MAX4323EUA [MAXIM]

Single/Dual/Quad, Low-Cost, SOT23, Low-Power, Rail-to-Rail I/O Op Amps; 单/双/四路,低成本, SOT23封装,低功耗,轨到轨输入/输出运算放大器
MAX4323EUA
型号: MAX4323EUA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Dual/Quad, Low-Cost, SOT23, Low-Power, Rail-to-Rail I/O Op Amps
单/双/四路,低成本, SOT23封装,低功耗,轨到轨输入/输出运算放大器

运算放大器
文件: 总12页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1380; Rev 2a; 12/99  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
General Description  
____________________________Features  
SOT23 Packages (MAX4322/MAX4323)  
+2.4V to +6.5V Single-Supply Operation  
Rail-to-Rail Input Common-Mode Voltage Range  
Rail-to-Rail Output Voltage Swing  
5MHz Gain-Bandwidth Product  
The MAX4322/MAX4323/MAX4326/MAX4327/MAX4329  
family of operational amplifiers combines wide bandwidth  
and excellent DC accuracy with Rail-to-Rail® operation at  
the inputs and outputs. These devices require only 650µA  
per amplifier and operate from either a single supply  
(+2.4V to +6.5V) or dual supplies ( 1.2V to 3.25V). These  
unity-gain-stable amplifiers are capable of driving 250Ω  
loads and have a 5MHz gain-bandwidth product. The  
MAX4323 and MAX4327 feature a low-power shutdown  
mode that reduces supply current to 25µA and places the  
outputs in a high-impedance state.  
650µA Quiescent Current per Amplifier  
700µV Offset Voltage  
No Phase Reversal for Overdriven Inputs  
Drive 250Loads  
With their rail-to-rail input common-mode range and  
output swing, these amplifiers are ideal for low-voltage,  
single-supply operation. In addition, low offset voltage  
and high speed make them the ideal signal-condition-  
ing stages for precision, low-voltage data-acquisition  
systems. The MAX4322/MAX4323 are available in  
space-saving SOT23 packages.  
25µA Shutdown Mode (MAX4323/MAX4327)  
Unity-Gain Stable for Capacitive Loads  
up to 500pF  
Ordering Information  
Selector Guide  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP. RANGE  
BW NO. OF  
(MHz) AMPS  
PIN-  
PACKAGE  
MAX4322EUK-T  
-40°C to +85°C  
-40°C to +85°C  
5 SOT23-5  
8 SO  
ACGE  
PART  
SHUTDOWN  
MAX4322ESA  
MAX4322EUA -40°C to +85°C  
MAX4323ESA -40°C to +85°C  
MAX4323EUA -40°C to +85°C  
MAX4323EUT -40°C to +85°C  
MAX4326EUA -40°C to +85°C  
MAX4326ESA -40°C to +85°C  
MAX4327EUB -40°C to +85°C  
MAX4327ESD -40°C to +85°C  
MAX4329ESD -40°C to +85°C  
8 µMAX  
8 SO  
5 SOT23-5,  
8 µMAX/SO  
MAX4322  
MAX4323  
5
5
1
1
8 µMAX  
6 SOT23-6  
8 µMAX  
8 SO  
8 µMAX/SO/  
6 SOT23-6  
AAEC  
Yes  
MAX4326  
MAX4327  
MAX4329  
5
5
5
2
2
4
8 µMAX/SO  
10 µMAX, 14 SO  
14 SO  
Yes  
10 µMAX  
14 SO  
14 SO  
________________________Applications  
Typical Operating Circuit  
Battery-Powered Instruments  
Portable Equipment  
+5V  
Data-Acquisition Systems  
Signal Conditioning  
MAX187  
1
3
6
V
SHDN  
DOUT  
DD  
Low-Power, Low-Voltage Applications  
2
4
5
AIN  
MAX4322  
SERIAL  
INTERFACE  
Pin Configurations appear at end of data sheet.  
8
7
SCLK  
CS  
VREF  
GND  
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V -V ) ..................................................+7.5V  
Operating Temperature Range  
CC EE  
All Other Pins ...................................(V  
Output Short-Circuit Duration.....................................Continuous  
+ 0.3V) to (V - 0.3V)  
