
CC_  
EE_  
= +100V, V  
= -100V, V  
PP_  
NN_  
OUT_ Fall Time (GND to V  
)
t
F0N  
NN_  
5%, V  
= - V  
, Figure 4  
CC_  
EE_  
= +100V, V  
= -100V, V  
PP_  
NN_  
OUT_ Fall Time (V  
OUT_ Fall Time (V  
to GND)  
t
PP_  
FP0  
FPN  
5%, V  
= - V  
, Figure 4  
CC_  
EE_  
= +100V, V  
= -100V, V  
PP_  
NN_  
to V  
)
t
PP_  
NN_  
5%, V  
= - V  
, Figure 4  
CC_  
EE_  
V
V
V
V
V
V
V
= +12V 5%, V  
= -V  
CC_  
100  
150  
100  
150  
150  
150  
CC_  
CC_  
CC_  
CC_  
CC_  
CC_  
EE_  
OUT_ Enable Time from EN_  
(Figure 5)  
t
EN  
= +5V 5%, V  
= -V  
EE_  
CC_  
= +12V 5%, V  
= +5V 5%, V  
= -V  
CC_  
EE_  
OUT_ Disable Time from EN_  
(Figure 5)  
t
DI  
= -V  
0
0
EE_  
CC_  
Clamp Enable Time from INC_  
t
= +12V 5%, V  
= +12V 5%, V  
= -V  
= -V  
, Figure 6  
, Figure 6  
= +12V  
ns  
ns  
EN-CL  
EE_  
EE_  
CC_  
CC_  
Clamp Disable Time from INC_  
t
DI-CL  
= +12V, V  
= -12V, V  
, Figure 7  
PP_  
NN_  
CC_  
CC_  
CC_  
CC_  
Short Enable Time from EN_  
t
1000  
250  
ns  
ns  
ns  
dB  
EN_SH  
5%, V  
= -V  
EE_  
V
V
V
= +12V, V  
= -12V, V  
, Figure 7  
= +12V  
= +12V  
= -5V,  
PP_  
NN_  
CC_  
Short Disable Time from EN_  
Recovery Time from SHDN  
Crosstalk  
t
DI_SH  
5%, V  
= -V  
EE_  
= +12V, V  
= -12V, V  
PP_  
NN_  
CC_  
36.8  
69  
5%, V  
= -V  
EE_  
= V  
= +5V, V  
= V  
NN_ EE_  
PP_  
CC_  
f = 5MHz  
V
= +100V, V  
= -100V,  
PP_  
NN_  
2nd Harmonic Distortion  
RMS Output Jitter  
2HD  
40  
9
dB  
ps  
f
= 5MHz, V = +12V  
CC_  
OUT  
t
V
CC_  
= +12V  
J
Note 3: Specifications are guaranteed for the stated global conditions, unless otherwise noted and are 100% production tested at  
= +25°C and T = +70°C. Specifications at T = 0°C are guaranteed by design.  
T
A
A
A
_______________________________________________________________________________________  
5
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
Typical Operating Characteristics  
(V = +3.3V, V _ = +12V, V _ = -12V, V = -100V, V _ = +100V, V _ = -100V, f  
= 5MHz, T = +25°C, unless otherwise noted.)  
A
DD  
CC  
EE  
SS  
PP  
NN  
OUT  
I
vs. OUTPUT FREQUENCY  
I
vs. OUTPUT FREQUENCY  
I
vs. TEMPERATURE  
CC_  
CC_  
CC_  
40  
35  
30  
25  
20  
15  
10  
5
0.70  
0.70  
0.68  
0.66  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
CONTINUOUS SWITCHING,  
4 PULSES, PRF = 10kHz  
4 PULSES AT 10MHz, PRF = 10kHz  
0.68  
0.66  
0.64  
0.62  
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
V
V
V
= V  
= +5V,  
PP_  
CC_  
= V = -5V,  
EE_  
NN_  
= +3.3V, NO LOAD  
DD  
0
1
2
3
4
5
6
7
8
9
10  
1
3
5
7
9
11  
13  
15  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
I
vs. TEMPERATURE  
I
vs. OUTPUT FREQUENCY  
PP_  
I
vs. OUTPUT FREQUENCY  
PP_  
CC_  
30  
14  
13  
12  
11  
10  
9
0.80  
0.76  
0.72  
0.68  
0.64  
0.60  
0.56  
0.52  
0.48  
0.44  
0.40  
4 PULSES, PRF = 10kHz  
CONTINUOUS SWITCHING,  
CONTINUOUS SWITCHING,  
= 2.5MHz,  
V
V
V
= V  
= +5V,  
f
PP_  
NN_  
CC_  
OUT  
PP_  
NN_  
25  
20  
15  
10  
5
= V = -5V,  
EE_  
V
V
V
= V  
CC_  
= +5V,  
= +3.3V, NO LOAD  
= V = -5V,  
DD  
EE_  
= +3.3V, NO LOAD  
DD  
67/MAX408  
8
0
7
0
10  
20  
30  
40  
50  
60  
70  
1
3
5
7
9
11  
13  
15  
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
I
vs. TEMPERATURE  
I
vs. TEMPERATURE  
I
vs. OUTPUT FREQUENCY  
PP_  
PP_  
NN_  
0.80  
0.76  
0.72  
0.68  
0.64  
0.60  
0.56  
0.52  
0.48  
0.44  
0.40  
10  
9
8
7
6
5
4
3
2
1
0
0.80  
0.76  
0.72  
0.68  
0.64  
0.60  
0.56  
0.52  
0.48  
0.44  
0.40  
4 PULSES AT 10MHz, PRF = 10kHz  
4 PULSES, PRF = 10kHz  
CONTINUOUS SWITCHING,  
= 2.5MHz,  
f
