MAX412BCSA+T [MAXIM]

Operational Amplifier, 2 Func, 350uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MO-012, SO-8;
MAX412BCSA+T
型号: MAX412BCSA+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Operational Amplifier, 2 Func, 350uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MO-012, SO-8

放大器 光电二极管
文件: 总13页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4194; Rev 6; 9/09  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
02/MAX14  
General Description  
Features  
o Voltage Noise: 2.4nV/√Hz (max) at 1kHz  
o 2.5mA Supply Current Per Amplifier  
o Low Supply Voltage Operation: 2.4V to 5V  
o 28MHz Unity-Gain Bandwidth  
The MAX410/MAX412/MAX414 single/dual/quad op  
amps set a new standard for noise performance in  
high-speed, low-voltage systems. Input voltage-noise  
density is guaranteed to be less than 2.4nV/Hz at  
1kHz. A unique design not only combines low noise  
with ±±V operation, but also consumes 2.±mA supply  
current per amplifier. Low-voltage operation is guaran-  
o 4.5V/µs Slew Rate  
teed with an output voltage swing of 7.3V  
into 2kΩ  
o 250µV (max) Offset Voltage (MAX410/MAX412)  
o 115dB (min) Voltage Gain  
o Available in an Ultra-Small TDFN Package  
P-P  
from ±±V supplies. The MAX410/MAX412/MAX414 also  
operate from supply voltages between ±2.4V and ±±V  
for greater supply flexibility.  
Ordering Information  
Unity-gain stability, 28MHz bandwidth, and 4.±V/µs  
slew rate ensure low-noise performance in a wide vari-  
ety of wideband and measurement applications. The  
MAX410/MAX412/MAX414 are available in DIP and SO  
packages in the industry-standard single/dual/quad op  
amp pin configurations. The single comes in an ultra-  
small TDFN package (3mm 3mm).  
PART  
TEMP RANGE  
0°C to +70°C  
PIN-PACKAGE  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
MAX410CPA  
MAX410BCPA  
MAX410CSA  
MAX410BCSA  
MAX410EPA  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
8 SO  
Applications  
Low-Noise Frequency Synthesizers  
-40°C to +8±°C  
-40°C to +8±°C  
-40°C to +8±°C  
-40°C to +8±°C  
-40°C to +8±°C  
-±±°C to +12±°C  
-±±°C to +12±°C  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
MAX410BEPA  
MAX410ESA  
Infrared Detectors  
MAX410BESA  
MAX410ETA  
8 SO  
High-Quality Audio Amplifiers  
Ultra Low-Noise Instrumentation Amplifiers  
Bridge Signal Conditioning  
8 TDFN-EP*  
8 SO**  
MAX410MSA/PR  
MAX410MSA/PR-T  
8 SO**  
*EP = Exposed pad. Top Mark—AGQ.  
**Contact factory for availability.  
Ordering Information continued at end of data sheet.  
Typical Operating Circuit  
Pin Configurations  
1k*  
42.2kΩ  
1%  
TOP VIEW  
200Ω  
42.2k**  
1%  
NULL  
IN-  
1
2
3
4
8
7
6
5
NULL  
V+  
MAX410  
1%  
200Ω  
1%  
2
3
1
6
5
1/2 MAX412  
7
IN+  
V-  
OUT  
N.C.  
OUT  
-IN  
+IN  
1/2 MAX412  
DIP/SO/TDFN  
*TRIM FOR GAIN.  
**TRIM FOR COMMON-MODE REJECTION.  
OUT1  
IN1-  
IN1+  
V-  
1
2
3
4
8
7
6
5
V+  
LOW-NOISE INSTRUMENTATION AMPLIFIER  
MAX412  
OUT2  
IN2-  
IN2+  
DIP/SO  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim's website at www.maxim-ic.com.  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage.......................................................................12V  
Differential Input Current (Note 1) ....................................±20mA  
Input Voltage Range........................................................V+ to V-  
Common-Mode Input Voltage ..............(V+ + 0.3V) to (V- - 0.3V)  
Short-Circuit Current Duration....................................Continuous  
MAX414  
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)800mW  