MAX432_E__ ....................................................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
CC  
EE  
(short to either supply)  
Continuous Power Dissipation (T = +70°C)  
A
5-pin SOT23-5 (derate 7.1mW/°C above +70°C) .........571mW  
6-pin SOT23 (derate 7.1mW/°C Above + 70°C) ...........571mW  
8-pin SO (derate 5.88mW/°C above +70°C).................471mW  
8-pin µMAX (derate 4.10mW/°C above +70°C)............330mW  
10-pin µMAX (derate 5.6mW/°C above +70°C)............444mW  
14-pin SO (derate 8.00mW/°C above +70°C)...............640mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS—T = +25°C  
A
(V  
CC  
= +5.0V, V = 0, V  
= 0, V  
= V  
/ 2, SHDN = V  
R tied to V  
L
/ 2, unless otherwise noted.)  
CC  
EE  
OUT  
CC  
CM  
CC,  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.0  
UNITS  
MAX432_ESA/MAX4327ESD  
All other packages  
0.7  
1.2  
50  
V
=
, V  
CM  
Input Offset Voltage  
mV  
V
EE CC  
2.50  
150  
12  
Input Bias Current  
Input Offset Current  
V
= V , V  
nA  
nA  
kΩ  
CM  
CM  
EE CC  
V
= V , V  
1
EE CC  
Differential Input Resistance  
-1.5V < V  
< 1.5V  
500  
DIFF  
Common-Mode Input  
Voltage Range  
Inferred from CMRR test  
V
EE  
V
V
CC  
V
V
V
CM  
CC  
EE  
MAX432_ESA/MAX4327ESD  
All other packages  
62  
94  
91  
Common-Mode Rejection Ratio  
dB  
60  
66  
Power-Supply Rejection Ratio  
Output Resistance  
V
= 2.4V to 6.5V  
100  
0.1  
106  
86  
dB  
CC  
A = +1V/V  
V
V
V
= 0.25V to 4.75V, R = 100kΩ  
L
OUT  
OUT  
Large-Signal Voltage Gain  
dB  
= 0.4V to 4.6V, R = 250Ω  
70  
L
2
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
DC ELECTRICAL CHARACTERISTICS—T = +25°C (continued)  
A
CC,  
(V  
CC  
= +5V, V = 0, V  
= 0, V  
= V  
/ 2, SHDN = V  
R tied to V / 2, unless otherwise noted.)  
EE  
OUT  
CC  
L
CC  
CM  
PARAMETER  
CONDITIONS  
R = 100kΩ  
MIN  
TYP  
12  
MAX  
UNITS  
V
V
V
V
V
V
V
V
- V  
CC  
OL  
CC  
OL  
CC  
OL  
CC  
OL  
OH  
L
- V  
- V  
20  
EE  
MAX4322/  
MAX4323  
200  
100  
15  
300  
200  
OH  
EE  
R = 250Ω  
L
- V  
- V  
Output Voltage Swing  
mV  
OH  
EE  
R = 100kΩ  
L
MAX4326/  
MAX4327/  
MAX4329  
- V  
- V  
25  
220  
120  
50  
350  
250  
OH  
EE  
R = 250Ω  
L
- V  
Output Short-Circuit Current  
SHDN Logic Threshold  
SHDN Input Current  
mA  
V
Low  
High  
0.8  
MAX4323/MAX4327  
2.0  
2.4  
MAX4323/MAX4327  
1
4
µA  
V
Operating Supply-Voltage Range  
Inferred from PSRR test  
6.5  
V
V
V
V
= 2.4V  
= 5V  
650  
725  
25  
CC  
CC  
CC  
CC  
Supply Current per Amplifier  
V
= V  
= V / 2  
CC  
µA  
µA  
CM  
OUT  
1100  
60  
= 2.4V  
= 5V  
Shutdown Supply Current  
per Amplifier  
SHDN > 0.8V, MAX4323/MAX4327  
40  
DC ELECTRICAL CHARACTERISTICS—T = -40°C to +85°C  
A
CC,  
(V  
CC  
= +5V, V = 0, V  
= 0, V  
= V  
/ 2, SHDN = V  
R tied to V  
/ 2, unless otherwise noted.) (Note 1)  
EE  
OUT  
CC  
L
CC  
CM  
PARAMETER  
Input Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
3.0  
UNITS  
MAX432_ESA/MAX4327ESD  
All other packages  
V
=
, V  
CM  
mV  
V
EE CC  
6.0  
Input Offset Voltage Tempco  
Input Bias Current  
2
µV/°C  
nA  
V
= V , V  
180  
20  
CM  
EE CC  
Input Offset Current  
V
CM  
= V , V  
nA  
EE CC  
Common-Mode Input  
Voltage Range  
Inferred from CMRR test  
V
V
CC  
V
EE  
V
V
V
CM  
CC  
EE  
MAX432_ESA/MAX4327ESD  
All other packages  