OUT  
V
V
V
= V  
= +5V,  
PP_  
NN_  
DD  
CC_  
EE_  
= V = -5V,  
= +3.3V, NO LOAD  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
1
3
5
7
9
11  
13  
15  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
Typical Operating Characteristics (continued)  
(V = +3.3V, V _ = +12V, V _ = -12V, V = -100V, V _ = +100V, V _ = -100V, f  
= 5MHz, T = +25°C, unless otherwise noted.)  
A
DD  
CC  
EE  
SS  
PP  
NN  
OUT  
I
vs. OUTPUT FREQUENCY  
I
vs. TEMPERATURE  
I
vs. TEMPERATURE  
NN_  
NN_  
NN_  
30  
25  
20  
15  
10  
5
0.80  
0.76  
0.72  
0.68  
0.64  
0.60  
0.56  
0.52  
0.48  
0.44  
0.40  
10  
9
8
7
6
5
4
3
2
1
0
CONTINUOUS SWITCHING,  
4 PULSES AT 10MHz, PRF = 10kHz  
CONTINUOUS SWITCHING,  
f = 2.5MHz,  
OUT  
V
V
V
= V  
= +5V,  
PP_  
NN_  
CC_  
= V = -5V,  
EE_  
V
V
V
= V  
CC_  
= +5V,  
PP_  
NN_  
DD  
= +3.3V, NO LOAD  
DD  
= V = -5V,  
EE_  
= +3.3V, NO LOAD  
0
1
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUT_ FALL TIME (GND TO V  
)
)
INP-TO-OUT RISE PROPAGATION DELAY  
vs. V /V SUPPLY VOLTAGE  
NN_  
PP_  
vs. V /V  
SUPPLY VOLTAGE  
CC_ EE_  
CC_ EE_  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
R = 100Ω, C = 100pF  
R = 100Ω, C = 100pF  
L
L
R = 100Ω, C = 100pF  
L
L
L
L
6
6
6
4
4
4
2
2
2
0
0
0
+4.75/-4.75  
V
+7.5/-7.5  
+10/-10  
/V SUPPLY VOLTAGE (V)  
+12/-12  
+4.75/-4.75  
V
+7.5/-7.5  
+12/-12  
+4.75/-4.75  
V
+7.5/-7.5  
+10/-10  
/V SUPPLY VOLTAGE (V)  
+12/-12  
+5/-5  
+12.6/-12.6  
+5/-5  
+10/-10  
+12.6/-12.6  
+5/-5  
+12.6/-12.6  
/V SUPPLY VOLTAGE (V)  
CC_ EE_  
CC_ EE_  
CC_ EE_  
INP-TO-OUT FALL PROPAGATION DELAY  
vs. V , V SUPPLY VOLTAGE  
INP-TO-OUT FALL PROPAGATION DELAY  
vs. TEMPERATURE  
INP-TO-OUT RISE PROPAGATION DELAY  
vs. TEMPERATURE  
CC_ EE_  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
R = 100Ω, C = 100pF  
R = 100Ω, C = 100pF  
R = 100Ω, C = 100pF  
L
L
L
L
L
L
6
6
4
4
2
2
0
0
+4.75/-4.75  
V
+7.5/-7.5  
+10/-10  
/V SUPPLY VOLTAGE (V)  
+12/-12  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
+5/-5  
+12.6/-12.6  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC_ EE_  
_______________________________________________________________________________________  
7
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
Pin Description  
PIN  
NAME  
FUNCTION  
Channel 1 High-Side Gate Input. Connect a 1nF to 10nF capacitor between C  
possible to the device.  
and C  
as close as  
GP1  
DP1  
C
1
GP1  
Channel 1 High-Side Positive Supply Voltage Input. Bypass V  
as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.)  
to GND with a 0.1µF capacitor as close  
PP1  
V
2, 3  
PP1  
Depending on the application, additional bypassing may be required.  
4, 10, 33,  
39  
N.C.  
No Connection. Not connected internally.  
5
6
OP1  
Channel 1 High-Side Drain Output  
Channel 1 High-Side Clamp Output  
OCP1  
7, 15, 28,  
36, 44, 55  
GND  
Ground  
8
9
OCN1  
ON1  
Channel 1 Low-Side Clamp Output  
Channel 1 Low-Side Drain Output  
Channel 1 High-Side Negative Supply Voltage Input. Bypass V  
close as possible to the device. (See Power Supplies and Bypassing in the Applications Information  
to GND with a 0.1µF capacitor as  
NN1  
V
11, 12  
NN1  
section.) Depending on the application, additional bypassing may be required.  
Channel 1 Low-Side Gate Input. Connect a 1nF to 10nF capacitor between C  
possible to the device.  
and C  
as close as  
GN1  
DN1  
C
13  
14  
GN1  
Channel 1 Low-Side Driver Output. Connect a 1nF to 10nF capacitor between C  
as possible to the device.  
and C  
as close  
GN1  
DN1  
C
DN1  
Channel 1 Gate-Drive Supply Voltage Input. Bypass V  