14-Pin SO (derate 8.33mW/°C above +70°C)..............667mW  
Operating Temperature Ranges:  
MAX41_C_ _ .......................................................0°C to +70°C  
MAX41_E_ _.....................................................-40°C to +8±°C  
MAX41_M_ _..................................................-±±°C to +12±°C  
Storage Temperature Range.............................-6±°C to +1±0°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
MAX410/MAX412  
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C) ...727mW  
8-Pin SO (derate ±.88mW/°C above +70°C)................471mW  
8-Pin TDFN (derate 18.±mW/°C above +70°C) .........1482mW  
Note 1: The amplifier inputs are connected by internal back-to-back clamp diodes. In order to minimize noise in the input stage, current-  
limiting resistors are not used. If differential input voltages exceeding ±1.0V are applied, limit input current to 20mA.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = ±V, V- = -±V, T = +25°C, unless otherwise noted.)  
A
PARAMETER  
Input Offset Voltage  
SYMBOL  
CONDITIONS  
MAX410, MAX410B, MAX412, MAX412B  
MAX414, MAX414B  
MIN  
TYP  
±120  
±1±0  
±80  
±40  
20  
MAX  
±2±0  
±320  
±1±0  
±80  
UNITS  
V
µV  
OS  
Input Bias Current  
I
nA  
nA  
k  
MΩ  
pF  
B
02/MAX14  
Input Offset Current  
I
OS  
Differential Input Resistance  
Common-Mode Input Resistance  
Input Capacitance  
R
IN(Diff)  
R
IN(CM)  
40  
C
4
IN  
10Hz  
7
MAX410, MAX412,  
MAX414  
1000Hz (Note 2)  
1.±  
2.4  
4.0  
Input Noise-Voltage Density  
e
nVHz  
n
MAX410B, MAX412B,  
MAX414B  
1000Hz (Note 2)  
2.4  
f
f
= 10Hz  
2.6  
1.2  
O
Input Noise-Current Density  
Common-Mode Input Voltage  
i
pAHz  
n
= 1000Hz  
O
+3.7/  
-3.8  
V
±3.±  
V
CM  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
= ±3.±V  
11±  
96  
130  
103  
122  
120  
dB  
dB  
CM  
V = ±2.4V to ±±.2±V  
S
R = 2k, V = ±3.6V  
11±  
110  
L
O
Large-Signal Gain  
A
dB  
V
VOL  
R = 600, V = ±3.±V  
L
O
+3.6  
-3.7  
+3.7/  
-3.8  
Output Voltage Swing  
V
R = 2kΩ  
L
OUT  
Short-Circuit Output Current  
Slew Rate  
I
3±  
4.±  
28  
mA  
V/µs  
MHz  
µs  
SC  
SR  
10k|| 20pF load  
10k|| 20pF load  
To 0.1%  
Unity-Gain Bandwidth  
Settling Time  
GBW  
t
1.3  
13±  
S
Channel Separation  
C
f
O
= 1kHz  
dB  
S
2
_______________________________________________________________________________________  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
02/MAX14  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = ±V, V- = -±V, T = +25°C, unless otherwise noted.)  
A
PARAMETER  
Operating Supply-Voltage Range  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
±±.2±  
2.7  
UNITS  
V
V
±2.4  
S
I
Per amplifier  
2.±  
mA  
S
ELECTRICAL CHARACTERISTICS  
(V+ = ±V, V- = -±V, T = 0°C to +70°C, unless otherwise noted.)  
A
PARAMETER  
Input Offset Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
±1±0  
±1  
MAX  
UNITS  
µV  
V
±3±0  
OS  
Offset Voltage Tempco  
Input Bias Current  
V /T Over operating temperature range  
µV/°C  
nA  
OS  
I
±100  
±80  
±200  
±1±0  
B
Input Offset Current  
I
nA  
OS  
+3.7/  
-3.8  
Common-Mode Input Voltage  
V
±3.±  
V
CM  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
= ±3.±V  
10±  
90  
121  
97  
dB  
dB  
CM  
V = ±2.4V to ±±.2±V  
S
R = 2k, V = ±3.6V  
110  
90  
120  
119  
L
O
Large-Signal Gain  
A
dB  
VOL  
R = 600, V = ±3.±V  
L
O
+3.7/  
-3.6  
Output Voltage Swing  
Supply Current  
V
R = 2kΩ  
±3.±  
MIN  
±3.±  
V
OUT  
L
I
Per amplifier  
3.3  
mA  
S
ELECTRICAL CHARACTERISTICS  
(V+ = ±V, V- = -±V, T = -40°C to +85°C, unless otherwise noted.) (Note 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MAX410, MAX410B, MAX412, MAX412B  