59  
54  
Common-Mode Rejection Ratio  
dB  
_______________________________________________________________________________________  
3
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
DC ELECTRICAL CHARACTERISTICS —T = -40°C to +85°C (continued)  
A
CC,  
(V  
CC  
= +5V, V = 0, V  
= 0, V  
= V  
/ 2, SHDN = V  
R tied to V  
/ 2, unless otherwise noted.) (Note 1)  
EE  
OUT  
CC  
L
CC  
CM  
PARAMETER  
CONDITIONS  
MIN  
62  
TYP  
MAX  
UNITS  
dB  
Power-Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
V
= 2.4V to 6.5V  
CC  
= 0.4V to 4.6V, R = 250Ω  
66  
dB  
OUT  
L
V
V
- V  
350  
250  
CC  
OH  
MAX4322/  
MAX4323  
R = 250Ω  
L
- V  
- V  
OL  
EE  
Output Voltage Swing  
mV  
MAX4326/  
MAX4327/  
MAX4329  
V
400  
CC  
OL  
OH  
EE  
R = 250Ω  
L
V
- V  
300  
0.8  
Low  
High  
MAX4323/MAX4327  
MAX4323/MAX4327  
V
SHDN Logic Threshold  
SHDN Input Current  
2.0  
2.4  
5
6.5  
1.2  
µA  
V
Operating Supply-Voltage Range  
Supply Current per Amplifier  
V
= V  
/ 2  
mA  
CM  
CC  
Shutdown Supply Current  
per Amplifier  
70  
µA  
SHDN 0.8V, MAX4323/MAX4327  
AC ELECTRICAL CHARACTERISTICS  
(V  
= +5V, V = 0, V  
= V  
= V / 2, SHDN = V  
T = +25°C unless otherwise noted.)  
CC,  
A
CC  
EE  
CM  
OUT  
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
5
MAX  
UNITS  
MHz  
degrees  
dB  
Gain-Bandwidth Product  
Phase Margin  
64  
Gain Margin  
12  
Total Harmonic Distortion  
Slew Rate  
f = 10kHz, V  
= 2Vp-p, A = +1V/V  
V
0.003  
2
%
OUT  
V/µs  
µs  
Settling Time to 0.01%  
Turn-On Time  
A = +1V/V, V  
V
= 2V step  
2.0  
1
OUT  
V
= 0 to 3V step  
µs  
CC  
Enable  
Disable  
1
MAX4323/MAX4327  
µs  
SHDN Delay  
0.2  
3
Input Capacitance  
pF  
nV/Hz  
pA  
Input Noise Voltage Density  
Input Noise Current Density  
Amp-Amp Isolation  
f = 1kHz  
f = 1kHz  
22  
0.4  
135  
250  
dB  
Capacitive Load Stability  
A = +1V/V  
V
pF  
Note 1: All devices are 100% tested at T = +25°C. All temperature limits are guaranteed by design.  
A
4
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
__________________________________________Typical Operating Characteristics  
(V  
CC  
= +5V, V = 0, V  
= V / 2, SHDN = V  
T = +25°C, unless otherwise noted.)  
A
EE  
CM  
CC  
CC,  
GAIN AND PHASE vs. FREQUENCY  
POWER-SUPPLY REJECTION  
vs. FREQUENCY  
(WITH C  
)
GAIN AND PHASE vs. FREQUENCY  
LOAD  
MAX4322/26/29-02  
MAX4322/26/29-01  
60  
180  
144  
180  
144  
60  
A = +1  
0
-20  
-40  
V
40  
20  
0
108  
72  
108  
72  
40  
20  
0
GAIN  
GAIN  
36  
36  
0
0
-60  
-80  
-36  
-72  
-108  
-144  
-36  
-72  
-108  
-144  
PHASE  
PHASE  
A = +1000  
V
-20  
-20  
A = +1000  
V
NO LOAD  
R = ∞  
L
C = 500pF  
L
-100  
-180  
-40  
100  
-40  
100  
-180  
1k  
10k 100k  
1M 10M 100M  
1k  
10k  
100k 1M 10M 100M  
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX4323/MAX4327  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
OUTPUT IMPEDANCE  
vs. FREQUENCY  
MAX4326/MAX4327/MAX4329  
CHANNEL SEPARATION vs. FREQUENCY  
100  
60  
50  
40  
30  
130  
A = +1  
V
120  
110  
100  
90  
V
= 6.5V  
CC  
10  
1
0.1  
V
= 2.7V  
CC  
80  
70  
60  
20  
10  
SHDN = 0V  
0
0.01  
50  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k 100k  
1M 10M  
100M  
-40 -25 -10  
5
20 35 50 65 80 95  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. COMMON-MODE VOLTAGE  