possible to the device. (See Power Supplies and Bypassing in the Applications Information section.)  
to GND with a 0.1µF capacitor as close as  
CC1  
V
16, 54  
CC1  
67/MAX408  
Depending on the output, additional bypassing may be required.  
17  
18  
19  
20  
INN1  
INC1  
INP1  
EN1  
Channel 1 Low-Side Logic Input (See Table 1)  
Channel 1 Clamp Logic Input. Clamps OCP1 and OCN1 are turned on when INC1 is high and when INP1  
and INN1 are low (see Table 1).  
Channel 1 High-Side Logic Input (See Table 1)  
Channel 1 Enable Logic Input. Drive EN1 high to enable OP1 and ON1. Pull EN1 low to turn on the gate-  
source short circuit (see Table 1).  
21  
22  
Shutdown Logic Input (See Table 1)  
SHDN  
AGND  
Analog Ground. Must be connected to common GND.  
Channel 2 Enable Logic Input. Drive EN2 high to enable OP2 and ON2. Pull EN2 low to turn on the gate-  
source short circuit (see Table 1).  
23  
24  
25  
26  
EN2  
INP2  
INC2  
INN2  
Channel 2 High-Side Logic Input (See Table 1)  
Channel 2 Clamp Logic Input. Clamps OCP2 and OCN2 are turned on when INC2 is high and when INP2  
and INN2 are low (see Table 1).  
Channel 2 Low-Side Logic Input (See Table 1)  
Channel 2 Gate-Drive Supply Voltage Input. Bypass V  
possible to the device. (See Power Supplies and Bypassing in the Applications Information section.)  
to GND with a 0.1µF capacitor as close as  
CC2  
V
27, 45  
CC2  
Depending on the application, additional bypassing may be required.  
Channel 2 Low-Side Driver Output. Connect a 1nF to 10nF capacitor between C  
as possible to the device.  
and C  
as close  
GN2  
DN2  
C
29  
30  
DN2  
Channel 2 Low-Side Gate Input. Connect a 1nF to 10nF capacitor between C  
possible to the device.  
and C  
as close as  
GN2  
DN2  
C
GN2  
8
_______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Channel 2 High-Side Negative Supply Voltage Input. Bypass V  
close as possible to the device. (See Power Supplies and Bypassing in the Applications Information  
to GND with a 0.1µF capacitor as  
NN2  
V
31, 32  
NN2  
section.) Depending on the application, additional bypassing may be required.  
34  
35  
37  
38  
ON2  
OCN2  
OCP2  
OP2  
Channel 2 Low-Side Drain Output  
Channel 2 Low-Side Clamp Output  
Channel 2 High-Side Clamp Output  
Channel 2 High-Side Drain Output  
Channel 2 High-Side Positive Supply Voltage Input. Bypass V  
as possible to the device. (See Power Supplies and Bypassing in the Applications Information section.)  
to GND with a 0.1µF capacitor as close  
PP2  
V
40, 41  
PP2  
Depending on the application, additional bypassing may be required.  
Channel 2 High-Side Gate Input. Connect a 1nF to 10nF capacitor between C  
possible to the device.  
and C  
as close as  
GP2  
DP2  
C
42  
43  
46  
47  
GP2  
Channel 2 High-Side Driver Output. Connect a 1nF to 10nF capacitor between C  
as possible to the device.  
and C  
as close  
GP2  
DP2  
C
DP2  
Channel 2 High-Side Clamp Gate Input. Connect a 1nF to 10nF capacitor between C  
close as possible to the device.  
and C  
as  
GC2  
DC2  
C
GC2  
Channel 2 High-Side Clamp Driver Output. Connect a 1nF to 10nF capacitor between C  
close as possible to the device.  
and C  
as  
GC2  
DC2  
C
DC2  
Channel 2 Negative Supply Input. Gate-drive supply voltage for the OCP2 clamp. Bypass V  
with a 0.1µF capacitor as close as possible to the device. (See Power Supplies and Bypassing in the  
Applications Information section.) Depending on the application, additional bypassing may be required.  
to GND  
EE2  
V
48  
EE2  
Logic Supply Voltage Input. Bypass V to GND with a 0.1µF capacitor as close as possible to the  