MAX414, MAX414B  
TYP  
±200  
±200  
±1  
MAX  
±400  
±4±0  
UNITS  
Input Offset Voltage  
V
µV  
OS  
Offset Voltage Tempco  
Input Bias Current  
V /T Over operating temperature range  
µV/°C  
nA  
OS  
I
±130  
±100  
±3±0  
±200  
B
Input Offset Current  
I
nA  
OS  
+3.7/  
-3.6  
Common-Mode Input Voltage  
V
V
CM  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
= ±3.±V  
10±  
90  
120  
94  
dB  
dB  
CM  
V = ±2.4V to ±±.2±V  
S
R = 2k, V = ±3.6V  
110  
90  
118  
114  
L
O
Large-Signal Gain  
A
dB  
VOL  
R = 600, V = +3.4V to -3.±V  
L
O
+3.7/  
-3.6  
Output Voltage Swing  
Supply Current  
V
R = 2kΩ  
±3.±  
V
OUT  
L
I
Per amplifier  
3.3  
mA  
S
_______________________________________________________________________________________  
3
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
ELECTRICAL CHARACTERISTICS (MAX410 only)  
(V+ = ±V, V- = -±V, T = -55°C to +125°C, unless otherwise noted.)  
A
PARAMETER  
Input Offset Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
±200  
±1  
MAX  
UNITS  
µV  
V
±400  
OS  
Offset Voltage Tempco  
Input Bias Current  
V /T Over operating temperature range  
µV/°C  
nA  
OS  
I
±130  
±100  
±3±0  
±200  
B
Input Offset Current  
I
nA  
OS  
+3.7/  
-3.6  
Common-Mode Input Voltage  
V
±3.±  
V
CM  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
CMRR  
PSRR  
V
= ±3.±V  
10±  
90  
120  
94  
dB  
dB  
CM  
V = ±2.4V to ±±.2±V  
S
R = 2k, V = ±3.±V  
110  
90  
118  
114  
L
O
Large-Signal Gain  
A
dB  
VOL  
R = 600, V = +3.4V to -3.±V  
L
O
+3.7/  
-3.6  
Output Voltage Swing  
V
R = 2kΩ  
L
±3.±  
V
OUT  
Supply Current  
I
Per amplifier  
3.3  
mA  
S
Note 2: Guaranteed by design.  
Note 3: All TDFN devices are 100% tested at T = +2±°C. Limits over temperature for thin TDFNs are guaranteed by design.  
A
02/MAX14  
4
_______________________________________________________________________________________  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
02/MAX14  
Typical Operating Characteristics  
(TV+==+±2V±,°VC-,=un-±leVs,sToth=e+rw2i±s°eCn,outnelde.s)s otherwise noted.)  
A
A
VOLTAGE-NOISE DENSITY  
vs. FREQUENCY  
CURRENT-NOISE DENSITY  
vs. FREQUENCY  
1kHz VOLTAGE NOISE DISTRIBUTION  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
10  
V
T
=
5V  
V
T
=
5V  
S
A
S
A
= +25°C  
= +25°C  
10  
1/F CORNER = 220Hz  
1k 10k  
1/F CORNER = 90Hz  
1k  
1
1
0
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
1
10  
100  
10k  
1
10  
100  
INPUT-REFERRED VOLTAGE NOISE (nV/Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
0.1Hz TO 10Hz VOLTAGE NOISE  
WIDEBAND NOISE DC TO 20kHz  
MAX410-14 toc04  
MAX410-14 toc05  
100nV/div  
(INPUT-REFERRED)  
2µV/div  
(INPUT-REFERRED)  
1s/div  
0.2ms/div  
OPEN-LOOP GAIN  
vs. TEMPERATURE  
SHORT-CIRCUIT OUTPUT CURRENT  
vs. TEMPERATURE  
OUTPUT VOLTAGE SWING  
vs. TEMPERATURE  
140  
120  
100  
80  
50  
40  
30  
10  
9
V
=
5V  
V = 5V  
S
R = 2kΩ  
L
S
SOURCE  
8
V
= 5V  
S
L
R = 2kΩ  
7
6
SINK  
5
60  
4
20  
10  
0
3
40  
2
20  
1
0
0
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
°
°
°
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
_______________________________________________________________________________________  
5
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
Typical Operating Characteristics (continued)  
(V+ = ±V, V- = -±V, T = +2±°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. TEMPERATURE  
SLEW RATE  
vs. TEMPERATURE  
UNITY-GAIN BANDWIDTH  
vs. TEMPERATURE  
5
4
10  
9
8
7
6
5
4
3
2
1
0
50  
40  
30  
EACH AMPLIFIER  
V
=
5V  
V