SUPPLY CURRENT PER AMPLIFIER  
vs. TEMPERATURE  
3.00  
50  
40  
900  
850  
800  
750  
700  
SOT23-5/6  
PACKAGE  
2.25  
V
= 2.7V  
CC  
30  
20  
10  
0
1.50  
0.75  
0
V
= 6.5V  
V
V
= 6.5V  
= 2.7V  
CC  
CC  
CC  
-10  
-0.75  
650  
600  
550  
-20  
-30  
-1.50  
-2.25  
-3.00  
SO PACKAGE  
-40  
-50  
500  
-40 -25 -10  
5
20 35 50 65 80 95  
0
1
2
3
4
5
6
-40 -25 -10  
5
20 35 50 65 80 95  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
_____________________________Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, V = 0, V  
= V / 2, SHDN = V  
T = +25°C, unless otherwise noted.)  
A
EE  
CM  
CC  
CC,  
MINIMUM OUTPUT VOLTAGE  
vs. TEMPERATURE  
COMMON-MODE REJECTION  
vs. TEMPERATURE  
INPUT BIAS CURRENT  
vs. TEMPERATURE  
250  
200  
150  
100  
50  
40  
120  
115  
110  
105  
100  
R TO V  
L
CC  
V
= 6.5V, V = V  
CM CC  
CC  
30  
V
= 6.5V, R = 500Ω  
CC  
L
V
= 2.7V, V = V  
CM CC  
CC  
20  
V
= 0 TO 5.0V  
CM  
10  
0
V
= 2.7V, R = 500Ω  
CC  
L
-10  
-20  
-30  
-40  
-50  
-60  
95  
90  
85  
V = -0.2V TO 5.2V  
CM  
V
= 2.7V, V = V  
CM  
CC  
EE  
50  
0
V
= 6.5V, R = 100kΩ  
CC L  
V
= 6.5V, V = V  
CM  
CC  
EE  
V
= 2.7V, R = 100kΩ  
L
CC  
80  
-40 -25 -10  
5
20 35 50 65 80 95  
-40 -25 -10  
5
20 35 50 65 80 95  
-40 -25 -10  
5
20 35 50 65 80 95  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
MAXIMUM OUTPUT VOLTAGE  
vs. TEMPERATURE  
120  
110  
100  
90  
120  
110  
100  
90  
300  
250  
200  
150  
V
= 2.7V  
V
= 6.5V  
CC  
CC  
R TO V  
L
EE  
R = 100kΩ  
L
R TO V  
L
R TO V  
L
EE  
EE  
V
= 6.5V, R = 500Ω  
L
CC  
R = 100kΩ  
L
R = 10kΩ  
L
R = 10kΩ  
L
R = 2kΩ  
L
R = 2kΩ  
L
V
= 2.7V, R = 500Ω  
CC  
L
R = 500Ω  
L
80  
80  
100  
50  
R = 500Ω  
L
V
= 6.5V, R = 100k(TOP)  
L
CC  
70  
70  
V
= 2.7V, R = 100k(BOTTOM)  
L
CC  
60  
60  
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
-40 -25 -10  
5
20 35 50 65 80 95  
OUTPUT VOLTAGE: FROM V (mV)  
CC  
OUTPUT VOLTAGE: FROM V (mV)  
CC  
TEMPERATURE (°C)  
LARGE-SIGNAL GAIN  
vs. TEMPERATURE  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
LARGE-SIGNAL GAIN  
vs. OUTPUT VOLTAGE  
120  
110  
100  
90  
120  
110  
100  
90  
125  
120  
115  
110  
105  
V
= 6.5V  
CC  
R = 500Ω  
OUT  
R = 100kΩ  
V
= 2.7V  
CC  
L
V
= 6.5V,  
L
CC  
R TO V  
L
CC  
R TO V  
L
R = 100kΩ  
L
V
(p-p) = V - 1V  
CC  
R TO V  
L
CC  
EE  
R = 10kΩ  
L
R = 10kΩ  
L
V
= 2.7V,  
CC  
R TO V  
L
R = 2kΩ  
L
EE  
R = 2kΩ  
L
100  
95  
R = 500Ω  
L
R = 500Ω  
L
V
= 6.5V, R TO V  
CC  
CC  
L
80  
80  
90  
85  
80  
75  
70  
70  
V
= 2.7V, R TO V  
L CC  
CC  
60  
60  
-40 -25 -10  
5
20 35 50 65 80 95  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
TEMPERATURE (°C)  
OUTPUT VOLTAGE: FROM V (mV)  
OUTPUT VOLTAGE: FROM V (mV)  
EE  
EE  
6
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
_____________________________Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, V = 0, V  
= V / 2, SHDN = V  
T = +25°C, unless otherwise noted.)  
A
EE  
CM  
CC  
CC,  
LARGE-SIGNAL GAIN  
vs. TEMPERATURE  
TOTAL HARMONIC DISTORTION  
AND NOISE vs. FREQUENCY  
MINIMUM OPERATING VOLTAGE  
vs. TEMPERATURE  
1.9  
125  
0.040  
0.035  
0.030  
0.025  
0.020  
V
= 6.5V, R TO V  
L EE  
CC  
A
= +1  
2Vp-p SIGNAL  
500kHz LOWPASS FILTER  
V
120  
115  