device. (See Power Supplies and Bypassing in the Applications Information section.) Depending on the  
DD  
V
49  
50  
51  
DD  
application, additional bypassing may be required.  
Substrate Voltage. Connect V to a voltage equal to or more negative than the more negative of V  
or  
SS  
NN1  
V
SS  
V
.
NN2  
Channel 1 Negative Supply Input. Gate-drive supply voltage for the OCP1 clamp. Bypass V  
with a 0.1µF capacitor as close as possible to the device. (See Power Supplies and Bypassing in the  
Applications Information section.) Depending on the application, additional bypassing may be required.  
to GND  
EE1  
V
EE1  
Channel 1 High-Side Clamp Driver Output. Connect a 1nF to 10nF capacitor between C  
close as possible to the device.  
and C  
as  
GC1  
DC1  
C
52  
53  
DC1  
Channel 1 High-Side Clamp Gate Input. Connect a 1nF to 10nF capacitor between C  
close as possible to the device.  
and C  
as  
GC1  
DC1  
C
GC1  
Channel 1 High-Side Driver Output. Connect a 1nF to 10nF capacitor between C  
as possible to the device.  
and C  
as close  
GP1  
DP1  
C
56  
DP1  
Exposed Pad. EP must be connected to V . Do not use EP as the only V connection for the device.  
EP  
SS  
SS  
ly when the device is not pulsing to the positive or nega-  
tive high-voltage supplies. (See Figures 1, 2, and 3.)  
Detailed Description  
The MAX4806/MAX4807/MAX4808 are dual high-volt-  
age, high-speed pulsers that can be independently con-  
figured for either unipolar or bipolar pulse outputs. These  
devices have independent logic inputs for full pulse con-  
trol and independent active clamps. The clamp input,  
INC_, can be set high to activate the clamp automatical-  
Logic Inputs (INP_, INN_, INC_, EN_, SHDN)  
The MAX4806/MAX4807/MAX4808 have a total of nine  
logic input signals. SHDN controls power-up and -down  
of the device. There are two sets of INP_, INN_, INC_  
and EN_ signals: one for each channel. INP_ controls the  
_______________________________________________________________________________________  
9
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
Table ±. Truth Table  
INPUTS  
OUTPUTS  
ON_  
STATE  
OCP_,  
OCN_  
EN_ INP_ INN_ INC_  
OP_  
SHDN  
High  
High  
High  
Powered down, INP_/INN_ disabled, gate-source  
0
0
1
1
1
1
1
1
1
X
X
0
0
1
1
1
1
1
X
X
X
X
0
0
0
1
1
X
X
X
X
0
0
1
0
1
0
1
0
1
0
1
X
X
X
Impedance Impedance Impedance short disabled  
High  
High  
Powered down, INP_/INN_ disabled, gate-source  
short disabled  
GND  
Impedance Impedance  
High High  
Impedance Impedance Impedance enabled  
High  
Powered up, INP_/INN_ disabled, gate-source short  
High  
High  
Powered up, INP_/INN_ disabled, gate-source short  
enabled  
GND  
Impedance Impedance  
High High  
Impedance Impedance Impedance disabled  
High  
Powered up, all inputs enabled, gate-source short  
High  
High  
Powered up, all inputs enabled, gate-source short  
disabled  
GND  
High  
Impedance Impedance  
High  
Powered up, all inputs enabled, gate-source short  
V
NN_  
Impedance  
High  
Impedance disabled  
High Powered up, all inputs enabled, gate-source short  
V
PP_  
Impedance Impedance disabled  
High  
Impedance  
V
V
NN_  
Not allowed (3ns maximum overlap)  
PP_  
X = Don’t care.  
0 = Logic-low.  
1 = Logic-high.  
67/MAX408  
on and off states of the high-side FET, INN_ controls the  
on and off states of the low-side FET, INC_ controls the  
active clamp, and EN_ controls the gate-to-source short.  
These signals give complete control of the output stage  
of each driver (see Table 1 for all logic combinations).  