=
5V  
S
L
S
L
V
= 5V  
R = 10kII 20pF  
R = 10kII 20pF  
S
3
2
1
0
20  
10  
0
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
°
°
°
TEMPERATURE ( C)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
LARGE-SIGNAL TRANSIENT RESPONSE  
SMALL-SIGNAL TRANSIENT RESPONSE  
MAX410-14 toc12  
MAX410-14 toc13  
INPUT  
3V/div  
INPUT  
50mV/div  
GND  
GND  
GND  
GND  
02/MAX14  
OUTPUT  
3V/div  
OUTPUT  
50mV/div  
1µs/div  
200ns/div  
°
= +1, R = 499, R = 2kII 20pF, V = 5V, T = +25 C  
F L S A  
°
= +1, R = 499, R = 2kII 20pF, V = 5V, T = +25 C  
F L S A  
A
A
V
V
WIDEBAND VOLTAGE NOISE  
(0.1Hz TO FREQUENCY INDICATED)  
TOTAL NOISE DENSITY  
vs. MATCHED SOURCE RESISTANCE  
TOTAL NOISE DENSITY  
vs. UNMATCHED SOURCE RESISTANCE  
10  
10k  
1k  
10k  
1k  
R
S
R
S
R
S
1
0.1  
100  
10  
100  
10  
@10Hz  
@1kHz  
@10Hz  
@1kHz  
1
1
V
T
=
5V  
V
T
= 5V  
= +25°C  
S
A
V
T
= 5V  
= +25°C  
S
A
S
A
= +25°C  
0.1  
0.1  
0.01  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
BANDWIDTH (Hz)  
MATCHED SOURCE RESISTANCE ()  
UNMATCHED SOURCE RESISTANCE ()  
6
_______________________________________________________________________________________  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
02/MAX14  
Typical Operating Characteristics (continued)  
(V+ = ±V, V- = -±V, T = +2±°C, unless otherwise noted.)  
A
TOTAL HARMONIC DISTORTION PLUS  
NOISE vs. FREQUENCY  
PERCENTAGE OVERSHOOT  
vs. CAPACITIVE LOAD  
MAX412/MAX414  
CHANNEL SEPARATION vs. FREQUENCY  
-85  
-88  
150  
140  
130  
120  
110  
100  
90  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
499Ω  
30pF  
V
T
=
5V  
V
T
=
5V  
V
T
= 5V  
= +25°C  
S
A
S
A
S
A
= +25°C  
= +25°C  
R
S
2kΩ  
V
IN  
7V  
P-P  
C
L
-91  
500Ω  
500Ω  
V
V
01  
-94  
A
= -1, R = 2kΩ  
V
S
1kΩ  
10Ω  
02  
-97  
A
= -10, R = 200Ω  
V
S
CHANNEL SEPARATION = 20 log  
IN  
-100  
80  
0
20  
100  
1k  
10k  
50k  
1
10  
100  
1000  
1
10  
100  
1000  
10,000  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
CAPACITANCE LOAD (pF)  
GAIN AND PHASE vs. FREQUENCY  
GAIN AND PHASE vs. FREQUENCY  
MAX410-14 toc20  
MAX410-14 toc21  
140  
90  
40  
30  
0
120  
100  
80  
45  
0
GAIN  
20  
-45  
-90  
-135  
-180  
-225  
GAIN  
10  
-45  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
60  
PHASE  
40  
-135  
-180  
PHASE  
20  
0
-225  
-270  
-20  
0.001  
0.0001  
0.1  
10  
1,000  
100 10,000  
100,000  
1
10  
FREQUENCY (MHz)  
100  
0.01  
1
FREQUENCY (kHz)  
_______________________________________________________________________________________  
7
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
becomes the dominant term, eventually making the  
Applications Information  
voltage noise contribution from the MAX410/MAX412/  
MAX414 negligible. As the source resistance is further  
increased, current noise becomes dominant. For exam-  
ple, when the equivalent source resistance is greater  
than 3kat 1kHz, the current noise component is larg-  
er than the resistor noise. The graph of Total Noise  
Density vs. Matched Source Resistance in the Typical  
Operating Characteristics shows this phenomenon.  
Optimal MAX410/MAX412/MAX414 noise performance  
and minimal total noise achieved with an equivalent  
source resistance of less than 10k.  
The MAX410/MAX412/MAX414 provide low voltage-  
noise performance. Obtaining low voltage noise from a  
bipolar op amp requires high collector currents in the  
input stage, since voltage noise is inversely proportion-  
al to the square root of the input stage collector current.  
However, op amp current noise is proportional to the  