110  
105  
1.8  
1.7  
V
= 6.5V, R TO V  
L CC  
CC  
R = 10kTO V / 2  
L
CC  
1.6  
1.5  
1.4  
1.3  
1.2  
100  
95  
V
= 2.7V, R TO V  
L EE  
CC  
0.015  
0.010  
0.005  
V
= 2.7V, R TO V  
L CC  
CC  
90  
85  
80  
75  
V
(p-p) = V - 600mV  
CC  
R = 100kΩ  
OUT  
L
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
-40 -25 -10  
5
20 35 50 65 80 95  
-40 -25 -10  
5
20 35 50 65 80 95  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION AND NOISE  
vs. PEAK-TO-PEAK SIGNAL AMPLITUDE  
SMALL-SIGNAL TRANSIENT  
RESPONSE (NONINVERTING)  
SMALL-SIGNAL TRANSIENT  
RESPONSE (INVERTING)  
0.1  
A
V
= +1  
A
= +1  
A
= -1  
V
V
10kHz SINE WAVE  
R TO V / 2  
L
CC  
500kHz LOWPASS FILTER  
IN  
IN  
R = 2kΩ  
L
0.01  
R = 250Ω  
L
OUT  
OUT  
R = 100kΩ  
L
R = 10kΩ  
L
0.001  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
TIME (200ns/div)  
TIME (200ns/div)  
PEAK-TO-PEAK SIGNAL AMPLITUDE (V)  
LARGE-SIGNAL TRANSIENT  
RESPONSE (INVERTING)  
LARGE-SIGNAL TRANSIENT  
RESPONSE (NONINVERTING)  
A
= +1  
A
= -1  
V
V
IN  
IN  
OUT  
OUT  
TIME (2µs/div)  
TIME (2µs/div)  
_______________________________________________________________________________________  
7
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX4322  
MAX4323  
MAX4327  
MAX4326  
MAX4329  
SOT23-5 SO/µMAX SOT23-6 SO/µMAX  
µMAX  
SO  
1
2
6
4
1
2
6
4
4
OUT  
Output  
Negative Supply. Ground for  
single-supply operation.  
4
4
11  
V
EE  
3
4
5
7
3
4
6
7
8
10  
14  
4
IN+  
IN-  
Noninverting Input  
Inverting Input  
V
CC  
Positive Supply  
5, 7, 8,  
10  
1, 5, 8  
5
1, 5  
8
N.C.  
No Connection  
Shutdown Control. Tie high or  
leave floating to enable  
amplifier.  
SHDN  
OUT1,  
OUT2  
2
2
1, 7  
2, 6  
3, 5  
1, 9  
2, 8  
3, 7  
1, 13  
2, 12  
3, 11  
1, 7  
2, 6  
3, 5  
Outputs for amps 1 and 2  
Inverting Inputs for amps 1  
and 2  
IN1-, IN2-  
Noninverting Inputs for amps  
1 and 2  
3
3
IN1+, IN2+  
Shutdown Control for amps 1  
and 2. Tie high or leave float-  
ing to enable amplifier.  
SHDN1,  
SHDN2  
5, 6  
5, 9  
OUT3,  
OUT4  
8, 14  
9, 13  
Outputs for amps 3 and 4  
Inverting Inputs for amps 3  
and 4  
IN3-, IN4-  
Noninverting Inputs for amps  
3 and 4  
10, 12 IN3+, IN4+  
switchover transition region, which occurs near V  
/ 2,  
CC  
__________Applications Information  
has been extended to minimize the slight degradation in  
CMRR caused by the mismatch of the input pairs. Their  
low offset voltage, high bandwidth, and rail-to-rail com-  
mon-mode range make these op amps excellent choices  
for precision, low-voltage, data-acquisition systems.  
Rail-to-Rail Input Stage  
Devices in the MAX4322/MAX4323/MAX4326/MAX4327/  
MAX4329 family of high-speed amplifiers have rail-to-  
rail input and output stages designed for low-voltage,  
single-supply operation. The input stage consists of  
separate NPN and PNP differential stages, which com-  
bine to provide an input common-mode range extend-  
ing to the supply rails. The PNP stage is active for input  
voltages close to the negative rail, and the NPN stage  
is active for input voltages near the positive rail. The  
input offset voltage is typically below 250µV. The  
Since the input stage switches between the NPN and  
PNP pairs, the input bias current changes polarity as  
the input voltage passes through the transition region.  