Active Clamps  
The MAX4806/MAX4807/MAX4808 feature an active  
clamp circuit to improve pulse quality and reduce 2nd  
harmonic output. The clamp circuit consists of an n-  
channel (DC-coupled) and a p-channel (AC and DC  
delay coupled) high-voltage FETs that are switched on  
or off by the logic clamp input (INC_). The MAX4806  
and the MAX4807 feature protected clamp devices  
allowing the clamp circuit to be used in bipolar pulsing  
circuits (see Figures 1 and 2). A diode in series with the  
OCN_ output prevents the body diode of the low-side  
FET from turning on when a voltage lower than GND is  
present. Another diode in series with the OCP_ output  
prevents the body diode of the high-side FET from turn-  
ing on when a voltage higher than ground is present.  
The MAX4808 does not have diode protection on the  
clamp outputs. Thus, the device is suitable for use in  
circuits where only unipolar pulsing is required.  
The MAX4806/MAX4807/MAX4808 logic inputs are  
CMOS logic compatible, and the logic level is refer-  
enced to V  
for maximum flexibility. The low 5pF (typ)  
DD  
input capacitance of the logic inputs reduces loading  
and increases switching speed.  
High-Voltage Output Protection  
(MAX4807 Only)  
The high-voltage outputs of the MAX4807 feature an  
integrated overvoltage protection circuit that allows the  
user to implement multilevel pulsing by connecting the  
outputs of multiple pulser channels in parallel. Internal  
diodes in series with the ON_ and OP_ outputs prevent  
the body diode of the high-side and low-side FETs from  
The user can connect the active clamp input (INC_) to a  
logic-high voltage and drive only the INP_ and INN_  
inputs to minimize the number of signals used to drive the  
switching on when a voltage greater than V  
is present on the output (see Figure 9).  
or V  
PP_  
NN_  
±0 ______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
device. In this case, whenever both the INP_ and INN_  
pation limit. See the Typical Operating Characteristics  
section for more information on typical supply currents  
versus switching frequencies.  
inputs are low and the INC_ input is high, the active clamp  
circuit pulls the output to GND through the OCP_ and  
OCN_ outputs (see Table 1 for more information).  
The device consumes most of the supply current from  
V
supply to charge and discharge internal nodes  
CC_  
Power-Supply Ramping and  
Gate-Source Short Circuit  
such as the gate capacitance of the high-side FET (C )  
P
and the low-side FET (C ). Neglecting the small quies-  
N
The MAX4806/MAX4807/MAX4808 include a gate-  
source short circuit that is controlled by the enable input  
(EN_). When SHDN is high and EN_ is low, a 60Ω switch  
shorts together the gate and source of the high-side out-  
put FET. At the same time, a similar switch shorts the  
gate and source of the low-side output FET (Table 1).  
The gate-source short circuit prevents accidental turn-  
on of the output FETs due to the ramping voltage on  
cent supply current and a small amount of current used  
to charge and discharge the capacitances at the inter-  
nal gate clamp FETs, the power consumption can be  
estimated as follows:  
2
2
× BRF × BTD  
P
=
C
× V  
× f + C × V  
× f  
IN  
(
)
(
)
(
)
VCC_  
N
CC_  
IN  
P
CC_  
f
= f  
= f  
IN INN_  
INP_  
V
and V  
, and allows for faster ramping rates and  
PP_  
NN_  
smaller delay times between pulsing modes.  
Where f  
and f  
are the switching frequency of  
INP_  
INN_  
Shutdown Mode  
the inputs INN_ and INP_ respectively, and where BRF  