square root of the input stage collector current, and the  
input bias current is proportional to the input stage col-  
lector current. Therefore, to obtain optimum low-noise  
performance, DC accuracy, and AC stability, minimize  
the value of the feedback and source resistance.  
Voltage Noise Testing  
RMS voltage-noise density is measured with the circuit  
shown in Figure 2, using the Quan Tech model ±173  
noise analyzer, or equivalent. The voltage-noise density  
at 1kHz is sample tested on production units. When  
measuring op-amp voltage noise, only low-value, metal  
film resistors are used in the test fixture.  
Total Noise Density vs. Source Resistance  
The standard expression for the total input-referred  
noise of an op amp at a given frequency is:  
e = e 2 +(R +R )2 i 2 +4kT (R +R )  
t
n
p
n
n
p
n
where:  
R = Inverting input effective series resistance  
The 0.1Hz to 10Hz peak-to-peak noise of the  
MAX410/MAX412/MAX414 is measured using the test  
n
R = Noninverting input effective series resistance  
p
R2  
100kΩ  
e
= Input voltage-noise density at the frequency of  
n
02/MAX14  
interest  
+5V  
i
= Input current-noise density at the frequency of  
n
interest  
0.1µF  
T = Ambient temperature in Kelvin (K)  
k = 1.28 x 10-23 J/K (Boltzman’s constant)  
In Figure 1, R = R3 and R = R1 || R2. In a real appli-  
R1  
100Ω  
e
D.U.T  
p
n
t
cation, the output resistance of the source driving the  
input must be included with R and R . The following  
example demonstrates how to calculate the total out-  
put-noise density at a frequency of 1kHz for the  
MAX412 circuit in Figure 1.  
p
n
R3  
0.1µF MAX410  
100Ω  
-5V  
MAX412  
MAX414  
Figure 1. Total Noise vs. Source Resistance Example  
Gain = 1000  
4kT at +2±°C = 1.64 x 10-20  
R = 100Ω  
R = 100|| 100k= 99.9 W  
n
p
27Ω  
e = 1.±nV/Hz at 1kHz  
n
i = 1.2pA/Hz at 1kHz  
n
e = [(1.± x 10-9)2 + (100 + 99.9)2 (1.2 x 10-12)2 + (1.64  
t
1/2  
x 10-20) (100 + 99.9)] = 2.36nV/Hz at 1kHz  
e
D.U.T  
3Ω  
n
Output noise density = (100)e = 2.36µV/Hz at 1kHz.  
t
In general, the amplifier’s voltage noise dominates with  
equivalent source resistances less than 200. As the  
equivalent source resistance increases, resistor noise  
MAX410  
MAX412  
MAX414  
Figure 2. Voltage-Noise Density Test Circuit  
_______________________________________________________________________________________  
8
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
02/MAX14  
0.1µF  
100kΩ  
+V  
S
2kΩ  
+V  
S
S
10Ω  
D.U.T  
TO SCOPE x1  
22µF  
2kΩ  
R
= 1MΩ  
IN  
MAX410  
4.7µF  
-V  
S
-V  
100kΩ  
110kΩ  
4.7µF  
MAX410  
MAX412  
MAX414  
0.1µF  
24.9kΩ  
Figure 3. 0.1Hz to 10Hz Voltage Noise Test Circuit  
Current Noise Testing  
100  
80  
60  
40  
20  
0
The current-noise density can be calculated, once the  
value of the input-referred noise is determined, by  
using the standard expression given below:  
e
2 - (A  
)2(4kT)(R +R )  
VCL n p  
no  
[
]
i
=
A/ Hz  
n
(R +R )(A  
)
n
p
VCL  
where:  
R = Inverting input effective series resistance  
n
R = Noninverting input effective series resistance  
p
e
no  
= Output voltage-noise density at the frequency of  
0.01  
0.1  
1
10  
100  
interest (V/Hz)  
FREQUENCY (Hz)  
i
= Input current-noise density at the frequency of  
n
interest (A/Hz)  
Figure 4. 0.1Hz to 10Hz Voltage Noise Test Circuit, Frequency  
Response  
A
VCL  
= Closed-loop gain  
T = Ambient temperature in Kelvin (K)  
k = 1.38 x 10-23 J/K (Boltzman’s constant)  
circuit shown in Figure 3. Figure 4 shows the frequency  
response of the circuit. The test time for the 0.1Hz to  
10Hz noise measurement should be limited to 10 sec-  