To reduce the offset error caused by input bias cur-  
rents flowing through external source impedances,  
match the effective impedance seen by each input  
(Figures 1a, 1b). High source impedances, together  
8
_______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
with the input capacitance, can create a parasitic pole  
Rail-to-Rail Output Stage  
The minimum output voltage will be within millivolts of  
ground for single-supply operation where the load is  
that produces an underdamped signal response.  
Reducing the input impedance or placing a small (2pF  
to 10pF) capacitor across the feedback resistor  
improves the response.  
referenced to ground (V ). Figure 3 shows the input  
EE  
voltage range and output voltage swing of a MAX4322  
connected as a voltage follower. With a +3V supply  
and the load tied to ground, the output swings from  
0.00V to 2.90V. The maximum output voltage swing  
depends on the load, but will be within 350mV of a +5V  
supply, even with the maximum load (500to ground).  
Driving a capacitive load can cause instability in most  
high-speed op amps, especially those with low quies-  
cent current. The MAX4322/MAX4323/MAX4326/  
MAX4327/MAX4329 have a high tolerance for capaci-  
tive loads. They are stable with capacitive loads up to  
500pF. Figure 4 gives the stable operating region for  
capacitive loads. Figures 5 and 6 show the response  
with capacitive loads and the results of adding an iso-  
lation resistor in series with the output (Figure 7). The  
resistor improves the circuit’s phase margin by isolat-  
ing the load capacitor from the op amp’s output.  
The MAX4322/MAX4323/MAX4326/MAX4327/MAX4329’s  
inputs are protected from large differential input volt-  
ages by 1kseries resistors and back-to-back triple  
diodes across the inputs (Figure 2). For differential input  
voltages less than 1.8V the input resistance is typically  
500k. For differential input voltages greater than 1.8V  
the input resistance is approximately 2k, and the input  
bias current is determined by the following equation:  
V
- 1.8V  
2kΩ  
DIFF  
I
=
BIAS  
R3  
R3  
MAX4322/MAX4323  
MAX4326/MAX4327  
MAX4329  
MAX4322/MAX4323  
MAX4326/MAX4327  
MAX4329  
R1  
R2  
R1  
R2  
R3 = R1 R2  
R3 = R1 R2  
Figure 1a. Reducing Offset Error Due to Bias Current  
(Noninverting)  
Figure 1b. Reducing Offset Error Due to Bias Current  
(Inverting)  
1k  
1k  
Figure 2. Input Protection Circuit  
_______________________________________________________________________________________  
9
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
Power-Up and Shutdown Mode  
The MAX4322/MAX4323/MAX4326/MAX4327/MAX4329  
amplifiers typically settle within 1µs after power-up.  
Using the test circuit of Figure 8, Figures 9 and 10 show  
the output voltage and supply current on power-up.  
Power Supplies and Layout  
The MAX4322/MAX4323/MAX4326/MAX4327/MAX4329  
operate from a single +2.4V to +6.5V power supply, or  
from dual supplies of 1.2V to 3.25V. For single-supply  
operation, bypass the power supply with a 0.1µF  
ceramic capacitor in parallel with at least 1µF. For dual  
supplies, bypass each supply to ground.  
The MAX4323 and MAX4327 have a shutdown option.  
When the shutdown pin (SHDN) is pulled low, the sup-  
ply current drops below 25µA per amplifier and the  