is the Burst Repetition Frequency and BTD is the Burst  
Time Duration. The typical value gate capacitances of  
SHDN is common to both channel 1 and channel 2 and  
powers up or down the device. Drive SHDN low to power  
down all internal circuits (except the clamp circuits).  
When SHDN is low, the device is in the lowest power  
state (1µA) and the gate-source short circuit is disabled.  
The device takes 36.8ns (typ) to become active when  
SHDN is disabled.  
the power FET are C = 0.3µF and C = 0.6µF.  
N
P
For an output load that has a resistance of R and  
capacitance of C , the MAX4806/MAX4807/MAX4808  
power dissipation can be estimated as follows (assume  
square-wave output and neglect the resistance of the  
switches):  
L
L
Thermal Protection  
A thermal-shutdown circuit with a typical threshold of  
+155°C prevents damage due to excessive power dis-  
2
V
2
1
2
PP _  
sipation. When the junction temperature exceeds T =  
J
P
=
C
+ C × f × V  
V  
NN_  
+
×
× BRF × BTD  
(
)
(
)
(
)
VPP_  
O
L
IN  
PP_  
R
L
+150°C, all outputs are disabled. Normal operation typ-  
ically resumes after the IC’s junction temperature drops  
below +130°C.  
Where C is the output capacitance of the device.  
O
Applications Information  
Power Supplies and Bypassing  
The MAX4806/MAX4807/MAX4808 operate from inde-  
AC-Coupling Capacitor Selection  
pendent supply voltage sets (only V  
and V  
are  
SS  
DD  
The value of all AC-coupling capacitors (between C  
DP_  
) should be  
common to both channels). The logic input circuit oper-  
ates from a +2.7V to +6V single supply (V ). The  
and C  
, and between C  
and C  
GP_  
DN_  
GN_  
DD  
between 1nF to 10nF. The voltage rating of the capaci-  
tor should be greater than V and V . The capaci-  
level-shift driver dual supplies, V  
/V  
operate from  
CC_ EE_  
PP_  
NN_  
4.75V to 12.6V.  
tors should be placed as close as possible to the  
device.  
The V  
/V  
high-side and low-side supplies are dri-  
PP_ NN_  
ven from a single positive supply up to +220V, from a  
single negative supply up to -200V, or from 110V dual  
Because INP_ and part of INC_ are AC-coupled to the  
output devices, they cannot be driven high indefinitely  
when the device is active.  
supplies. Either V  
or V  
can be set at 0V. Bypass  
PP_  
NN_  
each supply input to ground with a 0.1µF capacitor as  
close as possible to the device.  
Power Dissipation  
The power dissipation of the MAX4806/MAX4807/  
MAX4808 consists of three major components caused  
Depending on the application, additional bypassing  
may be needed to maintain the input of both V  
and  
NN_  
by the current consumption from V  
, V  
VCC_  
, and V  
.
NN_  
CC_ PP_  
V
stable during output transitions. For example, with  
PP_  
The sum of these components (P  
, P  
, and  
VPP_  
C
OUT  
= 100pF and R  
= 100Ω load, the use of an  
OUT  
P
VNN_  
) must be kept below the maximum power-dissi-  
______________________________________________________________________________________ ±±  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
V
C
DP_  
C
GP_  
V
CC_  
DD  
V
PP_  
V
V
DD  
CC_  
LEVEL  
SHIFTER  
INP_  
C
DP_  
C
GP_  
OP_  
GND  
V
SS  
V
DD  
LEVEL  
SHIFTER  
INC_  
C
DC_  
C
GC_  
V
V
EE_  
OCP_  
SHDN  
EN_  
V
SS  
SHORT  
CIRCUIT  
MAX4806  
V
SS  
OCN_  
V
SS  
V
DD  
CC_  
LEVEL  
SHIFTER  
GND  
ON_  
67/MAX408  
V
SS  
V
V
DD  
CC_  
C
GN_  
LEVEL  
SHIFTER  
INN_  
C
DN_  
V
NN_  
V
C
C
GC_  
C
DN_  
C
GN_  
GND  
EE_  
DC_  
Figure 1. MAX4806 Simplified Functional Diagram for One Channel  
additional 10µF (typ) electrolytic capacitor is recom-  