onds, which has the effect of adding a second zero to  
the test circuit, providing increased attenuation for fre-  
quencies below 0.1Hz.  
R
and R include the resistances of the input driving  
n
p
source(s), if any.  
If the Quan Tech model ±173 is used, then the A  
terms in the numerator and denominator of the equation  
given above should be eliminated because the Quan  
VCL  
_______________________________________________________________________________________  
9
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
909Ω  
R
f
499Ω  
+5V  
0.022µF  
R
n
10kΩ  
MAX410  
MAX412  
MAX414  
100Ω  
D.U.T  
e
no  
D.U.T  
V
OUT  
MAX410  
MAX412  
MAX414  
R
p
3900pF  
0.022µF  
V
IN  
10kΩ  
-5V  
Figure ±. Current-Noise Test Circuit  
Figure 6a. Voltage Follower Circuit with 3900pF Load  
Tech measures input-referred noise. For the circuit in  
Figure ±, assuming R is approximately equal to R  
and the measurement is taken with the Quan Tech  
model ±173, the equation simplifies to:  
V = 5V  
S
T = +25°C  
A
p
n
INPUT  
1V/div  
GND  
GND  
e
2 - (1.64 × 10-20)(20 × 103)  
no  
[
]
i
=
A/ Hz  
n
(20 × 103)  
OUTPUT  
1V/div  
Input Protection  
02/MAX14  
To protect amplifier inputs from excessive differential  
input voltages, most modern op amps contain input  
protection diodes and current-limiting resistors. These  
resistors increase the amplifier’s input-referred noise.  
They have not been included in the MAX410/MAX412/  
MAX414, to optimize noise performance. The MAX410/  
MAX412/MAX414 do contain back-to-back input pro-  
tection diodes which will protect the amplifier for differ-  
ential input voltages of ±0.1V. If the amplifier must be  
protected from higher differential input voltages, add  
external current-limiting resistors in series with the op  
amp inputs to limit the potential input current to less  
than 20mA.  
1µs/div  
Figure 6b. Driving 3900pF Load as Shown in Figure 6a  
When driving capacitive loads greater than 3900pF,  
add an output isolation resistor to the voltage follower  
circuit, as shown in Figure 7a. This resistor isolates the  
load capacitance from the amplifier output and restores  
the phase margin. Figure 7b is a photograph of the  
response of a MAX410/MAX412/MAX414 driving a  
0.01±µF load with a 10isolation resistor  
The capacitive-load driving performance of the  
MAX410/MAX412/MAX414 is plotted for closed-loop  
gains of -1V/V and -10V/V in the % Overshoot vs.  
Capacitive Load graph in the Typical Operating  
Characteristics.  
Capacitive-Load Driving  
Driving large capacitive loads increases the likelihood  
of oscillation in amplifier circuits. This is especially true  
for circuits with high loop gains, like voltage followers.  
The output impedance of the amplifier and a capacitive  
load form an RC network that adds a pole to the loop  
response. If the pole frequency is low enough, as when  
driving a large capacitive load, the circuit phase mar-  
gin is degraded.  
Feedback around the isolation resistor RI increases the  
accuracy at the capacitively loaded output (see Figure 8).  
The MAX410/MAX412/MAX414 are stable with a 0.01µF  
load for the values of R and C shown. In general, for  
I
F
In voltage follower circuits, the MAX410/MAX412/  
MAX414 remain stable while driving capacitive loads  
as great as 3900pF (see Figures 6a and 6b).  
decreased closed-loop gain, increase R or C . To drive  
I
F
F
larger capacitive loads, increase the value of C .  
10 ______________________________________________________________________________________  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