amplifiers are disabled with the outputs in a high-  
impedance state. Pulling SHDN high or leaving it float-  
ing enables the amplifier. In the dual-amplifier  
MAX4327, the shutdown functions operate indepen-  
dently. Figures 11 and 12 show the output voltage and  
supply current responses of the MAX4323 to a shut-  
down pulse.  
Good layout improves performance by decreasing the  
amount of stray capacitance at the op amp’s inputs  
and outputs. To decrease stray capacitance, minimize  
trace lengths and resistor leads by placing external  
components close to the op amp’s pins.  
10,000  
V
= 3V  
CC  
A = +1  
V
IN  
UNSTABLE  
REGION  
1000  
OUT  
R TO V  
OUT  
L
EE  
= V /2  
CC  
V
100  
TIME (2µs/div)  
100  
1k  
10k  
100k  
RESISTIVE LOAD ()  
Figure 3. Rail-to-Rail Input /Output Voltage Range  
Figure 4. Capacitive-Load Stability  
A = +1  
L
R = 39Ω  
S
V
A = +1  
L
V
C = 1000pF  
C = 500pF  
IN  
IN  
OUT  
OUT  
TIME (400ns/div)  
TIME (400ns/div)  
Figure 5. Small-Signal Transient Response with  
Capacitive Load  
Figure 6. Transient Response to Capacitive Load with  
Isolation Resistor  
10 ______________________________________________________________________________________  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
V
CC  
MAX4322/MAX4323  
MAX4326/MAX4327  
MAX4329  
0V TO 2.7V  
STEP FOR  
POWER-UP  
TEST  
2k  
V
R
OUT  
S
C
L
MAX4322/MAX4323  
MAX4326/MAX4327  
MAX4329  
SUPPLY-CURRENT  
MONITORING POINT  
10Ω  
10k  
2k  
Figure 8. Power-Up Test Circuit  
Figure 7. Capacitive-Load-Driving Circuit  
V
CC  
V
CC  
(1V/div)  
OUT  
I
CC  
(500µA/div)  
TIME (5µs/div)  
TIME (5µs/div)  
Figure 10. Power-Up Supply Current  
Figure 9. Power-Up Output Voltage  
V
= 2.7V  
V
= 2.7V  
CC  
CC  
R = 10kΩ  
L
SHDN  
(1V/div)  
SHDN  
(1V/div)  
I
OUT  
(0.5V/div)  
CC  
(500µA/div)  
TIME (2µs/div)  
TIME (2µs/div)  
Figure 12. Shutdown Enable/Disable Supply Current  
Figure 11. Shutdown Output Voltage  
______________________________________________________________________________________ 11  
Single/Dual/Quad, Low-Cost, SOT23,  
Low-Power, Rail-to-Rail I/O Op Amps  
___________________________________________________________Pin Configurations  
TOP VIEW  
1
2
3
6
5
4
V
OUT  
CC  
1
2
3
4
8
7
6
5
SHDN  
N.C.  
IN1-  
IN1+  
1
2
3
5
4
1
2
3
4
V
8
7
6
5
N.C.  
OUT  
N.C.  
IN1-  
IN1+  
CC  
V
V
CC  
CC  
MAX4323  
MAX4323  
MAX4322  
MAX4322  
SHDN  
IN-  
V
EE  
V
EE  
OUT  
N.C.  
OUT  
N.C.  
V
V
EE  
EE  
IN+  
IN+  
IN-  
SO  
SO/µMAX  
SOT23-6  
SOT23-5  
OUT1  
OUT1  
IN1-  
V
OUT4  
IN4-  
1
2
3
4
5
6
7
1
CC  
14  
14  
13  
12  
11  
10  
9
1
2
3
4
8
7
6
5
V
OUT1  
IN1-  
1
10  
V
OUT1  
CC  
CC  
IN1-  
IN1+  
OUT2  
IN2-  
2
3
4
5
6
7
13  
12  
11  
10  
9
2
3
4
5
9
8
7
6
OUT2  
IN2-  
OUT2  
IN2-  
IN1-  
IN1+  
MAX4326  
MAX4327  
IN1+  
IN4+  
IN1+  
V
EE  
V
CC  
IN2+  
N.C.  
V
EE  
MAX4327  
MAX4329  
V
EE  
IN2+  
V
IN2+  
EE  
N.C.  
SHDN1  
N.C.  
IN2+  
IN2-  
IN3+  
IN3-  
SHDN1  
SHDN2  
SHDN2  
N.C.  
µMAX  
SO/µMAX  
OUT2  
OUT3  
8
8
SO  
SO  
Chip Information  
MAX4322 TRANSISTOR COUNT: 170  
MAX4323 TRANSISTOR COUNT: 170  
MAX4326 TRANSISTOR COUNT: 340  
MAX4327 TRANSISTOR COUNT: 340  
MAX4329 TRANSISTOR COUNT: 680  
SUBSTRATE CONNECTED TO V  
EE  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX4323EUA+