connect EP to a similarly sized pad on the component  
side of the PCB. This pad should be connected through  
to the solder-side copper by several plated holes to a  
large heat-spreading copper area to conduct heat  
away from the device.  
mended. V is the substrate voltage. Connect V to a  
SS  
SS  
voltage equal to or more negative than the lower of  
or V  
V
NN1  
.
NN2  
Exposed Pad and Layout Concerns  
The MAX4806/MAX4807/MAX4808 provide an exposed  
pad (EP) underneath the TQFN package for improved  
The MAX4806/MAX4807/MAX4808 high-speed pulsers  
require low-inductance bypass capacitors to their sup-  
ply inputs. High-speed PCB trace design practices are  
recommended. Pay particular attention to minimize trace  
thermal performance. EP is internally connected to V  
.
SS  
Connect EP to V externally. To aid heat dissipation,  
SS  
±2 ______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
V
C
DP_  
C
GP_  
V
CC_  
DD  
V
PP_  
V
V
DD  
CC_  
LEVEL  
SHIFTER  
INP_  
C
DP_  
C
GP_  
OP_  
GND  
V
SS  
V
DD  
LEVEL  
SHIFTER  
INC_  
C
C
GC_  
DC_  
V
V
EE_  
OCP_  
SHDN  
EN_  
V
SS  
SHORT  
CIRCUIT  
MAX4807  
V
SS  
OCN_  
V
SS  
V
DD  
CC_  
LEVEL  
SHIFTER  
GND  
ON_  
V
SS  
V
V
DD  
CC_  
C
GN_  
LEVEL  
SHIFTER  
INN_  
C
DN_  
V
NN_  
V
C
DC_  
C
C
DN_  
C
GN_  
GND  
EE_  
GC_  
Figure 2. MAX4807 Simplified Functional Diagram for One Channel  
lengths and use sufficient trace width to reduce inductance.  
Use of surface-mount components is recommended.  
Typical Application Circuits  
Figures 8, 9, and 10 show typical applications for the  
MAX4806/MAX4807/MAX4808. Figure 8 shows the  
MAX4806 used in a bipolar pulsing connection.  
Figure 9 shows the MAX4807 in a five-level pulsing  
application, and Figure 10 shows the MAX4808 used in  
a unipolar application.  
Supply Sequencing  
V
must be lower than or equal to the more negative  
SS  
voltage of V  
or V  
at all times, and must be  
NN2  
NN1  
turned on before other supply voltages. No other  
power-supply sequencing is required for the MAX4806/  
MAX4807/MAX4808.  
______________________________________________________________________________________ ±3  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
V
C
DP_  
C
GP_  
V
CC_  
DD  
V
PP_  
V
V
DD  
CC_  
LEVEL  
SHIFTER  
INP_  
C
DP_  
C
GP_  
OP_  
GND  
V
SS  
V
DD  
LEVEL  
SHIFTER  
INC_  
C
C
GC_  
DC_  
V
V
EE_  
OCP_  
SHDN  
EN_  
V
SS  
SHORT  
CIRCUIT  
MAX4808  
V
SS  
OCN_  
V
SS  
V
DD  
CC_  
LEVEL  
SHIFTER  
4
GND  
ON_  
V
SS  
V
V
DD  
CC_  
C
GN_  
LEVEL  
SHIFTER  
INN_  
C
DN_  
V
NN_  
V
C
DC_  
C
C
DN_  
C
GN_  
GND  
EE_  
GC_  
Figure 3. MAX4808 Simplified Functional Diagram for One Channel  
±4 ______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
t
FPN  
V
PP_  
90%  
10%  
90%  
10%  
t
t
RNO  
FON  
OUT_  
90%  
10%  
10%  
GND  
90%  
t
t
ROP  
FPO  
90%  
10%  
10%  
V
NN_  
t
t
t
RNP  
POH  
PHO  
50%  
50%  
50%  
50%  
50%  
INP_  
INN_  
t
t
PHL  
PLH  
t
t
PLO  
POL  
V
DD  
50%  
50%  
50%  
GND  
INC_ = HIGH  
Figure 4. Detailed Timing (R = 100Ω, C = 100pF)  
L
L
OUT_ (INP_ = HIGH)  
GND  
10%  
OUT_ (INN_ = HIGH)  
10%  
t
t
EN  
DI  
EN_  
50%  
50%  
INC_ = HIGH  
Figure 5. Enable Timing (R = 100Ω, C = 100pF)  
L
L
______________________________________________________________________________________ ±5  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
OUT_ (V  
)
PP_  
1kΩ PULLUP RESISTOR TO V  
PP_  
GND  
10%  
10%  
1kΩ PULLDOWN RESISTOR TO V  
NN_  
10%  
OUT_ (V  
)
NN_  
t
t
DI-CL  
EN-CL  
INC_  
Figure 6. Active Clamp Timing  
67/MAX408  
90%  
+12V  