02/MAX14  
10kΩ  
499Ω  
MAX410  
MAX412  
MAX414  
C
82pF  
F
1kΩ  
V
IN  
R
I
10Ω  
R
10Ω  
I
D.U.T  
V
OUT  
C
D.U.T  
L
V
OUT  
0.01µF  
MAX410  
MAX412  
MAX414  
V
IN  
C > 0.015µF  
L
909Ω  
Figure 7a. Capacitive-Load Driving Circuit  
Figure 8. Capacitive-Load Driving Circuit with Loop-Enclosed  
Isolation Resistor  
V
T
=
5V  
S
A
= +25°C  
INPUT  
1V/div  
10kΩ  
GND  
GND  
1
8
7
NULL  
NULL  
V+  
MAX410  
OUTPUT  
1V/div  
1µs/div  
Figure 9. MAX410 Offset Null Circuit  
Figure 7b. Driving a 0.01±µF Load with a 10Isolation Resistor  
is between V+ - 1.4V and V- + 1.3V for total supply volt-  
ages between 4.8V and 10V. The output voltage range,  
referenced to the supply voltages, decreases slightly  
over temperature, as indicated in the ±±V Electrical  
Characteristics tables. Operating characteristics at total  
supply, voltages of less than 10V are guaranteed by  
design and PSRR tests.  
TDFN Exposed Paddle Connection  
On TDFN packages, there is an exposed paddle that  
does not carry any current but should be connected to  
V- (not the GND plane) for rated power dissipation.  
Total Supply Voltage Considerations  
Although the MAX410/MAX412/MAX414 are specified  
with ±±V power supplies, they are also capable of sin-  
gle-supply operation with voltages as low as 4.8V. The  
minimum input voltage range for normal amplifier oper-  
ation is between V- + 1.±V and V+ - 1.±V. The minimum  
room-temperature output voltage range (with 2kload)  
MAX410 Offset Voltage Null  
The offset null circuit of Figure 9 provides approximately  
±4±0µV of offset adjustment range, sufficient for zeroing  
offset over the full operating temperature range.  
______________________________________________________________________________________ 11  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
Ordering Information (continued)  
Pin Configurations (continued)  
PART  
MAX412CPA  
MAX412BCPA  
MAX412CSA  
MAX412BCSA  
MAX412EPA  
MAX412BEPA  
MAX412ESA  
MAX412BESA  
MAX414CPD  
MAX414BCPD  
MAX414CSD  
MAX414BCSD  
MAX414EPD  
MAX414BEPD  
MAX414ESD  
MAX414BESD  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +8±°C  
-40°C to +8±°C  
-40°C to +8±°C  
-40°C to +8±°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +8±°C  
-40°C to +8±°C  
-40°C to +8±°C  
-40°C to +8±°C  
PIN-PACKAGE  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
TOP VIEW  
OUT1  
IN1-  
IN1+  
V+  
1
2
3
4
5
6
7
14 OUT4  
13 IN4-  
12 IN4+  
11 V-  
4
3
1
8 SO  
MAX414  
8 Plastic DIP  
8 Plastic DIP  
8 SO  
IN2+  
IN2-  
OUT2  
10 IN3+  
2
9
8
IN3-  
OUT3  
8 SO  
14 Plastic DIP  
14 Plastic DIP  
14 SO  
DIP/SO  
14 SO  
Chip Information  
14 Plastic DIP  
14 Plastic DIP  
14 SO  
MAX410 TRANSISTOR COUNT: 132  
MAX412 TRANSISTOR COUNT: 262  
MAX414 TRANSISTOR COUNT: 2 262 (hybrid)  
PROCESS: Bipolar  
14 SO  
02/MAX14  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
8 Plastic DIP  
8 SO (MAX410)  
8 SO (MAX412)  
8 TDFN-EP  
PACKAGE CODE  
P8-1  
DOCUMENT NO.  
21-0043  
S8-2  
21-0041  
21-0041  
21-0137  
21-0043  
S8-4  
T833-2  
P14-3  
14 Plastic DIP  
14 SO  
S14-1  
21-0041  
12 ______________________________________________________________________________________  
Single/Dual/Quad, 28MHz, Low-Noise,  
Low-Voltage, Precision Op Amps  
02/MAX14  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
Added rugged plastic product.  
5
6
10/08  
1, 11  
Added military temperature operating range and new Electrical  
Characteristics table for the MAX410. Updated Package Information table.  
9/09  
1, 2, 4, 12–13  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX412BEPA