Operational Amplifier, 1 Func, 6000uV Offset-Max, BIPolar, PDSO8, MICRO, SOP-8
MAXIM

MAX4323EUA+T

Operational Amplifier, 1 Func, 6000uV Offset-Max, BIPolar, PDSO8, MICRO, SOP-8
MAXIM

MAX4323EUA-T

Operational Amplifier, 1 Func, 6000uV Offset-Max, BIPolar, PDSO8, MICRO, SOP-8
MAXIM

MAX4323EUT

Single/Dual/Quad, Low-Cost, SOT23, Low-Power, Rail-to-Rail I/O Op Amps
MAXIM

MAX4323EUT-T

Operational Amplifier
MAXIM

MAX4326

Single/Dual/Quad, Low-Cost, SOT23, Low-Power, Rail-to-Rail I/O Op Amps
MAXIM

MAX4326ESA

Single/Dual/Quad, Low-Cost, SOT23, Low-Power, Rail-to-Rail I/O Op Amps
MAXIM

MAX4326ESA+

暂无描述
MAXIM

MAX4326EUA

Single/Dual/Quad, Low-Cost, SOT23, Low-Power, Rail-to-Rail I/O Op Amps
MAXIM

MAX4326EUA

DUAL OP-AMP, 6000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO8, MICRO, SOP-8
ROCHESTER

MAX4326EUA-T

DUAL OP-AMP, 6000 uV OFFSET-MAX, 5 MHz BAND WIDTH, PDSO8, MICRO, SOP-8
ROCHESTER

MAX4326EUA-T

Operational Amplifier, 2 Func, 6000uV Offset-Max, BIPolar, PDSO8, MICRO, SOP-8
MAXIM