C
GN_  
GND  
GND  
10%  
10%  
C
GP_  
-12V  
10%  
t
t
EN-SH  
DI-SH  
EN_  
50%  
1kΩ PULLUP RESISTOR BETWEEN CGN_ AND +12V.  
1kΩ PULLDOWN RESISTOR BETWEEN CGP_ AND -12V.  
Figure 7. Short-Circuit Timing  
±6 ______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
-100V  
-12V  
+3V  
-12V  
+12V  
+12V  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
1
2
3
4
5
6
7
8
9
C
V
42  
41  
40  
39  
38  
37  
36  
35  
34  
C
GP1  
GP2  
V
V
PP1  
PP1  
PP2  
+100V  
+100V  
V
PP2  
N.C.  
N.C.  
OP2  
OP1  
OCP1  
GND  
OCN1  
ON1  
OCP2  
GND  
OCN2  
ON2  
OUT1  
OUT2  
MAX4806  
10 N.C.  
N.C. 33  
V
V
11  
12  
13  
14  
V
32  
31  
30  
29  
NN1  
NN1  
NN2  
NN2  
GN2  
DN2  
-100V  
-100V  
V
C
C
C
C
GN1  
DN1  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
V
DD  
V
DD  
+12V  
+12V  
Figure 8. MAX4806: Dual Bipolar Pulsing, 100V, GND  
______________________________________________________________________________________ ±7  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
-100V  
-12V  
+3V  
-12V  
+12V  
+12V  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
1
2
3
4
5
6
7
8
9
C
V
42  
41  
40  
39  
38  
37  
36  
35  
34  
C
GP1  
GP2  
V
V
PP1  
PP1  
PP2  
PP2  
+50V  
+100V  
V
N.C.  
N.C.  
OP2  
OP1  
OCP1  
GND  
OCN1  
ON1  
OCP2  
GND  
OCN2  
ON2  
OUT1  
OUT1  
MAX4807  
10 N.C.  
N.C. 33  
V
V
11  
12  
13  
14  
V
32  
31  
30  
29  
NN1  
NN1  
NN2  
NN2  
GN2  
DN2  
-50V  
-100V  
V
C
C
C
GN1  
DN1  
C
67/MAX408  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
+12V  
+12V  
Figure 9. MAX4807: Five-Level Pulsing, 100V, 50V, GND  
±8 ______________________________________________________________________________________  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
67/MAX408  
+3V  
+12V  
+12V  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
C
C
AC  
AC  
1
2
3
4
5
6
7
8
9
C
V
42  
41  
40  
39  
38  
37  
36  
35  
34  
C
GP1  
GP2  
V
V
PP1  
PP1  
PP2  
PP2  
+100V  
C
+100V  
V
C
PP  
PP  
N.C.  
N.C.  
OP2  
OP1  
OCP1  
GND  
OCN1  
ON1  
OCP2  
GND  
OCN2  
ON2  
OUT1  
OUT2  
MAX4808  
10 N.C.  
N.C. 33  
V
V
11  
12  
13  
14  
V
32  
31  
30  
29  
NN1  
NN1  
NN2  
NN2  
GN2  
DN2  
V
C
C
C
C
GN1  
DN1  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
+12V  
+12V  
Figure 10. MAX4808: Dual Unipolar Pulsing, +100V, GND  
______________________________________________________________________________________ ±9  
Dual, Unipolar/Bipolar, High-Voltage  
Digital Pulsers  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.  
PACKAGE TYPE  
PACKAGE CODE  
DOCUMENT NO.  
2±-0±44  
56 TQFN  
T5677-1  
67/MAX408  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2008 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX4806CTN+

Power Supply Support Circuit, Fixed, 2 Channel, 7 X 7 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX4807CTN+

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers
MAXIM

MAX4808CTN+*

Dual, Unipolar/Bipolar, High-Voltage Digital Pulsers
MAXIM

MAX480CPA

High-Precision, Low-Voltage, Micropower Op Amp
MAXIM

MAX480CSA

High-Precision, Low-Voltage, Micropower Op Amp
MAXIM

MAX480CSA+T

Operational Amplifier, 1 Func, 70uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MS-012, SOIC-8
MAXIM

MAX480EPA

High-Precision, Low-Voltage, Micropower Op Amp
MAXIM

MAX480ESA

High-Precision, Low-Voltage, Micropower Op Amp
MAXIM

MAX480MJA

High-Precision, Low-Voltage, Micropower Op Amp
MAXIM

MAX481

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers
MAXIM

MAX4810

Fully Assembled and Tested
MAXIM

MAX4810EVKIT

Fully Assembled and Tested
MAXIM