Single/Dual/Quad, 28MHz, Low-Noise, Low-Voltage, Precision Op Amps
MAXIM

MAX412BESA

Single/Dual/Quad, 28MHz, Low-Noise, Low-Voltage, Precision Op Amps
MAXIM

MAX412BESA+

Operational Amplifier, 2 Func, 400uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MO-012, SO-8
MAXIM

MAX412BESA-T

Operational Amplifier, 2 Func, 400uV Offset-Max, BIPolar, PDSO8, SOIC-8
MAXIM

MAX412BMJA

Single/Dual/Quad, 28MHz, Low-Noise, Low-Voltage, Precision Op Amps
MAXIM

MAX412C/D

Single/Dual/Quad, 28MHz, Low-Noise, Low-Voltage, Precision Op Amps
MAXIM

MAX412CPA

Single/Dual/Quad, 28MHz, Low-Noise, Low-Voltage, Precision Op Amps
MAXIM

MAX412CSA

Single/Dual/Quad, 28MHz, Low-Noise, Low-Voltage, Precision Op Amps
MAXIM

MAX412CSA+

Operational Amplifier, 2 Func, 350uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MO-012, SO-8
MAXIM

MAX412CSA+T

Operational Amplifier, 2 Func, 350uV Offset-Max, BIPolar, PDSO8, 0.150 INCH, MO-012, SO-8
MAXIM

MAX412CSA-T

Operational Amplifier, 2 Func, 350uV Offset-Max, BIPolar, PDSO8, SOIC-8
MAXIM

MAX412EPA

Single/Dual/Quad, 28MHz, Low-Noise, Low-Voltage, Precision Op Amps
MAXIM